github.com/sirkon/goproxy@v1.4.8/internal/work/buildid.go (about)

     1  // Copyright 2017 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package work
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"io/ioutil"
    11  	"os"
    12  	"os/exec"
    13  	"strings"
    14  
    15  	"github.com/sirkon/goproxy/internal/base"
    16  	"github.com/sirkon/goproxy/internal/cache"
    17  	"github.com/sirkon/goproxy/internal/cfg"
    18  	"github.com/sirkon/goproxy/internal/load"
    19  	"github.com/sirkon/goproxy/internal/str"
    20  	"github.com/sirkon/goproxy/internal/buildid"
    21  	"github.com/sirkon/goproxy/internal/objabi"
    22  )
    23  
    24  // Build IDs
    25  //
    26  // Go packages and binaries are stamped with build IDs that record both
    27  // the action ID, which is a hash of the inputs to the action that produced
    28  // the packages or binary, and the content ID, which is a hash of the action
    29  // output, namely the archive or binary itself. The hash is the same one
    30  // used by the build artifact cache (see github.com/sirkon/goproxy/internal/cache), but
    31  // truncated when stored in packages and binaries, as the full length is not
    32  // needed and is a bit unwieldy. The precise form is
    33  //
    34  //	actionID/[.../]contentID
    35  //
    36  // where the actionID and contentID are prepared by hashToString below.
    37  // and are found by looking for the first or last slash.
    38  // Usually the buildID is simply actionID/contentID, but see below for an
    39  // exception.
    40  //
    41  // The build ID serves two primary purposes.
    42  //
    43  // 1. The action ID half allows installed packages and binaries to serve as
    44  // one-element cache entries. If we intend to build math.a with a given
    45  // set of inputs summarized in the action ID, and the installed math.a already
    46  // has that action ID, we can reuse the installed math.a instead of rebuilding it.
    47  //
    48  // 2. The content ID half allows the easy preparation of action IDs for steps
    49  // that consume a particular package or binary. The content hash of every
    50  // input file for a given action must be included in the action ID hash.
    51  // Storing the content ID in the build ID lets us read it from the file with
    52  // minimal I/O, instead of reading and hashing the entire file.
    53  // This is especially effective since packages and binaries are typically
    54  // the largest inputs to an action.
    55  //
    56  // Separating action ID from content ID is important for reproducible builds.
    57  // The compiler is compiled with itself. If an output were represented by its
    58  // own action ID (instead of content ID) when computing the action ID of
    59  // the next step in the build process, then the compiler could never have its
    60  // own input action ID as its output action ID (short of a miraculous hash collision).
    61  // Instead we use the content IDs to compute the next action ID, and because
    62  // the content IDs converge, so too do the action IDs and therefore the
    63  // build IDs and the overall compiler binary. See cmd/dist's cmdbootstrap
    64  // for the actual convergence sequence.
    65  //
    66  // The “one-element cache” purpose is a bit more complex for installed
    67  // binaries. For a binary, like cmd/gofmt, there are two steps: compile
    68  // cmd/gofmt/*.go into main.a, and then link main.a into the gofmt binary.
    69  // We do not install gofmt's main.a, only the gofmt binary. Being able to
    70  // decide that the gofmt binary is up-to-date means computing the action ID
    71  // for the final link of the gofmt binary and comparing it against the
    72  // already-installed gofmt binary. But computing the action ID for the link
    73  // means knowing the content ID of main.a, which we did not keep.
    74  // To sidestep this problem, each binary actually stores an expanded build ID:
    75  //
    76  //	actionID(binary)/actionID(main.a)/contentID(main.a)/contentID(binary)
    77  //
    78  // (Note that this can be viewed equivalently as:
    79  //
    80  //	actionID(binary)/buildID(main.a)/contentID(binary)
    81  //
    82  // Storing the buildID(main.a) in the middle lets the computations that care
    83  // about the prefix or suffix halves ignore the middle and preserves the
    84  // original build ID as a contiguous string.)
    85  //
    86  // During the build, when it's time to build main.a, the gofmt binary has the
    87  // information needed to decide whether the eventual link would produce
    88  // the same binary: if the action ID for main.a's inputs matches and then
    89  // the action ID for the link step matches when assuming the given main.a
    90  // content ID, then the binary as a whole is up-to-date and need not be rebuilt.
    91  //
    92  // This is all a bit complex and may be simplified once we can rely on the
    93  // main cache, but at least at the start we will be using the content-based
    94  // staleness determination without a cache beyond the usual installed
    95  // package and binary locations.
    96  
    97  const buildIDSeparator = "/"
    98  
    99  // actionID returns the action ID half of a build ID.
   100  func actionID(buildID string) string {
   101  	i := strings.Index(buildID, buildIDSeparator)
   102  	if i < 0 {
   103  		return buildID
   104  	}
   105  	return buildID[:i]
   106  }
   107  
   108  // contentID returns the content ID half of a build ID.
   109  func contentID(buildID string) string {
   110  	return buildID[strings.LastIndex(buildID, buildIDSeparator)+1:]
   111  }
   112  
   113  // hashToString converts the hash h to a string to be recorded
   114  // in package archives and binaries as part of the build ID.
   115  // We use the first 96 bits of the hash and encode it in base64,
   116  // resulting in a 16-byte string. Because this is only used for
   117  // detecting the need to rebuild installed files (not for lookups
   118  // in the object file cache), 96 bits are sufficient to drive the
   119  // probability of a false "do not need to rebuild" decision to effectively zero.
   120  // We embed two different hashes in archives and four in binaries,
   121  // so cutting to 16 bytes is a significant savings when build IDs are displayed.
   122  // (16*4+3 = 67 bytes compared to 64*4+3 = 259 bytes for the
   123  // more straightforward option of printing the entire h in hex).
   124  func hashToString(h [cache.HashSize]byte) string {
   125  	const b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"
   126  	const chunks = 5
   127  	var dst [chunks * 4]byte
   128  	for i := 0; i < chunks; i++ {
   129  		v := uint32(h[3*i])<<16 | uint32(h[3*i+1])<<8 | uint32(h[3*i+2])
   130  		dst[4*i+0] = b64[(v>>18)&0x3F]
   131  		dst[4*i+1] = b64[(v>>12)&0x3F]
   132  		dst[4*i+2] = b64[(v>>6)&0x3F]
   133  		dst[4*i+3] = b64[v&0x3F]
   134  	}
   135  	return string(dst[:])
   136  }
   137  
   138  // toolID returns the unique ID to use for the current copy of the
   139  // named tool (asm, compile, cover, link).
   140  //
   141  // It is important that if the tool changes (for example a compiler bug is fixed
   142  // and the compiler reinstalled), toolID returns a different string, so that old
   143  // package archives look stale and are rebuilt (with the fixed compiler).
   144  // This suggests using a content hash of the tool binary, as stored in the build ID.
   145  //
   146  // Unfortunately, we can't just open the tool binary, because the tool might be
   147  // invoked via a wrapper program specified by -toolexec and we don't know
   148  // what the wrapper program does. In particular, we want "-toolexec toolstash"
   149  // to continue working: it does no good if "-toolexec toolstash" is executing a
   150  // stashed copy of the compiler but the go command is acting as if it will run
   151  // the standard copy of the compiler. The solution is to ask the tool binary to tell
   152  // us its own build ID using the "-V=full" flag now supported by all tools.
   153  // Then we know we're getting the build ID of the compiler that will actually run
   154  // during the build. (How does the compiler binary know its own content hash?
   155  // We store it there using updateBuildID after the standard link step.)
   156  //
   157  // A final twist is that we'd prefer to have reproducible builds for release toolchains.
   158  // It should be possible to cross-compile for Windows from either Linux or Mac
   159  // or Windows itself and produce the same binaries, bit for bit. If the tool ID,
   160  // which influences the action ID half of the build ID, is based on the content ID,
   161  // then the Linux compiler binary and Mac compiler binary will have different tool IDs
   162  // and therefore produce executables with different action IDs.
   163  // To avoids this problem, for releases we use the release version string instead
   164  // of the compiler binary's content hash. This assumes that all compilers built
   165  // on all different systems are semantically equivalent, which is of course only true
   166  // modulo bugs. (Producing the exact same executables also requires that the different
   167  // build setups agree on details like $GOROOT and file name paths, but at least the
   168  // tool IDs do not make it impossible.)
   169  func (b *Builder) toolID(name string) string {
   170  	b.id.Lock()
   171  	id := b.toolIDCache[name]
   172  	b.id.Unlock()
   173  
   174  	if id != "" {
   175  		return id
   176  	}
   177  
   178  	path := base.Tool(name)
   179  	desc := "go tool " + name
   180  
   181  	// Special case: undocumented -vettool overrides usual vet, for testing vet.
   182  	if name == "vet" && VetTool != "" {
   183  		path = VetTool
   184  		desc = VetTool
   185  	}
   186  
   187  	cmdline := str.StringList(cfg.BuildToolexec, path, "-V=full")
   188  	cmd := exec.Command(cmdline[0], cmdline[1:]...)
   189  	cmd.Env = base.EnvForDir(cmd.Dir, os.Environ())
   190  	var stdout, stderr bytes.Buffer
   191  	cmd.Stdout = &stdout
   192  	cmd.Stderr = &stderr
   193  	if err := cmd.Run(); err != nil {
   194  		base.Fatalf("%s: %v\n%s%s", desc, err, stdout.Bytes(), stderr.Bytes())
   195  	}
   196  
   197  	line := stdout.String()
   198  	f := strings.Fields(line)
   199  	if len(f) < 3 || f[0] != name && path != VetTool || f[1] != "version" || f[2] == "devel" && !strings.HasPrefix(f[len(f)-1], "buildID=") {
   200  		base.Fatalf("%s -V=full: unexpected output:\n\t%s", desc, line)
   201  	}
   202  	if f[2] == "devel" {
   203  		// On the development branch, use the content ID part of the build ID.
   204  		id = contentID(f[len(f)-1])
   205  	} else {
   206  		// For a release, the output is like: "compile version go1.9.1". Use the whole line.
   207  		id = f[2]
   208  	}
   209  
   210  	// For the compiler, add any experiments.
   211  	if name == "compile" {
   212  		id += " " + objabi.Expstring()
   213  	}
   214  
   215  	b.id.Lock()
   216  	b.toolIDCache[name] = id
   217  	b.id.Unlock()
   218  
   219  	return id
   220  }
   221  
   222  // gccToolID returns the unique ID to use for a tool that is invoked
   223  // by the GCC driver. This is in particular gccgo, but this can also
   224  // be used for gcc, g++, gfortran, etc.; those tools all use the GCC
   225  // driver under different names. The approach used here should also
   226  // work for sufficiently new versions of clang. Unlike toolID, the
   227  // name argument is the program to run. The language argument is the
   228  // type of input file as passed to the GCC driver's -x option.
   229  //
   230  // For these tools we have no -V=full option to dump the build ID,
   231  // but we can run the tool with -v -### to reliably get the compiler proper
   232  // and hash that. That will work in the presence of -toolexec.
   233  //
   234  // In order to get reproducible builds for released compilers, we
   235  // detect a released compiler by the absence of "experimental" in the
   236  // --version output, and in that case we just use the version string.
   237  func (b *Builder) gccgoToolID(name, language string) (string, error) {
   238  	key := name + "." + language
   239  	b.id.Lock()
   240  	id := b.toolIDCache[key]
   241  	b.id.Unlock()
   242  
   243  	if id != "" {
   244  		return id, nil
   245  	}
   246  
   247  	// Invoke the driver with -### to see the subcommands and the
   248  	// version strings. Use -x to set the language. Pretend to
   249  	// compile an empty file on standard input.
   250  	cmdline := str.StringList(cfg.BuildToolexec, name, "-###", "-x", language, "-c", "-")
   251  	cmd := exec.Command(cmdline[0], cmdline[1:]...)
   252  	cmd.Env = base.EnvForDir(cmd.Dir, os.Environ())
   253  	// Force untranslated output so that we see the string "version".
   254  	cmd.Env = append(cmd.Env, "LC_ALL=C")
   255  	out, err := cmd.CombinedOutput()
   256  	if err != nil {
   257  		return "", fmt.Errorf("%s: %v; output: %q", name, err, out)
   258  	}
   259  
   260  	version := ""
   261  	lines := strings.Split(string(out), "\n")
   262  	for _, line := range lines {
   263  		if fields := strings.Fields(line); len(fields) > 1 && fields[1] == "version" {
   264  			version = line
   265  			break
   266  		}
   267  	}
   268  	if version == "" {
   269  		return "", fmt.Errorf("%s: can not find version number in %q", name, out)
   270  	}
   271  
   272  	if !strings.Contains(version, "experimental") {
   273  		// This is a release. Use this line as the tool ID.
   274  		id = version
   275  	} else {
   276  		// This is a development version. The first line with
   277  		// a leading space is the compiler proper.
   278  		compiler := ""
   279  		for _, line := range lines {
   280  			if len(line) > 1 && line[0] == ' ' {
   281  				compiler = line
   282  				break
   283  			}
   284  		}
   285  		if compiler == "" {
   286  			return "", fmt.Errorf("%s: can not find compilation command in %q", name, out)
   287  		}
   288  
   289  		fields := strings.Fields(compiler)
   290  		if len(fields) == 0 {
   291  			return "", fmt.Errorf("%s: compilation command confusion %q", name, out)
   292  		}
   293  		exe := fields[0]
   294  		if !strings.ContainsAny(exe, `/\`) {
   295  			if lp, err := exec.LookPath(exe); err == nil {
   296  				exe = lp
   297  			}
   298  		}
   299  		if _, err := os.Stat(exe); err != nil {
   300  			return "", fmt.Errorf("%s: can not find compiler %q: %v; output %q", name, exe, err, out)
   301  		}
   302  		id = b.fileHash(exe)
   303  	}
   304  
   305  	b.id.Lock()
   306  	b.toolIDCache[name] = id
   307  	b.id.Unlock()
   308  
   309  	return id, nil
   310  }
   311  
   312  // Check if assembler used by gccgo is GNU as.
   313  func assemblerIsGas() bool {
   314  	cmd := exec.Command(BuildToolchain.compiler(), "-print-prog-name=as")
   315  	assembler, err := cmd.Output()
   316  	if err == nil {
   317  		cmd := exec.Command(strings.TrimSpace(string(assembler)), "--version")
   318  		out, err := cmd.Output()
   319  		return err == nil && strings.Contains(string(out), "GNU")
   320  	} else {
   321  		return false
   322  	}
   323  }
   324  
   325  // gccgoBuildIDELFFile creates an assembler file that records the
   326  // action's build ID in an SHF_EXCLUDE section.
   327  func (b *Builder) gccgoBuildIDELFFile(a *Action) (string, error) {
   328  	sfile := a.Objdir + "_buildid.s"
   329  
   330  	var buf bytes.Buffer
   331  	if cfg.Goos != "solaris" || assemblerIsGas() {
   332  		fmt.Fprintf(&buf, "\t"+`.section .go.buildid,"e"`+"\n")
   333  	} else if cfg.Goarch == "sparc" || cfg.Goarch == "sparc64" {
   334  		fmt.Fprintf(&buf, "\t"+`.section ".go.buildid",#exclude`+"\n")
   335  	} else { // cfg.Goarch == "386" || cfg.Goarch == "amd64"
   336  		fmt.Fprintf(&buf, "\t"+`.section .go.buildid,#exclude`+"\n")
   337  	}
   338  	fmt.Fprintf(&buf, "\t.byte ")
   339  	for i := 0; i < len(a.buildID); i++ {
   340  		if i > 0 {
   341  			if i%8 == 0 {
   342  				fmt.Fprintf(&buf, "\n\t.byte ")
   343  			} else {
   344  				fmt.Fprintf(&buf, ",")
   345  			}
   346  		}
   347  		fmt.Fprintf(&buf, "%#02x", a.buildID[i])
   348  	}
   349  	fmt.Fprintf(&buf, "\n")
   350  	if cfg.Goos != "solaris" {
   351  		fmt.Fprintf(&buf, "\t"+`.section .note.GNU-stack,"",@progbits`+"\n")
   352  		fmt.Fprintf(&buf, "\t"+`.section .note.GNU-split-stack,"",@progbits`+"\n")
   353  	}
   354  
   355  	if cfg.BuildN || cfg.BuildX {
   356  		for _, line := range bytes.Split(buf.Bytes(), []byte("\n")) {
   357  			b.Showcmd("", "echo '%s' >> %s", line, sfile)
   358  		}
   359  		if cfg.BuildN {
   360  			return sfile, nil
   361  		}
   362  	}
   363  
   364  	if err := ioutil.WriteFile(sfile, buf.Bytes(), 0666); err != nil {
   365  		return "", err
   366  	}
   367  
   368  	return sfile, nil
   369  }
   370  
   371  // buildID returns the build ID found in the given file.
   372  // If no build ID is found, buildID returns the content hash of the file.
   373  func (b *Builder) buildID(file string) string {
   374  	b.id.Lock()
   375  	id := b.buildIDCache[file]
   376  	b.id.Unlock()
   377  
   378  	if id != "" {
   379  		return id
   380  	}
   381  
   382  	id, err := buildid.ReadFile(file)
   383  	if err != nil {
   384  		id = b.fileHash(file)
   385  	}
   386  
   387  	b.id.Lock()
   388  	b.buildIDCache[file] = id
   389  	b.id.Unlock()
   390  
   391  	return id
   392  }
   393  
   394  // fileHash returns the content hash of the named file.
   395  func (b *Builder) fileHash(file string) string {
   396  	sum, err := cache.FileHash(file)
   397  	if err != nil {
   398  		return ""
   399  	}
   400  	return hashToString(sum)
   401  }
   402  
   403  // useCache tries to satisfy the action a, which has action ID actionHash,
   404  // by using a cached result from an earlier build. At the moment, the only
   405  // cached result is the installed package or binary at target.
   406  // If useCache decides that the cache can be used, it sets a.buildID
   407  // and a.built for use by parent actions and then returns true.
   408  // Otherwise it sets a.buildID to a temporary build ID for use in the build
   409  // and returns false. When useCache returns false the expectation is that
   410  // the caller will build the target and then call updateBuildID to finish the
   411  // build ID computation.
   412  // When useCache returns false, it may have initiated buffering of output
   413  // during a's work. The caller should defer b.flushOutput(a), to make sure
   414  // that flushOutput is eventually called regardless of whether the action
   415  // succeeds. The flushOutput call must happen after updateBuildID.
   416  func (b *Builder) useCache(a *Action, p *load.Package, actionHash cache.ActionID, target string) bool {
   417  	// The second half of the build ID here is a placeholder for the content hash.
   418  	// It's important that the overall buildID be unlikely verging on impossible
   419  	// to appear in the output by chance, but that should be taken care of by
   420  	// the actionID half; if it also appeared in the input that would be like an
   421  	// engineered 96-bit partial SHA256 collision.
   422  	a.actionID = actionHash
   423  	actionID := hashToString(actionHash)
   424  	contentID := actionID // temporary placeholder, likely unique
   425  	a.buildID = actionID + buildIDSeparator + contentID
   426  
   427  	// Executable binaries also record the main build ID in the middle.
   428  	// See "Build IDs" comment above.
   429  	if a.Mode == "link" {
   430  		mainpkg := a.Deps[0]
   431  		a.buildID = actionID + buildIDSeparator + mainpkg.buildID + buildIDSeparator + contentID
   432  	}
   433  
   434  	// Check to see if target exists and matches the expected action ID.
   435  	// If so, it's up to date and we can reuse it instead of rebuilding it.
   436  	var buildID string
   437  	if target != "" && !cfg.BuildA {
   438  		buildID, _ = buildid.ReadFile(target)
   439  		if strings.HasPrefix(buildID, actionID+buildIDSeparator) {
   440  			a.buildID = buildID
   441  			a.built = target
   442  			// Poison a.Target to catch uses later in the build.
   443  			a.Target = "DO NOT USE - " + a.Mode
   444  			return true
   445  		}
   446  	}
   447  
   448  	// Special case for building a main package: if the only thing we
   449  	// want the package for is to link a binary, and the binary is
   450  	// already up-to-date, then to avoid a rebuild, report the package
   451  	// as up-to-date as well. See "Build IDs" comment above.
   452  	// TODO(rsc): Rewrite this code to use a TryCache func on the link action.
   453  	if target != "" && !cfg.BuildA && !b.NeedExport && a.Mode == "build" && len(a.triggers) == 1 && a.triggers[0].Mode == "link" {
   454  		buildID, err := buildid.ReadFile(target)
   455  		if err == nil {
   456  			id := strings.Split(buildID, buildIDSeparator)
   457  			if len(id) == 4 && id[1] == actionID {
   458  				// Temporarily assume a.buildID is the package build ID
   459  				// stored in the installed binary, and see if that makes
   460  				// the upcoming link action ID a match. If so, report that
   461  				// we built the package, safe in the knowledge that the
   462  				// link step will not ask us for the actual package file.
   463  				// Note that (*Builder).LinkAction arranged that all of
   464  				// a.triggers[0]'s dependencies other than a are also
   465  				// dependencies of a, so that we can be sure that,
   466  				// other than a.buildID, b.linkActionID is only accessing
   467  				// build IDs of completed actions.
   468  				oldBuildID := a.buildID
   469  				a.buildID = id[1] + buildIDSeparator + id[2]
   470  				linkID := hashToString(b.linkActionID(a.triggers[0]))
   471  				if id[0] == linkID {
   472  					// Best effort attempt to display output from the compile and link steps.
   473  					// If it doesn't work, it doesn't work: reusing the cached binary is more
   474  					// important than reprinting diagnostic information.
   475  					if c := cache.Default(); c != nil {
   476  						showStdout(b, c, a.actionID, "stdout")      // compile output
   477  						showStdout(b, c, a.actionID, "link-stdout") // link output
   478  					}
   479  
   480  					// Poison a.Target to catch uses later in the build.
   481  					a.Target = "DO NOT USE - main build pseudo-cache Target"
   482  					a.built = "DO NOT USE - main build pseudo-cache built"
   483  					return true
   484  				}
   485  				// Otherwise restore old build ID for main build.
   486  				a.buildID = oldBuildID
   487  			}
   488  		}
   489  	}
   490  
   491  	// Special case for linking a test binary: if the only thing we
   492  	// want the binary for is to run the test, and the test result is cached,
   493  	// then to avoid the link step, report the link as up-to-date.
   494  	// We avoid the nested build ID problem in the previous special case
   495  	// by recording the test results in the cache under the action ID half.
   496  	if !cfg.BuildA && len(a.triggers) == 1 && a.triggers[0].TryCache != nil && a.triggers[0].TryCache(b, a.triggers[0]) {
   497  		// Best effort attempt to display output from the compile and link steps.
   498  		// If it doesn't work, it doesn't work: reusing the test result is more
   499  		// important than reprinting diagnostic information.
   500  		if c := cache.Default(); c != nil {
   501  			showStdout(b, c, a.Deps[0].actionID, "stdout")      // compile output
   502  			showStdout(b, c, a.Deps[0].actionID, "link-stdout") // link output
   503  		}
   504  
   505  		// Poison a.Target to catch uses later in the build.
   506  		a.Target = "DO NOT USE -  pseudo-cache Target"
   507  		a.built = "DO NOT USE - pseudo-cache built"
   508  		return true
   509  	}
   510  
   511  	if b.IsCmdList {
   512  		// Invoked during go list to compute and record staleness.
   513  		if p := a.Package; p != nil && !p.Stale {
   514  			p.Stale = true
   515  			if cfg.BuildA {
   516  				p.StaleReason = "build -a flag in use"
   517  			} else {
   518  				p.StaleReason = "build ID mismatch"
   519  				for _, p1 := range p.Internal.Imports {
   520  					if p1.Stale && p1.StaleReason != "" {
   521  						if strings.HasPrefix(p1.StaleReason, "stale dependency: ") {
   522  							p.StaleReason = p1.StaleReason
   523  							break
   524  						}
   525  						if strings.HasPrefix(p.StaleReason, "build ID mismatch") {
   526  							p.StaleReason = "stale dependency: " + p1.ImportPath
   527  						}
   528  					}
   529  				}
   530  			}
   531  		}
   532  
   533  		// Fall through to update a.buildID from the build artifact cache,
   534  		// which will affect the computation of buildIDs for targets
   535  		// higher up in the dependency graph.
   536  	}
   537  
   538  	// Check the build artifact cache.
   539  	// We treat hits in this cache as being "stale" for the purposes of go list
   540  	// (in effect, "stale" means whether p.Target is up-to-date),
   541  	// but we're still happy to use results from the build artifact cache.
   542  	if c := cache.Default(); c != nil {
   543  		if !cfg.BuildA {
   544  			if file, _, err := c.GetFile(actionHash); err == nil {
   545  				if buildID, err := buildid.ReadFile(file); err == nil {
   546  					if err := showStdout(b, c, a.actionID, "stdout"); err == nil {
   547  						a.built = file
   548  						a.Target = "DO NOT USE - using cache"
   549  						a.buildID = buildID
   550  						if p := a.Package; p != nil {
   551  							// Clearer than explaining that something else is stale.
   552  							p.StaleReason = "not installed but available in build cache"
   553  						}
   554  						return true
   555  					}
   556  				}
   557  			}
   558  		}
   559  
   560  		// Begin saving output for later writing to cache.
   561  		a.output = []byte{}
   562  	}
   563  
   564  	return false
   565  }
   566  
   567  func showStdout(b *Builder, c *cache.Cache, actionID cache.ActionID, key string) error {
   568  	stdout, stdoutEntry, err := c.GetBytes(cache.Subkey(actionID, key))
   569  	if err != nil {
   570  		return err
   571  	}
   572  
   573  	if len(stdout) > 0 {
   574  		if cfg.BuildX || cfg.BuildN {
   575  			b.Showcmd("", "%s  # internal", joinUnambiguously(str.StringList("cat", c.OutputFile(stdoutEntry.OutputID))))
   576  		}
   577  		if !cfg.BuildN {
   578  			b.Print(string(stdout))
   579  		}
   580  	}
   581  	return nil
   582  }
   583  
   584  // flushOutput flushes the output being queued in a.
   585  func (b *Builder) flushOutput(a *Action) {
   586  	b.Print(string(a.output))
   587  	a.output = nil
   588  }
   589  
   590  // updateBuildID updates the build ID in the target written by action a.
   591  // It requires that useCache was called for action a and returned false,
   592  // and that the build was then carried out and given the temporary
   593  // a.buildID to record as the build ID in the resulting package or binary.
   594  // updateBuildID computes the final content ID and updates the build IDs
   595  // in the binary.
   596  //
   597  // Keep in sync with src/cmd/buildid/buildid.go
   598  func (b *Builder) updateBuildID(a *Action, target string, rewrite bool) error {
   599  	if cfg.BuildX || cfg.BuildN {
   600  		if rewrite {
   601  			b.Showcmd("", "%s # internal", joinUnambiguously(str.StringList(base.Tool("buildid"), "-w", target)))
   602  		}
   603  		if cfg.BuildN {
   604  			return nil
   605  		}
   606  	}
   607  
   608  	// Cache output from compile/link, even if we don't do the rest.
   609  	if c := cache.Default(); c != nil {
   610  		switch a.Mode {
   611  		case "build":
   612  			c.PutBytes(cache.Subkey(a.actionID, "stdout"), a.output)
   613  		case "link":
   614  			// Even though we don't cache the binary, cache the linker text output.
   615  			// We might notice that an installed binary is up-to-date but still
   616  			// want to pretend to have run the linker.
   617  			// Store it under the main package's action ID
   618  			// to make it easier to find when that's all we have.
   619  			for _, a1 := range a.Deps {
   620  				if p1 := a1.Package; p1 != nil && p1.Name == "main" {
   621  					c.PutBytes(cache.Subkey(a1.actionID, "link-stdout"), a.output)
   622  					break
   623  				}
   624  			}
   625  		}
   626  	}
   627  
   628  	// Find occurrences of old ID and compute new content-based ID.
   629  	r, err := os.Open(target)
   630  	if err != nil {
   631  		return err
   632  	}
   633  	matches, hash, err := buildid.FindAndHash(r, a.buildID, 0)
   634  	r.Close()
   635  	if err != nil {
   636  		return err
   637  	}
   638  	newID := a.buildID[:strings.LastIndex(a.buildID, buildIDSeparator)] + buildIDSeparator + hashToString(hash)
   639  	if len(newID) != len(a.buildID) {
   640  		return fmt.Errorf("internal error: build ID length mismatch %q vs %q", a.buildID, newID)
   641  	}
   642  
   643  	// Replace with new content-based ID.
   644  	a.buildID = newID
   645  	if len(matches) == 0 {
   646  		// Assume the user specified -buildid= to override what we were going to choose.
   647  		return nil
   648  	}
   649  
   650  	if rewrite {
   651  		w, err := os.OpenFile(target, os.O_WRONLY, 0)
   652  		if err != nil {
   653  			return err
   654  		}
   655  		err = buildid.Rewrite(w, matches, newID)
   656  		if err != nil {
   657  			w.Close()
   658  			return err
   659  		}
   660  		if err := w.Close(); err != nil {
   661  			return err
   662  		}
   663  	}
   664  
   665  	// Cache package builds, but not binaries (link steps).
   666  	// The expectation is that binaries are not reused
   667  	// nearly as often as individual packages, and they're
   668  	// much larger, so the cache-footprint-to-utility ratio
   669  	// of binaries is much lower for binaries.
   670  	// Not caching the link step also makes sure that repeated "go run" at least
   671  	// always rerun the linker, so that they don't get too fast.
   672  	// (We don't want people thinking go is a scripting language.)
   673  	// Note also that if we start caching binaries, then we will
   674  	// copy the binaries out of the cache to run them, and then
   675  	// that will mean the go process is itself writing a binary
   676  	// and then executing it, so we will need to defend against
   677  	// ETXTBSY problems as discussed in exec.go and golang.org/issue/22220.
   678  	if c := cache.Default(); c != nil && a.Mode == "build" {
   679  		r, err := os.Open(target)
   680  		if err == nil {
   681  			if a.output == nil {
   682  				panic("internal error: a.output not set")
   683  			}
   684  			outputID, _, err := c.Put(a.actionID, r)
   685  			r.Close()
   686  			if err == nil && cfg.BuildX {
   687  				b.Showcmd("", "%s # internal", joinUnambiguously(str.StringList("cp", target, c.OutputFile(outputID))))
   688  			}
   689  			if b.NeedExport {
   690  				if err != nil {
   691  					return err
   692  				}
   693  				a.Package.Export = c.OutputFile(outputID)
   694  			}
   695  		}
   696  	}
   697  
   698  	return nil
   699  }