github.com/sixexorg/magnetic-ring@v0.0.0-20191119090307-31705a21e419/crypto/secp256k1/bitelliptic/bitelliptic.go (about)

     1  package bitelliptic
     2  
     3  import (
     4  	"crypto/elliptic"
     5  	"math/big"
     6  	"sync"
     7  )
     8  
     9  // This code is from https://github.com/ThePiachu/GoBit and implements
    10  // several Koblitz elliptic curves over prime fields.
    11  //
    12  // The curve methods, internally, on Jacobian coordinates. For a given
    13  // (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
    14  // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
    15  // when the whole calculation can be performed within the transform
    16  // (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
    17  // it's faster to apply and reverse the transform than to operate in
    18  // affine coordinates.
    19  
    20  // A BitCurve represents a Koblitz Curve with a=0.
    21  // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
    22  type BitCurve struct {
    23  	P       *big.Int // the order of the underlying field
    24  	N       *big.Int // the order of the base point
    25  	B       *big.Int // the constant of the BitCurve equation
    26  	Gx, Gy  *big.Int // (x,y) of the base point
    27  	BitSize int      // the size of the underlying field
    28  }
    29  
    30  // Params params
    31  func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
    32  	return &elliptic.CurveParams{
    33  		P:       BitCurve.P,
    34  		N:       BitCurve.N,
    35  		B:       BitCurve.B,
    36  		Gx:      BitCurve.Gx,
    37  		Gy:      BitCurve.Gy,
    38  		BitSize: BitCurve.BitSize,
    39  	}
    40  }
    41  
    42  // IsOnCurve returns true if the given (x,y) lies on the BitCurve.
    43  func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
    44  	// y² = x³ + b
    45  	y2 := new(big.Int).Mul(y, y) //y²
    46  	y2.Mod(y2, BitCurve.P)       //y²%P
    47  
    48  	x3 := new(big.Int).Mul(x, x) //x²
    49  	x3.Mul(x3, x)                //x³
    50  
    51  	x3.Add(x3, BitCurve.B) //x³+B
    52  	x3.Mod(x3, BitCurve.P) //(x³+B)%P
    53  
    54  	return x3.Cmp(y2) == 0
    55  }
    56  
    57  //TODO: double check if the function is okay
    58  // affineFromJacobian reverses the Jacobian transform. See the comment at the
    59  // top of the file.
    60  func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
    61  	zinv := new(big.Int).ModInverse(z, BitCurve.P)
    62  	zinvsq := new(big.Int).Mul(zinv, zinv)
    63  
    64  	xOut = new(big.Int).Mul(x, zinvsq)
    65  	xOut.Mod(xOut, BitCurve.P)
    66  	zinvsq.Mul(zinvsq, zinv)
    67  	yOut = new(big.Int).Mul(y, zinvsq)
    68  	yOut.Mod(yOut, BitCurve.P)
    69  	return
    70  }
    71  
    72  // Add returns the sum of (x1,y1) and (x2,y2)
    73  func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
    74  	z := new(big.Int).SetInt64(1)
    75  	return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
    76  }
    77  
    78  // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
    79  // (x2, y2, z2) and returns their sum, also in Jacobian form.
    80  func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
    81  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
    82  	z1z1 := new(big.Int).Mul(z1, z1)
    83  	z1z1.Mod(z1z1, BitCurve.P)
    84  	z2z2 := new(big.Int).Mul(z2, z2)
    85  	z2z2.Mod(z2z2, BitCurve.P)
    86  
    87  	u1 := new(big.Int).Mul(x1, z2z2)
    88  	u1.Mod(u1, BitCurve.P)
    89  	u2 := new(big.Int).Mul(x2, z1z1)
    90  	u2.Mod(u2, BitCurve.P)
    91  	h := new(big.Int).Sub(u2, u1)
    92  	if h.Sign() == -1 {
    93  		h.Add(h, BitCurve.P)
    94  	}
    95  	i := new(big.Int).Lsh(h, 1)
    96  	i.Mul(i, i)
    97  	j := new(big.Int).Mul(h, i)
    98  
    99  	s1 := new(big.Int).Mul(y1, z2)
   100  	s1.Mul(s1, z2z2)
   101  	s1.Mod(s1, BitCurve.P)
   102  	s2 := new(big.Int).Mul(y2, z1)
   103  	s2.Mul(s2, z1z1)
   104  	s2.Mod(s2, BitCurve.P)
   105  	r := new(big.Int).Sub(s2, s1)
   106  	if r.Sign() == -1 {
   107  		r.Add(r, BitCurve.P)
   108  	}
   109  	r.Lsh(r, 1)
   110  	v := new(big.Int).Mul(u1, i)
   111  
   112  	x3 := new(big.Int).Set(r)
   113  	x3.Mul(x3, x3)
   114  	x3.Sub(x3, j)
   115  	x3.Sub(x3, v)
   116  	x3.Sub(x3, v)
   117  	x3.Mod(x3, BitCurve.P)
   118  
   119  	y3 := new(big.Int).Set(r)
   120  	v.Sub(v, x3)
   121  	y3.Mul(y3, v)
   122  	s1.Mul(s1, j)
   123  	s1.Lsh(s1, 1)
   124  	y3.Sub(y3, s1)
   125  	y3.Mod(y3, BitCurve.P)
   126  
   127  	z3 := new(big.Int).Add(z1, z2)
   128  	z3.Mul(z3, z3)
   129  	z3.Sub(z3, z1z1)
   130  	if z3.Sign() == -1 {
   131  		z3.Add(z3, BitCurve.P)
   132  	}
   133  	z3.Sub(z3, z2z2)
   134  	if z3.Sign() == -1 {
   135  		z3.Add(z3, BitCurve.P)
   136  	}
   137  	z3.Mul(z3, h)
   138  	z3.Mod(z3, BitCurve.P)
   139  
   140  	return x3, y3, z3
   141  }
   142  
   143  // Double returns 2*(x,y)
   144  func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
   145  	z1 := new(big.Int).SetInt64(1)
   146  	return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
   147  }
   148  
   149  // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
   150  // returns its double, also in Jacobian form.
   151  func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
   152  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
   153  
   154  	a := new(big.Int).Mul(x, x) //X1²
   155  	b := new(big.Int).Mul(y, y) //Y1²
   156  	c := new(big.Int).Mul(b, b) //B²
   157  
   158  	d := new(big.Int).Add(x, b) //X1+B
   159  	d.Mul(d, d)                 //(X1+B)²
   160  	d.Sub(d, a)                 //(X1+B)²-A
   161  	d.Sub(d, c)                 //(X1+B)²-A-C
   162  	d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)
   163  
   164  	e := new(big.Int).Mul(big.NewInt(3), a) //3*A
   165  	f := new(big.Int).Mul(e, e)             //E²
   166  
   167  	x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
   168  	x3.Sub(f, x3)                            //F-2*D
   169  	x3.Mod(x3, BitCurve.P)
   170  
   171  	y3 := new(big.Int).Sub(d, x3)                  //D-X3
   172  	y3.Mul(e, y3)                                  //E*(D-X3)
   173  	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
   174  	y3.Mod(y3, BitCurve.P)
   175  
   176  	z3 := new(big.Int).Mul(y, z) //Y1*Z1
   177  	z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
   178  	z3.Mod(z3, BitCurve.P)
   179  
   180  	return x3, y3, z3
   181  }
   182  
   183  // ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
   184  func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
   185  	// We have a slight problem in that the identity of the group (the
   186  	// point at infinity) cannot be represented in (x, y) form on a finite
   187  	// machine. Thus the standard add/double algorithm has to be tweaked
   188  	// slightly: our initial state is not the identity, but x, and we
   189  	// ignore the first true bit in |k|.  If we don't find any true bits in
   190  	// |k|, then we return nil, nil, because we cannot return the identity
   191  	// element.
   192  
   193  	Bz := new(big.Int).SetInt64(1)
   194  	x := Bx
   195  	y := By
   196  	z := Bz
   197  
   198  	seenFirstTrue := false
   199  	for _, byte := range k {
   200  		for bitNum := 0; bitNum < 8; bitNum++ {
   201  			if seenFirstTrue {
   202  				x, y, z = BitCurve.doubleJacobian(x, y, z)
   203  			}
   204  			if byte&0x80 == 0x80 {
   205  				if !seenFirstTrue {
   206  					seenFirstTrue = true
   207  				} else {
   208  					x, y, z = BitCurve.addJacobian(Bx, By, Bz, x, y, z)
   209  				}
   210  			}
   211  			byte <<= 1
   212  		}
   213  	}
   214  
   215  	if !seenFirstTrue {
   216  		return nil, nil
   217  	}
   218  
   219  	return BitCurve.affineFromJacobian(x, y, z)
   220  }
   221  
   222  // ScalarBaseMult returns k*G, where G is the base point of the group and k is
   223  // an integer in big-endian form.
   224  func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
   225  	return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
   226  }
   227  
   228  // Marshal converts a point into the form specified in section 4.3.6 of ANSI
   229  // X9.62.
   230  func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
   231  	byteLen := (BitCurve.BitSize + 7) >> 3
   232  
   233  	ret := make([]byte, 1+2*byteLen)
   234  	ret[0] = 4 // uncompressed point
   235  
   236  	xBytes := x.Bytes()
   237  	copy(ret[1+byteLen-len(xBytes):], xBytes)
   238  	yBytes := y.Bytes()
   239  	copy(ret[1+2*byteLen-len(yBytes):], yBytes)
   240  	return ret
   241  }
   242  
   243  // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
   244  // error, x = nil.
   245  func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
   246  	byteLen := (BitCurve.BitSize + 7) >> 3
   247  	if len(data) != 1+2*byteLen {
   248  		return
   249  	}
   250  	if data[0] != 4 { // uncompressed form
   251  		return
   252  	}
   253  	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
   254  	y = new(big.Int).SetBytes(data[1+byteLen:])
   255  	return
   256  }
   257  
   258  //curve parameters taken from:
   259  //http://www.secg.org/collateral/sec2_final.pdf
   260  
   261  var initonce sync.Once
   262  var secp160k1 *BitCurve
   263  var secp192k1 *BitCurve
   264  var secp224k1 *BitCurve
   265  var secp256k1 *BitCurve
   266  
   267  func initAll() {
   268  	initS160()
   269  	initS192()
   270  	initS224()
   271  	initS256()
   272  }
   273  
   274  func initS160() {
   275  	// See SEC 2 section 2.4.1
   276  	secp160k1 = new(BitCurve)
   277  	secp160k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73", 16)
   278  	secp160k1.N, _ = new(big.Int).SetString("0100000000000000000001B8FA16DFAB9ACA16B6B3", 16)
   279  	secp160k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000007", 16)
   280  	secp160k1.Gx, _ = new(big.Int).SetString("3B4C382CE37AA192A4019E763036F4F5DD4D7EBB", 16)
   281  	secp160k1.Gy, _ = new(big.Int).SetString("938CF935318FDCED6BC28286531733C3F03C4FEE", 16)
   282  	secp160k1.BitSize = 160
   283  }
   284  
   285  func initS192() {
   286  	// See SEC 2 section 2.5.1
   287  	secp192k1 = new(BitCurve)
   288  	secp192k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16)
   289  	secp192k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16)
   290  	secp192k1.B, _ = new(big.Int).SetString("000000000000000000000000000000000000000000000003", 16)
   291  	secp192k1.Gx, _ = new(big.Int).SetString("DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16)
   292  	secp192k1.Gy, _ = new(big.Int).SetString("9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16)
   293  	secp192k1.BitSize = 192
   294  }
   295  
   296  func initS224() {
   297  	// See SEC 2 section 2.6.1
   298  	secp224k1 = new(BitCurve)
   299  	secp224k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", 16)
   300  	secp224k1.N, _ = new(big.Int).SetString("010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 16)
   301  	secp224k1.B, _ = new(big.Int).SetString("00000000000000000000000000000000000000000000000000000005", 16)
   302  	secp224k1.Gx, _ = new(big.Int).SetString("A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", 16)
   303  	secp224k1.Gy, _ = new(big.Int).SetString("7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", 16)
   304  	secp224k1.BitSize = 224
   305  }
   306  
   307  func initS256() {
   308  	// See SEC 2 section 2.7.1
   309  	secp256k1 = new(BitCurve)
   310  	secp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
   311  	secp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
   312  	secp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
   313  	secp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
   314  	secp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
   315  	secp256k1.BitSize = 256
   316  }
   317  
   318  // S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1)
   319  func S160() *BitCurve {
   320  	initonce.Do(initAll)
   321  	return secp160k1
   322  }
   323  
   324  // S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1)
   325  func S192() *BitCurve {
   326  	initonce.Do(initAll)
   327  	return secp192k1
   328  }
   329  
   330  // S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1)
   331  func S224() *BitCurve {
   332  	initonce.Do(initAll)
   333  	return secp224k1
   334  }
   335  
   336  // S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1)
   337  func S256() *BitCurve {
   338  	initonce.Do(initAll)
   339  	return secp256k1
   340  }