github.com/simplechain-org/go-simplechain@v1.0.6/p2p/discv5/node.go (about)

     1  // Copyright 2015 The go-simplechain Authors
     2  // This file is part of the go-simplechain library.
     3  //
     4  // The go-simplechain library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-simplechain library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-simplechain library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package discv5
    18  
    19  import (
    20  	"crypto/ecdsa"
    21  	"crypto/elliptic"
    22  	"encoding/hex"
    23  	"errors"
    24  	"fmt"
    25  	"math/big"
    26  	"math/rand"
    27  	"net"
    28  	"net/url"
    29  	"regexp"
    30  	"strconv"
    31  	"strings"
    32  
    33  	"github.com/simplechain-org/go-simplechain/common"
    34  	"github.com/simplechain-org/go-simplechain/crypto"
    35  )
    36  
    37  // Node represents a host on the network.
    38  // The public fields of Node may not be modified.
    39  type Node struct {
    40  	IP       net.IP // len 4 for IPv4 or 16 for IPv6
    41  	UDP, TCP uint16 // port numbers
    42  	ID       NodeID // the node's public key
    43  
    44  	// Network-related fields are contained in nodeNetGuts.
    45  	// These fields are not supposed to be used off the
    46  	// Network.loop goroutine.
    47  	nodeNetGuts
    48  }
    49  
    50  // NewNode creates a new node. It is mostly meant to be used for
    51  // testing purposes.
    52  func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
    53  	if ipv4 := ip.To4(); ipv4 != nil {
    54  		ip = ipv4
    55  	}
    56  	return &Node{
    57  		IP:          ip,
    58  		UDP:         udpPort,
    59  		TCP:         tcpPort,
    60  		ID:          id,
    61  		nodeNetGuts: nodeNetGuts{sha: crypto.Keccak256Hash(id[:])},
    62  	}
    63  }
    64  
    65  func (n *Node) addr() *net.UDPAddr {
    66  	return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)}
    67  }
    68  
    69  // Incomplete returns true for nodes with no IP address.
    70  func (n *Node) Incomplete() bool {
    71  	return n.IP == nil
    72  }
    73  
    74  // checks whether n is a valid complete node.
    75  func (n *Node) validateComplete() error {
    76  	if n.Incomplete() {
    77  		return errors.New("incomplete node")
    78  	}
    79  	if n.UDP == 0 {
    80  		return errors.New("missing UDP port")
    81  	}
    82  	if n.TCP == 0 {
    83  		return errors.New("missing TCP port")
    84  	}
    85  	if n.IP.IsMulticast() || n.IP.IsUnspecified() {
    86  		return errors.New("invalid IP (multicast/unspecified)")
    87  	}
    88  	_, err := n.ID.Pubkey() // validate the key (on curve, etc.)
    89  	return err
    90  }
    91  
    92  // The string representation of a Node is a URL.
    93  // Please see ParseNode for a description of the format.
    94  func (n *Node) String() string {
    95  	u := url.URL{Scheme: "enode"}
    96  	if n.Incomplete() {
    97  		u.Host = fmt.Sprintf("%x", n.ID[:])
    98  	} else {
    99  		addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)}
   100  		u.User = url.User(fmt.Sprintf("%x", n.ID[:]))
   101  		u.Host = addr.String()
   102  		if n.UDP != n.TCP {
   103  			u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP))
   104  		}
   105  	}
   106  	return u.String()
   107  }
   108  
   109  var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$")
   110  
   111  // ParseNode parses a node designator.
   112  //
   113  // There are two basic forms of node designators
   114  //   - incomplete nodes, which only have the public key (node ID)
   115  //   - complete nodes, which contain the public key and IP/Port information
   116  //
   117  // For incomplete nodes, the designator must look like one of these
   118  //
   119  //    enode://<hex node id>
   120  //    <hex node id>
   121  //
   122  // For complete nodes, the node ID is encoded in the username portion
   123  // of the URL, separated from the host by an @ sign. The hostname can
   124  // only be given as an IP address, DNS domain names are not allowed.
   125  // The port in the host name section is the TCP listening port. If the
   126  // TCP and UDP (discovery) ports differ, the UDP port is specified as
   127  // query parameter "discport".
   128  //
   129  // In the following example, the node URL describes
   130  // a node with IP address 10.3.58.6, TCP listening port 30303
   131  // and UDP discovery port 30301.
   132  //
   133  //    enode://<hex node id>@10.3.58.6:30303?discport=30301
   134  func ParseNode(rawurl string) (*Node, error) {
   135  	if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil {
   136  		id, err := HexID(m[1])
   137  		if err != nil {
   138  			return nil, fmt.Errorf("invalid node ID (%v)", err)
   139  		}
   140  		return NewNode(id, nil, 0, 0), nil
   141  	}
   142  	return parseComplete(rawurl)
   143  }
   144  
   145  func parseComplete(rawurl string) (*Node, error) {
   146  	var (
   147  		id               NodeID
   148  		ip               net.IP
   149  		tcpPort, udpPort uint64
   150  	)
   151  	u, err := url.Parse(rawurl)
   152  	if err != nil {
   153  		return nil, err
   154  	}
   155  	if u.Scheme != "enode" {
   156  		return nil, errors.New("invalid URL scheme, want \"enode\"")
   157  	}
   158  	// Parse the Node ID from the user portion.
   159  	if u.User == nil {
   160  		return nil, errors.New("does not contain node ID")
   161  	}
   162  	if id, err = HexID(u.User.String()); err != nil {
   163  		return nil, fmt.Errorf("invalid node ID (%v)", err)
   164  	}
   165  	// Parse the IP address.
   166  	host, port, err := net.SplitHostPort(u.Host)
   167  	if err != nil {
   168  		return nil, fmt.Errorf("invalid host: %v", err)
   169  	}
   170  	if ip = net.ParseIP(host); ip == nil {
   171  		return nil, errors.New("invalid IP address")
   172  	}
   173  	// Ensure the IP is 4 bytes long for IPv4 addresses.
   174  	if ipv4 := ip.To4(); ipv4 != nil {
   175  		ip = ipv4
   176  	}
   177  	// Parse the port numbers.
   178  	if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil {
   179  		return nil, errors.New("invalid port")
   180  	}
   181  	udpPort = tcpPort
   182  	qv := u.Query()
   183  	if qv.Get("discport") != "" {
   184  		udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16)
   185  		if err != nil {
   186  			return nil, errors.New("invalid discport in query")
   187  		}
   188  	}
   189  	return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil
   190  }
   191  
   192  // MustParseNode parses a node URL. It panics if the URL is not valid.
   193  func MustParseNode(rawurl string) *Node {
   194  	n, err := ParseNode(rawurl)
   195  	if err != nil {
   196  		panic("invalid node URL: " + err.Error())
   197  	}
   198  	return n
   199  }
   200  
   201  // MarshalText implements encoding.TextMarshaler.
   202  func (n *Node) MarshalText() ([]byte, error) {
   203  	return []byte(n.String()), nil
   204  }
   205  
   206  // UnmarshalText implements encoding.TextUnmarshaler.
   207  func (n *Node) UnmarshalText(text []byte) error {
   208  	dec, err := ParseNode(string(text))
   209  	if err == nil {
   210  		*n = *dec
   211  	}
   212  	return err
   213  }
   214  
   215  // type nodeQueue []*Node
   216  //
   217  // // pushNew adds n to the end if it is not present.
   218  // func (nl *nodeList) appendNew(n *Node) {
   219  // 	for _, entry := range n {
   220  // 		if entry == n {
   221  // 			return
   222  // 		}
   223  // 	}
   224  // 	*nq = append(*nq, n)
   225  // }
   226  //
   227  // // popRandom removes a random node. Nodes closer to
   228  // // to the head of the beginning of the have a slightly higher probability.
   229  // func (nl *nodeList) popRandom() *Node {
   230  // 	ix := rand.Intn(len(*nq))
   231  // 	//TODO: probability as mentioned above.
   232  // 	nl.removeIndex(ix)
   233  // }
   234  //
   235  // func (nl *nodeList) removeIndex(i int) *Node {
   236  // 	slice = *nl
   237  // 	if len(*slice) <= i {
   238  // 		return nil
   239  // 	}
   240  // 	*nl = append(slice[:i], slice[i+1:]...)
   241  // }
   242  
   243  const nodeIDBits = 512
   244  
   245  // NodeID is a unique identifier for each node.
   246  // The node identifier is a marshaled elliptic curve public key.
   247  type NodeID [nodeIDBits / 8]byte
   248  
   249  // NodeID prints as a long hexadecimal number.
   250  func (n NodeID) String() string {
   251  	return fmt.Sprintf("%x", n[:])
   252  }
   253  
   254  // The Go syntax representation of a NodeID is a call to HexID.
   255  func (n NodeID) GoString() string {
   256  	return fmt.Sprintf("discover.HexID(\"%x\")", n[:])
   257  }
   258  
   259  // TerminalString returns a shortened hex string for terminal logging.
   260  func (n NodeID) TerminalString() string {
   261  	return hex.EncodeToString(n[:8])
   262  }
   263  
   264  // HexID converts a hex string to a NodeID.
   265  // The string may be prefixed with 0x.
   266  func HexID(in string) (NodeID, error) {
   267  	var id NodeID
   268  	b, err := hex.DecodeString(strings.TrimPrefix(in, "0x"))
   269  	if err != nil {
   270  		return id, err
   271  	} else if len(b) != len(id) {
   272  		return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2)
   273  	}
   274  	copy(id[:], b)
   275  	return id, nil
   276  }
   277  
   278  // MustHexID converts a hex string to a NodeID.
   279  // It panics if the string is not a valid NodeID.
   280  func MustHexID(in string) NodeID {
   281  	id, err := HexID(in)
   282  	if err != nil {
   283  		panic(err)
   284  	}
   285  	return id
   286  }
   287  
   288  // PubkeyID returns a marshaled representation of the given public key.
   289  func PubkeyID(pub *ecdsa.PublicKey) NodeID {
   290  	var id NodeID
   291  	pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
   292  	if len(pbytes)-1 != len(id) {
   293  		panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
   294  	}
   295  	copy(id[:], pbytes[1:])
   296  	return id
   297  }
   298  
   299  // Pubkey returns the public key represented by the node ID.
   300  // It returns an error if the ID is not a point on the curve.
   301  func (n NodeID) Pubkey() (*ecdsa.PublicKey, error) {
   302  	p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
   303  	half := len(n) / 2
   304  	p.X.SetBytes(n[:half])
   305  	p.Y.SetBytes(n[half:])
   306  	if !p.Curve.IsOnCurve(p.X, p.Y) {
   307  		return nil, errors.New("id is invalid secp256k1 curve point")
   308  	}
   309  	return p, nil
   310  }
   311  
   312  // recoverNodeID computes the public key used to sign the
   313  // given hash from the signature.
   314  func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
   315  	pubkey, err := crypto.Ecrecover(hash, sig)
   316  	if err != nil {
   317  		return id, err
   318  	}
   319  	if len(pubkey)-1 != len(id) {
   320  		return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
   321  	}
   322  	for i := range id {
   323  		id[i] = pubkey[i+1]
   324  	}
   325  	return id, nil
   326  }
   327  
   328  // distcmp compares the distances a->target and b->target.
   329  // Returns -1 if a is closer to target, 1 if b is closer to target
   330  // and 0 if they are equal.
   331  func distcmp(target, a, b common.Hash) int {
   332  	for i := range target {
   333  		da := a[i] ^ target[i]
   334  		db := b[i] ^ target[i]
   335  		if da > db {
   336  			return 1
   337  		} else if da < db {
   338  			return -1
   339  		}
   340  	}
   341  	return 0
   342  }
   343  
   344  // table of leading zero counts for bytes [0..255]
   345  var lzcount = [256]int{
   346  	8, 7, 6, 6, 5, 5, 5, 5,
   347  	4, 4, 4, 4, 4, 4, 4, 4,
   348  	3, 3, 3, 3, 3, 3, 3, 3,
   349  	3, 3, 3, 3, 3, 3, 3, 3,
   350  	2, 2, 2, 2, 2, 2, 2, 2,
   351  	2, 2, 2, 2, 2, 2, 2, 2,
   352  	2, 2, 2, 2, 2, 2, 2, 2,
   353  	2, 2, 2, 2, 2, 2, 2, 2,
   354  	1, 1, 1, 1, 1, 1, 1, 1,
   355  	1, 1, 1, 1, 1, 1, 1, 1,
   356  	1, 1, 1, 1, 1, 1, 1, 1,
   357  	1, 1, 1, 1, 1, 1, 1, 1,
   358  	1, 1, 1, 1, 1, 1, 1, 1,
   359  	1, 1, 1, 1, 1, 1, 1, 1,
   360  	1, 1, 1, 1, 1, 1, 1, 1,
   361  	1, 1, 1, 1, 1, 1, 1, 1,
   362  	0, 0, 0, 0, 0, 0, 0, 0,
   363  	0, 0, 0, 0, 0, 0, 0, 0,
   364  	0, 0, 0, 0, 0, 0, 0, 0,
   365  	0, 0, 0, 0, 0, 0, 0, 0,
   366  	0, 0, 0, 0, 0, 0, 0, 0,
   367  	0, 0, 0, 0, 0, 0, 0, 0,
   368  	0, 0, 0, 0, 0, 0, 0, 0,
   369  	0, 0, 0, 0, 0, 0, 0, 0,
   370  	0, 0, 0, 0, 0, 0, 0, 0,
   371  	0, 0, 0, 0, 0, 0, 0, 0,
   372  	0, 0, 0, 0, 0, 0, 0, 0,
   373  	0, 0, 0, 0, 0, 0, 0, 0,
   374  	0, 0, 0, 0, 0, 0, 0, 0,
   375  	0, 0, 0, 0, 0, 0, 0, 0,
   376  	0, 0, 0, 0, 0, 0, 0, 0,
   377  	0, 0, 0, 0, 0, 0, 0, 0,
   378  }
   379  
   380  // logdist returns the logarithmic distance between a and b, log2(a ^ b).
   381  func logdist(a, b common.Hash) int {
   382  	lz := 0
   383  	for i := range a {
   384  		x := a[i] ^ b[i]
   385  		if x == 0 {
   386  			lz += 8
   387  		} else {
   388  			lz += lzcount[x]
   389  			break
   390  		}
   391  	}
   392  	return len(a)*8 - lz
   393  }
   394  
   395  // hashAtDistance returns a random hash such that logdist(a, b) == n
   396  func hashAtDistance(a common.Hash, n int) (b common.Hash) {
   397  	if n == 0 {
   398  		return a
   399  	}
   400  	// flip bit at position n, fill the rest with random bits
   401  	b = a
   402  	pos := len(a) - n/8 - 1
   403  	bit := byte(0x01) << (byte(n%8) - 1)
   404  	if bit == 0 {
   405  		pos++
   406  		bit = 0x80
   407  	}
   408  	b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
   409  	for i := pos + 1; i < len(a); i++ {
   410  		b[i] = byte(rand.Intn(255))
   411  	}
   412  	return b
   413  }