github.com/sixexorg/magnetic-ring@v0.0.0-20191119090307-31705a21e419/p2pserver/net/netserver/rlpx.go (about) 1 package netserver 2 3 import ( 4 "bytes" 5 "crypto/aes" 6 "crypto/cipher" 7 "crypto/ecdsa" 8 "crypto/elliptic" 9 "crypto/hmac" 10 "crypto/rand" 11 "encoding/binary" 12 "errors" 13 "fmt" 14 "hash" 15 "io" 16 "io/ioutil" 17 mrand "math/rand" 18 "net" 19 "sync" 20 "time" 21 22 "github.com/ethereum/go-ethereum/crypto" 23 "github.com/ethereum/go-ethereum/crypto/ecies" 24 "github.com/ethereum/go-ethereum/crypto/secp256k1" 25 "github.com/ethereum/go-ethereum/crypto/sha3" 26 "github.com/golang/snappy" 27 comm "github.com/sixexorg/magnetic-ring/common" 28 "github.com/sixexorg/magnetic-ring/p2pserver/common" 29 "github.com/sixexorg/magnetic-ring/p2pserver/discover" 30 "github.com/sixexorg/magnetic-ring/rlp" 31 "github.com/sixexorg/magnetic-ring/log" 32 ) 33 34 const ( 35 maxUint24 = ^uint32(0) >> 8 36 37 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 38 sigLen = 65 // elliptic S256 39 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte 40 shaLen = 32 // hash length (for nonce etc) 41 orgidlen = len(comm.Address{}) 42 43 // the last 1 means Judge the information of node A 44 authMsgLen = sigLen + shaLen + pubLen + shaLen + orgidlen + 1 + 1 45 authRespLen = pubLen + shaLen + 1 46 47 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ 48 49 encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake 50 encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply 51 52 // total timeout for encryption handshake and protocol 53 // handshake in both directions. 54 handshakeTimeout = 5 * time.Second 55 56 // This is the timeout for sending the disconnect reason. 57 // This is shorter than the usual timeout because we don't want 58 // to wait if the connection is known to be bad anyway. 59 discWriteTimeout = 1 * time.Second 60 ) 61 62 // errPlainMessageTooLarge is returned if a decompressed message length exceeds 63 // the allowed 24 bits (i.e. length >= 16MB). 64 var errPlainMessageTooLarge = errors.New("message length >= 16MB") 65 66 // rlpx is the transport protocol used by actual (non-test) connections. 67 // It wraps the frame encoder with locks and read/write deadlines. 68 type rlpx struct { 69 fd net.Conn 70 71 rmu, wmu sync.Mutex 72 rw *rlpxFrameRW 73 } 74 75 func newRLPX(fd net.Conn) transport { 76 fd.SetDeadline(time.Now().Add(handshakeTimeout)) 77 return &rlpx{fd: fd} 78 } 79 80 func (t *rlpx) ReadMsg() (common.Msg, error) { 81 t.rmu.Lock() 82 defer t.rmu.Unlock() 83 t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout)) 84 return t.rw.ReadMsg() 85 } 86 87 func (t *rlpx) WriteMsg(msg common.Msg) error { 88 t.wmu.Lock() 89 defer t.wmu.Unlock() 90 t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout)) 91 return t.rw.WriteMsg(msg) 92 } 93 94 // func (t *rlpx) Close(err error) { 95 func (t *rlpx) Close(errs ...error) { 96 //fmt.Println(" ********* rlpx rlpx Close ...") 97 t.wmu.Lock() 98 defer t.wmu.Unlock() 99 var err error 100 if len(errs) > 0 { 101 err = errs[0] 102 } 103 // Tell the remote end why we're disconnecting if possible. 104 if t.rw != nil { 105 if r, ok := err.(common.DiscReason); ok && r != common.DiscNetworkError { 106 t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)) 107 SendItems(t.rw, discMsg, r) 108 } 109 } 110 t.fd.Close() 111 } 112 113 // doEncHandshake runs the protocol handshake using authenticated 114 // messages. the protocol handshake is the first authenticated message 115 // and also verifies whether the encryption handshake 'worked' and the 116 // remote side actually provided the right public key. 117 func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) { 118 // Writing our handshake happens concurrently, we prefer 119 // returning the handshake read error. If the remote side 120 // disconnects us early with a valid reason, we should return it 121 // as the error so it can be tracked elsewhere. 122 werr := make(chan error, 1) 123 go func() { werr <- Send(t.rw, handshakeMsg, our) }() 124 if their, err = readProtocolHandshake(t.rw, our); err != nil { 125 <-werr // make sure the write terminates too 126 return nil, err 127 } 128 if err := <-werr; err != nil { 129 return nil, fmt.Errorf("write error: %v", err) 130 } 131 // If the protocol version supports Snappy encoding, upgrade immediately 132 t.rw.snappy = their.Version >= snappyProtocolVersion 133 134 return their, nil 135 } 136 137 func readProtocolHandshake(rw common.MsgReader, our *protoHandshake) (*protoHandshake, error) { 138 msg, err := rw.ReadMsg() 139 if err != nil { 140 return nil, err 141 } 142 if msg.Size > baseProtocolMaxMsgSize { 143 return nil, fmt.Errorf("message too big") 144 } 145 if msg.Code == discMsg { 146 // Disconnect before protocol handshake is valid according to the 147 // spec and we send it ourself if the posthanshake checks fail. 148 // We can't return the reason directly, though, because it is echoed 149 // back otherwise. Wrap it in a string instead. 150 var reason [1]common.DiscReason 151 rlp.Decode(msg.Payload, &reason) 152 return nil, reason[0] 153 } 154 if msg.Code != handshakeMsg { 155 return nil, fmt.Errorf("expected handshake, got %x", msg.Code) 156 } 157 var hs protoHandshake 158 if err := msg.Decode(&hs); err != nil { 159 return nil, err 160 } 161 if (hs.ID == discover.NodeID{}) { 162 return nil, common.DiscInvalidIdentity 163 } 164 return &hs, nil 165 } 166 167 func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node, 168 orgid *comm.Address, bANode bool) (discover.NodeID, comm.Address, bool, error) { 169 170 var ( 171 sec secrets 172 err error 173 ) 174 if dial == nil { 175 sec, err = receiverEncHandshake(t.fd, prv, nil) 176 } else { 177 sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, *orgid, bANode, nil) 178 } 179 if err != nil { 180 return discover.NodeID{}, comm.Address{}, false, err 181 } 182 t.wmu.Lock() 183 t.rw = newRLPXFrameRW(t.fd, sec) 184 t.wmu.Unlock() 185 return sec.RemoteID, sec.Org, sec.BANode, nil 186 } 187 188 // encHandshake contains the state of the encryption handshake. 189 type encHandshake struct { 190 initiator bool 191 remoteID discover.NodeID 192 193 remotePub *ecies.PublicKey // remote-pubk 194 initNonce, respNonce []byte // nonce 195 randomPrivKey *ecies.PrivateKey // ecdhe-random 196 remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk 197 org comm.Address 198 bANode bool 199 } 200 201 // secrets represents the connection secrets 202 // which are negotiated during the encryption handshake. 203 type secrets struct { 204 RemoteID discover.NodeID 205 AES, MAC []byte 206 EgressMAC, IngressMAC hash.Hash 207 Token []byte 208 Org comm.Address 209 BANode bool 210 } 211 212 // RLPx v4 handshake auth (defined in EIP-8). 213 type authMsgV4 struct { 214 gotPlain bool // whether read packet had plain format. 215 216 Signature [sigLen]byte 217 InitiatorPubkey [pubLen]byte 218 Nonce [shaLen]byte 219 OrgID comm.Address 220 BANode bool 221 Version uint 222 223 // Ignore additional fields (forward-compatibility) 224 Rest []rlp.RawValue `rlp:"tail"` 225 } 226 227 // RLPx v4 handshake response (defined in EIP-8). 228 type authRespV4 struct { 229 RandomPubkey [pubLen]byte 230 Nonce [shaLen]byte 231 Version uint 232 233 // Ignore additional fields (forward-compatibility) 234 Rest []rlp.RawValue `rlp:"tail"` 235 } 236 237 // secrets is called after the handshake is completed. 238 // It extracts the connection secrets from the handshake values. 239 func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) { 240 ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) 241 if err != nil { 242 return secrets{}, err 243 } 244 245 // derive base secrets from ephemeral key agreement 246 sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) 247 aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) 248 s := secrets{ 249 RemoteID: h.remoteID, 250 AES: aesSecret, 251 MAC: crypto.Keccak256(ecdheSecret, aesSecret), 252 Org: h.org, 253 BANode: h.bANode, 254 } 255 256 // setup sha3 instances for the MACs 257 mac1 := sha3.NewKeccak256() 258 mac1.Write(xor(s.MAC, h.respNonce)) 259 mac1.Write(auth) 260 mac2 := sha3.NewKeccak256() 261 mac2.Write(xor(s.MAC, h.initNonce)) 262 mac2.Write(authResp) 263 if h.initiator { 264 s.EgressMAC, s.IngressMAC = mac1, mac2 265 } else { 266 s.EgressMAC, s.IngressMAC = mac2, mac1 267 } 268 269 return s, nil 270 } 271 272 // staticSharedSecret returns the static shared secret, the result 273 // of key agreement between the local and remote static node key. 274 func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { 275 return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen) 276 } 277 278 // initiatorEncHandshake negotiates a session token on conn. 279 // it should be called on the dialing side of the connection. 280 // 281 // prv is the local client's private key. 282 func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, 283 remoteID discover.NodeID, orgid comm.Address, bANode bool, token []byte) (s secrets, err error) { 284 285 h := &encHandshake{initiator: true, remoteID: remoteID} 286 authMsg, err := h.makeAuthMsg(prv, orgid, bANode, token) 287 if err != nil { 288 return s, err 289 } 290 authPacket, err := sealEIP8(authMsg, h) 291 if err != nil { 292 return s, err 293 } 294 if _, err = conn.Write(authPacket); err != nil { 295 return s, err 296 } 297 298 authRespMsg := new(authRespV4) 299 authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn) 300 if err != nil { 301 return s, err 302 } 303 if err := h.handleAuthResp(authRespMsg); err != nil { 304 return s, err 305 } 306 return h.secrets(authPacket, authRespPacket) 307 } 308 309 // makeAuthMsg creates the initiator handshake message. 310 func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey, orgid comm.Address, bANode bool, token []byte) (*authMsgV4, error) { 311 rpub, err := h.remoteID.Pubkey() 312 if err != nil { 313 return nil, fmt.Errorf("bad remoteID: %v", err) 314 } 315 h.remotePub = ecies.ImportECDSAPublic(rpub) 316 // Generate random initiator nonce. 317 h.initNonce = make([]byte, shaLen) 318 if _, err := rand.Read(h.initNonce); err != nil { 319 return nil, err 320 } 321 // Generate random keypair to for ECDH. 322 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 323 if err != nil { 324 return nil, err 325 } 326 327 // Sign known message: static-shared-secret ^ nonce 328 token, err = h.staticSharedSecret(prv) 329 if err != nil { 330 return nil, err 331 } 332 signed := xor(token, h.initNonce) 333 signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) 334 if err != nil { 335 return nil, err 336 } 337 338 msg := new(authMsgV4) 339 copy(msg.Signature[:], signature) 340 copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) 341 copy(msg.Nonce[:], h.initNonce) 342 msg.Version = 4 343 copy(msg.OrgID[:], orgid[:]) 344 msg.BANode = bANode 345 return msg, nil 346 } 347 348 func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) { 349 h.respNonce = msg.Nonce[:] 350 h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) 351 return err 352 } 353 354 // receiverEncHandshake negotiates a session token on conn. 355 // it should be called on the listening side of the connection. 356 // 357 // prv is the local client's private key. 358 // token is the token from a previous session with this node. 359 func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) { 360 authMsg := new(authMsgV4) 361 authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn) 362 if err != nil { 363 return s, err 364 } 365 h := new(encHandshake) 366 if err := h.handleAuthMsg(authMsg, prv); err != nil { 367 return s, err 368 } 369 370 authRespMsg, err := h.makeAuthResp() 371 if err != nil { 372 return s, err 373 } 374 var authRespPacket []byte 375 if authMsg.gotPlain { 376 authRespPacket, err = authRespMsg.sealPlain(h) 377 } else { 378 authRespPacket, err = sealEIP8(authRespMsg, h) 379 } 380 if err != nil { 381 return s, err 382 } 383 if _, err = conn.Write(authRespPacket); err != nil { 384 return s, err 385 } 386 return h.secrets(authPacket, authRespPacket) 387 } 388 389 func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { 390 // Import the remote identity. 391 h.initNonce = msg.Nonce[:] 392 h.remoteID = msg.InitiatorPubkey 393 h.org = msg.OrgID 394 h.bANode = msg.BANode 395 rpub, err := h.remoteID.Pubkey() 396 if err != nil { 397 return fmt.Errorf("bad remoteID: %#v", err) 398 } 399 h.remotePub = ecies.ImportECDSAPublic(rpub) 400 401 // Generate random keypair for ECDH. 402 // If a private key is already set, use it instead of generating one (for testing). 403 if h.randomPrivKey == nil { 404 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 405 if err != nil { 406 return err 407 } 408 } 409 410 // Check the signature. 411 token, err := h.staticSharedSecret(prv) 412 if err != nil { 413 return err 414 } 415 signedMsg := xor(token, h.initNonce) 416 remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg.Signature[:]) 417 if err != nil { 418 return err 419 } 420 h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) 421 return nil 422 } 423 424 func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) { 425 // Generate random nonce. 426 h.respNonce = make([]byte, shaLen) 427 if _, err = rand.Read(h.respNonce); err != nil { 428 return nil, err 429 } 430 431 msg = new(authRespV4) 432 copy(msg.Nonce[:], h.respNonce) 433 copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) 434 msg.Version = 4 435 return msg, nil 436 } 437 438 func (msg *authMsgV4) sealPlain(h *encHandshake) ([]byte, error) { 439 buf := make([]byte, authMsgLen) 440 n := copy(buf, msg.Signature[:]) 441 n += copy(buf[n:], crypto.Keccak256(exportPubkey(&h.randomPrivKey.PublicKey))) 442 n += copy(buf[n:], msg.InitiatorPubkey[:]) 443 n += copy(buf[n:], msg.Nonce[:]) 444 buf[n] = 0 // token-flag 445 return ecies.Encrypt(rand.Reader, h.remotePub, buf, nil, nil) 446 } 447 448 func (msg *authMsgV4) decodePlain(input []byte) { 449 n := copy(msg.Signature[:], input) 450 n += shaLen // skip sha3(initiator-ephemeral-pubk) 451 n += copy(msg.InitiatorPubkey[:], input[n:]) 452 copy(msg.Nonce[:], input[n:]) 453 msg.Version = 4 454 msg.gotPlain = true 455 } 456 457 func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) { 458 buf := make([]byte, authRespLen) 459 n := copy(buf, msg.RandomPubkey[:]) 460 copy(buf[n:], msg.Nonce[:]) 461 return ecies.Encrypt(rand.Reader, hs.remotePub, buf, nil, nil) 462 } 463 464 func (msg *authRespV4) decodePlain(input []byte) { 465 n := copy(msg.RandomPubkey[:], input) 466 copy(msg.Nonce[:], input[n:]) 467 msg.Version = 4 468 } 469 470 var padSpace = make([]byte, 300) 471 472 func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) { 473 buf := new(bytes.Buffer) 474 if err := rlp.Encode(buf, msg); err != nil { 475 return nil, err 476 } 477 // pad with random amount of data. the amount needs to be at least 100 bytes to make 478 // the message distinguishable from pre-EIP-8 handshakes. 479 pad := padSpace[:mrand.Intn(len(padSpace)-100)+100] 480 buf.Write(pad) 481 prefix := make([]byte, 2) 482 binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead)) 483 484 enc, err := ecies.Encrypt(rand.Reader, h.remotePub, buf.Bytes(), nil, prefix) 485 return append(prefix, enc...), err 486 } 487 488 type plainDecoder interface { 489 decodePlain([]byte) 490 } 491 492 func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { 493 buf := make([]byte, plainSize) 494 if _, err := io.ReadFull(r, buf); err != nil { 495 return buf, err 496 } 497 // Attempt decoding pre-EIP-8 "plain" format. 498 key := ecies.ImportECDSA(prv) 499 if dec, err := key.Decrypt(rand.Reader, buf, nil, nil); err == nil { 500 msg.decodePlain(dec) 501 return buf, nil 502 } 503 // Could be EIP-8 format, try that. 504 prefix := buf[:2] 505 size := binary.BigEndian.Uint16(prefix) 506 if size < uint16(plainSize) { 507 return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize) 508 } 509 buf = append(buf, make([]byte, size-uint16(plainSize)+2)...) 510 if _, err := io.ReadFull(r, buf[plainSize:]); err != nil { 511 return buf, err 512 } 513 dec, err := key.Decrypt(rand.Reader, buf[2:], nil, prefix) 514 if err != nil { 515 return buf, err 516 } 517 // Can't use rlp.DecodeBytes here because it rejects 518 // trailing data (forward-compatibility). 519 s := rlp.NewStream(bytes.NewReader(dec), 0) 520 return buf, s.Decode(msg) 521 } 522 523 // importPublicKey unmarshals 512 bit public keys. 524 func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { 525 var pubKey65 []byte 526 switch len(pubKey) { 527 case 64: 528 // add 'uncompressed key' flag 529 pubKey65 = append([]byte{0x04}, pubKey...) 530 case 65: 531 pubKey65 = pubKey 532 default: 533 return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) 534 } 535 // TODO: fewer pointless conversions 536 pub := crypto.ToECDSAPub(pubKey65) 537 if pub.X == nil { 538 return nil, fmt.Errorf("invalid public key") 539 } 540 return ecies.ImportECDSAPublic(pub), nil 541 } 542 543 func exportPubkey(pub *ecies.PublicKey) []byte { 544 if pub == nil { 545 panic("nil pubkey") 546 } 547 return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] 548 } 549 550 func xor(one, other []byte) (xor []byte) { 551 xor = make([]byte, len(one)) 552 for i := 0; i < len(one); i++ { 553 xor[i] = one[i] ^ other[i] 554 } 555 return xor 556 } 557 558 var ( 559 // this is used in place of actual frame header data. 560 // TODO: replace this when Msg contains the protocol type code. 561 zeroHeader = []byte{0xC2, 0x80, 0x80} 562 // sixteen zero bytes 563 zero16 = make([]byte, 16) 564 ) 565 566 // rlpxFrameRW implements a simplified version of RLPx framing. 567 // chunked messages are not supported and all headers are equal to 568 // zeroHeader. 569 // 570 // rlpxFrameRW is not safe for concurrent use from multiple goroutines. 571 type rlpxFrameRW struct { 572 conn io.ReadWriter 573 enc cipher.Stream 574 dec cipher.Stream 575 576 macCipher cipher.Block 577 egressMAC hash.Hash 578 ingressMAC hash.Hash 579 580 snappy bool 581 } 582 583 func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW { 584 macc, err := aes.NewCipher(s.MAC) 585 if err != nil { 586 panic("invalid MAC secret: " + err.Error()) 587 } 588 encc, err := aes.NewCipher(s.AES) 589 if err != nil { 590 panic("invalid AES secret: " + err.Error()) 591 } 592 // we use an all-zeroes IV for AES because the key used 593 // for encryption is ephemeral. 594 iv := make([]byte, encc.BlockSize()) 595 return &rlpxFrameRW{ 596 conn: conn, 597 enc: cipher.NewCTR(encc, iv), 598 dec: cipher.NewCTR(encc, iv), 599 macCipher: macc, 600 egressMAC: s.EgressMAC, 601 ingressMAC: s.IngressMAC, 602 } 603 } 604 605 func (rw *rlpxFrameRW) WriteMsg(msg common.Msg) error { 606 ptype, _ := rlp.EncodeToBytes(msg.Code) 607 608 // if snappy is enabled, compress message now 609 if rw.snappy { 610 if msg.Size > maxUint24 { 611 return errPlainMessageTooLarge 612 } 613 payload, _ := ioutil.ReadAll(msg.Payload) 614 payload = snappy.Encode(nil, payload) 615 616 msg.Payload = bytes.NewReader(payload) 617 msg.Size = uint32(len(payload)) 618 } 619 // write header 620 headbuf := make([]byte, 32) 621 fsize := uint32(len(ptype)) + msg.Size 622 if fsize > maxUint24 { 623 return errors.New("message size overflows uint24") 624 } 625 putInt24(fsize, headbuf) // TODO: check overflow 626 copy(headbuf[3:], zeroHeader) 627 rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted 628 629 // write header MAC 630 copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16])) 631 if _, err := rw.conn.Write(headbuf); err != nil { 632 fmt.Println("šrlpxFrameRWWriteMsg Write err1:", err) 633 log.Warn("šrlpxFrameRWWriteMsg Write err1:", err) 634 return err 635 } 636 637 // write encrypted frame, updating the egress MAC hash with 638 // the data written to conn. 639 tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)} 640 if _, err := tee.Write(ptype); err != nil { 641 return err 642 } 643 if _, err := io.Copy(tee, msg.Payload); err != nil { 644 return err 645 } 646 if padding := fsize % 16; padding > 0 { 647 if _, err := tee.Write(zero16[:16-padding]); err != nil { 648 return err 649 } 650 } 651 652 // write frame MAC. egress MAC hash is up to date because 653 // frame content was written to it as well. 654 fmacseed := rw.egressMAC.Sum(nil) 655 mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed) 656 _, err := rw.conn.Write(mac) 657 if err != nil{ 658 fmt.Println("šrlpxFrameRWWriteMsg Write err2:", err) 659 log.Warn("šrlpxFrameRWWriteMsg Write err2:", err) 660 } 661 return err 662 } 663 664 func (rw *rlpxFrameRW) ReadMsg() (msg common.Msg, err error) { 665 // read the header 666 bg := time.Now() 667 headbuf := make([]byte, 32) 668 if _, err := io.ReadFull(rw.conn, headbuf); err != nil { 669 fmt.Println("šrlpxFrameRWReadMsg readmsg err1:", err) 670 log.Warn("šrlpxFrameRWReadMsg readmsg", "err1:", err, "cost", time.Since(bg)) 671 return msg, err 672 } 673 // verify header mac 674 shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16]) 675 if !hmac.Equal(shouldMAC, headbuf[16:]) { 676 677 return msg, errors.New("bad header MAC") 678 } 679 rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted 680 fsize := readInt24(headbuf) 681 // ignore protocol type for now 682 683 // read the frame content 684 var rsize = fsize // frame size rounded up to 16 byte boundary 685 if padding := fsize % 16; padding > 0 { 686 rsize += 16 - padding 687 } 688 bg = time.Now() 689 framebuf := make([]byte, rsize) 690 if _, err := io.ReadFull(rw.conn, framebuf); err != nil { 691 fmt.Println("šrlpxFrameRWReadMsg readmsg err2:", err) 692 log.Warn("šrlpxFrameRWReadMsg readmsg","err2:", err, "cost", time.Since(bg)) 693 return msg, err 694 } 695 696 // read and validate frame MAC. we can re-use headbuf for that. 697 rw.ingressMAC.Write(framebuf) 698 fmacseed := rw.ingressMAC.Sum(nil) 699 bg = time.Now() 700 if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil { 701 fmt.Println("šrlpxFrameRWReadMsg readmsg err3:", err) 702 log.Warn("šrlpxFrameRWReadMsg readmsg", "err3:", err, "cost", time.Since(bg)) 703 return msg, err 704 } 705 shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed) 706 if !hmac.Equal(shouldMAC, headbuf[:16]) { 707 708 return msg, errors.New("bad frame MAC") 709 } 710 711 // decrypt frame content 712 rw.dec.XORKeyStream(framebuf, framebuf) 713 714 // decode message code 715 content := bytes.NewReader(framebuf[:fsize]) 716 if err := rlp.Decode(content, &msg.Code); err != nil { 717 fmt.Println("š readmsg err4:", err) 718 return msg, err 719 } 720 msg.Size = uint32(content.Len()) 721 msg.Payload = content 722 723 // if snappy is enabled, verify and decompress message 724 if rw.snappy { 725 payload, err := ioutil.ReadAll(msg.Payload) 726 if err != nil { 727 fmt.Println("š readmsg err5:", err) 728 return msg, err 729 } 730 size, err := snappy.DecodedLen(payload) 731 if err != nil { 732 fmt.Println("š readmsg err6:", err) 733 return msg, err 734 } 735 if size > int(maxUint24) { 736 737 return msg, errPlainMessageTooLarge 738 } 739 payload, err = snappy.Decode(nil, payload) 740 if err != nil { 741 fmt.Println("š readmsg err7:", err) 742 return msg, err 743 } 744 msg.Size, msg.Payload = uint32(size), bytes.NewReader(payload) 745 } 746 return msg, nil 747 } 748 749 // updateMAC reseeds the given hash with encrypted seed. 750 // it returns the first 16 bytes of the hash sum after seeding. 751 func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte { 752 aesbuf := make([]byte, aes.BlockSize) 753 block.Encrypt(aesbuf, mac.Sum(nil)) 754 for i := range aesbuf { 755 aesbuf[i] ^= seed[i] 756 } 757 mac.Write(aesbuf) 758 return mac.Sum(nil)[:16] 759 } 760 761 func readInt24(b []byte) uint32 { 762 return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16 763 } 764 765 func putInt24(v uint32, b []byte) { 766 b[0] = byte(v >> 16) 767 b[1] = byte(v >> 8) 768 b[2] = byte(v) 769 }