github.com/slayercat/go@v0.0.0-20170428012452-c51559813f61/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"encoding/binary"
    10  	"fmt"
    11  	"html"
    12  	"os"
    13  	"sort"
    14  
    15  	"cmd/compile/internal/ssa"
    16  	"cmd/compile/internal/types"
    17  	"cmd/internal/obj"
    18  	"cmd/internal/objabi"
    19  	"cmd/internal/src"
    20  	"cmd/internal/sys"
    21  )
    22  
    23  var ssaConfig *ssa.Config
    24  var ssaCaches []ssa.Cache
    25  
    26  func initssaconfig() {
    27  	types_ := ssa.Types{
    28  		Bool:       types.Types[TBOOL],
    29  		Int8:       types.Types[TINT8],
    30  		Int16:      types.Types[TINT16],
    31  		Int32:      types.Types[TINT32],
    32  		Int64:      types.Types[TINT64],
    33  		UInt8:      types.Types[TUINT8],
    34  		UInt16:     types.Types[TUINT16],
    35  		UInt32:     types.Types[TUINT32],
    36  		UInt64:     types.Types[TUINT64],
    37  		Float32:    types.Types[TFLOAT32],
    38  		Float64:    types.Types[TFLOAT64],
    39  		Int:        types.Types[TINT],
    40  		Uintptr:    types.Types[TUINTPTR],
    41  		String:     types.Types[TSTRING],
    42  		BytePtr:    types.NewPtr(types.Types[TUINT8]),
    43  		Int32Ptr:   types.NewPtr(types.Types[TINT32]),
    44  		UInt32Ptr:  types.NewPtr(types.Types[TUINT32]),
    45  		IntPtr:     types.NewPtr(types.Types[TINT]),
    46  		UintptrPtr: types.NewPtr(types.Types[TUINTPTR]),
    47  		Float32Ptr: types.NewPtr(types.Types[TFLOAT32]),
    48  		Float64Ptr: types.NewPtr(types.Types[TFLOAT64]),
    49  		BytePtrPtr: types.NewPtr(types.NewPtr(types.Types[TUINT8])),
    50  	}
    51  	// Generate a few pointer types that are uncommon in the frontend but common in the backend.
    52  	// Caching is disabled in the backend, so generating these here avoids allocations.
    53  	_ = types.NewPtr(types.Types[TINTER])                             // *interface{}
    54  	_ = types.NewPtr(types.NewPtr(types.Types[TSTRING]))              // **string
    55  	_ = types.NewPtr(types.NewPtr(types.Idealstring))                 // **string
    56  	_ = types.NewPtr(types.NewSlice(types.Types[TINTER]))             // *[]interface{}
    57  	_ = types.NewPtr(types.NewPtr(types.Bytetype))                    // **byte
    58  	_ = types.NewPtr(types.NewSlice(types.Bytetype))                  // *[]byte
    59  	_ = types.NewPtr(types.NewSlice(types.Types[TSTRING]))            // *[]string
    60  	_ = types.NewPtr(types.NewSlice(types.Idealstring))               // *[]string
    61  	_ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8
    62  	_ = types.NewPtr(types.Types[TINT16])                             // *int16
    63  	_ = types.NewPtr(types.Types[TINT64])                             // *int64
    64  	_ = types.NewPtr(types.Errortype)                                 // *error
    65  	types.NewPtrCacheEnabled = false
    66  	ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, types_, Ctxt, Debug['N'] == 0)
    67  	if thearch.LinkArch.Name == "386" {
    68  		ssaConfig.Set387(thearch.Use387)
    69  	}
    70  	ssaCaches = make([]ssa.Cache, nBackendWorkers)
    71  
    72  	// Set up some runtime functions we'll need to call.
    73  	Newproc = Sysfunc("newproc")
    74  	Deferproc = Sysfunc("deferproc")
    75  	Deferreturn = Sysfunc("deferreturn")
    76  	Duffcopy = Sysfunc("duffcopy")
    77  	Duffzero = Sysfunc("duffzero")
    78  	panicindex = Sysfunc("panicindex")
    79  	panicslice = Sysfunc("panicslice")
    80  	panicdivide = Sysfunc("panicdivide")
    81  	growslice = Sysfunc("growslice")
    82  	panicdottypeE = Sysfunc("panicdottypeE")
    83  	panicdottypeI = Sysfunc("panicdottypeI")
    84  	panicnildottype = Sysfunc("panicnildottype")
    85  	assertE2I = Sysfunc("assertE2I")
    86  	assertE2I2 = Sysfunc("assertE2I2")
    87  	assertI2I = Sysfunc("assertI2I")
    88  	assertI2I2 = Sysfunc("assertI2I2")
    89  	goschedguarded = Sysfunc("goschedguarded")
    90  	writeBarrier = Sysfunc("writeBarrier")
    91  	writebarrierptr = Sysfunc("writebarrierptr")
    92  	typedmemmove = Sysfunc("typedmemmove")
    93  	typedmemclr = Sysfunc("typedmemclr")
    94  	Udiv = Sysfunc("udiv")
    95  }
    96  
    97  // buildssa builds an SSA function for fn.
    98  // worker indicates which of the backend workers is doing the processing.
    99  func buildssa(fn *Node, worker int) *ssa.Func {
   100  	name := fn.funcname()
   101  	printssa := name == os.Getenv("GOSSAFUNC")
   102  	if printssa {
   103  		fmt.Println("generating SSA for", name)
   104  		dumplist("buildssa-enter", fn.Func.Enter)
   105  		dumplist("buildssa-body", fn.Nbody)
   106  		dumplist("buildssa-exit", fn.Func.Exit)
   107  	}
   108  
   109  	var s state
   110  	s.pushLine(fn.Pos)
   111  	defer s.popLine()
   112  
   113  	s.hasdefer = fn.Func.HasDefer()
   114  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
   115  		s.cgoUnsafeArgs = true
   116  	}
   117  
   118  	fe := ssafn{
   119  		curfn: fn,
   120  		log:   printssa,
   121  	}
   122  	s.curfn = fn
   123  
   124  	s.f = ssa.NewFunc(&fe)
   125  	s.config = ssaConfig
   126  	s.f.Config = ssaConfig
   127  	s.f.Cache = &ssaCaches[worker]
   128  	s.f.Cache.Reset()
   129  	s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name)
   130  	s.f.Name = name
   131  	if fn.Func.Pragma&Nosplit != 0 {
   132  		s.f.NoSplit = true
   133  	}
   134  	defer func() {
   135  		if s.f.WBPos.IsKnown() {
   136  			fn.Func.WBPos = s.f.WBPos
   137  		}
   138  	}()
   139  	s.exitCode = fn.Func.Exit
   140  	s.panics = map[funcLine]*ssa.Block{}
   141  
   142  	if name == os.Getenv("GOSSAFUNC") {
   143  		s.f.HTMLWriter = ssa.NewHTMLWriter("ssa.html", s.f.Frontend(), name)
   144  		// TODO: generate and print a mapping from nodes to values and blocks
   145  	}
   146  
   147  	// Allocate starting block
   148  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
   149  
   150  	// Allocate starting values
   151  	s.labels = map[string]*ssaLabel{}
   152  	s.labeledNodes = map[*Node]*ssaLabel{}
   153  	s.fwdVars = map[*Node]*ssa.Value{}
   154  	s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem)
   155  	s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
   156  	s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR])
   157  
   158  	s.startBlock(s.f.Entry)
   159  	s.vars[&memVar] = s.startmem
   160  
   161  	s.varsyms = map[*Node]interface{}{}
   162  
   163  	// Generate addresses of local declarations
   164  	s.decladdrs = map[*Node]*ssa.Value{}
   165  	for _, n := range fn.Func.Dcl {
   166  		switch n.Class() {
   167  		case PPARAM, PPARAMOUT:
   168  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n})
   169  			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), aux, s.sp)
   170  			if n.Class() == PPARAMOUT && s.canSSA(n) {
   171  				// Save ssa-able PPARAMOUT variables so we can
   172  				// store them back to the stack at the end of
   173  				// the function.
   174  				s.returns = append(s.returns, n)
   175  			}
   176  		case PAUTO:
   177  			// processed at each use, to prevent Addr coming
   178  			// before the decl.
   179  		case PAUTOHEAP:
   180  			// moved to heap - already handled by frontend
   181  		case PFUNC:
   182  			// local function - already handled by frontend
   183  		default:
   184  			s.Fatalf("local variable with class %s unimplemented", classnames[n.Class()])
   185  		}
   186  	}
   187  
   188  	// Populate SSAable arguments.
   189  	for _, n := range fn.Func.Dcl {
   190  		if n.Class() == PPARAM && s.canSSA(n) {
   191  			s.vars[n] = s.newValue0A(ssa.OpArg, n.Type, n)
   192  		}
   193  	}
   194  
   195  	// Convert the AST-based IR to the SSA-based IR
   196  	s.stmtList(fn.Func.Enter)
   197  	s.stmtList(fn.Nbody)
   198  
   199  	// fallthrough to exit
   200  	if s.curBlock != nil {
   201  		s.pushLine(fn.Func.Endlineno)
   202  		s.exit()
   203  		s.popLine()
   204  	}
   205  
   206  	s.insertPhis()
   207  
   208  	// Don't carry reference this around longer than necessary
   209  	s.exitCode = Nodes{}
   210  
   211  	// Main call to ssa package to compile function
   212  	ssa.Compile(s.f)
   213  	return s.f
   214  }
   215  
   216  type state struct {
   217  	// configuration (arch) information
   218  	config *ssa.Config
   219  
   220  	// function we're building
   221  	f *ssa.Func
   222  
   223  	// Node for function
   224  	curfn *Node
   225  
   226  	// labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f
   227  	labels       map[string]*ssaLabel
   228  	labeledNodes map[*Node]*ssaLabel
   229  
   230  	// Code that must precede any return
   231  	// (e.g., copying value of heap-escaped paramout back to true paramout)
   232  	exitCode Nodes
   233  
   234  	// unlabeled break and continue statement tracking
   235  	breakTo    *ssa.Block // current target for plain break statement
   236  	continueTo *ssa.Block // current target for plain continue statement
   237  
   238  	// current location where we're interpreting the AST
   239  	curBlock *ssa.Block
   240  
   241  	// variable assignments in the current block (map from variable symbol to ssa value)
   242  	// *Node is the unique identifier (an ONAME Node) for the variable.
   243  	// TODO: keep a single varnum map, then make all of these maps slices instead?
   244  	vars map[*Node]*ssa.Value
   245  
   246  	// fwdVars are variables that are used before they are defined in the current block.
   247  	// This map exists just to coalesce multiple references into a single FwdRef op.
   248  	// *Node is the unique identifier (an ONAME Node) for the variable.
   249  	fwdVars map[*Node]*ssa.Value
   250  
   251  	// all defined variables at the end of each block. Indexed by block ID.
   252  	defvars []map[*Node]*ssa.Value
   253  
   254  	// addresses of PPARAM and PPARAMOUT variables.
   255  	decladdrs map[*Node]*ssa.Value
   256  
   257  	// symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused.
   258  	varsyms map[*Node]interface{}
   259  
   260  	// starting values. Memory, stack pointer, and globals pointer
   261  	startmem *ssa.Value
   262  	sp       *ssa.Value
   263  	sb       *ssa.Value
   264  
   265  	// line number stack. The current line number is top of stack
   266  	line []src.XPos
   267  
   268  	// list of panic calls by function name and line number.
   269  	// Used to deduplicate panic calls.
   270  	panics map[funcLine]*ssa.Block
   271  
   272  	// list of PPARAMOUT (return) variables.
   273  	returns []*Node
   274  
   275  	cgoUnsafeArgs bool
   276  	hasdefer      bool // whether the function contains a defer statement
   277  }
   278  
   279  type funcLine struct {
   280  	f    *obj.LSym
   281  	line src.XPos
   282  }
   283  
   284  type ssaLabel struct {
   285  	target         *ssa.Block // block identified by this label
   286  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   287  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   288  }
   289  
   290  // label returns the label associated with sym, creating it if necessary.
   291  func (s *state) label(sym *types.Sym) *ssaLabel {
   292  	lab := s.labels[sym.Name]
   293  	if lab == nil {
   294  		lab = new(ssaLabel)
   295  		s.labels[sym.Name] = lab
   296  	}
   297  	return lab
   298  }
   299  
   300  func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) }
   301  func (s *state) Log() bool                            { return s.f.Log() }
   302  func (s *state) Fatalf(msg string, args ...interface{}) {
   303  	s.f.Frontend().Fatalf(s.peekPos(), msg, args...)
   304  }
   305  func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) }
   306  func (s *state) Debug_checknil() bool                                { return s.f.Frontend().Debug_checknil() }
   307  
   308  var (
   309  	// dummy node for the memory variable
   310  	memVar = Node{Op: ONAME, Sym: &types.Sym{Name: "mem"}}
   311  
   312  	// dummy nodes for temporary variables
   313  	ptrVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "ptr"}}
   314  	lenVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "len"}}
   315  	newlenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "newlen"}}
   316  	capVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "cap"}}
   317  	typVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "typ"}}
   318  	okVar     = Node{Op: ONAME, Sym: &types.Sym{Name: "ok"}}
   319  )
   320  
   321  // startBlock sets the current block we're generating code in to b.
   322  func (s *state) startBlock(b *ssa.Block) {
   323  	if s.curBlock != nil {
   324  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   325  	}
   326  	s.curBlock = b
   327  	s.vars = map[*Node]*ssa.Value{}
   328  	for n := range s.fwdVars {
   329  		delete(s.fwdVars, n)
   330  	}
   331  }
   332  
   333  // endBlock marks the end of generating code for the current block.
   334  // Returns the (former) current block. Returns nil if there is no current
   335  // block, i.e. if no code flows to the current execution point.
   336  func (s *state) endBlock() *ssa.Block {
   337  	b := s.curBlock
   338  	if b == nil {
   339  		return nil
   340  	}
   341  	for len(s.defvars) <= int(b.ID) {
   342  		s.defvars = append(s.defvars, nil)
   343  	}
   344  	s.defvars[b.ID] = s.vars
   345  	s.curBlock = nil
   346  	s.vars = nil
   347  	b.Pos = s.peekPos()
   348  	return b
   349  }
   350  
   351  // pushLine pushes a line number on the line number stack.
   352  func (s *state) pushLine(line src.XPos) {
   353  	if !line.IsKnown() {
   354  		// the frontend may emit node with line number missing,
   355  		// use the parent line number in this case.
   356  		line = s.peekPos()
   357  		if Debug['K'] != 0 {
   358  			Warn("buildssa: unknown position (line 0)")
   359  		}
   360  	}
   361  	s.line = append(s.line, line)
   362  }
   363  
   364  // popLine pops the top of the line number stack.
   365  func (s *state) popLine() {
   366  	s.line = s.line[:len(s.line)-1]
   367  }
   368  
   369  // peekPos peeks the top of the line number stack.
   370  func (s *state) peekPos() src.XPos {
   371  	return s.line[len(s.line)-1]
   372  }
   373  
   374  // newValue0 adds a new value with no arguments to the current block.
   375  func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   376  	return s.curBlock.NewValue0(s.peekPos(), op, t)
   377  }
   378  
   379  // newValue0A adds a new value with no arguments and an aux value to the current block.
   380  func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   381  	return s.curBlock.NewValue0A(s.peekPos(), op, t, aux)
   382  }
   383  
   384  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   385  func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   386  	return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint)
   387  }
   388  
   389  // newValue1 adds a new value with one argument to the current block.
   390  func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   391  	return s.curBlock.NewValue1(s.peekPos(), op, t, arg)
   392  }
   393  
   394  // newValue1A adds a new value with one argument and an aux value to the current block.
   395  func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   396  	return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
   397  }
   398  
   399  // newValue1I adds a new value with one argument and an auxint value to the current block.
   400  func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
   401  	return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg)
   402  }
   403  
   404  // newValue2 adds a new value with two arguments to the current block.
   405  func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   406  	return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1)
   407  }
   408  
   409  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   410  func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   411  	return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1)
   412  }
   413  
   414  // newValue3 adds a new value with three arguments to the current block.
   415  func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   416  	return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2)
   417  }
   418  
   419  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   420  func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   421  	return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   422  }
   423  
   424  // newValue3A adds a new value with three arguments and an aux value to the current block.
   425  func (s *state) newValue3A(op ssa.Op, t ssa.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   426  	return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   427  }
   428  
   429  // newValue4 adds a new value with four arguments to the current block.
   430  func (s *state) newValue4(op ssa.Op, t ssa.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
   431  	return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3)
   432  }
   433  
   434  // entryNewValue0 adds a new value with no arguments to the entry block.
   435  func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   436  	return s.f.Entry.NewValue0(s.peekPos(), op, t)
   437  }
   438  
   439  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   440  func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   441  	return s.f.Entry.NewValue0A(s.peekPos(), op, t, aux)
   442  }
   443  
   444  // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block.
   445  func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   446  	return s.f.Entry.NewValue0I(s.peekPos(), op, t, auxint)
   447  }
   448  
   449  // entryNewValue1 adds a new value with one argument to the entry block.
   450  func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   451  	return s.f.Entry.NewValue1(s.peekPos(), op, t, arg)
   452  }
   453  
   454  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   455  func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   456  	return s.f.Entry.NewValue1I(s.peekPos(), op, t, auxint, arg)
   457  }
   458  
   459  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   460  func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   461  	return s.f.Entry.NewValue1A(s.peekPos(), op, t, aux, arg)
   462  }
   463  
   464  // entryNewValue2 adds a new value with two arguments to the entry block.
   465  func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   466  	return s.f.Entry.NewValue2(s.peekPos(), op, t, arg0, arg1)
   467  }
   468  
   469  // const* routines add a new const value to the entry block.
   470  func (s *state) constSlice(t ssa.Type) *ssa.Value       { return s.f.ConstSlice(s.peekPos(), t) }
   471  func (s *state) constInterface(t ssa.Type) *ssa.Value   { return s.f.ConstInterface(s.peekPos(), t) }
   472  func (s *state) constNil(t ssa.Type) *ssa.Value         { return s.f.ConstNil(s.peekPos(), t) }
   473  func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekPos(), t) }
   474  func (s *state) constBool(c bool) *ssa.Value {
   475  	return s.f.ConstBool(s.peekPos(), types.Types[TBOOL], c)
   476  }
   477  func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value {
   478  	return s.f.ConstInt8(s.peekPos(), t, c)
   479  }
   480  func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value {
   481  	return s.f.ConstInt16(s.peekPos(), t, c)
   482  }
   483  func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value {
   484  	return s.f.ConstInt32(s.peekPos(), t, c)
   485  }
   486  func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value {
   487  	return s.f.ConstInt64(s.peekPos(), t, c)
   488  }
   489  func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value {
   490  	return s.f.ConstFloat32(s.peekPos(), t, c)
   491  }
   492  func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value {
   493  	return s.f.ConstFloat64(s.peekPos(), t, c)
   494  }
   495  func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
   496  	if s.config.PtrSize == 8 {
   497  		return s.constInt64(t, c)
   498  	}
   499  	if int64(int32(c)) != c {
   500  		s.Fatalf("integer constant too big %d", c)
   501  	}
   502  	return s.constInt32(t, int32(c))
   503  }
   504  func (s *state) constOffPtrSP(t ssa.Type, c int64) *ssa.Value {
   505  	return s.f.ConstOffPtrSP(s.peekPos(), t, c, s.sp)
   506  }
   507  
   508  // stmtList converts the statement list n to SSA and adds it to s.
   509  func (s *state) stmtList(l Nodes) {
   510  	for _, n := range l.Slice() {
   511  		s.stmt(n)
   512  	}
   513  }
   514  
   515  // stmt converts the statement n to SSA and adds it to s.
   516  func (s *state) stmt(n *Node) {
   517  	s.pushLine(n.Pos)
   518  	defer s.popLine()
   519  
   520  	// If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere),
   521  	// then this code is dead. Stop here.
   522  	if s.curBlock == nil && n.Op != OLABEL {
   523  		return
   524  	}
   525  
   526  	s.stmtList(n.Ninit)
   527  	switch n.Op {
   528  
   529  	case OBLOCK:
   530  		s.stmtList(n.List)
   531  
   532  	// No-ops
   533  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   534  
   535  	// Expression statements
   536  	case OCALLFUNC:
   537  		if isIntrinsicCall(n) {
   538  			s.intrinsicCall(n)
   539  			return
   540  		}
   541  		fallthrough
   542  
   543  	case OCALLMETH, OCALLINTER:
   544  		s.call(n, callNormal)
   545  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class() == PFUNC {
   546  			if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" ||
   547  				n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block") {
   548  				m := s.mem()
   549  				b := s.endBlock()
   550  				b.Kind = ssa.BlockExit
   551  				b.SetControl(m)
   552  				// TODO: never rewrite OPANIC to OCALLFUNC in the
   553  				// first place. Need to wait until all backends
   554  				// go through SSA.
   555  			}
   556  		}
   557  	case ODEFER:
   558  		s.call(n.Left, callDefer)
   559  	case OPROC:
   560  		s.call(n.Left, callGo)
   561  
   562  	case OAS2DOTTYPE:
   563  		res, resok := s.dottype(n.Rlist.First(), true)
   564  		deref := false
   565  		if !canSSAType(n.Rlist.First().Type) {
   566  			if res.Op != ssa.OpLoad {
   567  				s.Fatalf("dottype of non-load")
   568  			}
   569  			mem := s.mem()
   570  			if mem.Op == ssa.OpVarKill {
   571  				mem = mem.Args[0]
   572  			}
   573  			if res.Args[1] != mem {
   574  				s.Fatalf("memory no longer live from 2-result dottype load")
   575  			}
   576  			deref = true
   577  			res = res.Args[0]
   578  		}
   579  		s.assign(n.List.First(), res, deref, 0)
   580  		s.assign(n.List.Second(), resok, false, 0)
   581  		return
   582  
   583  	case OAS2FUNC:
   584  		// We come here only when it is an intrinsic call returning two values.
   585  		if !isIntrinsicCall(n.Rlist.First()) {
   586  			s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First())
   587  		}
   588  		v := s.intrinsicCall(n.Rlist.First())
   589  		v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v)
   590  		v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v)
   591  		s.assign(n.List.First(), v1, false, 0)
   592  		s.assign(n.List.Second(), v2, false, 0)
   593  		return
   594  
   595  	case ODCL:
   596  		if n.Left.Class() == PAUTOHEAP {
   597  			Fatalf("DCL %v", n)
   598  		}
   599  
   600  	case OLABEL:
   601  		sym := n.Left.Sym
   602  		lab := s.label(sym)
   603  
   604  		// Associate label with its control flow node, if any
   605  		if ctl := n.labeledControl(); ctl != nil {
   606  			s.labeledNodes[ctl] = lab
   607  		}
   608  
   609  		// The label might already have a target block via a goto.
   610  		if lab.target == nil {
   611  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   612  		}
   613  
   614  		// Go to that label.
   615  		// (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.)
   616  		if s.curBlock != nil {
   617  			b := s.endBlock()
   618  			b.AddEdgeTo(lab.target)
   619  		}
   620  		s.startBlock(lab.target)
   621  
   622  	case OGOTO:
   623  		sym := n.Left.Sym
   624  
   625  		lab := s.label(sym)
   626  		if lab.target == nil {
   627  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   628  		}
   629  
   630  		b := s.endBlock()
   631  		b.AddEdgeTo(lab.target)
   632  
   633  	case OAS:
   634  		if n.Left == n.Right && n.Left.Op == ONAME {
   635  			// An x=x assignment. No point in doing anything
   636  			// here. In addition, skipping this assignment
   637  			// prevents generating:
   638  			//   VARDEF x
   639  			//   COPY x -> x
   640  			// which is bad because x is incorrectly considered
   641  			// dead before the vardef. See issue #14904.
   642  			return
   643  		}
   644  
   645  		// Evaluate RHS.
   646  		rhs := n.Right
   647  		if rhs != nil {
   648  			switch rhs.Op {
   649  			case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
   650  				// All literals with nonzero fields have already been
   651  				// rewritten during walk. Any that remain are just T{}
   652  				// or equivalents. Use the zero value.
   653  				if !iszero(rhs) {
   654  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   655  				}
   656  				rhs = nil
   657  			case OAPPEND:
   658  				// If we're writing the result of an append back to the same slice,
   659  				// handle it specially to avoid write barriers on the fast (non-growth) path.
   660  				// If the slice can be SSA'd, it'll be on the stack,
   661  				// so there will be no write barriers,
   662  				// so there's no need to attempt to prevent them.
   663  				if samesafeexpr(n.Left, rhs.List.First()) {
   664  					if !s.canSSA(n.Left) {
   665  						if Debug_append > 0 {
   666  							Warnl(n.Pos, "append: len-only update")
   667  						}
   668  						s.append(rhs, true)
   669  						return
   670  					} else {
   671  						if Debug_append > 0 { // replicating old diagnostic message
   672  							Warnl(n.Pos, "append: len-only update (in local slice)")
   673  						}
   674  					}
   675  				}
   676  			}
   677  		}
   678  
   679  		if isblank(n.Left) {
   680  			// _ = rhs
   681  			// Just evaluate rhs for side-effects.
   682  			if rhs != nil {
   683  				s.expr(rhs)
   684  			}
   685  			return
   686  		}
   687  
   688  		var t *types.Type
   689  		if n.Right != nil {
   690  			t = n.Right.Type
   691  		} else {
   692  			t = n.Left.Type
   693  		}
   694  
   695  		var r *ssa.Value
   696  		deref := !canSSAType(t)
   697  		if deref {
   698  			if rhs == nil {
   699  				r = nil // Signal assign to use OpZero.
   700  			} else {
   701  				r = s.addr(rhs, false)
   702  			}
   703  		} else {
   704  			if rhs == nil {
   705  				r = s.zeroVal(t)
   706  			} else {
   707  				r = s.expr(rhs)
   708  			}
   709  		}
   710  
   711  		var skip skipMask
   712  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   713  			// We're assigning a slicing operation back to its source.
   714  			// Don't write back fields we aren't changing. See issue #14855.
   715  			i, j, k := rhs.SliceBounds()
   716  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   717  				// [0:...] is the same as [:...]
   718  				i = nil
   719  			}
   720  			// TODO: detect defaults for len/cap also.
   721  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   722  			//    tmp = len(*p)
   723  			//    (*p)[:tmp]
   724  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   725  			//      j = nil
   726  			//}
   727  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   728  			//      k = nil
   729  			//}
   730  			if i == nil {
   731  				skip |= skipPtr
   732  				if j == nil {
   733  					skip |= skipLen
   734  				}
   735  				if k == nil {
   736  					skip |= skipCap
   737  				}
   738  			}
   739  		}
   740  
   741  		s.assign(n.Left, r, deref, skip)
   742  
   743  	case OIF:
   744  		bThen := s.f.NewBlock(ssa.BlockPlain)
   745  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   746  		var bElse *ssa.Block
   747  		var likely int8
   748  		if n.Likely() {
   749  			likely = 1
   750  		}
   751  		if n.Rlist.Len() != 0 {
   752  			bElse = s.f.NewBlock(ssa.BlockPlain)
   753  			s.condBranch(n.Left, bThen, bElse, likely)
   754  		} else {
   755  			s.condBranch(n.Left, bThen, bEnd, likely)
   756  		}
   757  
   758  		s.startBlock(bThen)
   759  		s.stmtList(n.Nbody)
   760  		if b := s.endBlock(); b != nil {
   761  			b.AddEdgeTo(bEnd)
   762  		}
   763  
   764  		if n.Rlist.Len() != 0 {
   765  			s.startBlock(bElse)
   766  			s.stmtList(n.Rlist)
   767  			if b := s.endBlock(); b != nil {
   768  				b.AddEdgeTo(bEnd)
   769  			}
   770  		}
   771  		s.startBlock(bEnd)
   772  
   773  	case ORETURN:
   774  		s.stmtList(n.List)
   775  		s.exit()
   776  	case ORETJMP:
   777  		s.stmtList(n.List)
   778  		b := s.exit()
   779  		b.Kind = ssa.BlockRetJmp // override BlockRet
   780  		b.Aux = n.Left.Sym.Linksym()
   781  
   782  	case OCONTINUE, OBREAK:
   783  		var to *ssa.Block
   784  		if n.Left == nil {
   785  			// plain break/continue
   786  			switch n.Op {
   787  			case OCONTINUE:
   788  				to = s.continueTo
   789  			case OBREAK:
   790  				to = s.breakTo
   791  			}
   792  		} else {
   793  			// labeled break/continue; look up the target
   794  			sym := n.Left.Sym
   795  			lab := s.label(sym)
   796  			switch n.Op {
   797  			case OCONTINUE:
   798  				to = lab.continueTarget
   799  			case OBREAK:
   800  				to = lab.breakTarget
   801  			}
   802  		}
   803  
   804  		b := s.endBlock()
   805  		b.AddEdgeTo(to)
   806  
   807  	case OFOR, OFORUNTIL:
   808  		// OFOR: for Ninit; Left; Right { Nbody }
   809  		// For      = cond; body; incr
   810  		// Foruntil = body; incr; cond
   811  		bCond := s.f.NewBlock(ssa.BlockPlain)
   812  		bBody := s.f.NewBlock(ssa.BlockPlain)
   813  		bIncr := s.f.NewBlock(ssa.BlockPlain)
   814  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   815  
   816  		// first, jump to condition test (OFOR) or body (OFORUNTIL)
   817  		b := s.endBlock()
   818  		if n.Op == OFOR {
   819  			b.AddEdgeTo(bCond)
   820  			// generate code to test condition
   821  			s.startBlock(bCond)
   822  			if n.Left != nil {
   823  				s.condBranch(n.Left, bBody, bEnd, 1)
   824  			} else {
   825  				b := s.endBlock()
   826  				b.Kind = ssa.BlockPlain
   827  				b.AddEdgeTo(bBody)
   828  			}
   829  
   830  		} else {
   831  			b.AddEdgeTo(bBody)
   832  		}
   833  
   834  		// set up for continue/break in body
   835  		prevContinue := s.continueTo
   836  		prevBreak := s.breakTo
   837  		s.continueTo = bIncr
   838  		s.breakTo = bEnd
   839  		lab := s.labeledNodes[n]
   840  		if lab != nil {
   841  			// labeled for loop
   842  			lab.continueTarget = bIncr
   843  			lab.breakTarget = bEnd
   844  		}
   845  
   846  		// generate body
   847  		s.startBlock(bBody)
   848  		s.stmtList(n.Nbody)
   849  
   850  		// tear down continue/break
   851  		s.continueTo = prevContinue
   852  		s.breakTo = prevBreak
   853  		if lab != nil {
   854  			lab.continueTarget = nil
   855  			lab.breakTarget = nil
   856  		}
   857  
   858  		// done with body, goto incr
   859  		if b := s.endBlock(); b != nil {
   860  			b.AddEdgeTo(bIncr)
   861  		}
   862  
   863  		// generate incr
   864  		s.startBlock(bIncr)
   865  		if n.Right != nil {
   866  			s.stmt(n.Right)
   867  		}
   868  		if b := s.endBlock(); b != nil {
   869  			b.AddEdgeTo(bCond)
   870  		}
   871  
   872  		if n.Op == OFORUNTIL {
   873  			// generate code to test condition
   874  			s.startBlock(bCond)
   875  			if n.Left != nil {
   876  				s.condBranch(n.Left, bBody, bEnd, 1)
   877  			} else {
   878  				b := s.endBlock()
   879  				b.Kind = ssa.BlockPlain
   880  				b.AddEdgeTo(bBody)
   881  			}
   882  		}
   883  
   884  		s.startBlock(bEnd)
   885  
   886  	case OSWITCH, OSELECT:
   887  		// These have been mostly rewritten by the front end into their Nbody fields.
   888  		// Our main task is to correctly hook up any break statements.
   889  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   890  
   891  		prevBreak := s.breakTo
   892  		s.breakTo = bEnd
   893  		lab := s.labeledNodes[n]
   894  		if lab != nil {
   895  			// labeled
   896  			lab.breakTarget = bEnd
   897  		}
   898  
   899  		// generate body code
   900  		s.stmtList(n.Nbody)
   901  
   902  		s.breakTo = prevBreak
   903  		if lab != nil {
   904  			lab.breakTarget = nil
   905  		}
   906  
   907  		// walk adds explicit OBREAK nodes to the end of all reachable code paths.
   908  		// If we still have a current block here, then mark it unreachable.
   909  		if s.curBlock != nil {
   910  			m := s.mem()
   911  			b := s.endBlock()
   912  			b.Kind = ssa.BlockExit
   913  			b.SetControl(m)
   914  		}
   915  		s.startBlock(bEnd)
   916  
   917  	case OVARKILL:
   918  		// Insert a varkill op to record that a variable is no longer live.
   919  		// We only care about liveness info at call sites, so putting the
   920  		// varkill in the store chain is enough to keep it correctly ordered
   921  		// with respect to call ops.
   922  		if !s.canSSA(n.Left) {
   923  			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem())
   924  		}
   925  
   926  	case OVARLIVE:
   927  		// Insert a varlive op to record that a variable is still live.
   928  		if !n.Left.Addrtaken() {
   929  			s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left)
   930  		}
   931  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem())
   932  
   933  	case OCHECKNIL:
   934  		p := s.expr(n.Left)
   935  		s.nilCheck(p)
   936  
   937  	default:
   938  		s.Fatalf("unhandled stmt %v", n.Op)
   939  	}
   940  }
   941  
   942  // exit processes any code that needs to be generated just before returning.
   943  // It returns a BlockRet block that ends the control flow. Its control value
   944  // will be set to the final memory state.
   945  func (s *state) exit() *ssa.Block {
   946  	if s.hasdefer {
   947  		s.rtcall(Deferreturn, true, nil)
   948  	}
   949  
   950  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
   951  	// variables back to the stack.
   952  	s.stmtList(s.exitCode)
   953  
   954  	// Store SSAable PPARAMOUT variables back to stack locations.
   955  	for _, n := range s.returns {
   956  		addr := s.decladdrs[n]
   957  		val := s.variable(n, n.Type)
   958  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem())
   959  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, n.Type, addr, val, s.mem())
   960  		// TODO: if val is ever spilled, we'd like to use the
   961  		// PPARAMOUT slot for spilling it. That won't happen
   962  		// currently.
   963  	}
   964  
   965  	// Do actual return.
   966  	m := s.mem()
   967  	b := s.endBlock()
   968  	b.Kind = ssa.BlockRet
   969  	b.SetControl(m)
   970  	return b
   971  }
   972  
   973  type opAndType struct {
   974  	op    Op
   975  	etype types.EType
   976  }
   977  
   978  var opToSSA = map[opAndType]ssa.Op{
   979  	opAndType{OADD, TINT8}:    ssa.OpAdd8,
   980  	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
   981  	opAndType{OADD, TINT16}:   ssa.OpAdd16,
   982  	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
   983  	opAndType{OADD, TINT32}:   ssa.OpAdd32,
   984  	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
   985  	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
   986  	opAndType{OADD, TINT64}:   ssa.OpAdd64,
   987  	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
   988  	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
   989  	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
   990  	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
   991  
   992  	opAndType{OSUB, TINT8}:    ssa.OpSub8,
   993  	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
   994  	opAndType{OSUB, TINT16}:   ssa.OpSub16,
   995  	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
   996  	opAndType{OSUB, TINT32}:   ssa.OpSub32,
   997  	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
   998  	opAndType{OSUB, TINT64}:   ssa.OpSub64,
   999  	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
  1000  	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
  1001  	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
  1002  
  1003  	opAndType{ONOT, TBOOL}: ssa.OpNot,
  1004  
  1005  	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
  1006  	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
  1007  	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
  1008  	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
  1009  	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
  1010  	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
  1011  	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
  1012  	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
  1013  	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
  1014  	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
  1015  
  1016  	opAndType{OCOM, TINT8}:   ssa.OpCom8,
  1017  	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
  1018  	opAndType{OCOM, TINT16}:  ssa.OpCom16,
  1019  	opAndType{OCOM, TUINT16}: ssa.OpCom16,
  1020  	opAndType{OCOM, TINT32}:  ssa.OpCom32,
  1021  	opAndType{OCOM, TUINT32}: ssa.OpCom32,
  1022  	opAndType{OCOM, TINT64}:  ssa.OpCom64,
  1023  	opAndType{OCOM, TUINT64}: ssa.OpCom64,
  1024  
  1025  	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1026  	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1027  	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1028  	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1029  
  1030  	opAndType{OMUL, TINT8}:    ssa.OpMul8,
  1031  	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
  1032  	opAndType{OMUL, TINT16}:   ssa.OpMul16,
  1033  	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
  1034  	opAndType{OMUL, TINT32}:   ssa.OpMul32,
  1035  	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
  1036  	opAndType{OMUL, TINT64}:   ssa.OpMul64,
  1037  	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
  1038  	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
  1039  	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
  1040  
  1041  	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1042  	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1043  
  1044  	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
  1045  	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
  1046  	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
  1047  	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
  1048  	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
  1049  	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
  1050  	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
  1051  	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
  1052  
  1053  	opAndType{OMOD, TINT8}:   ssa.OpMod8,
  1054  	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
  1055  	opAndType{OMOD, TINT16}:  ssa.OpMod16,
  1056  	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
  1057  	opAndType{OMOD, TINT32}:  ssa.OpMod32,
  1058  	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
  1059  	opAndType{OMOD, TINT64}:  ssa.OpMod64,
  1060  	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
  1061  
  1062  	opAndType{OAND, TINT8}:   ssa.OpAnd8,
  1063  	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
  1064  	opAndType{OAND, TINT16}:  ssa.OpAnd16,
  1065  	opAndType{OAND, TUINT16}: ssa.OpAnd16,
  1066  	opAndType{OAND, TINT32}:  ssa.OpAnd32,
  1067  	opAndType{OAND, TUINT32}: ssa.OpAnd32,
  1068  	opAndType{OAND, TINT64}:  ssa.OpAnd64,
  1069  	opAndType{OAND, TUINT64}: ssa.OpAnd64,
  1070  
  1071  	opAndType{OOR, TINT8}:   ssa.OpOr8,
  1072  	opAndType{OOR, TUINT8}:  ssa.OpOr8,
  1073  	opAndType{OOR, TINT16}:  ssa.OpOr16,
  1074  	opAndType{OOR, TUINT16}: ssa.OpOr16,
  1075  	opAndType{OOR, TINT32}:  ssa.OpOr32,
  1076  	opAndType{OOR, TUINT32}: ssa.OpOr32,
  1077  	opAndType{OOR, TINT64}:  ssa.OpOr64,
  1078  	opAndType{OOR, TUINT64}: ssa.OpOr64,
  1079  
  1080  	opAndType{OXOR, TINT8}:   ssa.OpXor8,
  1081  	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
  1082  	opAndType{OXOR, TINT16}:  ssa.OpXor16,
  1083  	opAndType{OXOR, TUINT16}: ssa.OpXor16,
  1084  	opAndType{OXOR, TINT32}:  ssa.OpXor32,
  1085  	opAndType{OXOR, TUINT32}: ssa.OpXor32,
  1086  	opAndType{OXOR, TINT64}:  ssa.OpXor64,
  1087  	opAndType{OXOR, TUINT64}: ssa.OpXor64,
  1088  
  1089  	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
  1090  	opAndType{OEQ, TINT8}:      ssa.OpEq8,
  1091  	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
  1092  	opAndType{OEQ, TINT16}:     ssa.OpEq16,
  1093  	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
  1094  	opAndType{OEQ, TINT32}:     ssa.OpEq32,
  1095  	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
  1096  	opAndType{OEQ, TINT64}:     ssa.OpEq64,
  1097  	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
  1098  	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
  1099  	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
  1100  	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
  1101  	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
  1102  	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
  1103  	opAndType{OEQ, TPTR32}:     ssa.OpEqPtr,
  1104  	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
  1105  	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1106  	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1107  	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1108  	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1109  
  1110  	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
  1111  	opAndType{ONE, TINT8}:      ssa.OpNeq8,
  1112  	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
  1113  	opAndType{ONE, TINT16}:     ssa.OpNeq16,
  1114  	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
  1115  	opAndType{ONE, TINT32}:     ssa.OpNeq32,
  1116  	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
  1117  	opAndType{ONE, TINT64}:     ssa.OpNeq64,
  1118  	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
  1119  	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
  1120  	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
  1121  	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
  1122  	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
  1123  	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
  1124  	opAndType{ONE, TPTR32}:     ssa.OpNeqPtr,
  1125  	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
  1126  	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1127  	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1128  	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1129  	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1130  
  1131  	opAndType{OLT, TINT8}:    ssa.OpLess8,
  1132  	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
  1133  	opAndType{OLT, TINT16}:   ssa.OpLess16,
  1134  	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
  1135  	opAndType{OLT, TINT32}:   ssa.OpLess32,
  1136  	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
  1137  	opAndType{OLT, TINT64}:   ssa.OpLess64,
  1138  	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
  1139  	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
  1140  	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
  1141  
  1142  	opAndType{OGT, TINT8}:    ssa.OpGreater8,
  1143  	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
  1144  	opAndType{OGT, TINT16}:   ssa.OpGreater16,
  1145  	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
  1146  	opAndType{OGT, TINT32}:   ssa.OpGreater32,
  1147  	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
  1148  	opAndType{OGT, TINT64}:   ssa.OpGreater64,
  1149  	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
  1150  	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
  1151  	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
  1152  
  1153  	opAndType{OLE, TINT8}:    ssa.OpLeq8,
  1154  	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
  1155  	opAndType{OLE, TINT16}:   ssa.OpLeq16,
  1156  	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
  1157  	opAndType{OLE, TINT32}:   ssa.OpLeq32,
  1158  	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
  1159  	opAndType{OLE, TINT64}:   ssa.OpLeq64,
  1160  	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
  1161  	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
  1162  	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
  1163  
  1164  	opAndType{OGE, TINT8}:    ssa.OpGeq8,
  1165  	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
  1166  	opAndType{OGE, TINT16}:   ssa.OpGeq16,
  1167  	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
  1168  	opAndType{OGE, TINT32}:   ssa.OpGeq32,
  1169  	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
  1170  	opAndType{OGE, TINT64}:   ssa.OpGeq64,
  1171  	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
  1172  	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
  1173  	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
  1174  }
  1175  
  1176  func (s *state) concreteEtype(t *types.Type) types.EType {
  1177  	e := t.Etype
  1178  	switch e {
  1179  	default:
  1180  		return e
  1181  	case TINT:
  1182  		if s.config.PtrSize == 8 {
  1183  			return TINT64
  1184  		}
  1185  		return TINT32
  1186  	case TUINT:
  1187  		if s.config.PtrSize == 8 {
  1188  			return TUINT64
  1189  		}
  1190  		return TUINT32
  1191  	case TUINTPTR:
  1192  		if s.config.PtrSize == 8 {
  1193  			return TUINT64
  1194  		}
  1195  		return TUINT32
  1196  	}
  1197  }
  1198  
  1199  func (s *state) ssaOp(op Op, t *types.Type) ssa.Op {
  1200  	etype := s.concreteEtype(t)
  1201  	x, ok := opToSSA[opAndType{op, etype}]
  1202  	if !ok {
  1203  		s.Fatalf("unhandled binary op %v %s", op, etype)
  1204  	}
  1205  	return x
  1206  }
  1207  
  1208  func floatForComplex(t *types.Type) *types.Type {
  1209  	if t.Size() == 8 {
  1210  		return types.Types[TFLOAT32]
  1211  	} else {
  1212  		return types.Types[TFLOAT64]
  1213  	}
  1214  }
  1215  
  1216  type opAndTwoTypes struct {
  1217  	op     Op
  1218  	etype1 types.EType
  1219  	etype2 types.EType
  1220  }
  1221  
  1222  type twoTypes struct {
  1223  	etype1 types.EType
  1224  	etype2 types.EType
  1225  }
  1226  
  1227  type twoOpsAndType struct {
  1228  	op1              ssa.Op
  1229  	op2              ssa.Op
  1230  	intermediateType types.EType
  1231  }
  1232  
  1233  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1234  
  1235  	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1236  	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1237  	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1238  	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1239  
  1240  	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1241  	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1242  	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1243  	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1244  
  1245  	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1246  	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1247  	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1248  	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1249  
  1250  	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1251  	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1252  	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1253  	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1254  	// unsigned
  1255  	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1256  	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1257  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1258  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1259  
  1260  	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1261  	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1262  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1263  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1264  
  1265  	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1266  	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1267  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1268  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1269  
  1270  	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1271  	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1272  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1273  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1274  
  1275  	// float
  1276  	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1277  	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64},
  1278  	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32},
  1279  	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1280  }
  1281  
  1282  // this map is used only for 32-bit arch, and only includes the difference
  1283  // on 32-bit arch, don't use int64<->float conversion for uint32
  1284  var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
  1285  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
  1286  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
  1287  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
  1288  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
  1289  }
  1290  
  1291  // uint64<->float conversions, only on machines that have intructions for that
  1292  var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1293  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
  1294  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
  1295  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
  1296  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
  1297  }
  1298  
  1299  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1300  	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1301  	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1302  	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1303  	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1304  	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1305  	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1306  	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1307  	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1308  
  1309  	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1310  	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1311  	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1312  	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1313  	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1314  	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1315  	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1316  	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1317  
  1318  	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1319  	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1320  	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1321  	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1322  	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1323  	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1324  	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1325  	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1326  
  1327  	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1328  	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1329  	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1330  	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1331  	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1332  	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1333  	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1334  	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1335  
  1336  	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1337  	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1338  	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1339  	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1340  	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1341  	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1342  	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1343  	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1344  
  1345  	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1346  	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1347  	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1348  	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1349  	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1350  	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1351  	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1352  	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1353  
  1354  	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1355  	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1356  	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1357  	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1358  	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1359  	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1360  	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1361  	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1362  
  1363  	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1364  	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1365  	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1366  	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1367  	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1368  	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1369  	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1370  	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1371  }
  1372  
  1373  func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op {
  1374  	etype1 := s.concreteEtype(t)
  1375  	etype2 := s.concreteEtype(u)
  1376  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1377  	if !ok {
  1378  		s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
  1379  	}
  1380  	return x
  1381  }
  1382  
  1383  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1384  func (s *state) expr(n *Node) *ssa.Value {
  1385  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1386  		// ONAMEs and named OLITERALs have the line number
  1387  		// of the decl, not the use. See issue 14742.
  1388  		s.pushLine(n.Pos)
  1389  		defer s.popLine()
  1390  	}
  1391  
  1392  	s.stmtList(n.Ninit)
  1393  	switch n.Op {
  1394  	case OARRAYBYTESTRTMP:
  1395  		slice := s.expr(n.Left)
  1396  		ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  1397  		len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  1398  		return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  1399  	case OSTRARRAYBYTETMP:
  1400  		str := s.expr(n.Left)
  1401  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str)
  1402  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str)
  1403  		return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len)
  1404  	case OCFUNC:
  1405  		aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: n.Left.Sym.Linksym()})
  1406  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1407  	case ONAME:
  1408  		if n.Class() == PFUNC {
  1409  			// "value" of a function is the address of the function's closure
  1410  			sym := funcsym(n.Sym).Linksym()
  1411  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: sym})
  1412  			return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), aux, s.sb)
  1413  		}
  1414  		if s.canSSA(n) {
  1415  			return s.variable(n, n.Type)
  1416  		}
  1417  		addr := s.addr(n, false)
  1418  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1419  	case OCLOSUREVAR:
  1420  		addr := s.addr(n, false)
  1421  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1422  	case OLITERAL:
  1423  		switch u := n.Val().U.(type) {
  1424  		case *Mpint:
  1425  			i := u.Int64()
  1426  			switch n.Type.Size() {
  1427  			case 1:
  1428  				return s.constInt8(n.Type, int8(i))
  1429  			case 2:
  1430  				return s.constInt16(n.Type, int16(i))
  1431  			case 4:
  1432  				return s.constInt32(n.Type, int32(i))
  1433  			case 8:
  1434  				return s.constInt64(n.Type, i)
  1435  			default:
  1436  				s.Fatalf("bad integer size %d", n.Type.Size())
  1437  				return nil
  1438  			}
  1439  		case string:
  1440  			if u == "" {
  1441  				return s.constEmptyString(n.Type)
  1442  			}
  1443  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1444  		case bool:
  1445  			return s.constBool(u)
  1446  		case *NilVal:
  1447  			t := n.Type
  1448  			switch {
  1449  			case t.IsSlice():
  1450  				return s.constSlice(t)
  1451  			case t.IsInterface():
  1452  				return s.constInterface(t)
  1453  			default:
  1454  				return s.constNil(t)
  1455  			}
  1456  		case *Mpflt:
  1457  			switch n.Type.Size() {
  1458  			case 4:
  1459  				return s.constFloat32(n.Type, u.Float32())
  1460  			case 8:
  1461  				return s.constFloat64(n.Type, u.Float64())
  1462  			default:
  1463  				s.Fatalf("bad float size %d", n.Type.Size())
  1464  				return nil
  1465  			}
  1466  		case *Mpcplx:
  1467  			r := &u.Real
  1468  			i := &u.Imag
  1469  			switch n.Type.Size() {
  1470  			case 8:
  1471  				pt := types.Types[TFLOAT32]
  1472  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1473  					s.constFloat32(pt, r.Float32()),
  1474  					s.constFloat32(pt, i.Float32()))
  1475  			case 16:
  1476  				pt := types.Types[TFLOAT64]
  1477  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1478  					s.constFloat64(pt, r.Float64()),
  1479  					s.constFloat64(pt, i.Float64()))
  1480  			default:
  1481  				s.Fatalf("bad float size %d", n.Type.Size())
  1482  				return nil
  1483  			}
  1484  
  1485  		default:
  1486  			s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
  1487  			return nil
  1488  		}
  1489  	case OCONVNOP:
  1490  		to := n.Type
  1491  		from := n.Left.Type
  1492  
  1493  		// Assume everything will work out, so set up our return value.
  1494  		// Anything interesting that happens from here is a fatal.
  1495  		x := s.expr(n.Left)
  1496  
  1497  		// Special case for not confusing GC and liveness.
  1498  		// We don't want pointers accidentally classified
  1499  		// as not-pointers or vice-versa because of copy
  1500  		// elision.
  1501  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1502  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1503  		}
  1504  
  1505  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1506  
  1507  		// CONVNOP closure
  1508  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1509  			return v
  1510  		}
  1511  
  1512  		// named <--> unnamed type or typed <--> untyped const
  1513  		if from.Etype == to.Etype {
  1514  			return v
  1515  		}
  1516  
  1517  		// unsafe.Pointer <--> *T
  1518  		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
  1519  			return v
  1520  		}
  1521  
  1522  		dowidth(from)
  1523  		dowidth(to)
  1524  		if from.Width != to.Width {
  1525  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1526  			return nil
  1527  		}
  1528  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1529  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1530  			return nil
  1531  		}
  1532  
  1533  		if instrumenting {
  1534  			// These appear to be fine, but they fail the
  1535  			// integer constraint below, so okay them here.
  1536  			// Sample non-integer conversion: map[string]string -> *uint8
  1537  			return v
  1538  		}
  1539  
  1540  		if etypesign(from.Etype) == 0 {
  1541  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1542  			return nil
  1543  		}
  1544  
  1545  		// integer, same width, same sign
  1546  		return v
  1547  
  1548  	case OCONV:
  1549  		x := s.expr(n.Left)
  1550  		ft := n.Left.Type // from type
  1551  		tt := n.Type      // to type
  1552  		if ft.IsBoolean() && tt.IsKind(TUINT8) {
  1553  			// Bool -> uint8 is generated internally when indexing into runtime.staticbyte.
  1554  			return s.newValue1(ssa.OpCopy, n.Type, x)
  1555  		}
  1556  		if ft.IsInteger() && tt.IsInteger() {
  1557  			var op ssa.Op
  1558  			if tt.Size() == ft.Size() {
  1559  				op = ssa.OpCopy
  1560  			} else if tt.Size() < ft.Size() {
  1561  				// truncation
  1562  				switch 10*ft.Size() + tt.Size() {
  1563  				case 21:
  1564  					op = ssa.OpTrunc16to8
  1565  				case 41:
  1566  					op = ssa.OpTrunc32to8
  1567  				case 42:
  1568  					op = ssa.OpTrunc32to16
  1569  				case 81:
  1570  					op = ssa.OpTrunc64to8
  1571  				case 82:
  1572  					op = ssa.OpTrunc64to16
  1573  				case 84:
  1574  					op = ssa.OpTrunc64to32
  1575  				default:
  1576  					s.Fatalf("weird integer truncation %v -> %v", ft, tt)
  1577  				}
  1578  			} else if ft.IsSigned() {
  1579  				// sign extension
  1580  				switch 10*ft.Size() + tt.Size() {
  1581  				case 12:
  1582  					op = ssa.OpSignExt8to16
  1583  				case 14:
  1584  					op = ssa.OpSignExt8to32
  1585  				case 18:
  1586  					op = ssa.OpSignExt8to64
  1587  				case 24:
  1588  					op = ssa.OpSignExt16to32
  1589  				case 28:
  1590  					op = ssa.OpSignExt16to64
  1591  				case 48:
  1592  					op = ssa.OpSignExt32to64
  1593  				default:
  1594  					s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
  1595  				}
  1596  			} else {
  1597  				// zero extension
  1598  				switch 10*ft.Size() + tt.Size() {
  1599  				case 12:
  1600  					op = ssa.OpZeroExt8to16
  1601  				case 14:
  1602  					op = ssa.OpZeroExt8to32
  1603  				case 18:
  1604  					op = ssa.OpZeroExt8to64
  1605  				case 24:
  1606  					op = ssa.OpZeroExt16to32
  1607  				case 28:
  1608  					op = ssa.OpZeroExt16to64
  1609  				case 48:
  1610  					op = ssa.OpZeroExt32to64
  1611  				default:
  1612  					s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
  1613  				}
  1614  			}
  1615  			return s.newValue1(op, n.Type, x)
  1616  		}
  1617  
  1618  		if ft.IsFloat() || tt.IsFloat() {
  1619  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1620  			if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS {
  1621  				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1622  					conv = conv1
  1623  				}
  1624  			}
  1625  			if thearch.LinkArch.Family == sys.ARM64 {
  1626  				if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1627  					conv = conv1
  1628  				}
  1629  			}
  1630  
  1631  			if thearch.LinkArch.Family == sys.MIPS {
  1632  				if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
  1633  					// tt is float32 or float64, and ft is also unsigned
  1634  					if tt.Size() == 4 {
  1635  						return s.uint32Tofloat32(n, x, ft, tt)
  1636  					}
  1637  					if tt.Size() == 8 {
  1638  						return s.uint32Tofloat64(n, x, ft, tt)
  1639  					}
  1640  				} else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() {
  1641  					// ft is float32 or float64, and tt is unsigned integer
  1642  					if ft.Size() == 4 {
  1643  						return s.float32ToUint32(n, x, ft, tt)
  1644  					}
  1645  					if ft.Size() == 8 {
  1646  						return s.float64ToUint32(n, x, ft, tt)
  1647  					}
  1648  				}
  1649  			}
  1650  
  1651  			if !ok {
  1652  				s.Fatalf("weird float conversion %v -> %v", ft, tt)
  1653  			}
  1654  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1655  
  1656  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1657  				// normal case, not tripping over unsigned 64
  1658  				if op1 == ssa.OpCopy {
  1659  					if op2 == ssa.OpCopy {
  1660  						return x
  1661  					}
  1662  					return s.newValue1(op2, n.Type, x)
  1663  				}
  1664  				if op2 == ssa.OpCopy {
  1665  					return s.newValue1(op1, n.Type, x)
  1666  				}
  1667  				return s.newValue1(op2, n.Type, s.newValue1(op1, types.Types[it], x))
  1668  			}
  1669  			// Tricky 64-bit unsigned cases.
  1670  			if ft.IsInteger() {
  1671  				// tt is float32 or float64, and ft is also unsigned
  1672  				if tt.Size() == 4 {
  1673  					return s.uint64Tofloat32(n, x, ft, tt)
  1674  				}
  1675  				if tt.Size() == 8 {
  1676  					return s.uint64Tofloat64(n, x, ft, tt)
  1677  				}
  1678  				s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
  1679  			}
  1680  			// ft is float32 or float64, and tt is unsigned integer
  1681  			if ft.Size() == 4 {
  1682  				return s.float32ToUint64(n, x, ft, tt)
  1683  			}
  1684  			if ft.Size() == 8 {
  1685  				return s.float64ToUint64(n, x, ft, tt)
  1686  			}
  1687  			s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
  1688  			return nil
  1689  		}
  1690  
  1691  		if ft.IsComplex() && tt.IsComplex() {
  1692  			var op ssa.Op
  1693  			if ft.Size() == tt.Size() {
  1694  				switch ft.Size() {
  1695  				case 8:
  1696  					op = ssa.OpRound32F
  1697  				case 16:
  1698  					op = ssa.OpRound64F
  1699  				default:
  1700  					s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1701  				}
  1702  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1703  				op = ssa.OpCvt32Fto64F
  1704  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1705  				op = ssa.OpCvt64Fto32F
  1706  			} else {
  1707  				s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1708  			}
  1709  			ftp := floatForComplex(ft)
  1710  			ttp := floatForComplex(tt)
  1711  			return s.newValue2(ssa.OpComplexMake, tt,
  1712  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1713  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1714  		}
  1715  
  1716  		s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1717  		return nil
  1718  
  1719  	case ODOTTYPE:
  1720  		res, _ := s.dottype(n, false)
  1721  		return res
  1722  
  1723  	// binary ops
  1724  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1725  		a := s.expr(n.Left)
  1726  		b := s.expr(n.Right)
  1727  		if n.Left.Type.IsComplex() {
  1728  			pt := floatForComplex(n.Left.Type)
  1729  			op := s.ssaOp(OEQ, pt)
  1730  			r := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  1731  			i := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  1732  			c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i)
  1733  			switch n.Op {
  1734  			case OEQ:
  1735  				return c
  1736  			case ONE:
  1737  				return s.newValue1(ssa.OpNot, types.Types[TBOOL], c)
  1738  			default:
  1739  				s.Fatalf("ordered complex compare %v", n.Op)
  1740  			}
  1741  		}
  1742  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b)
  1743  	case OMUL:
  1744  		a := s.expr(n.Left)
  1745  		b := s.expr(n.Right)
  1746  		if n.Type.IsComplex() {
  1747  			mulop := ssa.OpMul64F
  1748  			addop := ssa.OpAdd64F
  1749  			subop := ssa.OpSub64F
  1750  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1751  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  1752  
  1753  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1754  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1755  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1756  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1757  
  1758  			if pt != wt { // Widen for calculation
  1759  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1760  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1761  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1762  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1763  			}
  1764  
  1765  			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1766  			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
  1767  
  1768  			if pt != wt { // Narrow to store back
  1769  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1770  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1771  			}
  1772  
  1773  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1774  		}
  1775  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1776  
  1777  	case ODIV:
  1778  		a := s.expr(n.Left)
  1779  		b := s.expr(n.Right)
  1780  		if n.Type.IsComplex() {
  1781  			// TODO this is not executed because the front-end substitutes a runtime call.
  1782  			// That probably ought to change; with modest optimization the widen/narrow
  1783  			// conversions could all be elided in larger expression trees.
  1784  			mulop := ssa.OpMul64F
  1785  			addop := ssa.OpAdd64F
  1786  			subop := ssa.OpSub64F
  1787  			divop := ssa.OpDiv64F
  1788  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1789  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  1790  
  1791  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1792  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1793  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1794  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1795  
  1796  			if pt != wt { // Widen for calculation
  1797  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1798  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1799  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1800  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1801  			}
  1802  
  1803  			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
  1804  			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1805  			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
  1806  
  1807  			// TODO not sure if this is best done in wide precision or narrow
  1808  			// Double-rounding might be an issue.
  1809  			// Note that the pre-SSA implementation does the entire calculation
  1810  			// in wide format, so wide is compatible.
  1811  			xreal = s.newValue2(divop, wt, xreal, denom)
  1812  			ximag = s.newValue2(divop, wt, ximag, denom)
  1813  
  1814  			if pt != wt { // Narrow to store back
  1815  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1816  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1817  			}
  1818  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1819  		}
  1820  		if n.Type.IsFloat() {
  1821  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1822  		}
  1823  		return s.intDivide(n, a, b)
  1824  	case OMOD:
  1825  		a := s.expr(n.Left)
  1826  		b := s.expr(n.Right)
  1827  		return s.intDivide(n, a, b)
  1828  	case OADD, OSUB:
  1829  		a := s.expr(n.Left)
  1830  		b := s.expr(n.Right)
  1831  		if n.Type.IsComplex() {
  1832  			pt := floatForComplex(n.Type)
  1833  			op := s.ssaOp(n.Op, pt)
  1834  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1835  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  1836  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  1837  		}
  1838  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1839  	case OAND, OOR, OXOR:
  1840  		a := s.expr(n.Left)
  1841  		b := s.expr(n.Right)
  1842  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1843  	case OLSH, ORSH:
  1844  		a := s.expr(n.Left)
  1845  		b := s.expr(n.Right)
  1846  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  1847  	case OANDAND, OOROR:
  1848  		// To implement OANDAND (and OOROR), we introduce a
  1849  		// new temporary variable to hold the result. The
  1850  		// variable is associated with the OANDAND node in the
  1851  		// s.vars table (normally variables are only
  1852  		// associated with ONAME nodes). We convert
  1853  		//     A && B
  1854  		// to
  1855  		//     var = A
  1856  		//     if var {
  1857  		//         var = B
  1858  		//     }
  1859  		// Using var in the subsequent block introduces the
  1860  		// necessary phi variable.
  1861  		el := s.expr(n.Left)
  1862  		s.vars[n] = el
  1863  
  1864  		b := s.endBlock()
  1865  		b.Kind = ssa.BlockIf
  1866  		b.SetControl(el)
  1867  		// In theory, we should set b.Likely here based on context.
  1868  		// However, gc only gives us likeliness hints
  1869  		// in a single place, for plain OIF statements,
  1870  		// and passing around context is finnicky, so don't bother for now.
  1871  
  1872  		bRight := s.f.NewBlock(ssa.BlockPlain)
  1873  		bResult := s.f.NewBlock(ssa.BlockPlain)
  1874  		if n.Op == OANDAND {
  1875  			b.AddEdgeTo(bRight)
  1876  			b.AddEdgeTo(bResult)
  1877  		} else if n.Op == OOROR {
  1878  			b.AddEdgeTo(bResult)
  1879  			b.AddEdgeTo(bRight)
  1880  		}
  1881  
  1882  		s.startBlock(bRight)
  1883  		er := s.expr(n.Right)
  1884  		s.vars[n] = er
  1885  
  1886  		b = s.endBlock()
  1887  		b.AddEdgeTo(bResult)
  1888  
  1889  		s.startBlock(bResult)
  1890  		return s.variable(n, types.Types[TBOOL])
  1891  	case OCOMPLEX:
  1892  		r := s.expr(n.Left)
  1893  		i := s.expr(n.Right)
  1894  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  1895  
  1896  	// unary ops
  1897  	case OMINUS:
  1898  		a := s.expr(n.Left)
  1899  		if n.Type.IsComplex() {
  1900  			tp := floatForComplex(n.Type)
  1901  			negop := s.ssaOp(n.Op, tp)
  1902  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1903  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  1904  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  1905  		}
  1906  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1907  	case ONOT, OCOM:
  1908  		a := s.expr(n.Left)
  1909  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1910  	case OIMAG, OREAL:
  1911  		a := s.expr(n.Left)
  1912  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  1913  	case OPLUS:
  1914  		return s.expr(n.Left)
  1915  
  1916  	case OADDR:
  1917  		return s.addr(n.Left, n.Bounded())
  1918  
  1919  	case OINDREGSP:
  1920  		addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset)
  1921  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1922  
  1923  	case OIND:
  1924  		p := s.exprPtr(n.Left, false, n.Pos)
  1925  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1926  
  1927  	case ODOT:
  1928  		t := n.Left.Type
  1929  		if canSSAType(t) {
  1930  			v := s.expr(n.Left)
  1931  			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  1932  		}
  1933  		if n.Left.Op == OSTRUCTLIT {
  1934  			// All literals with nonzero fields have already been
  1935  			// rewritten during walk. Any that remain are just T{}
  1936  			// or equivalents. Use the zero value.
  1937  			if !iszero(n.Left) {
  1938  				Fatalf("literal with nonzero value in SSA: %v", n.Left)
  1939  			}
  1940  			return s.zeroVal(n.Type)
  1941  		}
  1942  		p := s.addr(n, false)
  1943  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1944  
  1945  	case ODOTPTR:
  1946  		p := s.exprPtr(n.Left, false, n.Pos)
  1947  		p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p)
  1948  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1949  
  1950  	case OINDEX:
  1951  		switch {
  1952  		case n.Left.Type.IsString():
  1953  			if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) {
  1954  				// Replace "abc"[1] with 'b'.
  1955  				// Delayed until now because "abc"[1] is not an ideal constant.
  1956  				// See test/fixedbugs/issue11370.go.
  1957  				return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()])))
  1958  			}
  1959  			a := s.expr(n.Left)
  1960  			i := s.expr(n.Right)
  1961  			i = s.extendIndex(i, panicindex)
  1962  			if !n.Bounded() {
  1963  				len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a)
  1964  				s.boundsCheck(i, len)
  1965  			}
  1966  			ptrtyp := s.f.Config.Types.BytePtr
  1967  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  1968  			if Isconst(n.Right, CTINT) {
  1969  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  1970  			} else {
  1971  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  1972  			}
  1973  			return s.newValue2(ssa.OpLoad, types.Types[TUINT8], ptr, s.mem())
  1974  		case n.Left.Type.IsSlice():
  1975  			p := s.addr(n, false)
  1976  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  1977  		case n.Left.Type.IsArray():
  1978  			if bound := n.Left.Type.NumElem(); bound <= 1 {
  1979  				// SSA can handle arrays of length at most 1.
  1980  				a := s.expr(n.Left)
  1981  				i := s.expr(n.Right)
  1982  				if bound == 0 {
  1983  					// Bounds check will never succeed.  Might as well
  1984  					// use constants for the bounds check.
  1985  					z := s.constInt(types.Types[TINT], 0)
  1986  					s.boundsCheck(z, z)
  1987  					// The return value won't be live, return junk.
  1988  					return s.newValue0(ssa.OpUnknown, n.Type)
  1989  				}
  1990  				i = s.extendIndex(i, panicindex)
  1991  				if !n.Bounded() {
  1992  					s.boundsCheck(i, s.constInt(types.Types[TINT], bound))
  1993  				}
  1994  				return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a)
  1995  			}
  1996  			p := s.addr(n, false)
  1997  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  1998  		default:
  1999  			s.Fatalf("bad type for index %v", n.Left.Type)
  2000  			return nil
  2001  		}
  2002  
  2003  	case OLEN, OCAP:
  2004  		switch {
  2005  		case n.Left.Type.IsSlice():
  2006  			op := ssa.OpSliceLen
  2007  			if n.Op == OCAP {
  2008  				op = ssa.OpSliceCap
  2009  			}
  2010  			return s.newValue1(op, types.Types[TINT], s.expr(n.Left))
  2011  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  2012  			return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left))
  2013  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  2014  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  2015  		default: // array
  2016  			return s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  2017  		}
  2018  
  2019  	case OSPTR:
  2020  		a := s.expr(n.Left)
  2021  		if n.Left.Type.IsSlice() {
  2022  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  2023  		} else {
  2024  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  2025  		}
  2026  
  2027  	case OITAB:
  2028  		a := s.expr(n.Left)
  2029  		return s.newValue1(ssa.OpITab, n.Type, a)
  2030  
  2031  	case OIDATA:
  2032  		a := s.expr(n.Left)
  2033  		return s.newValue1(ssa.OpIData, n.Type, a)
  2034  
  2035  	case OEFACE:
  2036  		tab := s.expr(n.Left)
  2037  		data := s.expr(n.Right)
  2038  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2039  
  2040  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2041  		v := s.expr(n.Left)
  2042  		var i, j, k *ssa.Value
  2043  		low, high, max := n.SliceBounds()
  2044  		if low != nil {
  2045  			i = s.extendIndex(s.expr(low), panicslice)
  2046  		}
  2047  		if high != nil {
  2048  			j = s.extendIndex(s.expr(high), panicslice)
  2049  		}
  2050  		if max != nil {
  2051  			k = s.extendIndex(s.expr(max), panicslice)
  2052  		}
  2053  		p, l, c := s.slice(n.Left.Type, v, i, j, k)
  2054  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2055  
  2056  	case OSLICESTR:
  2057  		v := s.expr(n.Left)
  2058  		var i, j *ssa.Value
  2059  		low, high, _ := n.SliceBounds()
  2060  		if low != nil {
  2061  			i = s.extendIndex(s.expr(low), panicslice)
  2062  		}
  2063  		if high != nil {
  2064  			j = s.extendIndex(s.expr(high), panicslice)
  2065  		}
  2066  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
  2067  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2068  
  2069  	case OCALLFUNC:
  2070  		if isIntrinsicCall(n) {
  2071  			return s.intrinsicCall(n)
  2072  		}
  2073  		fallthrough
  2074  
  2075  	case OCALLINTER, OCALLMETH:
  2076  		a := s.call(n, callNormal)
  2077  		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
  2078  
  2079  	case OGETG:
  2080  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2081  
  2082  	case OAPPEND:
  2083  		return s.append(n, false)
  2084  
  2085  	case OSTRUCTLIT, OARRAYLIT:
  2086  		// All literals with nonzero fields have already been
  2087  		// rewritten during walk. Any that remain are just T{}
  2088  		// or equivalents. Use the zero value.
  2089  		if !iszero(n) {
  2090  			Fatalf("literal with nonzero value in SSA: %v", n)
  2091  		}
  2092  		return s.zeroVal(n.Type)
  2093  
  2094  	default:
  2095  		s.Fatalf("unhandled expr %v", n.Op)
  2096  		return nil
  2097  	}
  2098  }
  2099  
  2100  // append converts an OAPPEND node to SSA.
  2101  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2102  // adds it to s, and returns the Value.
  2103  // If inplace is true, it writes the result of the OAPPEND expression n
  2104  // back to the slice being appended to, and returns nil.
  2105  // inplace MUST be set to false if the slice can be SSA'd.
  2106  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2107  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2108  	//
  2109  	// ptr, len, cap := s
  2110  	// newlen := len + 3
  2111  	// if newlen > cap {
  2112  	//     ptr, len, cap = growslice(s, newlen)
  2113  	//     newlen = len + 3 // recalculate to avoid a spill
  2114  	// }
  2115  	// // with write barriers, if needed:
  2116  	// *(ptr+len) = e1
  2117  	// *(ptr+len+1) = e2
  2118  	// *(ptr+len+2) = e3
  2119  	// return makeslice(ptr, newlen, cap)
  2120  	//
  2121  	//
  2122  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2123  	//
  2124  	// a := &s
  2125  	// ptr, len, cap := s
  2126  	// newlen := len + 3
  2127  	// if newlen > cap {
  2128  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2129  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2130  	//    *a.cap = newcap // write before ptr to avoid a spill
  2131  	//    *a.ptr = newptr // with write barrier
  2132  	// }
  2133  	// newlen = len + 3 // recalculate to avoid a spill
  2134  	// *a.len = newlen
  2135  	// // with write barriers, if needed:
  2136  	// *(ptr+len) = e1
  2137  	// *(ptr+len+1) = e2
  2138  	// *(ptr+len+2) = e3
  2139  
  2140  	et := n.Type.Elem()
  2141  	pt := types.NewPtr(et)
  2142  
  2143  	// Evaluate slice
  2144  	sn := n.List.First() // the slice node is the first in the list
  2145  
  2146  	var slice, addr *ssa.Value
  2147  	if inplace {
  2148  		addr = s.addr(sn, false)
  2149  		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2150  	} else {
  2151  		slice = s.expr(sn)
  2152  	}
  2153  
  2154  	// Allocate new blocks
  2155  	grow := s.f.NewBlock(ssa.BlockPlain)
  2156  	assign := s.f.NewBlock(ssa.BlockPlain)
  2157  
  2158  	// Decide if we need to grow
  2159  	nargs := int64(n.List.Len() - 1)
  2160  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2161  	l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2162  	c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice)
  2163  	nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2164  
  2165  	cmp := s.newValue2(s.ssaOp(OGT, types.Types[TINT]), types.Types[TBOOL], nl, c)
  2166  	s.vars[&ptrVar] = p
  2167  
  2168  	if !inplace {
  2169  		s.vars[&newlenVar] = nl
  2170  		s.vars[&capVar] = c
  2171  	} else {
  2172  		s.vars[&lenVar] = l
  2173  	}
  2174  
  2175  	b := s.endBlock()
  2176  	b.Kind = ssa.BlockIf
  2177  	b.Likely = ssa.BranchUnlikely
  2178  	b.SetControl(cmp)
  2179  	b.AddEdgeTo(grow)
  2180  	b.AddEdgeTo(assign)
  2181  
  2182  	// Call growslice
  2183  	s.startBlock(grow)
  2184  	taddr := s.expr(n.Left)
  2185  	r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl)
  2186  
  2187  	if inplace {
  2188  		if sn.Op == ONAME {
  2189  			// Tell liveness we're about to build a new slice
  2190  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem())
  2191  		}
  2192  		capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_cap), addr)
  2193  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TINT], capaddr, r[2], s.mem())
  2194  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, pt, addr, r[0], s.mem())
  2195  		// load the value we just stored to avoid having to spill it
  2196  		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
  2197  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2198  	} else {
  2199  		s.vars[&ptrVar] = r[0]
  2200  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs))
  2201  		s.vars[&capVar] = r[2]
  2202  	}
  2203  
  2204  	b = s.endBlock()
  2205  	b.AddEdgeTo(assign)
  2206  
  2207  	// assign new elements to slots
  2208  	s.startBlock(assign)
  2209  
  2210  	if inplace {
  2211  		l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len
  2212  		nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2213  		lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_nel), addr)
  2214  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TINT], lenaddr, nl, s.mem())
  2215  	}
  2216  
  2217  	// Evaluate args
  2218  	type argRec struct {
  2219  		// if store is true, we're appending the value v.  If false, we're appending the
  2220  		// value at *v.
  2221  		v     *ssa.Value
  2222  		store bool
  2223  	}
  2224  	args := make([]argRec, 0, nargs)
  2225  	for _, n := range n.List.Slice()[1:] {
  2226  		if canSSAType(n.Type) {
  2227  			args = append(args, argRec{v: s.expr(n), store: true})
  2228  		} else {
  2229  			v := s.addr(n, false)
  2230  			args = append(args, argRec{v: v})
  2231  		}
  2232  	}
  2233  
  2234  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2235  	if !inplace {
  2236  		nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl
  2237  		c = s.variable(&capVar, types.Types[TINT])     // generates phi for cap
  2238  	}
  2239  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2240  	for i, arg := range args {
  2241  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i)))
  2242  		if arg.store {
  2243  			s.storeType(et, addr, arg.v, 0)
  2244  		} else {
  2245  			store := s.newValue3I(ssa.OpMove, ssa.TypeMem, et.Size(), addr, arg.v, s.mem())
  2246  			store.Aux = et
  2247  			s.vars[&memVar] = store
  2248  		}
  2249  	}
  2250  
  2251  	delete(s.vars, &ptrVar)
  2252  	if inplace {
  2253  		delete(s.vars, &lenVar)
  2254  		return nil
  2255  	}
  2256  	delete(s.vars, &newlenVar)
  2257  	delete(s.vars, &capVar)
  2258  	// make result
  2259  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2260  }
  2261  
  2262  // condBranch evaluates the boolean expression cond and branches to yes
  2263  // if cond is true and no if cond is false.
  2264  // This function is intended to handle && and || better than just calling
  2265  // s.expr(cond) and branching on the result.
  2266  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2267  	if cond.Op == OANDAND {
  2268  		mid := s.f.NewBlock(ssa.BlockPlain)
  2269  		s.stmtList(cond.Ninit)
  2270  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2271  		s.startBlock(mid)
  2272  		s.condBranch(cond.Right, yes, no, likely)
  2273  		return
  2274  		// Note: if likely==1, then both recursive calls pass 1.
  2275  		// If likely==-1, then we don't have enough information to decide
  2276  		// whether the first branch is likely or not. So we pass 0 for
  2277  		// the likeliness of the first branch.
  2278  		// TODO: have the frontend give us branch prediction hints for
  2279  		// OANDAND and OOROR nodes (if it ever has such info).
  2280  	}
  2281  	if cond.Op == OOROR {
  2282  		mid := s.f.NewBlock(ssa.BlockPlain)
  2283  		s.stmtList(cond.Ninit)
  2284  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2285  		s.startBlock(mid)
  2286  		s.condBranch(cond.Right, yes, no, likely)
  2287  		return
  2288  		// Note: if likely==-1, then both recursive calls pass -1.
  2289  		// If likely==1, then we don't have enough info to decide
  2290  		// the likelihood of the first branch.
  2291  	}
  2292  	if cond.Op == ONOT {
  2293  		s.stmtList(cond.Ninit)
  2294  		s.condBranch(cond.Left, no, yes, -likely)
  2295  		return
  2296  	}
  2297  	c := s.expr(cond)
  2298  	b := s.endBlock()
  2299  	b.Kind = ssa.BlockIf
  2300  	b.SetControl(c)
  2301  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2302  	b.AddEdgeTo(yes)
  2303  	b.AddEdgeTo(no)
  2304  }
  2305  
  2306  type skipMask uint8
  2307  
  2308  const (
  2309  	skipPtr skipMask = 1 << iota
  2310  	skipLen
  2311  	skipCap
  2312  )
  2313  
  2314  // assign does left = right.
  2315  // Right has already been evaluated to ssa, left has not.
  2316  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2317  // If deref is true and right == nil, just do left = 0.
  2318  // skip indicates assignments (at the top level) that can be avoided.
  2319  func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) {
  2320  	if left.Op == ONAME && isblank(left) {
  2321  		return
  2322  	}
  2323  	t := left.Type
  2324  	dowidth(t)
  2325  	if s.canSSA(left) {
  2326  		if deref {
  2327  			s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
  2328  		}
  2329  		if left.Op == ODOT {
  2330  			// We're assigning to a field of an ssa-able value.
  2331  			// We need to build a new structure with the new value for the
  2332  			// field we're assigning and the old values for the other fields.
  2333  			// For instance:
  2334  			//   type T struct {a, b, c int}
  2335  			//   var T x
  2336  			//   x.b = 5
  2337  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2338  
  2339  			// Grab information about the structure type.
  2340  			t := left.Left.Type
  2341  			nf := t.NumFields()
  2342  			idx := fieldIdx(left)
  2343  
  2344  			// Grab old value of structure.
  2345  			old := s.expr(left.Left)
  2346  
  2347  			// Make new structure.
  2348  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2349  
  2350  			// Add fields as args.
  2351  			for i := 0; i < nf; i++ {
  2352  				if i == idx {
  2353  					new.AddArg(right)
  2354  				} else {
  2355  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2356  				}
  2357  			}
  2358  
  2359  			// Recursively assign the new value we've made to the base of the dot op.
  2360  			s.assign(left.Left, new, false, 0)
  2361  			// TODO: do we need to update named values here?
  2362  			return
  2363  		}
  2364  		if left.Op == OINDEX && left.Left.Type.IsArray() {
  2365  			// We're assigning to an element of an ssa-able array.
  2366  			// a[i] = v
  2367  			t := left.Left.Type
  2368  			n := t.NumElem()
  2369  
  2370  			i := s.expr(left.Right) // index
  2371  			if n == 0 {
  2372  				// The bounds check must fail.  Might as well
  2373  				// ignore the actual index and just use zeros.
  2374  				z := s.constInt(types.Types[TINT], 0)
  2375  				s.boundsCheck(z, z)
  2376  				return
  2377  			}
  2378  			if n != 1 {
  2379  				s.Fatalf("assigning to non-1-length array")
  2380  			}
  2381  			// Rewrite to a = [1]{v}
  2382  			i = s.extendIndex(i, panicindex)
  2383  			s.boundsCheck(i, s.constInt(types.Types[TINT], 1))
  2384  			v := s.newValue1(ssa.OpArrayMake1, t, right)
  2385  			s.assign(left.Left, v, false, 0)
  2386  			return
  2387  		}
  2388  		// Update variable assignment.
  2389  		s.vars[left] = right
  2390  		s.addNamedValue(left, right)
  2391  		return
  2392  	}
  2393  	// Left is not ssa-able. Compute its address.
  2394  	addr := s.addr(left, false)
  2395  	if left.Op == ONAME && skip == 0 {
  2396  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem())
  2397  	}
  2398  	if isReflectHeaderDataField(left) {
  2399  		// Package unsafe's documentation says storing pointers into
  2400  		// reflect.SliceHeader and reflect.StringHeader's Data fields
  2401  		// is valid, even though they have type uintptr (#19168).
  2402  		// Mark it pointer type to signal the writebarrier pass to
  2403  		// insert a write barrier.
  2404  		t = types.Types[TUNSAFEPTR]
  2405  	}
  2406  	if deref {
  2407  		// Treat as a mem->mem move.
  2408  		var store *ssa.Value
  2409  		if right == nil {
  2410  			store = s.newValue2I(ssa.OpZero, ssa.TypeMem, t.Size(), addr, s.mem())
  2411  		} else {
  2412  			store = s.newValue3I(ssa.OpMove, ssa.TypeMem, t.Size(), addr, right, s.mem())
  2413  		}
  2414  		store.Aux = t
  2415  		s.vars[&memVar] = store
  2416  		return
  2417  	}
  2418  	// Treat as a store.
  2419  	s.storeType(t, addr, right, skip)
  2420  }
  2421  
  2422  // zeroVal returns the zero value for type t.
  2423  func (s *state) zeroVal(t *types.Type) *ssa.Value {
  2424  	switch {
  2425  	case t.IsInteger():
  2426  		switch t.Size() {
  2427  		case 1:
  2428  			return s.constInt8(t, 0)
  2429  		case 2:
  2430  			return s.constInt16(t, 0)
  2431  		case 4:
  2432  			return s.constInt32(t, 0)
  2433  		case 8:
  2434  			return s.constInt64(t, 0)
  2435  		default:
  2436  			s.Fatalf("bad sized integer type %v", t)
  2437  		}
  2438  	case t.IsFloat():
  2439  		switch t.Size() {
  2440  		case 4:
  2441  			return s.constFloat32(t, 0)
  2442  		case 8:
  2443  			return s.constFloat64(t, 0)
  2444  		default:
  2445  			s.Fatalf("bad sized float type %v", t)
  2446  		}
  2447  	case t.IsComplex():
  2448  		switch t.Size() {
  2449  		case 8:
  2450  			z := s.constFloat32(types.Types[TFLOAT32], 0)
  2451  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2452  		case 16:
  2453  			z := s.constFloat64(types.Types[TFLOAT64], 0)
  2454  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2455  		default:
  2456  			s.Fatalf("bad sized complex type %v", t)
  2457  		}
  2458  
  2459  	case t.IsString():
  2460  		return s.constEmptyString(t)
  2461  	case t.IsPtrShaped():
  2462  		return s.constNil(t)
  2463  	case t.IsBoolean():
  2464  		return s.constBool(false)
  2465  	case t.IsInterface():
  2466  		return s.constInterface(t)
  2467  	case t.IsSlice():
  2468  		return s.constSlice(t)
  2469  	case t.IsStruct():
  2470  		n := t.NumFields()
  2471  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2472  		for i := 0; i < n; i++ {
  2473  			v.AddArg(s.zeroVal(t.FieldType(i).(*types.Type)))
  2474  		}
  2475  		return v
  2476  	case t.IsArray():
  2477  		switch t.NumElem() {
  2478  		case 0:
  2479  			return s.entryNewValue0(ssa.OpArrayMake0, t)
  2480  		case 1:
  2481  			return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
  2482  		}
  2483  	}
  2484  	s.Fatalf("zero for type %v not implemented", t)
  2485  	return nil
  2486  }
  2487  
  2488  type callKind int8
  2489  
  2490  const (
  2491  	callNormal callKind = iota
  2492  	callDefer
  2493  	callGo
  2494  )
  2495  
  2496  var intrinsics map[intrinsicKey]intrinsicBuilder
  2497  
  2498  // An intrinsicBuilder converts a call node n into an ssa value that
  2499  // implements that call as an intrinsic. args is a list of arguments to the func.
  2500  type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value
  2501  
  2502  type intrinsicKey struct {
  2503  	arch *sys.Arch
  2504  	pkg  string
  2505  	fn   string
  2506  }
  2507  
  2508  func init() {
  2509  	intrinsics = map[intrinsicKey]intrinsicBuilder{}
  2510  
  2511  	var all []*sys.Arch
  2512  	var p4 []*sys.Arch
  2513  	var p8 []*sys.Arch
  2514  	for _, a := range sys.Archs {
  2515  		all = append(all, a)
  2516  		if a.PtrSize == 4 {
  2517  			p4 = append(p4, a)
  2518  		} else {
  2519  			p8 = append(p8, a)
  2520  		}
  2521  	}
  2522  
  2523  	// add adds the intrinsic b for pkg.fn for the given list of architectures.
  2524  	add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
  2525  		for _, a := range archs {
  2526  			intrinsics[intrinsicKey{a, pkg, fn}] = b
  2527  		}
  2528  	}
  2529  	// addF does the same as add but operates on architecture families.
  2530  	addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
  2531  		m := 0
  2532  		for _, f := range archFamilies {
  2533  			if f >= 32 {
  2534  				panic("too many architecture families")
  2535  			}
  2536  			m |= 1 << uint(f)
  2537  		}
  2538  		for _, a := range all {
  2539  			if m>>uint(a.Family)&1 != 0 {
  2540  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2541  			}
  2542  		}
  2543  	}
  2544  	// alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists.
  2545  	alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) {
  2546  		for _, a := range archs {
  2547  			if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok {
  2548  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2549  			}
  2550  		}
  2551  	}
  2552  
  2553  	/******** runtime ********/
  2554  	if !instrumenting {
  2555  		add("runtime", "slicebytetostringtmp",
  2556  			func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2557  				// Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes
  2558  				// for the backend instead of slicebytetostringtmp calls
  2559  				// when not instrumenting.
  2560  				slice := args[0]
  2561  				ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  2562  				len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2563  				return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  2564  			},
  2565  			all...)
  2566  	}
  2567  	add("runtime", "KeepAlive",
  2568  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2569  			data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0])
  2570  			s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, data, s.mem())
  2571  			return nil
  2572  		},
  2573  		all...)
  2574  
  2575  	/******** runtime/internal/sys ********/
  2576  	addF("runtime/internal/sys", "Ctz32",
  2577  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2578  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  2579  		},
  2580  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2581  	addF("runtime/internal/sys", "Ctz64",
  2582  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2583  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  2584  		},
  2585  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2586  	addF("runtime/internal/sys", "Bswap32",
  2587  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2588  			return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0])
  2589  		},
  2590  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2591  	addF("runtime/internal/sys", "Bswap64",
  2592  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2593  			return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0])
  2594  		},
  2595  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2596  
  2597  	/******** runtime/internal/atomic ********/
  2598  	addF("runtime/internal/atomic", "Load",
  2599  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2600  			v := s.newValue2(ssa.OpAtomicLoad32, ssa.MakeTuple(types.Types[TUINT32], ssa.TypeMem), args[0], s.mem())
  2601  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2602  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2603  		},
  2604  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2605  
  2606  	addF("runtime/internal/atomic", "Load64",
  2607  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2608  			v := s.newValue2(ssa.OpAtomicLoad64, ssa.MakeTuple(types.Types[TUINT64], ssa.TypeMem), args[0], s.mem())
  2609  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2610  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2611  		},
  2612  		sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64)
  2613  	addF("runtime/internal/atomic", "Loadp",
  2614  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2615  			v := s.newValue2(ssa.OpAtomicLoadPtr, ssa.MakeTuple(s.f.Config.Types.BytePtr, ssa.TypeMem), args[0], s.mem())
  2616  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2617  			return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v)
  2618  		},
  2619  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2620  
  2621  	addF("runtime/internal/atomic", "Store",
  2622  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2623  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, ssa.TypeMem, args[0], args[1], s.mem())
  2624  			return nil
  2625  		},
  2626  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2627  	addF("runtime/internal/atomic", "Store64",
  2628  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2629  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, ssa.TypeMem, args[0], args[1], s.mem())
  2630  			return nil
  2631  		},
  2632  		sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64)
  2633  	addF("runtime/internal/atomic", "StorepNoWB",
  2634  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2635  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, ssa.TypeMem, args[0], args[1], s.mem())
  2636  			return nil
  2637  		},
  2638  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS)
  2639  
  2640  	addF("runtime/internal/atomic", "Xchg",
  2641  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2642  			v := s.newValue3(ssa.OpAtomicExchange32, ssa.MakeTuple(types.Types[TUINT32], ssa.TypeMem), args[0], args[1], s.mem())
  2643  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2644  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2645  		},
  2646  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2647  	addF("runtime/internal/atomic", "Xchg64",
  2648  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2649  			v := s.newValue3(ssa.OpAtomicExchange64, ssa.MakeTuple(types.Types[TUINT64], ssa.TypeMem), args[0], args[1], s.mem())
  2650  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2651  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2652  		},
  2653  		sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64)
  2654  
  2655  	addF("runtime/internal/atomic", "Xadd",
  2656  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2657  			v := s.newValue3(ssa.OpAtomicAdd32, ssa.MakeTuple(types.Types[TUINT32], ssa.TypeMem), args[0], args[1], s.mem())
  2658  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2659  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2660  		},
  2661  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2662  	addF("runtime/internal/atomic", "Xadd64",
  2663  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2664  			v := s.newValue3(ssa.OpAtomicAdd64, ssa.MakeTuple(types.Types[TUINT64], ssa.TypeMem), args[0], args[1], s.mem())
  2665  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2666  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2667  		},
  2668  		sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64)
  2669  
  2670  	addF("runtime/internal/atomic", "Cas",
  2671  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2672  			v := s.newValue4(ssa.OpAtomicCompareAndSwap32, ssa.MakeTuple(types.Types[TBOOL], ssa.TypeMem), args[0], args[1], args[2], s.mem())
  2673  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2674  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  2675  		},
  2676  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2677  	addF("runtime/internal/atomic", "Cas64",
  2678  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2679  			v := s.newValue4(ssa.OpAtomicCompareAndSwap64, ssa.MakeTuple(types.Types[TBOOL], ssa.TypeMem), args[0], args[1], args[2], s.mem())
  2680  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2681  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  2682  		},
  2683  		sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64)
  2684  
  2685  	addF("runtime/internal/atomic", "And8",
  2686  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2687  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, ssa.TypeMem, args[0], args[1], s.mem())
  2688  			return nil
  2689  		},
  2690  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  2691  	addF("runtime/internal/atomic", "Or8",
  2692  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2693  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, ssa.TypeMem, args[0], args[1], s.mem())
  2694  			return nil
  2695  		},
  2696  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  2697  
  2698  	alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...)
  2699  	alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...)
  2700  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...)
  2701  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...)
  2702  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...)
  2703  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...)
  2704  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...)
  2705  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...)
  2706  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...)
  2707  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...)
  2708  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...)
  2709  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...)
  2710  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...)
  2711  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...)
  2712  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...)
  2713  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...)
  2714  
  2715  	/******** math ********/
  2716  	addF("math", "Sqrt",
  2717  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2718  			return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0])
  2719  		},
  2720  		sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X)
  2721  
  2722  	/******** math/bits ********/
  2723  	addF("math/bits", "TrailingZeros64",
  2724  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2725  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  2726  		},
  2727  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2728  	addF("math/bits", "TrailingZeros32",
  2729  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2730  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  2731  		},
  2732  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2733  	addF("math/bits", "TrailingZeros16",
  2734  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2735  			x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  2736  			c := s.constInt32(types.Types[TUINT32], 1<<16)
  2737  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  2738  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  2739  		},
  2740  		sys.ARM, sys.MIPS)
  2741  	addF("math/bits", "TrailingZeros16",
  2742  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2743  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  2744  			c := s.constInt64(types.Types[TUINT64], 1<<16)
  2745  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  2746  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  2747  		},
  2748  		sys.AMD64, sys.ARM64, sys.S390X)
  2749  	addF("math/bits", "TrailingZeros8",
  2750  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2751  			x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  2752  			c := s.constInt32(types.Types[TUINT32], 1<<8)
  2753  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  2754  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  2755  		},
  2756  		sys.ARM, sys.MIPS)
  2757  	addF("math/bits", "TrailingZeros8",
  2758  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2759  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  2760  			c := s.constInt64(types.Types[TUINT64], 1<<8)
  2761  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  2762  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  2763  		},
  2764  		sys.AMD64, sys.ARM64, sys.S390X)
  2765  	alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...)
  2766  	alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...)
  2767  	// ReverseBytes inlines correctly, no need to intrinsify it.
  2768  	// ReverseBytes16 lowers to a rotate, no need for anything special here.
  2769  	addF("math/bits", "Len64",
  2770  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2771  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  2772  		},
  2773  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2774  	addF("math/bits", "Len32",
  2775  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2776  			if s.config.PtrSize == 4 {
  2777  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  2778  			}
  2779  			x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0])
  2780  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2781  		},
  2782  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2783  	addF("math/bits", "Len16",
  2784  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2785  			if s.config.PtrSize == 4 {
  2786  				x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  2787  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  2788  			}
  2789  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  2790  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2791  		},
  2792  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2793  	// Note: disabled on AMD64 because the Go code is faster!
  2794  	addF("math/bits", "Len8",
  2795  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2796  			if s.config.PtrSize == 4 {
  2797  				x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  2798  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  2799  			}
  2800  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  2801  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2802  		},
  2803  		sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2804  
  2805  	addF("math/bits", "Len",
  2806  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2807  			if s.config.PtrSize == 4 {
  2808  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  2809  			}
  2810  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  2811  		},
  2812  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2813  	// LeadingZeros is handled because it trivially calls Len.
  2814  	addF("math/bits", "Reverse64",
  2815  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2816  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  2817  		},
  2818  		sys.ARM64)
  2819  	addF("math/bits", "Reverse32",
  2820  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2821  			return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  2822  		},
  2823  		sys.ARM64)
  2824  	addF("math/bits", "Reverse16",
  2825  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2826  			return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0])
  2827  		},
  2828  		sys.ARM64)
  2829  	addF("math/bits", "Reverse8",
  2830  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2831  			return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0])
  2832  		},
  2833  		sys.ARM64)
  2834  	addF("math/bits", "Reverse",
  2835  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2836  			if s.config.PtrSize == 4 {
  2837  				return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  2838  			}
  2839  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  2840  		},
  2841  		sys.ARM64)
  2842  	makeOnesCount := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2843  		return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2844  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: syslook("support_popcnt").Sym.Linksym()})
  2845  			addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), aux, s.sb)
  2846  			v := s.newValue2(ssa.OpLoad, types.Types[TBOOL], addr, s.mem())
  2847  			b := s.endBlock()
  2848  			b.Kind = ssa.BlockIf
  2849  			b.SetControl(v)
  2850  			bTrue := s.f.NewBlock(ssa.BlockPlain)
  2851  			bFalse := s.f.NewBlock(ssa.BlockPlain)
  2852  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  2853  			b.AddEdgeTo(bTrue)
  2854  			b.AddEdgeTo(bFalse)
  2855  			b.Likely = ssa.BranchLikely // most machines have popcnt nowadays
  2856  
  2857  			// We have the intrinsic - use it directly.
  2858  			s.startBlock(bTrue)
  2859  			op := op64
  2860  			if s.config.PtrSize == 4 {
  2861  				op = op32
  2862  			}
  2863  			s.vars[n] = s.newValue1(op, types.Types[TINT], args[0])
  2864  			s.endBlock().AddEdgeTo(bEnd)
  2865  
  2866  			// Call the pure Go version.
  2867  			s.startBlock(bFalse)
  2868  			a := s.call(n, callNormal)
  2869  			s.vars[n] = s.newValue2(ssa.OpLoad, types.Types[TINT], a, s.mem())
  2870  			s.endBlock().AddEdgeTo(bEnd)
  2871  
  2872  			// Merge results.
  2873  			s.startBlock(bEnd)
  2874  			return s.variable(n, types.Types[TINT])
  2875  		}
  2876  	}
  2877  	addF("math/bits", "OnesCount64",
  2878  		makeOnesCount(ssa.OpPopCount64, ssa.OpPopCount64),
  2879  		sys.AMD64)
  2880  	addF("math/bits", "OnesCount32",
  2881  		makeOnesCount(ssa.OpPopCount32, ssa.OpPopCount32),
  2882  		sys.AMD64)
  2883  	addF("math/bits", "OnesCount16",
  2884  		makeOnesCount(ssa.OpPopCount16, ssa.OpPopCount16),
  2885  		sys.AMD64)
  2886  	// Note: no OnesCount8, the Go implementation is faster - just a table load.
  2887  	addF("math/bits", "OnesCount",
  2888  		makeOnesCount(ssa.OpPopCount64, ssa.OpPopCount32),
  2889  		sys.AMD64)
  2890  
  2891  	/******** sync/atomic ********/
  2892  
  2893  	// Note: these are disabled by flag_race in findIntrinsic below.
  2894  	alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...)
  2895  	alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...)
  2896  	alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...)
  2897  	alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...)
  2898  	alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...)
  2899  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...)
  2900  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...)
  2901  
  2902  	alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...)
  2903  	alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...)
  2904  	// Note: not StorePointer, that needs a write barrier.  Same below for {CompareAnd}Swap.
  2905  	alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...)
  2906  	alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...)
  2907  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...)
  2908  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...)
  2909  
  2910  	alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...)
  2911  	alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...)
  2912  	alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...)
  2913  	alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...)
  2914  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...)
  2915  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...)
  2916  
  2917  	alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...)
  2918  	alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...)
  2919  	alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...)
  2920  	alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...)
  2921  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...)
  2922  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...)
  2923  
  2924  	alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...)
  2925  	alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...)
  2926  	alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...)
  2927  	alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...)
  2928  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...)
  2929  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...)
  2930  
  2931  	/******** math/big ********/
  2932  	add("math/big", "mulWW",
  2933  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2934  			return s.newValue2(ssa.OpMul64uhilo, ssa.MakeTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1])
  2935  		},
  2936  		sys.ArchAMD64)
  2937  	add("math/big", "divWW",
  2938  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2939  			return s.newValue3(ssa.OpDiv128u, ssa.MakeTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2])
  2940  		},
  2941  		sys.ArchAMD64)
  2942  }
  2943  
  2944  // findIntrinsic returns a function which builds the SSA equivalent of the
  2945  // function identified by the symbol sym.  If sym is not an intrinsic call, returns nil.
  2946  func findIntrinsic(sym *types.Sym) intrinsicBuilder {
  2947  	if ssa.IntrinsicsDisable {
  2948  		return nil
  2949  	}
  2950  	if sym == nil || sym.Pkg == nil {
  2951  		return nil
  2952  	}
  2953  	pkg := sym.Pkg.Path
  2954  	if sym.Pkg == localpkg {
  2955  		pkg = myimportpath
  2956  	}
  2957  	if flag_race && pkg == "sync/atomic" {
  2958  		// The race detector needs to be able to intercept these calls.
  2959  		// We can't intrinsify them.
  2960  		return nil
  2961  	}
  2962  	fn := sym.Name
  2963  	return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}]
  2964  }
  2965  
  2966  func isIntrinsicCall(n *Node) bool {
  2967  	if n == nil || n.Left == nil {
  2968  		return false
  2969  	}
  2970  	return findIntrinsic(n.Left.Sym) != nil
  2971  }
  2972  
  2973  // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
  2974  func (s *state) intrinsicCall(n *Node) *ssa.Value {
  2975  	v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n))
  2976  	if ssa.IntrinsicsDebug > 0 {
  2977  		x := v
  2978  		if x == nil {
  2979  			x = s.mem()
  2980  		}
  2981  		if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
  2982  			x = x.Args[0]
  2983  		}
  2984  		Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString())
  2985  	}
  2986  	return v
  2987  }
  2988  
  2989  type callArg struct {
  2990  	offset int64
  2991  	v      *ssa.Value
  2992  }
  2993  type byOffset []callArg
  2994  
  2995  func (x byOffset) Len() int      { return len(x) }
  2996  func (x byOffset) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  2997  func (x byOffset) Less(i, j int) bool {
  2998  	return x[i].offset < x[j].offset
  2999  }
  3000  
  3001  // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
  3002  func (s *state) intrinsicArgs(n *Node) []*ssa.Value {
  3003  	// This code is complicated because of how walk transforms calls. For a call node,
  3004  	// each entry in n.List is either an assignment to OINDREGSP which actually
  3005  	// stores an arg, or an assignment to a temporary which computes an arg
  3006  	// which is later assigned.
  3007  	// The args can also be out of order.
  3008  	// TODO: when walk goes away someday, this code can go away also.
  3009  	var args []callArg
  3010  	temps := map[*Node]*ssa.Value{}
  3011  	for _, a := range n.List.Slice() {
  3012  		if a.Op != OAS {
  3013  			s.Fatalf("non-assignment as a function argument %s", opnames[a.Op])
  3014  		}
  3015  		l, r := a.Left, a.Right
  3016  		switch l.Op {
  3017  		case ONAME:
  3018  			// Evaluate and store to "temporary".
  3019  			// Walk ensures these temporaries are dead outside of n.
  3020  			temps[l] = s.expr(r)
  3021  		case OINDREGSP:
  3022  			// Store a value to an argument slot.
  3023  			var v *ssa.Value
  3024  			if x, ok := temps[r]; ok {
  3025  				// This is a previously computed temporary.
  3026  				v = x
  3027  			} else {
  3028  				// This is an explicit value; evaluate it.
  3029  				v = s.expr(r)
  3030  			}
  3031  			args = append(args, callArg{l.Xoffset, v})
  3032  		default:
  3033  			s.Fatalf("function argument assignment target not allowed: %s", opnames[l.Op])
  3034  		}
  3035  	}
  3036  	sort.Sort(byOffset(args))
  3037  	res := make([]*ssa.Value, len(args))
  3038  	for i, a := range args {
  3039  		res[i] = a.v
  3040  	}
  3041  	return res
  3042  }
  3043  
  3044  // Calls the function n using the specified call type.
  3045  // Returns the address of the return value (or nil if none).
  3046  func (s *state) call(n *Node, k callKind) *ssa.Value {
  3047  	var sym *types.Sym     // target symbol (if static)
  3048  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  3049  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  3050  	var rcvr *ssa.Value    // receiver to set
  3051  	fn := n.Left
  3052  	switch n.Op {
  3053  	case OCALLFUNC:
  3054  		if k == callNormal && fn.Op == ONAME && fn.Class() == PFUNC {
  3055  			sym = fn.Sym
  3056  			break
  3057  		}
  3058  		closure = s.expr(fn)
  3059  	case OCALLMETH:
  3060  		if fn.Op != ODOTMETH {
  3061  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  3062  		}
  3063  		if k == callNormal {
  3064  			sym = fn.Sym
  3065  			break
  3066  		}
  3067  		// Make a name n2 for the function.
  3068  		// fn.Sym might be sync.(*Mutex).Unlock.
  3069  		// Make a PFUNC node out of that, then evaluate it.
  3070  		// We get back an SSA value representing &sync.(*Mutex).Unlock·f.
  3071  		// We can then pass that to defer or go.
  3072  		n2 := newnamel(fn.Pos, fn.Sym)
  3073  		n2.Name.Curfn = s.curfn
  3074  		n2.SetClass(PFUNC)
  3075  		n2.Pos = fn.Pos
  3076  		n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it.
  3077  		closure = s.expr(n2)
  3078  		// Note: receiver is already assigned in n.List, so we don't
  3079  		// want to set it here.
  3080  	case OCALLINTER:
  3081  		if fn.Op != ODOTINTER {
  3082  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  3083  		}
  3084  		i := s.expr(fn.Left)
  3085  		itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i)
  3086  		if k != callNormal {
  3087  			s.nilCheck(itab)
  3088  		}
  3089  		itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  3090  		itab = s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab)
  3091  		if k == callNormal {
  3092  			codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], itab, s.mem())
  3093  		} else {
  3094  			closure = itab
  3095  		}
  3096  		rcvr = s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i)
  3097  	}
  3098  	dowidth(fn.Type)
  3099  	stksize := fn.Type.ArgWidth() // includes receiver
  3100  
  3101  	// Run all argument assignments. The arg slots have already
  3102  	// been offset by the appropriate amount (+2*widthptr for go/defer,
  3103  	// +widthptr for interface calls).
  3104  	// For OCALLMETH, the receiver is set in these statements.
  3105  	s.stmtList(n.List)
  3106  
  3107  	// Set receiver (for interface calls)
  3108  	if rcvr != nil {
  3109  		argStart := Ctxt.FixedFrameSize()
  3110  		if k != callNormal {
  3111  			argStart += int64(2 * Widthptr)
  3112  		}
  3113  		addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart)
  3114  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TUINTPTR], addr, rcvr, s.mem())
  3115  	}
  3116  
  3117  	// Defer/go args
  3118  	if k != callNormal {
  3119  		// Write argsize and closure (args to Newproc/Deferproc).
  3120  		argStart := Ctxt.FixedFrameSize()
  3121  		argsize := s.constInt32(types.Types[TUINT32], int32(stksize))
  3122  		addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart)
  3123  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TUINT32], addr, argsize, s.mem())
  3124  		addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr))
  3125  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TUINTPTR], addr, closure, s.mem())
  3126  		stksize += 2 * int64(Widthptr)
  3127  	}
  3128  
  3129  	// call target
  3130  	var call *ssa.Value
  3131  	switch {
  3132  	case k == callDefer:
  3133  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, Deferproc, s.mem())
  3134  	case k == callGo:
  3135  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, Newproc, s.mem())
  3136  	case closure != nil:
  3137  		codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], closure, s.mem())
  3138  		call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem())
  3139  	case codeptr != nil:
  3140  		call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem())
  3141  	case sym != nil:
  3142  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym.Linksym(), s.mem())
  3143  	default:
  3144  		Fatalf("bad call type %v %v", n.Op, n)
  3145  	}
  3146  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  3147  	s.vars[&memVar] = call
  3148  
  3149  	// Finish block for defers
  3150  	if k == callDefer {
  3151  		b := s.endBlock()
  3152  		b.Kind = ssa.BlockDefer
  3153  		b.SetControl(call)
  3154  		bNext := s.f.NewBlock(ssa.BlockPlain)
  3155  		b.AddEdgeTo(bNext)
  3156  		// Add recover edge to exit code.
  3157  		r := s.f.NewBlock(ssa.BlockPlain)
  3158  		s.startBlock(r)
  3159  		s.exit()
  3160  		b.AddEdgeTo(r)
  3161  		b.Likely = ssa.BranchLikely
  3162  		s.startBlock(bNext)
  3163  	}
  3164  
  3165  	res := n.Left.Type.Results()
  3166  	if res.NumFields() == 0 || k != callNormal {
  3167  		// call has no return value. Continue with the next statement.
  3168  		return nil
  3169  	}
  3170  	fp := res.Field(0)
  3171  	return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize())
  3172  }
  3173  
  3174  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  3175  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  3176  func etypesign(e types.EType) int8 {
  3177  	switch e {
  3178  	case TINT8, TINT16, TINT32, TINT64, TINT:
  3179  		return -1
  3180  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  3181  		return +1
  3182  	}
  3183  	return 0
  3184  }
  3185  
  3186  // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node.
  3187  // This improves the effectiveness of cse by using the same Aux values for the
  3188  // same symbols.
  3189  func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} {
  3190  	switch sym.(type) {
  3191  	default:
  3192  		s.Fatalf("sym %v is of unknown type %T", sym, sym)
  3193  	case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol:
  3194  		// these are the only valid types
  3195  	}
  3196  
  3197  	if lsym, ok := s.varsyms[n]; ok {
  3198  		return lsym
  3199  	}
  3200  	s.varsyms[n] = sym
  3201  	return sym
  3202  }
  3203  
  3204  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  3205  // The value that the returned Value represents is guaranteed to be non-nil.
  3206  // If bounded is true then this address does not require a nil check for its operand
  3207  // even if that would otherwise be implied.
  3208  func (s *state) addr(n *Node, bounded bool) *ssa.Value {
  3209  	t := types.NewPtr(n.Type)
  3210  	switch n.Op {
  3211  	case ONAME:
  3212  		switch n.Class() {
  3213  		case PEXTERN:
  3214  			// global variable
  3215  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: n.Sym.Linksym()})
  3216  			v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb)
  3217  			// TODO: Make OpAddr use AuxInt as well as Aux.
  3218  			if n.Xoffset != 0 {
  3219  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  3220  			}
  3221  			return v
  3222  		case PPARAM:
  3223  			// parameter slot
  3224  			v := s.decladdrs[n]
  3225  			if v != nil {
  3226  				return v
  3227  			}
  3228  			if n == nodfp {
  3229  				// Special arg that points to the frame pointer (Used by ORECOVER).
  3230  				aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n})
  3231  				return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp)
  3232  			}
  3233  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  3234  			return nil
  3235  		case PAUTO:
  3236  			aux := s.lookupSymbol(n, &ssa.AutoSymbol{Node: n})
  3237  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp)
  3238  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  3239  			// ensure that we reuse symbols for out parameters so
  3240  			// that cse works on their addresses
  3241  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n})
  3242  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp)
  3243  		default:
  3244  			s.Fatalf("variable address class %v not implemented", classnames[n.Class()])
  3245  			return nil
  3246  		}
  3247  	case OINDREGSP:
  3248  		// indirect off REGSP
  3249  		// used for storing/loading arguments/returns to/from callees
  3250  		return s.constOffPtrSP(t, n.Xoffset)
  3251  	case OINDEX:
  3252  		if n.Left.Type.IsSlice() {
  3253  			a := s.expr(n.Left)
  3254  			i := s.expr(n.Right)
  3255  			i = s.extendIndex(i, panicindex)
  3256  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a)
  3257  			if !n.Bounded() {
  3258  				s.boundsCheck(i, len)
  3259  			}
  3260  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  3261  			return s.newValue2(ssa.OpPtrIndex, t, p, i)
  3262  		} else { // array
  3263  			a := s.addr(n.Left, bounded)
  3264  			i := s.expr(n.Right)
  3265  			i = s.extendIndex(i, panicindex)
  3266  			len := s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  3267  			if !n.Bounded() {
  3268  				s.boundsCheck(i, len)
  3269  			}
  3270  			return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i)
  3271  		}
  3272  	case OIND:
  3273  		return s.exprPtr(n.Left, bounded, n.Pos)
  3274  	case ODOT:
  3275  		p := s.addr(n.Left, bounded)
  3276  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3277  	case ODOTPTR:
  3278  		p := s.exprPtr(n.Left, bounded, n.Pos)
  3279  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3280  	case OCLOSUREVAR:
  3281  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  3282  			s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr))
  3283  	case OCONVNOP:
  3284  		addr := s.addr(n.Left, bounded)
  3285  		return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
  3286  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  3287  		return s.call(n, callNormal)
  3288  	case ODOTTYPE:
  3289  		v, _ := s.dottype(n, false)
  3290  		if v.Op != ssa.OpLoad {
  3291  			s.Fatalf("dottype of non-load")
  3292  		}
  3293  		if v.Args[1] != s.mem() {
  3294  			s.Fatalf("memory no longer live from dottype load")
  3295  		}
  3296  		return v.Args[0]
  3297  	default:
  3298  		s.Fatalf("unhandled addr %v", n.Op)
  3299  		return nil
  3300  	}
  3301  }
  3302  
  3303  // canSSA reports whether n is SSA-able.
  3304  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  3305  func (s *state) canSSA(n *Node) bool {
  3306  	if Debug['N'] != 0 {
  3307  		return false
  3308  	}
  3309  	for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) {
  3310  		n = n.Left
  3311  	}
  3312  	if n.Op != ONAME {
  3313  		return false
  3314  	}
  3315  	if n.Addrtaken() {
  3316  		return false
  3317  	}
  3318  	if n.isParamHeapCopy() {
  3319  		return false
  3320  	}
  3321  	if n.Class() == PAUTOHEAP {
  3322  		Fatalf("canSSA of PAUTOHEAP %v", n)
  3323  	}
  3324  	switch n.Class() {
  3325  	case PEXTERN:
  3326  		return false
  3327  	case PPARAMOUT:
  3328  		if s.hasdefer {
  3329  			// TODO: handle this case?  Named return values must be
  3330  			// in memory so that the deferred function can see them.
  3331  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  3332  			// Or maybe not, see issue 18860.  Even unnamed return values
  3333  			// must be written back so if a defer recovers, the caller can see them.
  3334  			return false
  3335  		}
  3336  		if s.cgoUnsafeArgs {
  3337  			// Cgo effectively takes the address of all result args,
  3338  			// but the compiler can't see that.
  3339  			return false
  3340  		}
  3341  	}
  3342  	if n.Class() == PPARAM && n.Sym != nil && n.Sym.Name == ".this" {
  3343  		// wrappers generated by genwrapper need to update
  3344  		// the .this pointer in place.
  3345  		// TODO: treat as a PPARMOUT?
  3346  		return false
  3347  	}
  3348  	return canSSAType(n.Type)
  3349  	// TODO: try to make more variables SSAable?
  3350  }
  3351  
  3352  // canSSA reports whether variables of type t are SSA-able.
  3353  func canSSAType(t *types.Type) bool {
  3354  	dowidth(t)
  3355  	if t.Width > int64(4*Widthptr) {
  3356  		// 4*Widthptr is an arbitrary constant. We want it
  3357  		// to be at least 3*Widthptr so slices can be registerized.
  3358  		// Too big and we'll introduce too much register pressure.
  3359  		return false
  3360  	}
  3361  	switch t.Etype {
  3362  	case TARRAY:
  3363  		// We can't do larger arrays because dynamic indexing is
  3364  		// not supported on SSA variables.
  3365  		// TODO: allow if all indexes are constant.
  3366  		if t.NumElem() <= 1 {
  3367  			return canSSAType(t.Elem())
  3368  		}
  3369  		return false
  3370  	case TSTRUCT:
  3371  		if t.NumFields() > ssa.MaxStruct {
  3372  			return false
  3373  		}
  3374  		for _, t1 := range t.Fields().Slice() {
  3375  			if !canSSAType(t1.Type) {
  3376  				return false
  3377  			}
  3378  		}
  3379  		return true
  3380  	default:
  3381  		return true
  3382  	}
  3383  }
  3384  
  3385  // exprPtr evaluates n to a pointer and nil-checks it.
  3386  func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value {
  3387  	p := s.expr(n)
  3388  	if bounded || n.NonNil() {
  3389  		if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 {
  3390  			s.f.Warnl(lineno, "removed nil check")
  3391  		}
  3392  		return p
  3393  	}
  3394  	s.nilCheck(p)
  3395  	return p
  3396  }
  3397  
  3398  // nilCheck generates nil pointer checking code.
  3399  // Used only for automatically inserted nil checks,
  3400  // not for user code like 'x != nil'.
  3401  func (s *state) nilCheck(ptr *ssa.Value) {
  3402  	if disable_checknil != 0 {
  3403  		return
  3404  	}
  3405  	s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem())
  3406  }
  3407  
  3408  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  3409  // Starts a new block on return.
  3410  // idx is already converted to full int width.
  3411  func (s *state) boundsCheck(idx, len *ssa.Value) {
  3412  	if Debug['B'] != 0 {
  3413  		return
  3414  	}
  3415  
  3416  	// bounds check
  3417  	cmp := s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len)
  3418  	s.check(cmp, panicindex)
  3419  }
  3420  
  3421  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  3422  // Starts a new block on return.
  3423  // idx and len are already converted to full int width.
  3424  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  3425  	if Debug['B'] != 0 {
  3426  		return
  3427  	}
  3428  
  3429  	// bounds check
  3430  	cmp := s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len)
  3431  	s.check(cmp, panicslice)
  3432  }
  3433  
  3434  // If cmp (a bool) is false, panic using the given function.
  3435  func (s *state) check(cmp *ssa.Value, fn *obj.LSym) {
  3436  	b := s.endBlock()
  3437  	b.Kind = ssa.BlockIf
  3438  	b.SetControl(cmp)
  3439  	b.Likely = ssa.BranchLikely
  3440  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3441  	line := s.peekPos()
  3442  	bPanic := s.panics[funcLine{fn, line}]
  3443  	if bPanic == nil {
  3444  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  3445  		s.panics[funcLine{fn, line}] = bPanic
  3446  		s.startBlock(bPanic)
  3447  		// The panic call takes/returns memory to ensure that the right
  3448  		// memory state is observed if the panic happens.
  3449  		s.rtcall(fn, false, nil)
  3450  	}
  3451  	b.AddEdgeTo(bNext)
  3452  	b.AddEdgeTo(bPanic)
  3453  	s.startBlock(bNext)
  3454  }
  3455  
  3456  func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value {
  3457  	needcheck := true
  3458  	switch b.Op {
  3459  	case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
  3460  		if b.AuxInt != 0 {
  3461  			needcheck = false
  3462  		}
  3463  	}
  3464  	if needcheck {
  3465  		// do a size-appropriate check for zero
  3466  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type))
  3467  		s.check(cmp, panicdivide)
  3468  	}
  3469  	return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  3470  }
  3471  
  3472  // rtcall issues a call to the given runtime function fn with the listed args.
  3473  // Returns a slice of results of the given result types.
  3474  // The call is added to the end of the current block.
  3475  // If returns is false, the block is marked as an exit block.
  3476  func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value {
  3477  	// Write args to the stack
  3478  	off := Ctxt.FixedFrameSize()
  3479  	for _, arg := range args {
  3480  		t := arg.Type
  3481  		off = Rnd(off, t.Alignment())
  3482  		ptr := s.constOffPtrSP(t.PtrTo(), off)
  3483  		size := t.Size()
  3484  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, t, ptr, arg, s.mem())
  3485  		off += size
  3486  	}
  3487  	off = Rnd(off, int64(Widthreg))
  3488  
  3489  	// Issue call
  3490  	call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn, s.mem())
  3491  	s.vars[&memVar] = call
  3492  
  3493  	if !returns {
  3494  		// Finish block
  3495  		b := s.endBlock()
  3496  		b.Kind = ssa.BlockExit
  3497  		b.SetControl(call)
  3498  		call.AuxInt = off - Ctxt.FixedFrameSize()
  3499  		if len(results) > 0 {
  3500  			Fatalf("panic call can't have results")
  3501  		}
  3502  		return nil
  3503  	}
  3504  
  3505  	// Load results
  3506  	res := make([]*ssa.Value, len(results))
  3507  	for i, t := range results {
  3508  		off = Rnd(off, t.Alignment())
  3509  		ptr := s.constOffPtrSP(types.NewPtr(t), off)
  3510  		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
  3511  		off += t.Size()
  3512  	}
  3513  	off = Rnd(off, int64(Widthptr))
  3514  
  3515  	// Remember how much callee stack space we needed.
  3516  	call.AuxInt = off
  3517  
  3518  	return res
  3519  }
  3520  
  3521  // do *left = right for type t.
  3522  func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask) {
  3523  	if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) {
  3524  		// Known to not have write barrier. Store the whole type.
  3525  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, t, left, right, s.mem())
  3526  		return
  3527  	}
  3528  
  3529  	// store scalar fields first, so write barrier stores for
  3530  	// pointer fields can be grouped together, and scalar values
  3531  	// don't need to be live across the write barrier call.
  3532  	// TODO: if the writebarrier pass knows how to reorder stores,
  3533  	// we can do a single store here as long as skip==0.
  3534  	s.storeTypeScalars(t, left, right, skip)
  3535  	if skip&skipPtr == 0 && types.Haspointers(t) {
  3536  		s.storeTypePtrs(t, left, right)
  3537  	}
  3538  }
  3539  
  3540  // do *left = right for all scalar (non-pointer) parts of t.
  3541  func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) {
  3542  	switch {
  3543  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  3544  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, t, left, right, s.mem())
  3545  	case t.IsPtrShaped():
  3546  		// no scalar fields.
  3547  	case t.IsString():
  3548  		if skip&skipLen != 0 {
  3549  			return
  3550  		}
  3551  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right)
  3552  		lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
  3553  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TINT], lenAddr, len, s.mem())
  3554  	case t.IsSlice():
  3555  		if skip&skipLen == 0 {
  3556  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right)
  3557  			lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
  3558  			s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TINT], lenAddr, len, s.mem())
  3559  		}
  3560  		if skip&skipCap == 0 {
  3561  			cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right)
  3562  			capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left)
  3563  			s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TINT], capAddr, cap, s.mem())
  3564  		}
  3565  	case t.IsInterface():
  3566  		// itab field doesn't need a write barrier (even though it is a pointer).
  3567  		itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right)
  3568  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TUINTPTR], left, itab, s.mem())
  3569  	case t.IsStruct():
  3570  		n := t.NumFields()
  3571  		for i := 0; i < n; i++ {
  3572  			ft := t.FieldType(i)
  3573  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3574  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3575  			s.storeTypeScalars(ft.(*types.Type), addr, val, 0)
  3576  		}
  3577  	case t.IsArray() && t.NumElem() == 0:
  3578  		// nothing
  3579  	case t.IsArray() && t.NumElem() == 1:
  3580  		s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
  3581  	default:
  3582  		s.Fatalf("bad write barrier type %v", t)
  3583  	}
  3584  }
  3585  
  3586  // do *left = right for all pointer parts of t.
  3587  func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) {
  3588  	switch {
  3589  	case t.IsPtrShaped():
  3590  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, t, left, right, s.mem())
  3591  	case t.IsString():
  3592  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right)
  3593  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem())
  3594  	case t.IsSlice():
  3595  		ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, right)
  3596  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem())
  3597  	case t.IsInterface():
  3598  		// itab field is treated as a scalar.
  3599  		idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right)
  3600  		idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left)
  3601  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, s.f.Config.Types.BytePtr, idataAddr, idata, s.mem())
  3602  	case t.IsStruct():
  3603  		n := t.NumFields()
  3604  		for i := 0; i < n; i++ {
  3605  			ft := t.FieldType(i)
  3606  			if !types.Haspointers(ft.(*types.Type)) {
  3607  				continue
  3608  			}
  3609  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3610  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3611  			s.storeTypePtrs(ft.(*types.Type), addr, val)
  3612  		}
  3613  	case t.IsArray() && t.NumElem() == 0:
  3614  		// nothing
  3615  	case t.IsArray() && t.NumElem() == 1:
  3616  		s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
  3617  	default:
  3618  		s.Fatalf("bad write barrier type %v", t)
  3619  	}
  3620  }
  3621  
  3622  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  3623  // i,j,k may be nil, in which case they are set to their default value.
  3624  // t is a slice, ptr to array, or string type.
  3625  func (s *state) slice(t *types.Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
  3626  	var elemtype *types.Type
  3627  	var ptrtype *types.Type
  3628  	var ptr *ssa.Value
  3629  	var len *ssa.Value
  3630  	var cap *ssa.Value
  3631  	zero := s.constInt(types.Types[TINT], 0)
  3632  	switch {
  3633  	case t.IsSlice():
  3634  		elemtype = t.Elem()
  3635  		ptrtype = types.NewPtr(elemtype)
  3636  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  3637  		len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v)
  3638  		cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v)
  3639  	case t.IsString():
  3640  		elemtype = types.Types[TUINT8]
  3641  		ptrtype = types.NewPtr(elemtype)
  3642  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  3643  		len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v)
  3644  		cap = len
  3645  	case t.IsPtr():
  3646  		if !t.Elem().IsArray() {
  3647  			s.Fatalf("bad ptr to array in slice %v\n", t)
  3648  		}
  3649  		elemtype = t.Elem().Elem()
  3650  		ptrtype = types.NewPtr(elemtype)
  3651  		s.nilCheck(v)
  3652  		ptr = v
  3653  		len = s.constInt(types.Types[TINT], t.Elem().NumElem())
  3654  		cap = len
  3655  	default:
  3656  		s.Fatalf("bad type in slice %v\n", t)
  3657  	}
  3658  
  3659  	// Set default values
  3660  	if i == nil {
  3661  		i = zero
  3662  	}
  3663  	if j == nil {
  3664  		j = len
  3665  	}
  3666  	if k == nil {
  3667  		k = cap
  3668  	}
  3669  
  3670  	// Panic if slice indices are not in bounds.
  3671  	s.sliceBoundsCheck(i, j)
  3672  	if j != k {
  3673  		s.sliceBoundsCheck(j, k)
  3674  	}
  3675  	if k != cap {
  3676  		s.sliceBoundsCheck(k, cap)
  3677  	}
  3678  
  3679  	// Generate the following code assuming that indexes are in bounds.
  3680  	// The masking is to make sure that we don't generate a slice
  3681  	// that points to the next object in memory.
  3682  	// rlen = j - i
  3683  	// rcap = k - i
  3684  	// delta = i * elemsize
  3685  	// rptr = p + delta&mask(rcap)
  3686  	// result = (SliceMake rptr rlen rcap)
  3687  	// where mask(x) is 0 if x==0 and -1 if x>0.
  3688  	subOp := s.ssaOp(OSUB, types.Types[TINT])
  3689  	mulOp := s.ssaOp(OMUL, types.Types[TINT])
  3690  	andOp := s.ssaOp(OAND, types.Types[TINT])
  3691  	rlen := s.newValue2(subOp, types.Types[TINT], j, i)
  3692  	var rcap *ssa.Value
  3693  	switch {
  3694  	case t.IsString():
  3695  		// Capacity of the result is unimportant. However, we use
  3696  		// rcap to test if we've generated a zero-length slice.
  3697  		// Use length of strings for that.
  3698  		rcap = rlen
  3699  	case j == k:
  3700  		rcap = rlen
  3701  	default:
  3702  		rcap = s.newValue2(subOp, types.Types[TINT], k, i)
  3703  	}
  3704  
  3705  	var rptr *ssa.Value
  3706  	if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
  3707  		// No pointer arithmetic necessary.
  3708  		rptr = ptr
  3709  	} else {
  3710  		// delta = # of bytes to offset pointer by.
  3711  		delta := s.newValue2(mulOp, types.Types[TINT], i, s.constInt(types.Types[TINT], elemtype.Width))
  3712  		// If we're slicing to the point where the capacity is zero,
  3713  		// zero out the delta.
  3714  		mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap)
  3715  		delta = s.newValue2(andOp, types.Types[TINT], delta, mask)
  3716  		// Compute rptr = ptr + delta
  3717  		rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta)
  3718  	}
  3719  
  3720  	return rptr, rlen, rcap
  3721  }
  3722  
  3723  type u642fcvtTab struct {
  3724  	geq, cvt2F, and, rsh, or, add ssa.Op
  3725  	one                           func(*state, ssa.Type, int64) *ssa.Value
  3726  }
  3727  
  3728  var u64_f64 u642fcvtTab = u642fcvtTab{
  3729  	geq:   ssa.OpGeq64,
  3730  	cvt2F: ssa.OpCvt64to64F,
  3731  	and:   ssa.OpAnd64,
  3732  	rsh:   ssa.OpRsh64Ux64,
  3733  	or:    ssa.OpOr64,
  3734  	add:   ssa.OpAdd64F,
  3735  	one:   (*state).constInt64,
  3736  }
  3737  
  3738  var u64_f32 u642fcvtTab = u642fcvtTab{
  3739  	geq:   ssa.OpGeq64,
  3740  	cvt2F: ssa.OpCvt64to32F,
  3741  	and:   ssa.OpAnd64,
  3742  	rsh:   ssa.OpRsh64Ux64,
  3743  	or:    ssa.OpOr64,
  3744  	add:   ssa.OpAdd32F,
  3745  	one:   (*state).constInt64,
  3746  }
  3747  
  3748  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3749  	return s.uint64Tofloat(&u64_f64, n, x, ft, tt)
  3750  }
  3751  
  3752  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3753  	return s.uint64Tofloat(&u64_f32, n, x, ft, tt)
  3754  }
  3755  
  3756  func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3757  	// if x >= 0 {
  3758  	//    result = (floatY) x
  3759  	// } else {
  3760  	// 	  y = uintX(x) ; y = x & 1
  3761  	// 	  z = uintX(x) ; z = z >> 1
  3762  	// 	  z = z >> 1
  3763  	// 	  z = z | y
  3764  	// 	  result = floatY(z)
  3765  	// 	  result = result + result
  3766  	// }
  3767  	//
  3768  	// Code borrowed from old code generator.
  3769  	// What's going on: large 64-bit "unsigned" looks like
  3770  	// negative number to hardware's integer-to-float
  3771  	// conversion. However, because the mantissa is only
  3772  	// 63 bits, we don't need the LSB, so instead we do an
  3773  	// unsigned right shift (divide by two), convert, and
  3774  	// double. However, before we do that, we need to be
  3775  	// sure that we do not lose a "1" if that made the
  3776  	// difference in the resulting rounding. Therefore, we
  3777  	// preserve it, and OR (not ADD) it back in. The case
  3778  	// that matters is when the eleven discarded bits are
  3779  	// equal to 10000000001; that rounds up, and the 1 cannot
  3780  	// be lost else it would round down if the LSB of the
  3781  	// candidate mantissa is 0.
  3782  	cmp := s.newValue2(cvttab.geq, types.Types[TBOOL], x, s.zeroVal(ft))
  3783  	b := s.endBlock()
  3784  	b.Kind = ssa.BlockIf
  3785  	b.SetControl(cmp)
  3786  	b.Likely = ssa.BranchLikely
  3787  
  3788  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3789  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3790  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3791  
  3792  	b.AddEdgeTo(bThen)
  3793  	s.startBlock(bThen)
  3794  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  3795  	s.vars[n] = a0
  3796  	s.endBlock()
  3797  	bThen.AddEdgeTo(bAfter)
  3798  
  3799  	b.AddEdgeTo(bElse)
  3800  	s.startBlock(bElse)
  3801  	one := cvttab.one(s, ft, 1)
  3802  	y := s.newValue2(cvttab.and, ft, x, one)
  3803  	z := s.newValue2(cvttab.rsh, ft, x, one)
  3804  	z = s.newValue2(cvttab.or, ft, z, y)
  3805  	a := s.newValue1(cvttab.cvt2F, tt, z)
  3806  	a1 := s.newValue2(cvttab.add, tt, a, a)
  3807  	s.vars[n] = a1
  3808  	s.endBlock()
  3809  	bElse.AddEdgeTo(bAfter)
  3810  
  3811  	s.startBlock(bAfter)
  3812  	return s.variable(n, n.Type)
  3813  }
  3814  
  3815  type u322fcvtTab struct {
  3816  	cvtI2F, cvtF2F ssa.Op
  3817  }
  3818  
  3819  var u32_f64 u322fcvtTab = u322fcvtTab{
  3820  	cvtI2F: ssa.OpCvt32to64F,
  3821  	cvtF2F: ssa.OpCopy,
  3822  }
  3823  
  3824  var u32_f32 u322fcvtTab = u322fcvtTab{
  3825  	cvtI2F: ssa.OpCvt32to32F,
  3826  	cvtF2F: ssa.OpCvt64Fto32F,
  3827  }
  3828  
  3829  func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3830  	return s.uint32Tofloat(&u32_f64, n, x, ft, tt)
  3831  }
  3832  
  3833  func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3834  	return s.uint32Tofloat(&u32_f32, n, x, ft, tt)
  3835  }
  3836  
  3837  func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3838  	// if x >= 0 {
  3839  	// 	result = floatY(x)
  3840  	// } else {
  3841  	// 	result = floatY(float64(x) + (1<<32))
  3842  	// }
  3843  	cmp := s.newValue2(ssa.OpGeq32, types.Types[TBOOL], x, s.zeroVal(ft))
  3844  	b := s.endBlock()
  3845  	b.Kind = ssa.BlockIf
  3846  	b.SetControl(cmp)
  3847  	b.Likely = ssa.BranchLikely
  3848  
  3849  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3850  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3851  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3852  
  3853  	b.AddEdgeTo(bThen)
  3854  	s.startBlock(bThen)
  3855  	a0 := s.newValue1(cvttab.cvtI2F, tt, x)
  3856  	s.vars[n] = a0
  3857  	s.endBlock()
  3858  	bThen.AddEdgeTo(bAfter)
  3859  
  3860  	b.AddEdgeTo(bElse)
  3861  	s.startBlock(bElse)
  3862  	a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x)
  3863  	twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32))
  3864  	a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32)
  3865  	a3 := s.newValue1(cvttab.cvtF2F, tt, a2)
  3866  
  3867  	s.vars[n] = a3
  3868  	s.endBlock()
  3869  	bElse.AddEdgeTo(bAfter)
  3870  
  3871  	s.startBlock(bAfter)
  3872  	return s.variable(n, n.Type)
  3873  }
  3874  
  3875  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  3876  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  3877  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  3878  		s.Fatalf("node must be a map or a channel")
  3879  	}
  3880  	// if n == nil {
  3881  	//   return 0
  3882  	// } else {
  3883  	//   // len
  3884  	//   return *((*int)n)
  3885  	//   // cap
  3886  	//   return *(((*int)n)+1)
  3887  	// }
  3888  	lenType := n.Type
  3889  	nilValue := s.constNil(types.Types[TUINTPTR])
  3890  	cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue)
  3891  	b := s.endBlock()
  3892  	b.Kind = ssa.BlockIf
  3893  	b.SetControl(cmp)
  3894  	b.Likely = ssa.BranchUnlikely
  3895  
  3896  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3897  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3898  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3899  
  3900  	// length/capacity of a nil map/chan is zero
  3901  	b.AddEdgeTo(bThen)
  3902  	s.startBlock(bThen)
  3903  	s.vars[n] = s.zeroVal(lenType)
  3904  	s.endBlock()
  3905  	bThen.AddEdgeTo(bAfter)
  3906  
  3907  	b.AddEdgeTo(bElse)
  3908  	s.startBlock(bElse)
  3909  	if n.Op == OLEN {
  3910  		// length is stored in the first word for map/chan
  3911  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
  3912  	} else if n.Op == OCAP {
  3913  		// capacity is stored in the second word for chan
  3914  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  3915  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
  3916  	} else {
  3917  		s.Fatalf("op must be OLEN or OCAP")
  3918  	}
  3919  	s.endBlock()
  3920  	bElse.AddEdgeTo(bAfter)
  3921  
  3922  	s.startBlock(bAfter)
  3923  	return s.variable(n, lenType)
  3924  }
  3925  
  3926  type f2uCvtTab struct {
  3927  	ltf, cvt2U, subf, or ssa.Op
  3928  	floatValue           func(*state, ssa.Type, float64) *ssa.Value
  3929  	intValue             func(*state, ssa.Type, int64) *ssa.Value
  3930  	cutoff               uint64
  3931  }
  3932  
  3933  var f32_u64 f2uCvtTab = f2uCvtTab{
  3934  	ltf:        ssa.OpLess32F,
  3935  	cvt2U:      ssa.OpCvt32Fto64,
  3936  	subf:       ssa.OpSub32F,
  3937  	or:         ssa.OpOr64,
  3938  	floatValue: (*state).constFloat32,
  3939  	intValue:   (*state).constInt64,
  3940  	cutoff:     9223372036854775808,
  3941  }
  3942  
  3943  var f64_u64 f2uCvtTab = f2uCvtTab{
  3944  	ltf:        ssa.OpLess64F,
  3945  	cvt2U:      ssa.OpCvt64Fto64,
  3946  	subf:       ssa.OpSub64F,
  3947  	or:         ssa.OpOr64,
  3948  	floatValue: (*state).constFloat64,
  3949  	intValue:   (*state).constInt64,
  3950  	cutoff:     9223372036854775808,
  3951  }
  3952  
  3953  var f32_u32 f2uCvtTab = f2uCvtTab{
  3954  	ltf:        ssa.OpLess32F,
  3955  	cvt2U:      ssa.OpCvt32Fto32,
  3956  	subf:       ssa.OpSub32F,
  3957  	or:         ssa.OpOr32,
  3958  	floatValue: (*state).constFloat32,
  3959  	intValue:   func(s *state, t ssa.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  3960  	cutoff:     2147483648,
  3961  }
  3962  
  3963  var f64_u32 f2uCvtTab = f2uCvtTab{
  3964  	ltf:        ssa.OpLess64F,
  3965  	cvt2U:      ssa.OpCvt64Fto32,
  3966  	subf:       ssa.OpSub64F,
  3967  	or:         ssa.OpOr32,
  3968  	floatValue: (*state).constFloat64,
  3969  	intValue:   func(s *state, t ssa.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  3970  	cutoff:     2147483648,
  3971  }
  3972  
  3973  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3974  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  3975  }
  3976  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3977  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  3978  }
  3979  
  3980  func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3981  	return s.floatToUint(&f32_u32, n, x, ft, tt)
  3982  }
  3983  
  3984  func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3985  	return s.floatToUint(&f64_u32, n, x, ft, tt)
  3986  }
  3987  
  3988  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3989  	// cutoff:=1<<(intY_Size-1)
  3990  	// if x < floatX(cutoff) {
  3991  	// 	result = uintY(x)
  3992  	// } else {
  3993  	// 	y = x - floatX(cutoff)
  3994  	// 	z = uintY(y)
  3995  	// 	result = z | -(cutoff)
  3996  	// }
  3997  	cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff))
  3998  	cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff)
  3999  	b := s.endBlock()
  4000  	b.Kind = ssa.BlockIf
  4001  	b.SetControl(cmp)
  4002  	b.Likely = ssa.BranchLikely
  4003  
  4004  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4005  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4006  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4007  
  4008  	b.AddEdgeTo(bThen)
  4009  	s.startBlock(bThen)
  4010  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  4011  	s.vars[n] = a0
  4012  	s.endBlock()
  4013  	bThen.AddEdgeTo(bAfter)
  4014  
  4015  	b.AddEdgeTo(bElse)
  4016  	s.startBlock(bElse)
  4017  	y := s.newValue2(cvttab.subf, ft, x, cutoff)
  4018  	y = s.newValue1(cvttab.cvt2U, tt, y)
  4019  	z := cvttab.intValue(s, tt, int64(-cvttab.cutoff))
  4020  	a1 := s.newValue2(cvttab.or, tt, y, z)
  4021  	s.vars[n] = a1
  4022  	s.endBlock()
  4023  	bElse.AddEdgeTo(bAfter)
  4024  
  4025  	s.startBlock(bAfter)
  4026  	return s.variable(n, n.Type)
  4027  }
  4028  
  4029  // dottype generates SSA for a type assertion node.
  4030  // commaok indicates whether to panic or return a bool.
  4031  // If commaok is false, resok will be nil.
  4032  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  4033  	iface := s.expr(n.Left)   // input interface
  4034  	target := s.expr(n.Right) // target type
  4035  	byteptr := s.f.Config.Types.BytePtr
  4036  
  4037  	if n.Type.IsInterface() {
  4038  		if n.Type.IsEmptyInterface() {
  4039  			// Converting to an empty interface.
  4040  			// Input could be an empty or nonempty interface.
  4041  			if Debug_typeassert > 0 {
  4042  				Warnl(n.Pos, "type assertion inlined")
  4043  			}
  4044  
  4045  			// Get itab/type field from input.
  4046  			itab := s.newValue1(ssa.OpITab, byteptr, iface)
  4047  			// Conversion succeeds iff that field is not nil.
  4048  			cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr))
  4049  
  4050  			if n.Left.Type.IsEmptyInterface() && commaok {
  4051  				// Converting empty interface to empty interface with ,ok is just a nil check.
  4052  				return iface, cond
  4053  			}
  4054  
  4055  			// Branch on nilness.
  4056  			b := s.endBlock()
  4057  			b.Kind = ssa.BlockIf
  4058  			b.SetControl(cond)
  4059  			b.Likely = ssa.BranchLikely
  4060  			bOk := s.f.NewBlock(ssa.BlockPlain)
  4061  			bFail := s.f.NewBlock(ssa.BlockPlain)
  4062  			b.AddEdgeTo(bOk)
  4063  			b.AddEdgeTo(bFail)
  4064  
  4065  			if !commaok {
  4066  				// On failure, panic by calling panicnildottype.
  4067  				s.startBlock(bFail)
  4068  				s.rtcall(panicnildottype, false, nil, target)
  4069  
  4070  				// On success, return (perhaps modified) input interface.
  4071  				s.startBlock(bOk)
  4072  				if n.Left.Type.IsEmptyInterface() {
  4073  					res = iface // Use input interface unchanged.
  4074  					return
  4075  				}
  4076  				// Load type out of itab, build interface with existing idata.
  4077  				off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4078  				typ := s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  4079  				idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4080  				res = s.newValue2(ssa.OpIMake, n.Type, typ, idata)
  4081  				return
  4082  			}
  4083  
  4084  			s.startBlock(bOk)
  4085  			// nonempty -> empty
  4086  			// Need to load type from itab
  4087  			off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4088  			s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  4089  			s.endBlock()
  4090  
  4091  			// itab is nil, might as well use that as the nil result.
  4092  			s.startBlock(bFail)
  4093  			s.vars[&typVar] = itab
  4094  			s.endBlock()
  4095  
  4096  			// Merge point.
  4097  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  4098  			bOk.AddEdgeTo(bEnd)
  4099  			bFail.AddEdgeTo(bEnd)
  4100  			s.startBlock(bEnd)
  4101  			idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4102  			res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata)
  4103  			resok = cond
  4104  			delete(s.vars, &typVar)
  4105  			return
  4106  		}
  4107  		// converting to a nonempty interface needs a runtime call.
  4108  		if Debug_typeassert > 0 {
  4109  			Warnl(n.Pos, "type assertion not inlined")
  4110  		}
  4111  		if n.Left.Type.IsEmptyInterface() {
  4112  			if commaok {
  4113  				call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4114  				return call[0], call[1]
  4115  			}
  4116  			return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4117  		}
  4118  		if commaok {
  4119  			call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4120  			return call[0], call[1]
  4121  		}
  4122  		return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4123  	}
  4124  
  4125  	if Debug_typeassert > 0 {
  4126  		Warnl(n.Pos, "type assertion inlined")
  4127  	}
  4128  
  4129  	// Converting to a concrete type.
  4130  	direct := isdirectiface(n.Type)
  4131  	itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface
  4132  	if Debug_typeassert > 0 {
  4133  		Warnl(n.Pos, "type assertion inlined")
  4134  	}
  4135  	var targetITab *ssa.Value
  4136  	if n.Left.Type.IsEmptyInterface() {
  4137  		// Looking for pointer to target type.
  4138  		targetITab = target
  4139  	} else {
  4140  		// Looking for pointer to itab for target type and source interface.
  4141  		targetITab = s.expr(n.List.First())
  4142  	}
  4143  
  4144  	var tmp *Node       // temporary for use with large types
  4145  	var addr *ssa.Value // address of tmp
  4146  	if commaok && !canSSAType(n.Type) {
  4147  		// unSSAable type, use temporary.
  4148  		// TODO: get rid of some of these temporaries.
  4149  		tmp = tempAt(n.Pos, s.curfn, n.Type)
  4150  		addr = s.addr(tmp, false)
  4151  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem())
  4152  	}
  4153  
  4154  	cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab)
  4155  	b := s.endBlock()
  4156  	b.Kind = ssa.BlockIf
  4157  	b.SetControl(cond)
  4158  	b.Likely = ssa.BranchLikely
  4159  
  4160  	bOk := s.f.NewBlock(ssa.BlockPlain)
  4161  	bFail := s.f.NewBlock(ssa.BlockPlain)
  4162  	b.AddEdgeTo(bOk)
  4163  	b.AddEdgeTo(bFail)
  4164  
  4165  	if !commaok {
  4166  		// on failure, panic by calling panicdottype
  4167  		s.startBlock(bFail)
  4168  		taddr := s.expr(n.Right.Right)
  4169  		if n.Left.Type.IsEmptyInterface() {
  4170  			s.rtcall(panicdottypeE, false, nil, itab, target, taddr)
  4171  		} else {
  4172  			s.rtcall(panicdottypeI, false, nil, itab, target, taddr)
  4173  		}
  4174  
  4175  		// on success, return data from interface
  4176  		s.startBlock(bOk)
  4177  		if direct {
  4178  			return s.newValue1(ssa.OpIData, n.Type, iface), nil
  4179  		}
  4180  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4181  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()), nil
  4182  	}
  4183  
  4184  	// commaok is the more complicated case because we have
  4185  	// a control flow merge point.
  4186  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  4187  	// Note that we need a new valVar each time (unlike okVar where we can
  4188  	// reuse the variable) because it might have a different type every time.
  4189  	valVar := &Node{Op: ONAME, Sym: &types.Sym{Name: "val"}}
  4190  
  4191  	// type assertion succeeded
  4192  	s.startBlock(bOk)
  4193  	if tmp == nil {
  4194  		if direct {
  4195  			s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  4196  		} else {
  4197  			p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4198  			s.vars[valVar] = s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  4199  		}
  4200  	} else {
  4201  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4202  		store := s.newValue3I(ssa.OpMove, ssa.TypeMem, n.Type.Size(), addr, p, s.mem())
  4203  		store.Aux = n.Type
  4204  		s.vars[&memVar] = store
  4205  	}
  4206  	s.vars[&okVar] = s.constBool(true)
  4207  	s.endBlock()
  4208  	bOk.AddEdgeTo(bEnd)
  4209  
  4210  	// type assertion failed
  4211  	s.startBlock(bFail)
  4212  	if tmp == nil {
  4213  		s.vars[valVar] = s.zeroVal(n.Type)
  4214  	} else {
  4215  		store := s.newValue2I(ssa.OpZero, ssa.TypeMem, n.Type.Size(), addr, s.mem())
  4216  		store.Aux = n.Type
  4217  		s.vars[&memVar] = store
  4218  	}
  4219  	s.vars[&okVar] = s.constBool(false)
  4220  	s.endBlock()
  4221  	bFail.AddEdgeTo(bEnd)
  4222  
  4223  	// merge point
  4224  	s.startBlock(bEnd)
  4225  	if tmp == nil {
  4226  		res = s.variable(valVar, n.Type)
  4227  		delete(s.vars, valVar)
  4228  	} else {
  4229  		res = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  4230  		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem())
  4231  	}
  4232  	resok = s.variable(&okVar, types.Types[TBOOL])
  4233  	delete(s.vars, &okVar)
  4234  	return res, resok
  4235  }
  4236  
  4237  // variable returns the value of a variable at the current location.
  4238  func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
  4239  	v := s.vars[name]
  4240  	if v != nil {
  4241  		return v
  4242  	}
  4243  	v = s.fwdVars[name]
  4244  	if v != nil {
  4245  		return v
  4246  	}
  4247  
  4248  	if s.curBlock == s.f.Entry {
  4249  		// No variable should be live at entry.
  4250  		s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v)
  4251  	}
  4252  	// Make a FwdRef, which records a value that's live on block input.
  4253  	// We'll find the matching definition as part of insertPhis.
  4254  	v = s.newValue0A(ssa.OpFwdRef, t, name)
  4255  	s.fwdVars[name] = v
  4256  	s.addNamedValue(name, v)
  4257  	return v
  4258  }
  4259  
  4260  func (s *state) mem() *ssa.Value {
  4261  	return s.variable(&memVar, ssa.TypeMem)
  4262  }
  4263  
  4264  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  4265  	if n.Class() == Pxxx {
  4266  		// Don't track our dummy nodes (&memVar etc.).
  4267  		return
  4268  	}
  4269  	if n.IsAutoTmp() {
  4270  		// Don't track temporary variables.
  4271  		return
  4272  	}
  4273  	if n.Class() == PPARAMOUT {
  4274  		// Don't track named output values.  This prevents return values
  4275  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  4276  		return
  4277  	}
  4278  	if n.Class() == PAUTO && n.Xoffset != 0 {
  4279  		s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset)
  4280  	}
  4281  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  4282  	values, ok := s.f.NamedValues[loc]
  4283  	if !ok {
  4284  		s.f.Names = append(s.f.Names, loc)
  4285  	}
  4286  	s.f.NamedValues[loc] = append(values, v)
  4287  }
  4288  
  4289  // Branch is an unresolved branch.
  4290  type Branch struct {
  4291  	P *obj.Prog  // branch instruction
  4292  	B *ssa.Block // target
  4293  }
  4294  
  4295  // SSAGenState contains state needed during Prog generation.
  4296  type SSAGenState struct {
  4297  	pp *Progs
  4298  
  4299  	// Branches remembers all the branch instructions we've seen
  4300  	// and where they would like to go.
  4301  	Branches []Branch
  4302  
  4303  	// bstart remembers where each block starts (indexed by block ID)
  4304  	bstart []*obj.Prog
  4305  
  4306  	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
  4307  	SSEto387 map[int16]int16
  4308  	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
  4309  	ScratchFpMem *Node
  4310  
  4311  	maxarg int64 // largest frame size for arguments to calls made by the function
  4312  
  4313  	// Map from GC safe points to stack map index, generated by
  4314  	// liveness analysis.
  4315  	stackMapIndex map[*ssa.Value]int
  4316  }
  4317  
  4318  // Prog appends a new Prog.
  4319  func (s *SSAGenState) Prog(as obj.As) *obj.Prog {
  4320  	return s.pp.Prog(as)
  4321  }
  4322  
  4323  // Pc returns the current Prog.
  4324  func (s *SSAGenState) Pc() *obj.Prog {
  4325  	return s.pp.next
  4326  }
  4327  
  4328  // SetPos sets the current source position.
  4329  func (s *SSAGenState) SetPos(pos src.XPos) {
  4330  	s.pp.pos = pos
  4331  }
  4332  
  4333  // genssa appends entries to pp for each instruction in f.
  4334  func genssa(f *ssa.Func, pp *Progs) {
  4335  	var s SSAGenState
  4336  
  4337  	e := f.Frontend().(*ssafn)
  4338  
  4339  	// Generate GC bitmaps.
  4340  	s.stackMapIndex = liveness(e, f)
  4341  
  4342  	// Remember where each block starts.
  4343  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  4344  	s.pp = pp
  4345  	var valueProgs map[*obj.Prog]*ssa.Value
  4346  	var blockProgs map[*obj.Prog]*ssa.Block
  4347  	var logProgs = e.log
  4348  	if logProgs {
  4349  		valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  4350  		blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  4351  		f.Logf("genssa %s\n", f.Name)
  4352  		blockProgs[s.pp.next] = f.Blocks[0]
  4353  	}
  4354  
  4355  	if thearch.Use387 {
  4356  		s.SSEto387 = map[int16]int16{}
  4357  	}
  4358  
  4359  	s.ScratchFpMem = e.scratchFpMem
  4360  
  4361  	// Emit basic blocks
  4362  	for i, b := range f.Blocks {
  4363  		s.bstart[b.ID] = s.pp.next
  4364  		// Emit values in block
  4365  		thearch.SSAMarkMoves(&s, b)
  4366  		for _, v := range b.Values {
  4367  			x := s.pp.next
  4368  			s.SetPos(v.Pos)
  4369  
  4370  			switch v.Op {
  4371  			case ssa.OpInitMem:
  4372  				// memory arg needs no code
  4373  			case ssa.OpArg:
  4374  				// input args need no code
  4375  			case ssa.OpSP, ssa.OpSB:
  4376  				// nothing to do
  4377  			case ssa.OpSelect0, ssa.OpSelect1:
  4378  				// nothing to do
  4379  			case ssa.OpGetG:
  4380  				// nothing to do when there's a g register,
  4381  				// and checkLower complains if there's not
  4382  			case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive:
  4383  				// nothing to do; already used by liveness
  4384  			case ssa.OpVarKill:
  4385  				// Zero variable if it is ambiguously live.
  4386  				// After the VARKILL anything this variable references
  4387  				// might be collected. If it were to become live again later,
  4388  				// the GC will see references to already-collected objects.
  4389  				// See issue 20029.
  4390  				n := v.Aux.(*Node)
  4391  				if n.Name.Needzero() {
  4392  					if n.Class() != PAUTO {
  4393  						v.Fatalf("zero of variable which isn't PAUTO %v", n)
  4394  					}
  4395  					if n.Type.Size()%int64(Widthptr) != 0 {
  4396  						v.Fatalf("zero of variable not a multiple of ptr size %v", n)
  4397  					}
  4398  					thearch.ZeroAuto(s.pp, n)
  4399  				}
  4400  			case ssa.OpPhi:
  4401  				CheckLoweredPhi(v)
  4402  
  4403  			default:
  4404  				// let the backend handle it
  4405  				thearch.SSAGenValue(&s, v)
  4406  			}
  4407  
  4408  			if logProgs {
  4409  				for ; x != s.pp.next; x = x.Link {
  4410  					valueProgs[x] = v
  4411  				}
  4412  			}
  4413  		}
  4414  		// Emit control flow instructions for block
  4415  		var next *ssa.Block
  4416  		if i < len(f.Blocks)-1 && Debug['N'] == 0 {
  4417  			// If -N, leave next==nil so every block with successors
  4418  			// ends in a JMP (except call blocks - plive doesn't like
  4419  			// select{send,recv} followed by a JMP call).  Helps keep
  4420  			// line numbers for otherwise empty blocks.
  4421  			next = f.Blocks[i+1]
  4422  		}
  4423  		x := s.pp.next
  4424  		s.SetPos(b.Pos)
  4425  		thearch.SSAGenBlock(&s, b, next)
  4426  		if logProgs {
  4427  			for ; x != s.pp.next; x = x.Link {
  4428  				blockProgs[x] = b
  4429  			}
  4430  		}
  4431  	}
  4432  
  4433  	// Resolve branches
  4434  	for _, br := range s.Branches {
  4435  		br.P.To.Val = s.bstart[br.B.ID]
  4436  	}
  4437  
  4438  	if logProgs {
  4439  		for p := pp.Text; p != nil; p = p.Link {
  4440  			var s string
  4441  			if v, ok := valueProgs[p]; ok {
  4442  				s = v.String()
  4443  			} else if b, ok := blockProgs[p]; ok {
  4444  				s = b.String()
  4445  			} else {
  4446  				s = "   " // most value and branch strings are 2-3 characters long
  4447  			}
  4448  			f.Logf("%s\t%s\n", s, p)
  4449  		}
  4450  		if f.HTMLWriter != nil {
  4451  			// LineHist is defunct now - this code won't do
  4452  			// anything.
  4453  			// TODO: fix this (ideally without a global variable)
  4454  			// saved := pp.Text.Ctxt.LineHist.PrintFilenameOnly
  4455  			// pp.Text.Ctxt.LineHist.PrintFilenameOnly = true
  4456  			var buf bytes.Buffer
  4457  			buf.WriteString("<code>")
  4458  			buf.WriteString("<dl class=\"ssa-gen\">")
  4459  			for p := pp.Text; p != nil; p = p.Link {
  4460  				buf.WriteString("<dt class=\"ssa-prog-src\">")
  4461  				if v, ok := valueProgs[p]; ok {
  4462  					buf.WriteString(v.HTML())
  4463  				} else if b, ok := blockProgs[p]; ok {
  4464  					buf.WriteString(b.HTML())
  4465  				}
  4466  				buf.WriteString("</dt>")
  4467  				buf.WriteString("<dd class=\"ssa-prog\">")
  4468  				buf.WriteString(html.EscapeString(p.String()))
  4469  				buf.WriteString("</dd>")
  4470  				buf.WriteString("</li>")
  4471  			}
  4472  			buf.WriteString("</dl>")
  4473  			buf.WriteString("</code>")
  4474  			f.HTMLWriter.WriteColumn("genssa", buf.String())
  4475  			// pp.Text.Ctxt.LineHist.PrintFilenameOnly = saved
  4476  		}
  4477  	}
  4478  
  4479  	defframe(&s, e)
  4480  	if Debug['f'] != 0 {
  4481  		frame(0)
  4482  	}
  4483  
  4484  	f.HTMLWriter.Close()
  4485  	f.HTMLWriter = nil
  4486  }
  4487  
  4488  func defframe(s *SSAGenState, e *ssafn) {
  4489  	pp := s.pp
  4490  
  4491  	frame := Rnd(s.maxarg+e.stksize, int64(Widthreg))
  4492  	if thearch.PadFrame != nil {
  4493  		frame = thearch.PadFrame(frame)
  4494  	}
  4495  
  4496  	// Fill in argument and frame size.
  4497  	pp.Text.To.Type = obj.TYPE_TEXTSIZE
  4498  	pp.Text.To.Val = int32(Rnd(e.curfn.Type.ArgWidth(), int64(Widthreg)))
  4499  	pp.Text.To.Offset = frame
  4500  
  4501  	// Insert code to zero ambiguously live variables so that the
  4502  	// garbage collector only sees initialized values when it
  4503  	// looks for pointers.
  4504  	p := pp.Text
  4505  	var lo, hi int64
  4506  
  4507  	// Opaque state for backend to use. Current backends use it to
  4508  	// keep track of which helper registers have been zeroed.
  4509  	var state uint32
  4510  
  4511  	// Iterate through declarations. They are sorted in decreasing Xoffset order.
  4512  	for _, n := range e.curfn.Func.Dcl {
  4513  		if !n.Name.Needzero() {
  4514  			continue
  4515  		}
  4516  		if n.Class() != PAUTO {
  4517  			Fatalf("needzero class %d", n.Class())
  4518  		}
  4519  		if n.Type.Size()%int64(Widthptr) != 0 || n.Xoffset%int64(Widthptr) != 0 || n.Type.Size() == 0 {
  4520  			Fatalf("var %L has size %d offset %d", n, n.Type.Size(), n.Xoffset)
  4521  		}
  4522  
  4523  		if lo != hi && n.Xoffset+n.Type.Size() >= lo-int64(2*Widthreg) {
  4524  			// Merge with range we already have.
  4525  			lo = n.Xoffset
  4526  			continue
  4527  		}
  4528  
  4529  		// Zero old range
  4530  		p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
  4531  
  4532  		// Set new range.
  4533  		lo = n.Xoffset
  4534  		hi = lo + n.Type.Size()
  4535  	}
  4536  
  4537  	// Zero final range.
  4538  	thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
  4539  }
  4540  
  4541  type FloatingEQNEJump struct {
  4542  	Jump  obj.As
  4543  	Index int
  4544  }
  4545  
  4546  func (s *SSAGenState) oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump) {
  4547  	p := s.Prog(jumps.Jump)
  4548  	p.To.Type = obj.TYPE_BRANCH
  4549  	to := jumps.Index
  4550  	s.Branches = append(s.Branches, Branch{p, b.Succs[to].Block()})
  4551  }
  4552  
  4553  func (s *SSAGenState) FPJump(b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  4554  	switch next {
  4555  	case b.Succs[0].Block():
  4556  		s.oneFPJump(b, &jumps[0][0])
  4557  		s.oneFPJump(b, &jumps[0][1])
  4558  	case b.Succs[1].Block():
  4559  		s.oneFPJump(b, &jumps[1][0])
  4560  		s.oneFPJump(b, &jumps[1][1])
  4561  	default:
  4562  		s.oneFPJump(b, &jumps[1][0])
  4563  		s.oneFPJump(b, &jumps[1][1])
  4564  		q := s.Prog(obj.AJMP)
  4565  		q.To.Type = obj.TYPE_BRANCH
  4566  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  4567  	}
  4568  }
  4569  
  4570  func AuxOffset(v *ssa.Value) (offset int64) {
  4571  	if v.Aux == nil {
  4572  		return 0
  4573  	}
  4574  	switch sym := v.Aux.(type) {
  4575  
  4576  	case *ssa.AutoSymbol:
  4577  		n := sym.Node.(*Node)
  4578  		return n.Xoffset
  4579  	}
  4580  	return 0
  4581  }
  4582  
  4583  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  4584  func AddAux(a *obj.Addr, v *ssa.Value) {
  4585  	AddAux2(a, v, v.AuxInt)
  4586  }
  4587  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  4588  	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
  4589  		v.Fatalf("bad AddAux addr %v", a)
  4590  	}
  4591  	// add integer offset
  4592  	a.Offset += offset
  4593  
  4594  	// If no additional symbol offset, we're done.
  4595  	if v.Aux == nil {
  4596  		return
  4597  	}
  4598  	// Add symbol's offset from its base register.
  4599  	switch sym := v.Aux.(type) {
  4600  	case *ssa.ExternSymbol:
  4601  		a.Name = obj.NAME_EXTERN
  4602  		a.Sym = sym.Sym
  4603  	case *ssa.ArgSymbol:
  4604  		n := sym.Node.(*Node)
  4605  		a.Name = obj.NAME_PARAM
  4606  		a.Sym = n.Orig.Sym.Linksym()
  4607  		a.Offset += n.Xoffset
  4608  	case *ssa.AutoSymbol:
  4609  		n := sym.Node.(*Node)
  4610  		a.Name = obj.NAME_AUTO
  4611  		a.Sym = n.Sym.Linksym()
  4612  		a.Offset += n.Xoffset
  4613  	default:
  4614  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  4615  	}
  4616  }
  4617  
  4618  // extendIndex extends v to a full int width.
  4619  // panic using the given function if v does not fit in an int (only on 32-bit archs).
  4620  func (s *state) extendIndex(v *ssa.Value, panicfn *obj.LSym) *ssa.Value {
  4621  	size := v.Type.Size()
  4622  	if size == s.config.PtrSize {
  4623  		return v
  4624  	}
  4625  	if size > s.config.PtrSize {
  4626  		// truncate 64-bit indexes on 32-bit pointer archs. Test the
  4627  		// high word and branch to out-of-bounds failure if it is not 0.
  4628  		if Debug['B'] == 0 {
  4629  			hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], v)
  4630  			cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0))
  4631  			s.check(cmp, panicfn)
  4632  		}
  4633  		return s.newValue1(ssa.OpTrunc64to32, types.Types[TINT], v)
  4634  	}
  4635  
  4636  	// Extend value to the required size
  4637  	var op ssa.Op
  4638  	if v.Type.IsSigned() {
  4639  		switch 10*size + s.config.PtrSize {
  4640  		case 14:
  4641  			op = ssa.OpSignExt8to32
  4642  		case 18:
  4643  			op = ssa.OpSignExt8to64
  4644  		case 24:
  4645  			op = ssa.OpSignExt16to32
  4646  		case 28:
  4647  			op = ssa.OpSignExt16to64
  4648  		case 48:
  4649  			op = ssa.OpSignExt32to64
  4650  		default:
  4651  			s.Fatalf("bad signed index extension %s", v.Type)
  4652  		}
  4653  	} else {
  4654  		switch 10*size + s.config.PtrSize {
  4655  		case 14:
  4656  			op = ssa.OpZeroExt8to32
  4657  		case 18:
  4658  			op = ssa.OpZeroExt8to64
  4659  		case 24:
  4660  			op = ssa.OpZeroExt16to32
  4661  		case 28:
  4662  			op = ssa.OpZeroExt16to64
  4663  		case 48:
  4664  			op = ssa.OpZeroExt32to64
  4665  		default:
  4666  			s.Fatalf("bad unsigned index extension %s", v.Type)
  4667  		}
  4668  	}
  4669  	return s.newValue1(op, types.Types[TINT], v)
  4670  }
  4671  
  4672  // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
  4673  // Called during ssaGenValue.
  4674  func CheckLoweredPhi(v *ssa.Value) {
  4675  	if v.Op != ssa.OpPhi {
  4676  		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
  4677  	}
  4678  	if v.Type.IsMemory() {
  4679  		return
  4680  	}
  4681  	f := v.Block.Func
  4682  	loc := f.RegAlloc[v.ID]
  4683  	for _, a := range v.Args {
  4684  		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
  4685  			v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func)
  4686  		}
  4687  	}
  4688  }
  4689  
  4690  // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
  4691  // The output of LoweredGetClosurePtr is generally hardwired to the correct register.
  4692  // That register contains the closure pointer on closure entry.
  4693  func CheckLoweredGetClosurePtr(v *ssa.Value) {
  4694  	entry := v.Block.Func.Entry
  4695  	if entry != v.Block || entry.Values[0] != v {
  4696  		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
  4697  	}
  4698  }
  4699  
  4700  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  4701  // where v should be spilled.
  4702  func AutoVar(v *ssa.Value) (*Node, int64) {
  4703  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  4704  	if v.Type.Size() > loc.Type.Size() {
  4705  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  4706  	}
  4707  	return loc.N.(*Node), loc.Off
  4708  }
  4709  
  4710  func AddrAuto(a *obj.Addr, v *ssa.Value) {
  4711  	n, off := AutoVar(v)
  4712  	a.Type = obj.TYPE_MEM
  4713  	a.Sym = n.Sym.Linksym()
  4714  	a.Reg = int16(thearch.REGSP)
  4715  	a.Offset = n.Xoffset + off
  4716  	if n.Class() == PPARAM || n.Class() == PPARAMOUT {
  4717  		a.Name = obj.NAME_PARAM
  4718  	} else {
  4719  		a.Name = obj.NAME_AUTO
  4720  	}
  4721  }
  4722  
  4723  func (s *SSAGenState) AddrScratch(a *obj.Addr) {
  4724  	if s.ScratchFpMem == nil {
  4725  		panic("no scratch memory available; forgot to declare usesScratch for Op?")
  4726  	}
  4727  	a.Type = obj.TYPE_MEM
  4728  	a.Name = obj.NAME_AUTO
  4729  	a.Sym = s.ScratchFpMem.Sym.Linksym()
  4730  	a.Reg = int16(thearch.REGSP)
  4731  	a.Offset = s.ScratchFpMem.Xoffset
  4732  }
  4733  
  4734  func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog {
  4735  	idx, ok := s.stackMapIndex[v]
  4736  	if !ok {
  4737  		Fatalf("missing stack map index for %v", v.LongString())
  4738  	}
  4739  	p := s.Prog(obj.APCDATA)
  4740  	Addrconst(&p.From, objabi.PCDATA_StackMapIndex)
  4741  	Addrconst(&p.To, int64(idx))
  4742  
  4743  	if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn {
  4744  		// Deferred calls will appear to be returning to
  4745  		// the CALL deferreturn(SB) that we are about to emit.
  4746  		// However, the stack trace code will show the line
  4747  		// of the instruction byte before the return PC.
  4748  		// To avoid that being an unrelated instruction,
  4749  		// insert an actual hardware NOP that will have the right line number.
  4750  		// This is different from obj.ANOP, which is a virtual no-op
  4751  		// that doesn't make it into the instruction stream.
  4752  		thearch.Ginsnop(s.pp)
  4753  	}
  4754  
  4755  	p = s.Prog(obj.ACALL)
  4756  	if sym, ok := v.Aux.(*obj.LSym); ok {
  4757  		p.To.Type = obj.TYPE_MEM
  4758  		p.To.Name = obj.NAME_EXTERN
  4759  		p.To.Sym = sym
  4760  	} else {
  4761  		// TODO(mdempsky): Can these differences be eliminated?
  4762  		switch thearch.LinkArch.Family {
  4763  		case sys.AMD64, sys.I386, sys.PPC64, sys.S390X:
  4764  			p.To.Type = obj.TYPE_REG
  4765  		case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
  4766  			p.To.Type = obj.TYPE_MEM
  4767  		default:
  4768  			Fatalf("unknown indirect call family")
  4769  		}
  4770  		p.To.Reg = v.Args[0].Reg()
  4771  	}
  4772  	if s.maxarg < v.AuxInt {
  4773  		s.maxarg = v.AuxInt
  4774  	}
  4775  	return p
  4776  }
  4777  
  4778  // fieldIdx finds the index of the field referred to by the ODOT node n.
  4779  func fieldIdx(n *Node) int {
  4780  	t := n.Left.Type
  4781  	f := n.Sym
  4782  	if !t.IsStruct() {
  4783  		panic("ODOT's LHS is not a struct")
  4784  	}
  4785  
  4786  	var i int
  4787  	for _, t1 := range t.Fields().Slice() {
  4788  		if t1.Sym != f {
  4789  			i++
  4790  			continue
  4791  		}
  4792  		if t1.Offset != n.Xoffset {
  4793  			panic("field offset doesn't match")
  4794  		}
  4795  		return i
  4796  	}
  4797  	panic(fmt.Sprintf("can't find field in expr %v\n", n))
  4798  
  4799  	// TODO: keep the result of this function somewhere in the ODOT Node
  4800  	// so we don't have to recompute it each time we need it.
  4801  }
  4802  
  4803  // ssafn holds frontend information about a function that the backend is processing.
  4804  // It also exports a bunch of compiler services for the ssa backend.
  4805  type ssafn struct {
  4806  	curfn        *Node
  4807  	strings      map[string]interface{} // map from constant string to data symbols
  4808  	scratchFpMem *Node                  // temp for floating point register / memory moves on some architectures
  4809  	stksize      int64                  // stack size for current frame
  4810  	stkptrsize   int64                  // prefix of stack containing pointers
  4811  	log          bool
  4812  }
  4813  
  4814  // StringData returns a symbol (a *types.Sym wrapped in an interface) which
  4815  // is the data component of a global string constant containing s.
  4816  func (e *ssafn) StringData(s string) interface{} {
  4817  	if aux, ok := e.strings[s]; ok {
  4818  		return aux
  4819  	}
  4820  	if e.strings == nil {
  4821  		e.strings = make(map[string]interface{})
  4822  	}
  4823  	data := stringsym(s)
  4824  	aux := &ssa.ExternSymbol{Sym: data}
  4825  	e.strings[s] = aux
  4826  	return aux
  4827  }
  4828  
  4829  func (e *ssafn) Auto(pos src.XPos, t ssa.Type) ssa.GCNode {
  4830  	n := tempAt(pos, e.curfn, t.(*types.Type)) // Note: adds new auto to e.curfn.Func.Dcl list
  4831  	return n
  4832  }
  4833  
  4834  func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4835  	n := name.N.(*Node)
  4836  	ptrType := types.NewPtr(types.Types[TUINT8])
  4837  	lenType := types.Types[TINT]
  4838  	if n.Class() == PAUTO && !n.Addrtaken() {
  4839  		// Split this string up into two separate variables.
  4840  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType, n.Pos)
  4841  		l := e.namedAuto(n.Sym.Name+".len", lenType, n.Pos)
  4842  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}
  4843  	}
  4844  	// Return the two parts of the larger variable.
  4845  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  4846  }
  4847  
  4848  func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4849  	n := name.N.(*Node)
  4850  	t := types.NewPtr(types.Types[TUINT8])
  4851  	if n.Class() == PAUTO && !n.Addrtaken() {
  4852  		// Split this interface up into two separate variables.
  4853  		f := ".itab"
  4854  		if n.Type.IsEmptyInterface() {
  4855  			f = ".type"
  4856  		}
  4857  		c := e.namedAuto(n.Sym.Name+f, t, n.Pos)
  4858  		d := e.namedAuto(n.Sym.Name+".data", t, n.Pos)
  4859  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4860  	}
  4861  	// Return the two parts of the larger variable.
  4862  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  4863  }
  4864  
  4865  func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  4866  	n := name.N.(*Node)
  4867  	ptrType := types.NewPtr(name.Type.ElemType().(*types.Type))
  4868  	lenType := types.Types[TINT]
  4869  	if n.Class() == PAUTO && !n.Addrtaken() {
  4870  		// Split this slice up into three separate variables.
  4871  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType, n.Pos)
  4872  		l := e.namedAuto(n.Sym.Name+".len", lenType, n.Pos)
  4873  		c := e.namedAuto(n.Sym.Name+".cap", lenType, n.Pos)
  4874  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0}
  4875  	}
  4876  	// Return the three parts of the larger variable.
  4877  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  4878  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  4879  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  4880  }
  4881  
  4882  func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4883  	n := name.N.(*Node)
  4884  	s := name.Type.Size() / 2
  4885  	var t *types.Type
  4886  	if s == 8 {
  4887  		t = types.Types[TFLOAT64]
  4888  	} else {
  4889  		t = types.Types[TFLOAT32]
  4890  	}
  4891  	if n.Class() == PAUTO && !n.Addrtaken() {
  4892  		// Split this complex up into two separate variables.
  4893  		c := e.namedAuto(n.Sym.Name+".real", t, n.Pos)
  4894  		d := e.namedAuto(n.Sym.Name+".imag", t, n.Pos)
  4895  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4896  	}
  4897  	// Return the two parts of the larger variable.
  4898  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  4899  }
  4900  
  4901  func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4902  	n := name.N.(*Node)
  4903  	var t *types.Type
  4904  	if name.Type.IsSigned() {
  4905  		t = types.Types[TINT32]
  4906  	} else {
  4907  		t = types.Types[TUINT32]
  4908  	}
  4909  	if n.Class() == PAUTO && !n.Addrtaken() {
  4910  		// Split this int64 up into two separate variables.
  4911  		h := e.namedAuto(n.Sym.Name+".hi", t, n.Pos)
  4912  		l := e.namedAuto(n.Sym.Name+".lo", types.Types[TUINT32], n.Pos)
  4913  		return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: types.Types[TUINT32], Off: 0}
  4914  	}
  4915  	// Return the two parts of the larger variable.
  4916  	if thearch.LinkArch.ByteOrder == binary.BigEndian {
  4917  		return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4}
  4918  	}
  4919  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off}
  4920  }
  4921  
  4922  func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  4923  	n := name.N.(*Node)
  4924  	st := name.Type
  4925  	ft := st.FieldType(i)
  4926  	if n.Class() == PAUTO && !n.Addrtaken() {
  4927  		// Note: the _ field may appear several times.  But
  4928  		// have no fear, identically-named but distinct Autos are
  4929  		// ok, albeit maybe confusing for a debugger.
  4930  		x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft, n.Pos)
  4931  		return ssa.LocalSlot{N: x, Type: ft, Off: 0}
  4932  	}
  4933  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  4934  }
  4935  
  4936  func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
  4937  	n := name.N.(*Node)
  4938  	at := name.Type
  4939  	if at.NumElem() != 1 {
  4940  		Fatalf("bad array size")
  4941  	}
  4942  	et := at.ElemType()
  4943  	if n.Class() == PAUTO && !n.Addrtaken() {
  4944  		x := e.namedAuto(n.Sym.Name+"[0]", et, n.Pos)
  4945  		return ssa.LocalSlot{N: x, Type: et, Off: 0}
  4946  	}
  4947  	return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
  4948  }
  4949  
  4950  func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym {
  4951  	return itabsym(it, offset)
  4952  }
  4953  
  4954  // namedAuto returns a new AUTO variable with the given name and type.
  4955  // These are exposed to the debugger.
  4956  func (e *ssafn) namedAuto(name string, typ ssa.Type, pos src.XPos) ssa.GCNode {
  4957  	t := typ.(*types.Type)
  4958  	s := &types.Sym{Name: name, Pkg: localpkg}
  4959  
  4960  	n := new(Node)
  4961  	n.Name = new(Name)
  4962  	n.Op = ONAME
  4963  	n.Pos = pos
  4964  	n.Orig = n
  4965  
  4966  	s.Def = asTypesNode(n)
  4967  	asNode(s.Def).Name.SetUsed(true)
  4968  	n.Sym = s
  4969  	n.Type = t
  4970  	n.SetClass(PAUTO)
  4971  	n.SetAddable(true)
  4972  	n.Esc = EscNever
  4973  	n.Name.Curfn = e.curfn
  4974  	e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n)
  4975  	dowidth(t)
  4976  	return n
  4977  }
  4978  
  4979  func (e *ssafn) CanSSA(t ssa.Type) bool {
  4980  	return canSSAType(t.(*types.Type))
  4981  }
  4982  
  4983  func (e *ssafn) Line(pos src.XPos) string {
  4984  	return linestr(pos)
  4985  }
  4986  
  4987  // Log logs a message from the compiler.
  4988  func (e *ssafn) Logf(msg string, args ...interface{}) {
  4989  	if e.log {
  4990  		fmt.Printf(msg, args...)
  4991  	}
  4992  }
  4993  
  4994  func (e *ssafn) Log() bool {
  4995  	return e.log
  4996  }
  4997  
  4998  // Fatal reports a compiler error and exits.
  4999  func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) {
  5000  	lineno = pos
  5001  	Fatalf(msg, args...)
  5002  }
  5003  
  5004  // Warnl reports a "warning", which is usually flag-triggered
  5005  // logging output for the benefit of tests.
  5006  func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) {
  5007  	Warnl(pos, fmt_, args...)
  5008  }
  5009  
  5010  func (e *ssafn) Debug_checknil() bool {
  5011  	return Debug_checknil != 0
  5012  }
  5013  
  5014  func (e *ssafn) Debug_wb() bool {
  5015  	return Debug_wb != 0
  5016  }
  5017  
  5018  func (e *ssafn) UseWriteBarrier() bool {
  5019  	return use_writebarrier
  5020  }
  5021  
  5022  func (e *ssafn) Syslook(name string) *obj.LSym {
  5023  	switch name {
  5024  	case "goschedguarded":
  5025  		return goschedguarded
  5026  	case "writeBarrier":
  5027  		return writeBarrier
  5028  	case "writebarrierptr":
  5029  		return writebarrierptr
  5030  	case "typedmemmove":
  5031  		return typedmemmove
  5032  	case "typedmemclr":
  5033  		return typedmemclr
  5034  	}
  5035  	Fatalf("unknown Syslook func %v", name)
  5036  	return nil
  5037  }
  5038  
  5039  func (n *Node) Typ() ssa.Type {
  5040  	return n.Type
  5041  }