github.com/slayercat/go@v0.0.0-20170428012452-c51559813f61/src/cmd/compile/internal/ssa/regalloc.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Register allocation.
     6  //
     7  // We use a version of a linear scan register allocator. We treat the
     8  // whole function as a single long basic block and run through
     9  // it using a greedy register allocator. Then all merge edges
    10  // (those targeting a block with len(Preds)>1) are processed to
    11  // shuffle data into the place that the target of the edge expects.
    12  //
    13  // The greedy allocator moves values into registers just before they
    14  // are used, spills registers only when necessary, and spills the
    15  // value whose next use is farthest in the future.
    16  //
    17  // The register allocator requires that a block is not scheduled until
    18  // at least one of its predecessors have been scheduled. The most recent
    19  // such predecessor provides the starting register state for a block.
    20  //
    21  // It also requires that there are no critical edges (critical =
    22  // comes from a block with >1 successor and goes to a block with >1
    23  // predecessor).  This makes it easy to add fixup code on merge edges -
    24  // the source of a merge edge has only one successor, so we can add
    25  // fixup code to the end of that block.
    26  
    27  // Spilling
    28  //
    29  // During the normal course of the allocator, we might throw a still-live
    30  // value out of all registers. When that value is subsequently used, we must
    31  // load it from a slot on the stack. We must also issue an instruction to
    32  // initialize that stack location with a copy of v.
    33  //
    34  // pre-regalloc:
    35  //   (1) v = Op ...
    36  //   (2) x = Op ...
    37  //   (3) ... = Op v ...
    38  //
    39  // post-regalloc:
    40  //   (1) v = Op ...    : AX // computes v, store result in AX
    41  //       s = StoreReg v     // spill v to a stack slot
    42  //   (2) x = Op ...    : AX // some other op uses AX
    43  //       c = LoadReg s : CX // restore v from stack slot
    44  //   (3) ... = Op c ...     // use the restored value
    45  //
    46  // Allocation occurs normally until we reach (3) and we realize we have
    47  // a use of v and it isn't in any register. At that point, we allocate
    48  // a spill (a StoreReg) for v. We can't determine the correct place for
    49  // the spill at this point, so we allocate the spill as blockless initially.
    50  // The restore is then generated to load v back into a register so it can
    51  // be used. Subsequent uses of v will use the restored value c instead.
    52  //
    53  // What remains is the question of where to schedule the spill.
    54  // During allocation, we keep track of the dominator of all restores of v.
    55  // The spill of v must dominate that block. The spill must also be issued at
    56  // a point where v is still in a register.
    57  //
    58  // To find the right place, start at b, the block which dominates all restores.
    59  //  - If b is v.Block, then issue the spill right after v.
    60  //    It is known to be in a register at that point, and dominates any restores.
    61  //  - Otherwise, if v is in a register at the start of b,
    62  //    put the spill of v at the start of b.
    63  //  - Otherwise, set b = immediate dominator of b, and repeat.
    64  //
    65  // Phi values are special, as always. We define two kinds of phis, those
    66  // where the merge happens in a register (a "register" phi) and those where
    67  // the merge happens in a stack location (a "stack" phi).
    68  //
    69  // A register phi must have the phi and all of its inputs allocated to the
    70  // same register. Register phis are spilled similarly to regular ops.
    71  //
    72  // A stack phi must have the phi and all of its inputs allocated to the same
    73  // stack location. Stack phis start out life already spilled - each phi
    74  // input must be a store (using StoreReg) at the end of the corresponding
    75  // predecessor block.
    76  //     b1: y = ... : AX        b2: z = ... : BX
    77  //         y2 = StoreReg y         z2 = StoreReg z
    78  //         goto b3                 goto b3
    79  //     b3: x = phi(y2, z2)
    80  // The stack allocator knows that StoreReg args of stack-allocated phis
    81  // must be allocated to the same stack slot as the phi that uses them.
    82  // x is now a spilled value and a restore must appear before its first use.
    83  
    84  // TODO
    85  
    86  // Use an affinity graph to mark two values which should use the
    87  // same register. This affinity graph will be used to prefer certain
    88  // registers for allocation. This affinity helps eliminate moves that
    89  // are required for phi implementations and helps generate allocations
    90  // for 2-register architectures.
    91  
    92  // Note: regalloc generates a not-quite-SSA output. If we have:
    93  //
    94  //             b1: x = ... : AX
    95  //                 x2 = StoreReg x
    96  //                 ... AX gets reused for something else ...
    97  //                 if ... goto b3 else b4
    98  //
    99  //   b3: x3 = LoadReg x2 : BX       b4: x4 = LoadReg x2 : CX
   100  //       ... use x3 ...                 ... use x4 ...
   101  //
   102  //             b2: ... use x3 ...
   103  //
   104  // If b3 is the primary predecessor of b2, then we use x3 in b2 and
   105  // add a x4:CX->BX copy at the end of b4.
   106  // But the definition of x3 doesn't dominate b2.  We should really
   107  // insert a dummy phi at the start of b2 (x5=phi(x3,x4):BX) to keep
   108  // SSA form. For now, we ignore this problem as remaining in strict
   109  // SSA form isn't needed after regalloc. We'll just leave the use
   110  // of x3 not dominated by the definition of x3, and the CX->BX copy
   111  // will have no use (so don't run deadcode after regalloc!).
   112  // TODO: maybe we should introduce these extra phis?
   113  
   114  package ssa
   115  
   116  import (
   117  	"cmd/internal/objabi"
   118  	"cmd/internal/src"
   119  	"fmt"
   120  	"unsafe"
   121  )
   122  
   123  const (
   124  	moveSpills = iota
   125  	logSpills
   126  	regDebug
   127  	stackDebug
   128  )
   129  
   130  // distance is a measure of how far into the future values are used.
   131  // distance is measured in units of instructions.
   132  const (
   133  	likelyDistance   = 1
   134  	normalDistance   = 10
   135  	unlikelyDistance = 100
   136  )
   137  
   138  // regalloc performs register allocation on f. It sets f.RegAlloc
   139  // to the resulting allocation.
   140  func regalloc(f *Func) {
   141  	var s regAllocState
   142  	s.init(f)
   143  	s.regalloc(f)
   144  }
   145  
   146  type register uint8
   147  
   148  const noRegister register = 255
   149  
   150  type regMask uint64
   151  
   152  func (m regMask) String() string {
   153  	s := ""
   154  	for r := register(0); m != 0; r++ {
   155  		if m>>r&1 == 0 {
   156  			continue
   157  		}
   158  		m &^= regMask(1) << r
   159  		if s != "" {
   160  			s += " "
   161  		}
   162  		s += fmt.Sprintf("r%d", r)
   163  	}
   164  	return s
   165  }
   166  
   167  // countRegs returns the number of set bits in the register mask.
   168  func countRegs(r regMask) int {
   169  	n := 0
   170  	for r != 0 {
   171  		n += int(r & 1)
   172  		r >>= 1
   173  	}
   174  	return n
   175  }
   176  
   177  // pickReg picks an arbitrary register from the register mask.
   178  func pickReg(r regMask) register {
   179  	// pick the lowest one
   180  	if r == 0 {
   181  		panic("can't pick a register from an empty set")
   182  	}
   183  	for i := register(0); ; i++ {
   184  		if r&1 != 0 {
   185  			return i
   186  		}
   187  		r >>= 1
   188  	}
   189  }
   190  
   191  type use struct {
   192  	dist int32    // distance from start of the block to a use of a value
   193  	pos  src.XPos // source position of the use
   194  	next *use     // linked list of uses of a value in nondecreasing dist order
   195  }
   196  
   197  // A valState records the register allocation state for a (pre-regalloc) value.
   198  type valState struct {
   199  	regs              regMask // the set of registers holding a Value (usually just one)
   200  	uses              *use    // list of uses in this block
   201  	spill             *Value  // spilled copy of the Value (if any)
   202  	restoreMin        int32   // minimum of all restores' blocks' sdom.entry
   203  	restoreMax        int32   // maximum of all restores' blocks' sdom.exit
   204  	needReg           bool    // cached value of !v.Type.IsMemory() && !v.Type.IsVoid() && !.v.Type.IsFlags()
   205  	rematerializeable bool    // cached value of v.rematerializeable()
   206  }
   207  
   208  type regState struct {
   209  	v *Value // Original (preregalloc) Value stored in this register.
   210  	c *Value // A Value equal to v which is currently in a register.  Might be v or a copy of it.
   211  	// If a register is unused, v==c==nil
   212  }
   213  
   214  type regAllocState struct {
   215  	f *Func
   216  
   217  	sdom        SparseTree
   218  	registers   []Register
   219  	numRegs     register
   220  	SPReg       register
   221  	SBReg       register
   222  	GReg        register
   223  	allocatable regMask
   224  
   225  	// for each block, its primary predecessor.
   226  	// A predecessor of b is primary if it is the closest
   227  	// predecessor that appears before b in the layout order.
   228  	// We record the index in the Preds list where the primary predecessor sits.
   229  	primary []int32
   230  
   231  	// live values at the end of each block.  live[b.ID] is a list of value IDs
   232  	// which are live at the end of b, together with a count of how many instructions
   233  	// forward to the next use.
   234  	live [][]liveInfo
   235  	// desired register assignments at the end of each block.
   236  	// Note that this is a static map computed before allocation occurs. Dynamic
   237  	// register desires (from partially completed allocations) will trump
   238  	// this information.
   239  	desired []desiredState
   240  
   241  	// current state of each (preregalloc) Value
   242  	values []valState
   243  
   244  	// ID of SP, SB values
   245  	sp, sb ID
   246  
   247  	// For each Value, map from its value ID back to the
   248  	// preregalloc Value it was derived from.
   249  	orig []*Value
   250  
   251  	// current state of each register
   252  	regs []regState
   253  
   254  	// registers that contain values which can't be kicked out
   255  	nospill regMask
   256  
   257  	// mask of registers currently in use
   258  	used regMask
   259  
   260  	// mask of registers used in the current instruction
   261  	tmpused regMask
   262  
   263  	// current block we're working on
   264  	curBlock *Block
   265  
   266  	// cache of use records
   267  	freeUseRecords *use
   268  
   269  	// endRegs[blockid] is the register state at the end of each block.
   270  	// encoded as a set of endReg records.
   271  	endRegs [][]endReg
   272  
   273  	// startRegs[blockid] is the register state at the start of merge blocks.
   274  	// saved state does not include the state of phi ops in the block.
   275  	startRegs [][]startReg
   276  
   277  	// spillLive[blockid] is the set of live spills at the end of each block
   278  	spillLive [][]ID
   279  
   280  	// a set of copies we generated to move things around, and
   281  	// whether it is used in shuffle. Unused copies will be deleted.
   282  	copies map[*Value]bool
   283  
   284  	loopnest *loopnest
   285  }
   286  
   287  type endReg struct {
   288  	r register
   289  	v *Value // pre-regalloc value held in this register (TODO: can we use ID here?)
   290  	c *Value // cached version of the value
   291  }
   292  
   293  type startReg struct {
   294  	r   register
   295  	v   *Value   // pre-regalloc value needed in this register
   296  	c   *Value   // cached version of the value
   297  	pos src.XPos // source position of use of this register
   298  }
   299  
   300  // freeReg frees up register r. Any current user of r is kicked out.
   301  func (s *regAllocState) freeReg(r register) {
   302  	v := s.regs[r].v
   303  	if v == nil {
   304  		s.f.Fatalf("tried to free an already free register %d\n", r)
   305  	}
   306  
   307  	// Mark r as unused.
   308  	if s.f.pass.debug > regDebug {
   309  		fmt.Printf("freeReg %s (dump %s/%s)\n", s.registers[r].Name(), v, s.regs[r].c)
   310  	}
   311  	s.regs[r] = regState{}
   312  	s.values[v.ID].regs &^= regMask(1) << r
   313  	s.used &^= regMask(1) << r
   314  }
   315  
   316  // freeRegs frees up all registers listed in m.
   317  func (s *regAllocState) freeRegs(m regMask) {
   318  	for m&s.used != 0 {
   319  		s.freeReg(pickReg(m & s.used))
   320  	}
   321  }
   322  
   323  // setOrig records that c's original value is the same as
   324  // v's original value.
   325  func (s *regAllocState) setOrig(c *Value, v *Value) {
   326  	for int(c.ID) >= len(s.orig) {
   327  		s.orig = append(s.orig, nil)
   328  	}
   329  	if s.orig[c.ID] != nil {
   330  		s.f.Fatalf("orig value set twice %s %s", c, v)
   331  	}
   332  	s.orig[c.ID] = s.orig[v.ID]
   333  }
   334  
   335  // assignReg assigns register r to hold c, a copy of v.
   336  // r must be unused.
   337  func (s *regAllocState) assignReg(r register, v *Value, c *Value) {
   338  	if s.f.pass.debug > regDebug {
   339  		fmt.Printf("assignReg %s %s/%s\n", s.registers[r].Name(), v, c)
   340  	}
   341  	if s.regs[r].v != nil {
   342  		s.f.Fatalf("tried to assign register %d to %s/%s but it is already used by %s", r, v, c, s.regs[r].v)
   343  	}
   344  
   345  	// Update state.
   346  	s.regs[r] = regState{v, c}
   347  	s.values[v.ID].regs |= regMask(1) << r
   348  	s.used |= regMask(1) << r
   349  	s.f.setHome(c, &s.registers[r])
   350  }
   351  
   352  // allocReg chooses a register from the set of registers in mask.
   353  // If there is no unused register, a Value will be kicked out of
   354  // a register to make room.
   355  func (s *regAllocState) allocReg(mask regMask, v *Value) register {
   356  	mask &= s.allocatable
   357  	mask &^= s.nospill
   358  	if mask == 0 {
   359  		s.f.Fatalf("no register available for %s", v)
   360  	}
   361  
   362  	// Pick an unused register if one is available.
   363  	if mask&^s.used != 0 {
   364  		return pickReg(mask &^ s.used)
   365  	}
   366  
   367  	// Pick a value to spill. Spill the value with the
   368  	// farthest-in-the-future use.
   369  	// TODO: Prefer registers with already spilled Values?
   370  	// TODO: Modify preference using affinity graph.
   371  	// TODO: if a single value is in multiple registers, spill one of them
   372  	// before spilling a value in just a single register.
   373  
   374  	// Find a register to spill. We spill the register containing the value
   375  	// whose next use is as far in the future as possible.
   376  	// https://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm
   377  	var r register
   378  	maxuse := int32(-1)
   379  	for t := register(0); t < s.numRegs; t++ {
   380  		if mask>>t&1 == 0 {
   381  			continue
   382  		}
   383  		v := s.regs[t].v
   384  		if n := s.values[v.ID].uses.dist; n > maxuse {
   385  			// v's next use is farther in the future than any value
   386  			// we've seen so far. A new best spill candidate.
   387  			r = t
   388  			maxuse = n
   389  		}
   390  	}
   391  	if maxuse == -1 {
   392  		s.f.Fatalf("couldn't find register to spill")
   393  	}
   394  
   395  	// Try to move it around before kicking out, if there is a free register.
   396  	// We generate a Copy and record it. It will be deleted if never used.
   397  	v2 := s.regs[r].v
   398  	m := s.compatRegs(v2.Type) &^ s.used &^ s.tmpused &^ (regMask(1) << r)
   399  	if m != 0 && !s.values[v2.ID].rematerializeable && countRegs(s.values[v2.ID].regs) == 1 {
   400  		r2 := pickReg(m)
   401  		c := s.curBlock.NewValue1(v2.Pos, OpCopy, v2.Type, s.regs[r].c)
   402  		s.copies[c] = false
   403  		if s.f.pass.debug > regDebug {
   404  			fmt.Printf("copy %s to %s : %s\n", v2, c, s.registers[r2].Name())
   405  		}
   406  		s.setOrig(c, v2)
   407  		s.assignReg(r2, v2, c)
   408  	}
   409  	s.freeReg(r)
   410  	return r
   411  }
   412  
   413  // makeSpill returns a Value which represents the spilled value of v.
   414  // b is the block in which the spill is used.
   415  func (s *regAllocState) makeSpill(v *Value, b *Block) *Value {
   416  	vi := &s.values[v.ID]
   417  	if vi.spill != nil {
   418  		// Final block not known - keep track of subtree where restores reside.
   419  		vi.restoreMin = min32(vi.restoreMin, s.sdom[b.ID].entry)
   420  		vi.restoreMax = max32(vi.restoreMax, s.sdom[b.ID].exit)
   421  		return vi.spill
   422  	}
   423  	// Make a spill for v. We don't know where we want
   424  	// to put it yet, so we leave it blockless for now.
   425  	spill := s.f.newValueNoBlock(OpStoreReg, v.Type, v.Pos)
   426  	// We also don't know what the spill's arg will be.
   427  	// Leave it argless for now.
   428  	s.setOrig(spill, v)
   429  	vi.spill = spill
   430  	vi.restoreMin = s.sdom[b.ID].entry
   431  	vi.restoreMax = s.sdom[b.ID].exit
   432  	return spill
   433  }
   434  
   435  // allocValToReg allocates v to a register selected from regMask and
   436  // returns the register copy of v. Any previous user is kicked out and spilled
   437  // (if necessary). Load code is added at the current pc. If nospill is set the
   438  // allocated register is marked nospill so the assignment cannot be
   439  // undone until the caller allows it by clearing nospill. Returns a
   440  // *Value which is either v or a copy of v allocated to the chosen register.
   441  func (s *regAllocState) allocValToReg(v *Value, mask regMask, nospill bool, pos src.XPos) *Value {
   442  	vi := &s.values[v.ID]
   443  
   444  	// Check if v is already in a requested register.
   445  	if mask&vi.regs != 0 {
   446  		r := pickReg(mask & vi.regs)
   447  		if s.regs[r].v != v || s.regs[r].c == nil {
   448  			panic("bad register state")
   449  		}
   450  		if nospill {
   451  			s.nospill |= regMask(1) << r
   452  		}
   453  		return s.regs[r].c
   454  	}
   455  
   456  	// Allocate a register.
   457  	r := s.allocReg(mask, v)
   458  
   459  	// Allocate v to the new register.
   460  	var c *Value
   461  	if vi.regs != 0 {
   462  		// Copy from a register that v is already in.
   463  		r2 := pickReg(vi.regs)
   464  		if s.regs[r2].v != v {
   465  			panic("bad register state")
   466  		}
   467  		c = s.curBlock.NewValue1(pos, OpCopy, v.Type, s.regs[r2].c)
   468  	} else if v.rematerializeable() {
   469  		// Rematerialize instead of loading from the spill location.
   470  		c = v.copyInto(s.curBlock)
   471  	} else {
   472  		// Load v from its spill location.
   473  		spill := s.makeSpill(v, s.curBlock)
   474  		if s.f.pass.debug > logSpills {
   475  			s.f.Warnl(vi.spill.Pos, "load spill for %v from %v", v, spill)
   476  		}
   477  		c = s.curBlock.NewValue1(pos, OpLoadReg, v.Type, spill)
   478  	}
   479  	s.setOrig(c, v)
   480  	s.assignReg(r, v, c)
   481  	if nospill {
   482  		s.nospill |= regMask(1) << r
   483  	}
   484  	return c
   485  }
   486  
   487  // isLeaf reports whether f performs any calls.
   488  func isLeaf(f *Func) bool {
   489  	for _, b := range f.Blocks {
   490  		for _, v := range b.Values {
   491  			if opcodeTable[v.Op].call {
   492  				return false
   493  			}
   494  		}
   495  	}
   496  	return true
   497  }
   498  
   499  func (s *regAllocState) init(f *Func) {
   500  	s.f = f
   501  	s.f.RegAlloc = s.f.Cache.locs[:0]
   502  	s.registers = f.Config.registers
   503  	if nr := len(s.registers); nr == 0 || nr > int(noRegister) || nr > int(unsafe.Sizeof(regMask(0))*8) {
   504  		s.f.Fatalf("bad number of registers: %d", nr)
   505  	} else {
   506  		s.numRegs = register(nr)
   507  	}
   508  	// Locate SP, SB, and g registers.
   509  	s.SPReg = noRegister
   510  	s.SBReg = noRegister
   511  	s.GReg = noRegister
   512  	for r := register(0); r < s.numRegs; r++ {
   513  		switch s.registers[r].Name() {
   514  		case "SP":
   515  			s.SPReg = r
   516  		case "SB":
   517  			s.SBReg = r
   518  		case "g":
   519  			s.GReg = r
   520  		}
   521  	}
   522  	// Make sure we found all required registers.
   523  	switch noRegister {
   524  	case s.SPReg:
   525  		s.f.Fatalf("no SP register found")
   526  	case s.SBReg:
   527  		s.f.Fatalf("no SB register found")
   528  	case s.GReg:
   529  		if f.Config.hasGReg {
   530  			s.f.Fatalf("no g register found")
   531  		}
   532  	}
   533  
   534  	// Figure out which registers we're allowed to use.
   535  	s.allocatable = s.f.Config.gpRegMask | s.f.Config.fpRegMask | s.f.Config.specialRegMask
   536  	s.allocatable &^= 1 << s.SPReg
   537  	s.allocatable &^= 1 << s.SBReg
   538  	if s.f.Config.hasGReg {
   539  		s.allocatable &^= 1 << s.GReg
   540  	}
   541  	if s.f.Config.ctxt.Framepointer_enabled && s.f.Config.FPReg >= 0 {
   542  		s.allocatable &^= 1 << uint(s.f.Config.FPReg)
   543  	}
   544  	if s.f.Config.ctxt.Flag_shared {
   545  		switch s.f.Config.arch {
   546  		case "ppc64le": // R2 already reserved.
   547  			s.allocatable &^= 1 << 12 // R12
   548  		}
   549  	}
   550  	if s.f.Config.LinkReg != -1 {
   551  		if isLeaf(f) {
   552  			// Leaf functions don't save/restore the link register.
   553  			s.allocatable &^= 1 << uint(s.f.Config.LinkReg)
   554  		}
   555  		if s.f.Config.arch == "arm" && objabi.GOARM == 5 {
   556  			// On ARMv5 we insert softfloat calls at each FP instruction.
   557  			// This clobbers LR almost everywhere. Disable allocating LR
   558  			// on ARMv5.
   559  			s.allocatable &^= 1 << uint(s.f.Config.LinkReg)
   560  		}
   561  	}
   562  	if s.f.Config.ctxt.Flag_dynlink {
   563  		switch s.f.Config.arch {
   564  		case "amd64":
   565  			s.allocatable &^= 1 << 15 // R15
   566  		case "arm":
   567  			s.allocatable &^= 1 << 9 // R9
   568  		case "ppc64le": // R2 already reserved.
   569  			s.allocatable &^= 1 << 12 // R12
   570  		case "arm64":
   571  			// nothing to do?
   572  		case "386":
   573  			// nothing to do.
   574  			// Note that for Flag_shared (position independent code)
   575  			// we do need to be careful, but that carefulness is hidden
   576  			// in the rewrite rules so we always have a free register
   577  			// available for global load/stores. See gen/386.rules (search for Flag_shared).
   578  		case "s390x":
   579  			// nothing to do, R10 & R11 already reserved
   580  		default:
   581  			s.f.fe.Fatalf(src.NoXPos, "arch %s not implemented", s.f.Config.arch)
   582  		}
   583  	}
   584  	if s.f.Config.nacl {
   585  		switch s.f.Config.arch {
   586  		case "arm":
   587  			s.allocatable &^= 1 << 9 // R9 is "thread pointer" on nacl/arm
   588  		case "amd64p32":
   589  			s.allocatable &^= 1 << 5  // BP - reserved for nacl
   590  			s.allocatable &^= 1 << 15 // R15 - reserved for nacl
   591  		}
   592  	}
   593  	if s.f.Config.use387 {
   594  		s.allocatable &^= 1 << 15 // X7 disallowed (one 387 register is used as scratch space during SSE->387 generation in ../x86/387.go)
   595  	}
   596  
   597  	s.regs = make([]regState, s.numRegs)
   598  	s.values = make([]valState, f.NumValues())
   599  	s.orig = make([]*Value, f.NumValues())
   600  	s.copies = make(map[*Value]bool)
   601  	for _, b := range f.Blocks {
   602  		for _, v := range b.Values {
   603  			if !v.Type.IsMemory() && !v.Type.IsVoid() && !v.Type.IsFlags() && !v.Type.IsTuple() {
   604  				s.values[v.ID].needReg = true
   605  				s.values[v.ID].rematerializeable = v.rematerializeable()
   606  				s.orig[v.ID] = v
   607  			}
   608  			// Note: needReg is false for values returning Tuple types.
   609  			// Instead, we mark the corresponding Selects as needReg.
   610  		}
   611  	}
   612  	s.computeLive()
   613  
   614  	// Compute block order. This array allows us to distinguish forward edges
   615  	// from backward edges and compute how far they go.
   616  	blockOrder := make([]int32, f.NumBlocks())
   617  	for i, b := range f.Blocks {
   618  		blockOrder[b.ID] = int32(i)
   619  	}
   620  
   621  	// Compute primary predecessors.
   622  	s.primary = make([]int32, f.NumBlocks())
   623  	for _, b := range f.Blocks {
   624  		best := -1
   625  		for i, e := range b.Preds {
   626  			p := e.b
   627  			if blockOrder[p.ID] >= blockOrder[b.ID] {
   628  				continue // backward edge
   629  			}
   630  			if best == -1 || blockOrder[p.ID] > blockOrder[b.Preds[best].b.ID] {
   631  				best = i
   632  			}
   633  		}
   634  		s.primary[b.ID] = int32(best)
   635  	}
   636  
   637  	s.endRegs = make([][]endReg, f.NumBlocks())
   638  	s.startRegs = make([][]startReg, f.NumBlocks())
   639  	s.spillLive = make([][]ID, f.NumBlocks())
   640  	s.sdom = f.sdom()
   641  }
   642  
   643  // Adds a use record for id at distance dist from the start of the block.
   644  // All calls to addUse must happen with nonincreasing dist.
   645  func (s *regAllocState) addUse(id ID, dist int32, pos src.XPos) {
   646  	r := s.freeUseRecords
   647  	if r != nil {
   648  		s.freeUseRecords = r.next
   649  	} else {
   650  		r = &use{}
   651  	}
   652  	r.dist = dist
   653  	r.pos = pos
   654  	r.next = s.values[id].uses
   655  	s.values[id].uses = r
   656  	if r.next != nil && dist > r.next.dist {
   657  		s.f.Fatalf("uses added in wrong order")
   658  	}
   659  }
   660  
   661  // advanceUses advances the uses of v's args from the state before v to the state after v.
   662  // Any values which have no more uses are deallocated from registers.
   663  func (s *regAllocState) advanceUses(v *Value) {
   664  	for _, a := range v.Args {
   665  		if !s.values[a.ID].needReg {
   666  			continue
   667  		}
   668  		ai := &s.values[a.ID]
   669  		r := ai.uses
   670  		ai.uses = r.next
   671  		if r.next == nil {
   672  			// Value is dead, free all registers that hold it.
   673  			s.freeRegs(ai.regs)
   674  		}
   675  		r.next = s.freeUseRecords
   676  		s.freeUseRecords = r
   677  	}
   678  }
   679  
   680  // liveAfterCurrentInstruction reports whether v is live after
   681  // the current instruction is completed.  v must be used by the
   682  // current instruction.
   683  func (s *regAllocState) liveAfterCurrentInstruction(v *Value) bool {
   684  	u := s.values[v.ID].uses
   685  	d := u.dist
   686  	for u != nil && u.dist == d {
   687  		u = u.next
   688  	}
   689  	return u != nil && u.dist > d
   690  }
   691  
   692  // Sets the state of the registers to that encoded in regs.
   693  func (s *regAllocState) setState(regs []endReg) {
   694  	s.freeRegs(s.used)
   695  	for _, x := range regs {
   696  		s.assignReg(x.r, x.v, x.c)
   697  	}
   698  }
   699  
   700  // compatRegs returns the set of registers which can store a type t.
   701  func (s *regAllocState) compatRegs(t Type) regMask {
   702  	var m regMask
   703  	if t.IsTuple() || t.IsFlags() {
   704  		return 0
   705  	}
   706  	if t.IsFloat() || t == TypeInt128 {
   707  		m = s.f.Config.fpRegMask
   708  	} else {
   709  		m = s.f.Config.gpRegMask
   710  	}
   711  	return m & s.allocatable
   712  }
   713  
   714  func (s *regAllocState) regalloc(f *Func) {
   715  	regValLiveSet := f.newSparseSet(f.NumValues()) // set of values that may be live in register
   716  	defer f.retSparseSet(regValLiveSet)
   717  	var oldSched []*Value
   718  	var phis []*Value
   719  	var phiRegs []register
   720  	var args []*Value
   721  
   722  	// Data structure used for computing desired registers.
   723  	var desired desiredState
   724  
   725  	// Desired registers for inputs & outputs for each instruction in the block.
   726  	type dentry struct {
   727  		out [4]register    // desired output registers
   728  		in  [3][4]register // desired input registers (for inputs 0,1, and 2)
   729  	}
   730  	var dinfo []dentry
   731  
   732  	if f.Entry != f.Blocks[0] {
   733  		f.Fatalf("entry block must be first")
   734  	}
   735  
   736  	for _, b := range f.Blocks {
   737  		s.curBlock = b
   738  
   739  		// Initialize regValLiveSet and uses fields for this block.
   740  		// Walk backwards through the block doing liveness analysis.
   741  		regValLiveSet.clear()
   742  		for _, e := range s.live[b.ID] {
   743  			s.addUse(e.ID, int32(len(b.Values))+e.dist, e.pos) // pseudo-uses from beyond end of block
   744  			regValLiveSet.add(e.ID)
   745  		}
   746  		if v := b.Control; v != nil && s.values[v.ID].needReg {
   747  			s.addUse(v.ID, int32(len(b.Values)), b.Pos) // pseudo-use by control value
   748  			regValLiveSet.add(v.ID)
   749  		}
   750  		for i := len(b.Values) - 1; i >= 0; i-- {
   751  			v := b.Values[i]
   752  			regValLiveSet.remove(v.ID)
   753  			if v.Op == OpPhi {
   754  				// Remove v from the live set, but don't add
   755  				// any inputs. This is the state the len(b.Preds)>1
   756  				// case below desires; it wants to process phis specially.
   757  				continue
   758  			}
   759  			if opcodeTable[v.Op].call {
   760  				// Function call clobbers all the registers but SP and SB.
   761  				regValLiveSet.clear()
   762  				if s.sp != 0 && s.values[s.sp].uses != nil {
   763  					regValLiveSet.add(s.sp)
   764  				}
   765  				if s.sb != 0 && s.values[s.sb].uses != nil {
   766  					regValLiveSet.add(s.sb)
   767  				}
   768  			}
   769  			for _, a := range v.Args {
   770  				if !s.values[a.ID].needReg {
   771  					continue
   772  				}
   773  				s.addUse(a.ID, int32(i), v.Pos)
   774  				regValLiveSet.add(a.ID)
   775  			}
   776  		}
   777  		if s.f.pass.debug > regDebug {
   778  			fmt.Printf("uses for %s:%s\n", s.f.Name, b)
   779  			for i := range s.values {
   780  				vi := &s.values[i]
   781  				u := vi.uses
   782  				if u == nil {
   783  					continue
   784  				}
   785  				fmt.Printf("  v%d:", i)
   786  				for u != nil {
   787  					fmt.Printf(" %d", u.dist)
   788  					u = u.next
   789  				}
   790  				fmt.Println()
   791  			}
   792  		}
   793  
   794  		// Make a copy of the block schedule so we can generate a new one in place.
   795  		// We make a separate copy for phis and regular values.
   796  		nphi := 0
   797  		for _, v := range b.Values {
   798  			if v.Op != OpPhi {
   799  				break
   800  			}
   801  			nphi++
   802  		}
   803  		phis = append(phis[:0], b.Values[:nphi]...)
   804  		oldSched = append(oldSched[:0], b.Values[nphi:]...)
   805  		b.Values = b.Values[:0]
   806  
   807  		// Initialize start state of block.
   808  		if b == f.Entry {
   809  			// Regalloc state is empty to start.
   810  			if nphi > 0 {
   811  				f.Fatalf("phis in entry block")
   812  			}
   813  		} else if len(b.Preds) == 1 {
   814  			// Start regalloc state with the end state of the previous block.
   815  			s.setState(s.endRegs[b.Preds[0].b.ID])
   816  			if nphi > 0 {
   817  				f.Fatalf("phis in single-predecessor block")
   818  			}
   819  			// Drop any values which are no longer live.
   820  			// This may happen because at the end of p, a value may be
   821  			// live but only used by some other successor of p.
   822  			for r := register(0); r < s.numRegs; r++ {
   823  				v := s.regs[r].v
   824  				if v != nil && !regValLiveSet.contains(v.ID) {
   825  					s.freeReg(r)
   826  				}
   827  			}
   828  		} else {
   829  			// This is the complicated case. We have more than one predecessor,
   830  			// which means we may have Phi ops.
   831  
   832  			// Copy phi ops into new schedule.
   833  			b.Values = append(b.Values, phis...)
   834  
   835  			// Start with the final register state of the primary predecessor
   836  			idx := s.primary[b.ID]
   837  			if idx < 0 {
   838  				f.Fatalf("block with no primary predecessor %s", b)
   839  			}
   840  			p := b.Preds[idx].b
   841  			s.setState(s.endRegs[p.ID])
   842  
   843  			if s.f.pass.debug > regDebug {
   844  				fmt.Printf("starting merge block %s with end state of %s:\n", b, p)
   845  				for _, x := range s.endRegs[p.ID] {
   846  					fmt.Printf("  %s: orig:%s cache:%s\n", s.registers[x.r].Name(), x.v, x.c)
   847  				}
   848  			}
   849  
   850  			// Decide on registers for phi ops. Use the registers determined
   851  			// by the primary predecessor if we can.
   852  			// TODO: pick best of (already processed) predecessors?
   853  			// Majority vote?  Deepest nesting level?
   854  			phiRegs = phiRegs[:0]
   855  			var phiUsed regMask
   856  			for _, v := range phis {
   857  				if !s.values[v.ID].needReg {
   858  					phiRegs = append(phiRegs, noRegister)
   859  					continue
   860  				}
   861  				a := v.Args[idx]
   862  				// Some instructions target not-allocatable registers.
   863  				// They're not suitable for further (phi-function) allocation.
   864  				m := s.values[a.ID].regs &^ phiUsed & s.allocatable
   865  				if m != 0 {
   866  					r := pickReg(m)
   867  					phiUsed |= regMask(1) << r
   868  					phiRegs = append(phiRegs, r)
   869  				} else {
   870  					phiRegs = append(phiRegs, noRegister)
   871  				}
   872  			}
   873  
   874  			// Second pass - deallocate any phi inputs which are now dead.
   875  			for i, v := range phis {
   876  				if !s.values[v.ID].needReg {
   877  					continue
   878  				}
   879  				a := v.Args[idx]
   880  				if !regValLiveSet.contains(a.ID) {
   881  					// Input is dead beyond the phi, deallocate
   882  					// anywhere else it might live.
   883  					s.freeRegs(s.values[a.ID].regs)
   884  				} else {
   885  					// Input is still live.
   886  					// Try to move it around before kicking out, if there is a free register.
   887  					// We generate a Copy in the predecessor block and record it. It will be
   888  					// deleted if never used.
   889  					r := phiRegs[i]
   890  					if r == noRegister {
   891  						continue
   892  					}
   893  					// Pick a free register. At this point some registers used in the predecessor
   894  					// block may have been deallocated. Those are the ones used for Phis. Exclude
   895  					// them (and they are not going to be helpful anyway).
   896  					m := s.compatRegs(a.Type) &^ s.used &^ phiUsed
   897  					if m != 0 && !s.values[a.ID].rematerializeable && countRegs(s.values[a.ID].regs) == 1 {
   898  						r2 := pickReg(m)
   899  						c := p.NewValue1(a.Pos, OpCopy, a.Type, s.regs[r].c)
   900  						s.copies[c] = false
   901  						if s.f.pass.debug > regDebug {
   902  							fmt.Printf("copy %s to %s : %s\n", a, c, s.registers[r2].Name())
   903  						}
   904  						s.setOrig(c, a)
   905  						s.assignReg(r2, a, c)
   906  						s.endRegs[p.ID] = append(s.endRegs[p.ID], endReg{r2, a, c})
   907  					}
   908  					s.freeReg(r)
   909  				}
   910  			}
   911  
   912  			// Third pass - pick registers for phis whose inputs
   913  			// were not in a register.
   914  			for i, v := range phis {
   915  				if !s.values[v.ID].needReg {
   916  					continue
   917  				}
   918  				if phiRegs[i] != noRegister {
   919  					continue
   920  				}
   921  				if s.f.Config.use387 && v.Type.IsFloat() {
   922  					continue // 387 can't handle floats in registers between blocks
   923  				}
   924  				m := s.compatRegs(v.Type) &^ phiUsed &^ s.used
   925  				if m != 0 {
   926  					r := pickReg(m)
   927  					phiRegs[i] = r
   928  					phiUsed |= regMask(1) << r
   929  				}
   930  			}
   931  
   932  			// Set registers for phis. Add phi spill code.
   933  			for i, v := range phis {
   934  				if !s.values[v.ID].needReg {
   935  					continue
   936  				}
   937  				r := phiRegs[i]
   938  				if r == noRegister {
   939  					// stack-based phi
   940  					// Spills will be inserted in all the predecessors below.
   941  					s.values[v.ID].spill = v // v starts life spilled
   942  					continue
   943  				}
   944  				// register-based phi
   945  				s.assignReg(r, v, v)
   946  			}
   947  
   948  			// Deallocate any values which are no longer live. Phis are excluded.
   949  			for r := register(0); r < s.numRegs; r++ {
   950  				if phiUsed>>r&1 != 0 {
   951  					continue
   952  				}
   953  				v := s.regs[r].v
   954  				if v != nil && !regValLiveSet.contains(v.ID) {
   955  					s.freeReg(r)
   956  				}
   957  			}
   958  
   959  			// Save the starting state for use by merge edges.
   960  			var regList []startReg
   961  			for r := register(0); r < s.numRegs; r++ {
   962  				v := s.regs[r].v
   963  				if v == nil {
   964  					continue
   965  				}
   966  				if phiUsed>>r&1 != 0 {
   967  					// Skip registers that phis used, we'll handle those
   968  					// specially during merge edge processing.
   969  					continue
   970  				}
   971  				regList = append(regList, startReg{r, v, s.regs[r].c, s.values[v.ID].uses.pos})
   972  			}
   973  			s.startRegs[b.ID] = regList
   974  
   975  			if s.f.pass.debug > regDebug {
   976  				fmt.Printf("after phis\n")
   977  				for _, x := range s.startRegs[b.ID] {
   978  					fmt.Printf("  %s: v%d\n", s.registers[x.r].Name(), x.v.ID)
   979  				}
   980  			}
   981  		}
   982  
   983  		// Allocate space to record the desired registers for each value.
   984  		dinfo = dinfo[:0]
   985  		for i := 0; i < len(oldSched); i++ {
   986  			dinfo = append(dinfo, dentry{})
   987  		}
   988  
   989  		// Load static desired register info at the end of the block.
   990  		desired.copy(&s.desired[b.ID])
   991  
   992  		// Check actual assigned registers at the start of the next block(s).
   993  		// Dynamically assigned registers will trump the static
   994  		// desired registers computed during liveness analysis.
   995  		// Note that we do this phase after startRegs is set above, so that
   996  		// we get the right behavior for a block which branches to itself.
   997  		for _, e := range b.Succs {
   998  			succ := e.b
   999  			// TODO: prioritize likely successor?
  1000  			for _, x := range s.startRegs[succ.ID] {
  1001  				desired.add(x.v.ID, x.r)
  1002  			}
  1003  			// Process phi ops in succ.
  1004  			pidx := e.i
  1005  			for _, v := range succ.Values {
  1006  				if v.Op != OpPhi {
  1007  					break
  1008  				}
  1009  				if !s.values[v.ID].needReg {
  1010  					continue
  1011  				}
  1012  				rp, ok := s.f.getHome(v.ID).(*Register)
  1013  				if !ok {
  1014  					continue
  1015  				}
  1016  				desired.add(v.Args[pidx].ID, register(rp.num))
  1017  			}
  1018  		}
  1019  		// Walk values backwards computing desired register info.
  1020  		// See computeLive for more comments.
  1021  		for i := len(oldSched) - 1; i >= 0; i-- {
  1022  			v := oldSched[i]
  1023  			prefs := desired.remove(v.ID)
  1024  			desired.clobber(opcodeTable[v.Op].reg.clobbers)
  1025  			for _, j := range opcodeTable[v.Op].reg.inputs {
  1026  				if countRegs(j.regs) != 1 {
  1027  					continue
  1028  				}
  1029  				desired.clobber(j.regs)
  1030  				desired.add(v.Args[j.idx].ID, pickReg(j.regs))
  1031  			}
  1032  			if opcodeTable[v.Op].resultInArg0 {
  1033  				if opcodeTable[v.Op].commutative {
  1034  					desired.addList(v.Args[1].ID, prefs)
  1035  				}
  1036  				desired.addList(v.Args[0].ID, prefs)
  1037  			}
  1038  			// Save desired registers for this value.
  1039  			dinfo[i].out = prefs
  1040  			for j, a := range v.Args {
  1041  				if j >= len(dinfo[i].in) {
  1042  					break
  1043  				}
  1044  				dinfo[i].in[j] = desired.get(a.ID)
  1045  			}
  1046  		}
  1047  
  1048  		// Process all the non-phi values.
  1049  		for idx, v := range oldSched {
  1050  			if s.f.pass.debug > regDebug {
  1051  				fmt.Printf("  processing %s\n", v.LongString())
  1052  			}
  1053  			regspec := opcodeTable[v.Op].reg
  1054  			if v.Op == OpPhi {
  1055  				f.Fatalf("phi %s not at start of block", v)
  1056  			}
  1057  			if v.Op == OpSP {
  1058  				s.assignReg(s.SPReg, v, v)
  1059  				b.Values = append(b.Values, v)
  1060  				s.advanceUses(v)
  1061  				s.sp = v.ID
  1062  				continue
  1063  			}
  1064  			if v.Op == OpSB {
  1065  				s.assignReg(s.SBReg, v, v)
  1066  				b.Values = append(b.Values, v)
  1067  				s.advanceUses(v)
  1068  				s.sb = v.ID
  1069  				continue
  1070  			}
  1071  			if v.Op == OpSelect0 || v.Op == OpSelect1 {
  1072  				if s.values[v.ID].needReg {
  1073  					var i = 0
  1074  					if v.Op == OpSelect1 {
  1075  						i = 1
  1076  					}
  1077  					s.assignReg(register(s.f.getHome(v.Args[0].ID).(LocPair)[i].(*Register).num), v, v)
  1078  				}
  1079  				b.Values = append(b.Values, v)
  1080  				s.advanceUses(v)
  1081  				goto issueSpill
  1082  			}
  1083  			if v.Op == OpGetG && s.f.Config.hasGReg {
  1084  				// use hardware g register
  1085  				if s.regs[s.GReg].v != nil {
  1086  					s.freeReg(s.GReg) // kick out the old value
  1087  				}
  1088  				s.assignReg(s.GReg, v, v)
  1089  				b.Values = append(b.Values, v)
  1090  				s.advanceUses(v)
  1091  				goto issueSpill
  1092  			}
  1093  			if v.Op == OpArg {
  1094  				// Args are "pre-spilled" values. We don't allocate
  1095  				// any register here. We just set up the spill pointer to
  1096  				// point at itself and any later user will restore it to use it.
  1097  				s.values[v.ID].spill = v
  1098  				b.Values = append(b.Values, v)
  1099  				s.advanceUses(v)
  1100  				continue
  1101  			}
  1102  			if v.Op == OpKeepAlive {
  1103  				// Make sure the argument to v is still live here.
  1104  				s.advanceUses(v)
  1105  				vi := &s.values[v.Args[0].ID]
  1106  				if vi.spill != nil {
  1107  					// Use the spill location.
  1108  					v.SetArg(0, vi.spill)
  1109  				} else {
  1110  					// No need to keep unspilled values live.
  1111  					// These are typically rematerializeable constants like nil,
  1112  					// or values of a variable that were modified since the last call.
  1113  					v.Op = OpCopy
  1114  					v.SetArgs1(v.Args[1])
  1115  				}
  1116  				b.Values = append(b.Values, v)
  1117  				continue
  1118  			}
  1119  			if len(regspec.inputs) == 0 && len(regspec.outputs) == 0 {
  1120  				// No register allocation required (or none specified yet)
  1121  				s.freeRegs(regspec.clobbers)
  1122  				b.Values = append(b.Values, v)
  1123  				s.advanceUses(v)
  1124  				continue
  1125  			}
  1126  
  1127  			if s.values[v.ID].rematerializeable {
  1128  				// Value is rematerializeable, don't issue it here.
  1129  				// It will get issued just before each use (see
  1130  				// allocValueToReg).
  1131  				for _, a := range v.Args {
  1132  					a.Uses--
  1133  				}
  1134  				s.advanceUses(v)
  1135  				continue
  1136  			}
  1137  
  1138  			if s.f.pass.debug > regDebug {
  1139  				fmt.Printf("value %s\n", v.LongString())
  1140  				fmt.Printf("  out:")
  1141  				for _, r := range dinfo[idx].out {
  1142  					if r != noRegister {
  1143  						fmt.Printf(" %s", s.registers[r].Name())
  1144  					}
  1145  				}
  1146  				fmt.Println()
  1147  				for i := 0; i < len(v.Args) && i < 3; i++ {
  1148  					fmt.Printf("  in%d:", i)
  1149  					for _, r := range dinfo[idx].in[i] {
  1150  						if r != noRegister {
  1151  							fmt.Printf(" %s", s.registers[r].Name())
  1152  						}
  1153  					}
  1154  					fmt.Println()
  1155  				}
  1156  			}
  1157  
  1158  			// Move arguments to registers. Process in an ordering defined
  1159  			// by the register specification (most constrained first).
  1160  			args = append(args[:0], v.Args...)
  1161  			for _, i := range regspec.inputs {
  1162  				mask := i.regs
  1163  				if mask&s.values[args[i.idx].ID].regs == 0 {
  1164  					// Need a new register for the input.
  1165  					mask &= s.allocatable
  1166  					mask &^= s.nospill
  1167  					// Used desired register if available.
  1168  					if i.idx < 3 {
  1169  						for _, r := range dinfo[idx].in[i.idx] {
  1170  							if r != noRegister && (mask&^s.used)>>r&1 != 0 {
  1171  								// Desired register is allowed and unused.
  1172  								mask = regMask(1) << r
  1173  								break
  1174  							}
  1175  						}
  1176  					}
  1177  					// Avoid registers we're saving for other values.
  1178  					if mask&^desired.avoid != 0 {
  1179  						mask &^= desired.avoid
  1180  					}
  1181  				}
  1182  				args[i.idx] = s.allocValToReg(args[i.idx], mask, true, v.Pos)
  1183  			}
  1184  
  1185  			// If the output clobbers the input register, make sure we have
  1186  			// at least two copies of the input register so we don't
  1187  			// have to reload the value from the spill location.
  1188  			if opcodeTable[v.Op].resultInArg0 {
  1189  				var m regMask
  1190  				if !s.liveAfterCurrentInstruction(v.Args[0]) {
  1191  					// arg0 is dead.  We can clobber its register.
  1192  					goto ok
  1193  				}
  1194  				if s.values[v.Args[0].ID].rematerializeable {
  1195  					// We can rematerialize the input, don't worry about clobbering it.
  1196  					goto ok
  1197  				}
  1198  				if countRegs(s.values[v.Args[0].ID].regs) >= 2 {
  1199  					// we have at least 2 copies of arg0.  We can afford to clobber one.
  1200  					goto ok
  1201  				}
  1202  				if opcodeTable[v.Op].commutative {
  1203  					if !s.liveAfterCurrentInstruction(v.Args[1]) {
  1204  						args[0], args[1] = args[1], args[0]
  1205  						goto ok
  1206  					}
  1207  					if s.values[v.Args[1].ID].rematerializeable {
  1208  						args[0], args[1] = args[1], args[0]
  1209  						goto ok
  1210  					}
  1211  					if countRegs(s.values[v.Args[1].ID].regs) >= 2 {
  1212  						args[0], args[1] = args[1], args[0]
  1213  						goto ok
  1214  					}
  1215  				}
  1216  
  1217  				// We can't overwrite arg0 (or arg1, if commutative).  So we
  1218  				// need to make a copy of an input so we have a register we can modify.
  1219  
  1220  				// Possible new registers to copy into.
  1221  				m = s.compatRegs(v.Args[0].Type) &^ s.used
  1222  				if m == 0 {
  1223  					// No free registers.  In this case we'll just clobber
  1224  					// an input and future uses of that input must use a restore.
  1225  					// TODO(khr): We should really do this like allocReg does it,
  1226  					// spilling the value with the most distant next use.
  1227  					goto ok
  1228  				}
  1229  
  1230  				// Try to move an input to the desired output.
  1231  				for _, r := range dinfo[idx].out {
  1232  					if r != noRegister && m>>r&1 != 0 {
  1233  						m = regMask(1) << r
  1234  						args[0] = s.allocValToReg(v.Args[0], m, true, v.Pos)
  1235  						// Note: we update args[0] so the instruction will
  1236  						// use the register copy we just made.
  1237  						goto ok
  1238  					}
  1239  				}
  1240  				// Try to copy input to its desired location & use its old
  1241  				// location as the result register.
  1242  				for _, r := range dinfo[idx].in[0] {
  1243  					if r != noRegister && m>>r&1 != 0 {
  1244  						m = regMask(1) << r
  1245  						c := s.allocValToReg(v.Args[0], m, true, v.Pos)
  1246  						s.copies[c] = false
  1247  						// Note: no update to args[0] so the instruction will
  1248  						// use the original copy.
  1249  						goto ok
  1250  					}
  1251  				}
  1252  				if opcodeTable[v.Op].commutative {
  1253  					for _, r := range dinfo[idx].in[1] {
  1254  						if r != noRegister && m>>r&1 != 0 {
  1255  							m = regMask(1) << r
  1256  							c := s.allocValToReg(v.Args[1], m, true, v.Pos)
  1257  							s.copies[c] = false
  1258  							args[0], args[1] = args[1], args[0]
  1259  							goto ok
  1260  						}
  1261  					}
  1262  				}
  1263  				// Avoid future fixed uses if we can.
  1264  				if m&^desired.avoid != 0 {
  1265  					m &^= desired.avoid
  1266  				}
  1267  				// Save input 0 to a new register so we can clobber it.
  1268  				c := s.allocValToReg(v.Args[0], m, true, v.Pos)
  1269  				s.copies[c] = false
  1270  			}
  1271  
  1272  		ok:
  1273  			// Now that all args are in regs, we're ready to issue the value itself.
  1274  			// Before we pick a register for the output value, allow input registers
  1275  			// to be deallocated. We do this here so that the output can use the
  1276  			// same register as a dying input.
  1277  			if !opcodeTable[v.Op].resultNotInArgs {
  1278  				s.tmpused = s.nospill
  1279  				s.nospill = 0
  1280  				s.advanceUses(v) // frees any registers holding args that are no longer live
  1281  			}
  1282  
  1283  			// Dump any registers which will be clobbered
  1284  			s.freeRegs(regspec.clobbers)
  1285  			s.tmpused |= regspec.clobbers
  1286  
  1287  			// Pick registers for outputs.
  1288  			{
  1289  				outRegs := [2]register{noRegister, noRegister}
  1290  				var used regMask
  1291  				for _, out := range regspec.outputs {
  1292  					mask := out.regs & s.allocatable &^ used
  1293  					if mask == 0 {
  1294  						continue
  1295  					}
  1296  					if opcodeTable[v.Op].resultInArg0 && out.idx == 0 {
  1297  						if !opcodeTable[v.Op].commutative {
  1298  							// Output must use the same register as input 0.
  1299  							r := register(s.f.getHome(args[0].ID).(*Register).num)
  1300  							mask = regMask(1) << r
  1301  						} else {
  1302  							// Output must use the same register as input 0 or 1.
  1303  							r0 := register(s.f.getHome(args[0].ID).(*Register).num)
  1304  							r1 := register(s.f.getHome(args[1].ID).(*Register).num)
  1305  							// Check r0 and r1 for desired output register.
  1306  							found := false
  1307  							for _, r := range dinfo[idx].out {
  1308  								if (r == r0 || r == r1) && (mask&^s.used)>>r&1 != 0 {
  1309  									mask = regMask(1) << r
  1310  									found = true
  1311  									if r == r1 {
  1312  										args[0], args[1] = args[1], args[0]
  1313  									}
  1314  									break
  1315  								}
  1316  							}
  1317  							if !found {
  1318  								// Neither are desired, pick r0.
  1319  								mask = regMask(1) << r0
  1320  							}
  1321  						}
  1322  					}
  1323  					for _, r := range dinfo[idx].out {
  1324  						if r != noRegister && (mask&^s.used)>>r&1 != 0 {
  1325  							// Desired register is allowed and unused.
  1326  							mask = regMask(1) << r
  1327  							break
  1328  						}
  1329  					}
  1330  					// Avoid registers we're saving for other values.
  1331  					if mask&^desired.avoid != 0 {
  1332  						mask &^= desired.avoid
  1333  					}
  1334  					r := s.allocReg(mask, v)
  1335  					outRegs[out.idx] = r
  1336  					used |= regMask(1) << r
  1337  					s.tmpused |= regMask(1) << r
  1338  				}
  1339  				// Record register choices
  1340  				if v.Type.IsTuple() {
  1341  					var outLocs LocPair
  1342  					if r := outRegs[0]; r != noRegister {
  1343  						outLocs[0] = &s.registers[r]
  1344  					}
  1345  					if r := outRegs[1]; r != noRegister {
  1346  						outLocs[1] = &s.registers[r]
  1347  					}
  1348  					s.f.setHome(v, outLocs)
  1349  					// Note that subsequent SelectX instructions will do the assignReg calls.
  1350  				} else {
  1351  					if r := outRegs[0]; r != noRegister {
  1352  						s.assignReg(r, v, v)
  1353  					}
  1354  				}
  1355  			}
  1356  
  1357  			// deallocate dead args, if we have not done so
  1358  			if opcodeTable[v.Op].resultNotInArgs {
  1359  				s.nospill = 0
  1360  				s.advanceUses(v) // frees any registers holding args that are no longer live
  1361  			}
  1362  			s.tmpused = 0
  1363  
  1364  			// Issue the Value itself.
  1365  			for i, a := range args {
  1366  				v.SetArg(i, a) // use register version of arguments
  1367  			}
  1368  			b.Values = append(b.Values, v)
  1369  
  1370  		issueSpill:
  1371  		}
  1372  
  1373  		// Load control value into reg.
  1374  		if v := b.Control; v != nil && s.values[v.ID].needReg {
  1375  			if s.f.pass.debug > regDebug {
  1376  				fmt.Printf("  processing control %s\n", v.LongString())
  1377  			}
  1378  			// We assume that a control input can be passed in any
  1379  			// type-compatible register. If this turns out not to be true,
  1380  			// we'll need to introduce a regspec for a block's control value.
  1381  			b.Control = s.allocValToReg(v, s.compatRegs(v.Type), false, b.Pos)
  1382  			if b.Control != v {
  1383  				v.Uses--
  1384  				b.Control.Uses++
  1385  			}
  1386  			// Remove this use from the uses list.
  1387  			vi := &s.values[v.ID]
  1388  			u := vi.uses
  1389  			vi.uses = u.next
  1390  			if u.next == nil {
  1391  				s.freeRegs(vi.regs) // value is dead
  1392  			}
  1393  			u.next = s.freeUseRecords
  1394  			s.freeUseRecords = u
  1395  		}
  1396  
  1397  		// Spill any values that can't live across basic block boundaries.
  1398  		if s.f.Config.use387 {
  1399  			s.freeRegs(s.f.Config.fpRegMask)
  1400  		}
  1401  
  1402  		// If we are approaching a merge point and we are the primary
  1403  		// predecessor of it, find live values that we use soon after
  1404  		// the merge point and promote them to registers now.
  1405  		if len(b.Succs) == 1 {
  1406  			// For this to be worthwhile, the loop must have no calls in it.
  1407  			top := b.Succs[0].b
  1408  			loop := s.loopnest.b2l[top.ID]
  1409  			if loop == nil || loop.header != top || loop.containsCall {
  1410  				goto badloop
  1411  			}
  1412  
  1413  			// TODO: sort by distance, pick the closest ones?
  1414  			for _, live := range s.live[b.ID] {
  1415  				if live.dist >= unlikelyDistance {
  1416  					// Don't preload anything live after the loop.
  1417  					continue
  1418  				}
  1419  				vid := live.ID
  1420  				vi := &s.values[vid]
  1421  				if vi.regs != 0 {
  1422  					continue
  1423  				}
  1424  				if vi.rematerializeable {
  1425  					continue
  1426  				}
  1427  				v := s.orig[vid]
  1428  				if s.f.Config.use387 && v.Type.IsFloat() {
  1429  					continue // 387 can't handle floats in registers between blocks
  1430  				}
  1431  				m := s.compatRegs(v.Type) &^ s.used
  1432  				if m&^desired.avoid != 0 {
  1433  					m &^= desired.avoid
  1434  				}
  1435  				if m != 0 {
  1436  					s.allocValToReg(v, m, false, b.Pos)
  1437  				}
  1438  			}
  1439  		}
  1440  	badloop:
  1441  		;
  1442  
  1443  		// Save end-of-block register state.
  1444  		// First count how many, this cuts allocations in half.
  1445  		k := 0
  1446  		for r := register(0); r < s.numRegs; r++ {
  1447  			v := s.regs[r].v
  1448  			if v == nil {
  1449  				continue
  1450  			}
  1451  			k++
  1452  		}
  1453  		regList := make([]endReg, 0, k)
  1454  		for r := register(0); r < s.numRegs; r++ {
  1455  			v := s.regs[r].v
  1456  			if v == nil {
  1457  				continue
  1458  			}
  1459  			regList = append(regList, endReg{r, v, s.regs[r].c})
  1460  		}
  1461  		s.endRegs[b.ID] = regList
  1462  
  1463  		if checkEnabled {
  1464  			regValLiveSet.clear()
  1465  			for _, x := range s.live[b.ID] {
  1466  				regValLiveSet.add(x.ID)
  1467  			}
  1468  			for r := register(0); r < s.numRegs; r++ {
  1469  				v := s.regs[r].v
  1470  				if v == nil {
  1471  					continue
  1472  				}
  1473  				if !regValLiveSet.contains(v.ID) {
  1474  					s.f.Fatalf("val %s is in reg but not live at end of %s", v, b)
  1475  				}
  1476  			}
  1477  		}
  1478  
  1479  		// If a value is live at the end of the block and
  1480  		// isn't in a register, generate a use for the spill location.
  1481  		// We need to remember this information so that
  1482  		// the liveness analysis in stackalloc is correct.
  1483  		for _, e := range s.live[b.ID] {
  1484  			vi := &s.values[e.ID]
  1485  			if vi.regs != 0 {
  1486  				// in a register, we'll use that source for the merge.
  1487  				continue
  1488  			}
  1489  			if vi.rematerializeable {
  1490  				// we'll rematerialize during the merge.
  1491  				continue
  1492  			}
  1493  			//fmt.Printf("live-at-end spill for %s at %s\n", s.orig[e.ID], b)
  1494  			spill := s.makeSpill(s.orig[e.ID], b)
  1495  			s.spillLive[b.ID] = append(s.spillLive[b.ID], spill.ID)
  1496  		}
  1497  
  1498  		// Clear any final uses.
  1499  		// All that is left should be the pseudo-uses added for values which
  1500  		// are live at the end of b.
  1501  		for _, e := range s.live[b.ID] {
  1502  			u := s.values[e.ID].uses
  1503  			if u == nil {
  1504  				f.Fatalf("live at end, no uses v%d", e.ID)
  1505  			}
  1506  			if u.next != nil {
  1507  				f.Fatalf("live at end, too many uses v%d", e.ID)
  1508  			}
  1509  			s.values[e.ID].uses = nil
  1510  			u.next = s.freeUseRecords
  1511  			s.freeUseRecords = u
  1512  		}
  1513  	}
  1514  
  1515  	// Decide where the spills we generated will go.
  1516  	s.placeSpills()
  1517  
  1518  	// Anything that didn't get a register gets a stack location here.
  1519  	// (StoreReg, stack-based phis, inputs, ...)
  1520  	stacklive := stackalloc(s.f, s.spillLive)
  1521  
  1522  	// Fix up all merge edges.
  1523  	s.shuffle(stacklive)
  1524  
  1525  	// Erase any copies we never used.
  1526  	// Also, an unused copy might be the only use of another copy,
  1527  	// so continue erasing until we reach a fixed point.
  1528  	for {
  1529  		progress := false
  1530  		for c, used := range s.copies {
  1531  			if !used && c.Uses == 0 {
  1532  				if s.f.pass.debug > regDebug {
  1533  					fmt.Printf("delete copied value %s\n", c.LongString())
  1534  				}
  1535  				c.Args[0].Uses--
  1536  				f.freeValue(c)
  1537  				delete(s.copies, c)
  1538  				progress = true
  1539  			}
  1540  		}
  1541  		if !progress {
  1542  			break
  1543  		}
  1544  	}
  1545  
  1546  	for _, b := range f.Blocks {
  1547  		i := 0
  1548  		for _, v := range b.Values {
  1549  			if v.Op == OpInvalid {
  1550  				continue
  1551  			}
  1552  			b.Values[i] = v
  1553  			i++
  1554  		}
  1555  		b.Values = b.Values[:i]
  1556  	}
  1557  }
  1558  
  1559  func (s *regAllocState) placeSpills() {
  1560  	f := s.f
  1561  
  1562  	// Precompute some useful info.
  1563  	phiRegs := make([]regMask, f.NumBlocks())
  1564  	for _, b := range f.Blocks {
  1565  		var m regMask
  1566  		for _, v := range b.Values {
  1567  			if v.Op != OpPhi {
  1568  				break
  1569  			}
  1570  			if r, ok := f.getHome(v.ID).(*Register); ok {
  1571  				m |= regMask(1) << uint(r.num)
  1572  			}
  1573  		}
  1574  		phiRegs[b.ID] = m
  1575  	}
  1576  
  1577  	// Start maps block IDs to the list of spills
  1578  	// that go at the start of the block (but after any phis).
  1579  	start := map[ID][]*Value{}
  1580  	// After maps value IDs to the list of spills
  1581  	// that go immediately after that value ID.
  1582  	after := map[ID][]*Value{}
  1583  
  1584  	for i := range s.values {
  1585  		vi := s.values[i]
  1586  		spill := vi.spill
  1587  		if spill == nil {
  1588  			continue
  1589  		}
  1590  		if spill.Block != nil {
  1591  			// Some spills are already fully set up,
  1592  			// like OpArgs and stack-based phis.
  1593  			continue
  1594  		}
  1595  		v := s.orig[i]
  1596  
  1597  		// Walk down the dominator tree looking for a good place to
  1598  		// put the spill of v.  At the start "best" is the best place
  1599  		// we have found so far.
  1600  		// TODO: find a way to make this O(1) without arbitrary cutoffs.
  1601  		best := v.Block
  1602  		bestArg := v
  1603  		var bestDepth int16
  1604  		if l := s.loopnest.b2l[best.ID]; l != nil {
  1605  			bestDepth = l.depth
  1606  		}
  1607  		b := best
  1608  		const maxSpillSearch = 100
  1609  		for i := 0; i < maxSpillSearch; i++ {
  1610  			// Find the child of b in the dominator tree which
  1611  			// dominates all restores.
  1612  			p := b
  1613  			b = nil
  1614  			for c := s.sdom.Child(p); c != nil && i < maxSpillSearch; c, i = s.sdom.Sibling(c), i+1 {
  1615  				if s.sdom[c.ID].entry <= vi.restoreMin && s.sdom[c.ID].exit >= vi.restoreMax {
  1616  					// c also dominates all restores.  Walk down into c.
  1617  					b = c
  1618  					break
  1619  				}
  1620  			}
  1621  			if b == nil {
  1622  				// Ran out of blocks which dominate all restores.
  1623  				break
  1624  			}
  1625  
  1626  			var depth int16
  1627  			if l := s.loopnest.b2l[b.ID]; l != nil {
  1628  				depth = l.depth
  1629  			}
  1630  			if depth > bestDepth {
  1631  				// Don't push the spill into a deeper loop.
  1632  				continue
  1633  			}
  1634  
  1635  			// If v is in a register at the start of b, we can
  1636  			// place the spill here (after the phis).
  1637  			if len(b.Preds) == 1 {
  1638  				for _, e := range s.endRegs[b.Preds[0].b.ID] {
  1639  					if e.v == v {
  1640  						// Found a better spot for the spill.
  1641  						best = b
  1642  						bestArg = e.c
  1643  						bestDepth = depth
  1644  						break
  1645  					}
  1646  				}
  1647  			} else {
  1648  				for _, e := range s.startRegs[b.ID] {
  1649  					if e.v == v {
  1650  						// Found a better spot for the spill.
  1651  						best = b
  1652  						bestArg = e.c
  1653  						bestDepth = depth
  1654  						break
  1655  					}
  1656  				}
  1657  			}
  1658  		}
  1659  
  1660  		// Put the spill in the best block we found.
  1661  		spill.Block = best
  1662  		spill.AddArg(bestArg)
  1663  		if best == v.Block && v.Op != OpPhi {
  1664  			// Place immediately after v.
  1665  			after[v.ID] = append(after[v.ID], spill)
  1666  		} else {
  1667  			// Place at the start of best block.
  1668  			start[best.ID] = append(start[best.ID], spill)
  1669  		}
  1670  	}
  1671  
  1672  	// Insert spill instructions into the block schedules.
  1673  	var oldSched []*Value
  1674  	for _, b := range f.Blocks {
  1675  		nphi := 0
  1676  		for _, v := range b.Values {
  1677  			if v.Op != OpPhi {
  1678  				break
  1679  			}
  1680  			nphi++
  1681  		}
  1682  		oldSched = append(oldSched[:0], b.Values[nphi:]...)
  1683  		b.Values = b.Values[:nphi]
  1684  		for _, v := range start[b.ID] {
  1685  			b.Values = append(b.Values, v)
  1686  		}
  1687  		for _, v := range oldSched {
  1688  			b.Values = append(b.Values, v)
  1689  			for _, w := range after[v.ID] {
  1690  				b.Values = append(b.Values, w)
  1691  			}
  1692  		}
  1693  	}
  1694  }
  1695  
  1696  // shuffle fixes up all the merge edges (those going into blocks of indegree > 1).
  1697  func (s *regAllocState) shuffle(stacklive [][]ID) {
  1698  	var e edgeState
  1699  	e.s = s
  1700  	e.cache = map[ID][]*Value{}
  1701  	e.contents = map[Location]contentRecord{}
  1702  	if s.f.pass.debug > regDebug {
  1703  		fmt.Printf("shuffle %s\n", s.f.Name)
  1704  		fmt.Println(s.f.String())
  1705  	}
  1706  
  1707  	for _, b := range s.f.Blocks {
  1708  		if len(b.Preds) <= 1 {
  1709  			continue
  1710  		}
  1711  		e.b = b
  1712  		for i, edge := range b.Preds {
  1713  			p := edge.b
  1714  			e.p = p
  1715  			e.setup(i, s.endRegs[p.ID], s.startRegs[b.ID], stacklive[p.ID])
  1716  			e.process()
  1717  		}
  1718  	}
  1719  }
  1720  
  1721  type edgeState struct {
  1722  	s    *regAllocState
  1723  	p, b *Block // edge goes from p->b.
  1724  
  1725  	// for each pre-regalloc value, a list of equivalent cached values
  1726  	cache      map[ID][]*Value
  1727  	cachedVals []ID // (superset of) keys of the above map, for deterministic iteration
  1728  
  1729  	// map from location to the value it contains
  1730  	contents map[Location]contentRecord
  1731  
  1732  	// desired destination locations
  1733  	destinations []dstRecord
  1734  	extra        []dstRecord
  1735  
  1736  	usedRegs   regMask // registers currently holding something
  1737  	uniqueRegs regMask // registers holding the only copy of a value
  1738  	finalRegs  regMask // registers holding final target
  1739  }
  1740  
  1741  type contentRecord struct {
  1742  	vid   ID       // pre-regalloc value
  1743  	c     *Value   // cached value
  1744  	final bool     // this is a satisfied destination
  1745  	pos   src.XPos // source position of use of the value
  1746  }
  1747  
  1748  type dstRecord struct {
  1749  	loc    Location // register or stack slot
  1750  	vid    ID       // pre-regalloc value it should contain
  1751  	splice **Value  // place to store reference to the generating instruction
  1752  	pos    src.XPos // source position of use of this location
  1753  }
  1754  
  1755  // setup initializes the edge state for shuffling.
  1756  func (e *edgeState) setup(idx int, srcReg []endReg, dstReg []startReg, stacklive []ID) {
  1757  	if e.s.f.pass.debug > regDebug {
  1758  		fmt.Printf("edge %s->%s\n", e.p, e.b)
  1759  	}
  1760  
  1761  	// Clear state.
  1762  	for _, vid := range e.cachedVals {
  1763  		delete(e.cache, vid)
  1764  	}
  1765  	e.cachedVals = e.cachedVals[:0]
  1766  	for k := range e.contents {
  1767  		delete(e.contents, k)
  1768  	}
  1769  	e.usedRegs = 0
  1770  	e.uniqueRegs = 0
  1771  	e.finalRegs = 0
  1772  
  1773  	// Live registers can be sources.
  1774  	for _, x := range srcReg {
  1775  		e.set(&e.s.registers[x.r], x.v.ID, x.c, false, src.NoXPos) // don't care the position of the source
  1776  	}
  1777  	// So can all of the spill locations.
  1778  	for _, spillID := range stacklive {
  1779  		v := e.s.orig[spillID]
  1780  		spill := e.s.values[v.ID].spill
  1781  		if !e.s.sdom.isAncestorEq(spill.Block, e.p) {
  1782  			// Spills were placed that only dominate the uses found
  1783  			// during the first regalloc pass. The edge fixup code
  1784  			// can't use a spill location if the spill doesn't dominate
  1785  			// the edge.
  1786  			// We are guaranteed that if the spill doesn't dominate this edge,
  1787  			// then the value is available in a register (because we called
  1788  			// makeSpill for every value not in a register at the start
  1789  			// of an edge).
  1790  			continue
  1791  		}
  1792  		e.set(e.s.f.getHome(spillID), v.ID, spill, false, src.NoXPos) // don't care the position of the source
  1793  	}
  1794  
  1795  	// Figure out all the destinations we need.
  1796  	dsts := e.destinations[:0]
  1797  	for _, x := range dstReg {
  1798  		dsts = append(dsts, dstRecord{&e.s.registers[x.r], x.v.ID, nil, x.pos})
  1799  	}
  1800  	// Phis need their args to end up in a specific location.
  1801  	for _, v := range e.b.Values {
  1802  		if v.Op != OpPhi {
  1803  			break
  1804  		}
  1805  		loc := e.s.f.getHome(v.ID)
  1806  		if loc == nil {
  1807  			continue
  1808  		}
  1809  		dsts = append(dsts, dstRecord{loc, v.Args[idx].ID, &v.Args[idx], v.Pos})
  1810  	}
  1811  	e.destinations = dsts
  1812  
  1813  	if e.s.f.pass.debug > regDebug {
  1814  		for _, vid := range e.cachedVals {
  1815  			a := e.cache[vid]
  1816  			for _, c := range a {
  1817  				fmt.Printf("src %s: v%d cache=%s\n", e.s.f.getHome(c.ID).Name(), vid, c)
  1818  			}
  1819  		}
  1820  		for _, d := range e.destinations {
  1821  			fmt.Printf("dst %s: v%d\n", d.loc.Name(), d.vid)
  1822  		}
  1823  	}
  1824  }
  1825  
  1826  // process generates code to move all the values to the right destination locations.
  1827  func (e *edgeState) process() {
  1828  	dsts := e.destinations
  1829  
  1830  	// Process the destinations until they are all satisfied.
  1831  	for len(dsts) > 0 {
  1832  		i := 0
  1833  		for _, d := range dsts {
  1834  			if !e.processDest(d.loc, d.vid, d.splice, d.pos) {
  1835  				// Failed - save for next iteration.
  1836  				dsts[i] = d
  1837  				i++
  1838  			}
  1839  		}
  1840  		if i < len(dsts) {
  1841  			// Made some progress. Go around again.
  1842  			dsts = dsts[:i]
  1843  
  1844  			// Append any extras destinations we generated.
  1845  			dsts = append(dsts, e.extra...)
  1846  			e.extra = e.extra[:0]
  1847  			continue
  1848  		}
  1849  
  1850  		// We made no progress. That means that any
  1851  		// remaining unsatisfied moves are in simple cycles.
  1852  		// For example, A -> B -> C -> D -> A.
  1853  		//   A ----> B
  1854  		//   ^       |
  1855  		//   |       |
  1856  		//   |       v
  1857  		//   D <---- C
  1858  
  1859  		// To break the cycle, we pick an unused register, say R,
  1860  		// and put a copy of B there.
  1861  		//   A ----> B
  1862  		//   ^       |
  1863  		//   |       |
  1864  		//   |       v
  1865  		//   D <---- C <---- R=copyofB
  1866  		// When we resume the outer loop, the A->B move can now proceed,
  1867  		// and eventually the whole cycle completes.
  1868  
  1869  		// Copy any cycle location to a temp register. This duplicates
  1870  		// one of the cycle entries, allowing the just duplicated value
  1871  		// to be overwritten and the cycle to proceed.
  1872  		d := dsts[0]
  1873  		loc := d.loc
  1874  		vid := e.contents[loc].vid
  1875  		c := e.contents[loc].c
  1876  		r := e.findRegFor(c.Type)
  1877  		if e.s.f.pass.debug > regDebug {
  1878  			fmt.Printf("breaking cycle with v%d in %s:%s\n", vid, loc.Name(), c)
  1879  		}
  1880  		if _, isReg := loc.(*Register); isReg {
  1881  			c = e.p.NewValue1(d.pos, OpCopy, c.Type, c)
  1882  		} else {
  1883  			c = e.p.NewValue1(d.pos, OpLoadReg, c.Type, c)
  1884  		}
  1885  		e.set(r, vid, c, false, d.pos)
  1886  	}
  1887  }
  1888  
  1889  // processDest generates code to put value vid into location loc. Returns true
  1890  // if progress was made.
  1891  func (e *edgeState) processDest(loc Location, vid ID, splice **Value, pos src.XPos) bool {
  1892  	occupant := e.contents[loc]
  1893  	if occupant.vid == vid {
  1894  		// Value is already in the correct place.
  1895  		e.contents[loc] = contentRecord{vid, occupant.c, true, pos}
  1896  		if splice != nil {
  1897  			(*splice).Uses--
  1898  			*splice = occupant.c
  1899  			occupant.c.Uses++
  1900  		}
  1901  		// Note: if splice==nil then c will appear dead. This is
  1902  		// non-SSA formed code, so be careful after this pass not to run
  1903  		// deadcode elimination.
  1904  		if _, ok := e.s.copies[occupant.c]; ok {
  1905  			// The copy at occupant.c was used to avoid spill.
  1906  			e.s.copies[occupant.c] = true
  1907  		}
  1908  		return true
  1909  	}
  1910  
  1911  	// Check if we're allowed to clobber the destination location.
  1912  	if len(e.cache[occupant.vid]) == 1 && !e.s.values[occupant.vid].rematerializeable {
  1913  		// We can't overwrite the last copy
  1914  		// of a value that needs to survive.
  1915  		return false
  1916  	}
  1917  
  1918  	// Copy from a source of v, register preferred.
  1919  	v := e.s.orig[vid]
  1920  	var c *Value
  1921  	var src Location
  1922  	if e.s.f.pass.debug > regDebug {
  1923  		fmt.Printf("moving v%d to %s\n", vid, loc.Name())
  1924  		fmt.Printf("sources of v%d:", vid)
  1925  	}
  1926  	for _, w := range e.cache[vid] {
  1927  		h := e.s.f.getHome(w.ID)
  1928  		if e.s.f.pass.debug > regDebug {
  1929  			fmt.Printf(" %s:%s", h.Name(), w)
  1930  		}
  1931  		_, isreg := h.(*Register)
  1932  		if src == nil || isreg {
  1933  			c = w
  1934  			src = h
  1935  		}
  1936  	}
  1937  	if e.s.f.pass.debug > regDebug {
  1938  		if src != nil {
  1939  			fmt.Printf(" [use %s]\n", src.Name())
  1940  		} else {
  1941  			fmt.Printf(" [no source]\n")
  1942  		}
  1943  	}
  1944  	_, dstReg := loc.(*Register)
  1945  	var x *Value
  1946  	if c == nil {
  1947  		if !e.s.values[vid].rematerializeable {
  1948  			e.s.f.Fatalf("can't find source for %s->%s: %s\n", e.p, e.b, v.LongString())
  1949  		}
  1950  		if dstReg {
  1951  			x = v.copyInto(e.p)
  1952  		} else {
  1953  			// Rematerialize into stack slot. Need a free
  1954  			// register to accomplish this.
  1955  			e.erase(loc) // see pre-clobber comment below
  1956  			r := e.findRegFor(v.Type)
  1957  			x = v.copyInto(e.p)
  1958  			e.set(r, vid, x, false, pos)
  1959  			// Make sure we spill with the size of the slot, not the
  1960  			// size of x (which might be wider due to our dropping
  1961  			// of narrowing conversions).
  1962  			x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, x)
  1963  		}
  1964  	} else {
  1965  		// Emit move from src to dst.
  1966  		_, srcReg := src.(*Register)
  1967  		if srcReg {
  1968  			if dstReg {
  1969  				x = e.p.NewValue1(pos, OpCopy, c.Type, c)
  1970  			} else {
  1971  				x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, c)
  1972  			}
  1973  		} else {
  1974  			if dstReg {
  1975  				x = e.p.NewValue1(pos, OpLoadReg, c.Type, c)
  1976  			} else {
  1977  				// mem->mem. Use temp register.
  1978  
  1979  				// Pre-clobber destination. This avoids the
  1980  				// following situation:
  1981  				//   - v is currently held in R0 and stacktmp0.
  1982  				//   - We want to copy stacktmp1 to stacktmp0.
  1983  				//   - We choose R0 as the temporary register.
  1984  				// During the copy, both R0 and stacktmp0 are
  1985  				// clobbered, losing both copies of v. Oops!
  1986  				// Erasing the destination early means R0 will not
  1987  				// be chosen as the temp register, as it will then
  1988  				// be the last copy of v.
  1989  				e.erase(loc)
  1990  
  1991  				r := e.findRegFor(c.Type)
  1992  				t := e.p.NewValue1(pos, OpLoadReg, c.Type, c)
  1993  				e.set(r, vid, t, false, pos)
  1994  				x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, t)
  1995  			}
  1996  		}
  1997  	}
  1998  	e.set(loc, vid, x, true, pos)
  1999  	if splice != nil {
  2000  		(*splice).Uses--
  2001  		*splice = x
  2002  		x.Uses++
  2003  	}
  2004  	return true
  2005  }
  2006  
  2007  // set changes the contents of location loc to hold the given value and its cached representative.
  2008  func (e *edgeState) set(loc Location, vid ID, c *Value, final bool, pos src.XPos) {
  2009  	e.s.f.setHome(c, loc)
  2010  	e.erase(loc)
  2011  	e.contents[loc] = contentRecord{vid, c, final, pos}
  2012  	a := e.cache[vid]
  2013  	if len(a) == 0 {
  2014  		e.cachedVals = append(e.cachedVals, vid)
  2015  	}
  2016  	a = append(a, c)
  2017  	e.cache[vid] = a
  2018  	if r, ok := loc.(*Register); ok {
  2019  		e.usedRegs |= regMask(1) << uint(r.num)
  2020  		if final {
  2021  			e.finalRegs |= regMask(1) << uint(r.num)
  2022  		}
  2023  		if len(a) == 1 {
  2024  			e.uniqueRegs |= regMask(1) << uint(r.num)
  2025  		}
  2026  		if len(a) == 2 {
  2027  			if t, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
  2028  				e.uniqueRegs &^= regMask(1) << uint(t.num)
  2029  			}
  2030  		}
  2031  	}
  2032  	if e.s.f.pass.debug > regDebug {
  2033  		fmt.Printf("%s\n", c.LongString())
  2034  		fmt.Printf("v%d now available in %s:%s\n", vid, loc.Name(), c)
  2035  	}
  2036  }
  2037  
  2038  // erase removes any user of loc.
  2039  func (e *edgeState) erase(loc Location) {
  2040  	cr := e.contents[loc]
  2041  	if cr.c == nil {
  2042  		return
  2043  	}
  2044  	vid := cr.vid
  2045  
  2046  	if cr.final {
  2047  		// Add a destination to move this value back into place.
  2048  		// Make sure it gets added to the tail of the destination queue
  2049  		// so we make progress on other moves first.
  2050  		e.extra = append(e.extra, dstRecord{loc, cr.vid, nil, cr.pos})
  2051  	}
  2052  
  2053  	// Remove c from the list of cached values.
  2054  	a := e.cache[vid]
  2055  	for i, c := range a {
  2056  		if e.s.f.getHome(c.ID) == loc {
  2057  			if e.s.f.pass.debug > regDebug {
  2058  				fmt.Printf("v%d no longer available in %s:%s\n", vid, loc.Name(), c)
  2059  			}
  2060  			a[i], a = a[len(a)-1], a[:len(a)-1]
  2061  			break
  2062  		}
  2063  	}
  2064  	e.cache[vid] = a
  2065  
  2066  	// Update register masks.
  2067  	if r, ok := loc.(*Register); ok {
  2068  		e.usedRegs &^= regMask(1) << uint(r.num)
  2069  		if cr.final {
  2070  			e.finalRegs &^= regMask(1) << uint(r.num)
  2071  		}
  2072  	}
  2073  	if len(a) == 1 {
  2074  		if r, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
  2075  			e.uniqueRegs |= regMask(1) << uint(r.num)
  2076  		}
  2077  	}
  2078  }
  2079  
  2080  // findRegFor finds a register we can use to make a temp copy of type typ.
  2081  func (e *edgeState) findRegFor(typ Type) Location {
  2082  	// Which registers are possibilities.
  2083  	var m regMask
  2084  	types := &e.s.f.Config.Types
  2085  	if typ.IsFloat() {
  2086  		m = e.s.compatRegs(types.Float64)
  2087  	} else {
  2088  		m = e.s.compatRegs(types.Int64)
  2089  	}
  2090  
  2091  	// Pick a register. In priority order:
  2092  	// 1) an unused register
  2093  	// 2) a non-unique register not holding a final value
  2094  	// 3) a non-unique register
  2095  	// 4) TODO: a register holding a rematerializeable value
  2096  	x := m &^ e.usedRegs
  2097  	if x != 0 {
  2098  		return &e.s.registers[pickReg(x)]
  2099  	}
  2100  	x = m &^ e.uniqueRegs &^ e.finalRegs
  2101  	if x != 0 {
  2102  		return &e.s.registers[pickReg(x)]
  2103  	}
  2104  	x = m &^ e.uniqueRegs
  2105  	if x != 0 {
  2106  		return &e.s.registers[pickReg(x)]
  2107  	}
  2108  
  2109  	// No register is available.
  2110  	// Pick a register to spill.
  2111  	for _, vid := range e.cachedVals {
  2112  		a := e.cache[vid]
  2113  		for _, c := range a {
  2114  			if r, ok := e.s.f.getHome(c.ID).(*Register); ok && m>>uint(r.num)&1 != 0 {
  2115  				if !c.rematerializeable() {
  2116  					x := e.p.NewValue1(c.Pos, OpStoreReg, c.Type, c)
  2117  					// Allocate a temp location to spill a register to.
  2118  					// The type of the slot is immaterial - it will not be live across
  2119  					// any safepoint. Just use a type big enough to hold any register.
  2120  					t := LocalSlot{e.s.f.fe.Auto(c.Pos, types.Int64), types.Int64, 0}
  2121  					// TODO: reuse these slots.
  2122  					e.set(t, vid, x, false, c.Pos)
  2123  					if e.s.f.pass.debug > regDebug {
  2124  						fmt.Printf("  SPILL %s->%s %s\n", r.Name(), t.Name(), x.LongString())
  2125  					}
  2126  				}
  2127  				// r will now be overwritten by the caller. At some point
  2128  				// later, the newly saved value will be moved back to its
  2129  				// final destination in processDest.
  2130  				return r
  2131  			}
  2132  		}
  2133  	}
  2134  
  2135  	fmt.Printf("m:%d unique:%d final:%d\n", m, e.uniqueRegs, e.finalRegs)
  2136  	for _, vid := range e.cachedVals {
  2137  		a := e.cache[vid]
  2138  		for _, c := range a {
  2139  			fmt.Printf("v%d: %s %s\n", vid, c, e.s.f.getHome(c.ID).Name())
  2140  		}
  2141  	}
  2142  	e.s.f.Fatalf("can't find empty register on edge %s->%s", e.p, e.b)
  2143  	return nil
  2144  }
  2145  
  2146  // rematerializeable reports whether the register allocator should recompute
  2147  // a value instead of spilling/restoring it.
  2148  func (v *Value) rematerializeable() bool {
  2149  	if !opcodeTable[v.Op].rematerializeable {
  2150  		return false
  2151  	}
  2152  	for _, a := range v.Args {
  2153  		// SP and SB (generated by OpSP and OpSB) are always available.
  2154  		if a.Op != OpSP && a.Op != OpSB {
  2155  			return false
  2156  		}
  2157  	}
  2158  	return true
  2159  }
  2160  
  2161  type liveInfo struct {
  2162  	ID   ID       // ID of value
  2163  	dist int32    // # of instructions before next use
  2164  	pos  src.XPos // source position of next use
  2165  }
  2166  
  2167  // dblock contains information about desired & avoid registers at the end of a block.
  2168  type dblock struct {
  2169  	prefers []desiredStateEntry
  2170  	avoid   regMask
  2171  }
  2172  
  2173  // computeLive computes a map from block ID to a list of value IDs live at the end
  2174  // of that block. Together with the value ID is a count of how many instructions
  2175  // to the next use of that value. The resulting map is stored in s.live.
  2176  // computeLive also computes the desired register information at the end of each block.
  2177  // This desired register information is stored in s.desired.
  2178  // TODO: this could be quadratic if lots of variables are live across lots of
  2179  // basic blocks. Figure out a way to make this function (or, more precisely, the user
  2180  // of this function) require only linear size & time.
  2181  func (s *regAllocState) computeLive() {
  2182  	f := s.f
  2183  	s.live = make([][]liveInfo, f.NumBlocks())
  2184  	s.desired = make([]desiredState, f.NumBlocks())
  2185  	var phis []*Value
  2186  
  2187  	live := newSparseMap(f.NumValues())
  2188  	t := newSparseMap(f.NumValues())
  2189  
  2190  	// Keep track of which value we want in each register.
  2191  	var desired desiredState
  2192  
  2193  	// Instead of iterating over f.Blocks, iterate over their postordering.
  2194  	// Liveness information flows backward, so starting at the end
  2195  	// increases the probability that we will stabilize quickly.
  2196  	// TODO: Do a better job yet. Here's one possibility:
  2197  	// Calculate the dominator tree and locate all strongly connected components.
  2198  	// If a value is live in one block of an SCC, it is live in all.
  2199  	// Walk the dominator tree from end to beginning, just once, treating SCC
  2200  	// components as single blocks, duplicated calculated liveness information
  2201  	// out to all of them.
  2202  	po := f.postorder()
  2203  	s.loopnest = f.loopnest()
  2204  	s.loopnest.calculateDepths()
  2205  	for {
  2206  		changed := false
  2207  
  2208  		for _, b := range po {
  2209  			// Start with known live values at the end of the block.
  2210  			// Add len(b.Values) to adjust from end-of-block distance
  2211  			// to beginning-of-block distance.
  2212  			live.clear()
  2213  			for _, e := range s.live[b.ID] {
  2214  				live.set(e.ID, e.dist+int32(len(b.Values)), e.pos)
  2215  			}
  2216  
  2217  			// Mark control value as live
  2218  			if b.Control != nil && s.values[b.Control.ID].needReg {
  2219  				live.set(b.Control.ID, int32(len(b.Values)), b.Pos)
  2220  			}
  2221  
  2222  			// Propagate backwards to the start of the block
  2223  			// Assumes Values have been scheduled.
  2224  			phis = phis[:0]
  2225  			for i := len(b.Values) - 1; i >= 0; i-- {
  2226  				v := b.Values[i]
  2227  				live.remove(v.ID)
  2228  				if v.Op == OpPhi {
  2229  					// save phi ops for later
  2230  					phis = append(phis, v)
  2231  					continue
  2232  				}
  2233  				if opcodeTable[v.Op].call {
  2234  					c := live.contents()
  2235  					for i := range c {
  2236  						c[i].val += unlikelyDistance
  2237  					}
  2238  				}
  2239  				for _, a := range v.Args {
  2240  					if s.values[a.ID].needReg {
  2241  						live.set(a.ID, int32(i), v.Pos)
  2242  					}
  2243  				}
  2244  			}
  2245  			// Propagate desired registers backwards.
  2246  			desired.copy(&s.desired[b.ID])
  2247  			for i := len(b.Values) - 1; i >= 0; i-- {
  2248  				v := b.Values[i]
  2249  				prefs := desired.remove(v.ID)
  2250  				if v.Op == OpPhi {
  2251  					// TODO: if v is a phi, save desired register for phi inputs.
  2252  					// For now, we just drop it and don't propagate
  2253  					// desired registers back though phi nodes.
  2254  					continue
  2255  				}
  2256  				// Cancel desired registers if they get clobbered.
  2257  				desired.clobber(opcodeTable[v.Op].reg.clobbers)
  2258  				// Update desired registers if there are any fixed register inputs.
  2259  				for _, j := range opcodeTable[v.Op].reg.inputs {
  2260  					if countRegs(j.regs) != 1 {
  2261  						continue
  2262  					}
  2263  					desired.clobber(j.regs)
  2264  					desired.add(v.Args[j.idx].ID, pickReg(j.regs))
  2265  				}
  2266  				// Set desired register of input 0 if this is a 2-operand instruction.
  2267  				if opcodeTable[v.Op].resultInArg0 {
  2268  					if opcodeTable[v.Op].commutative {
  2269  						desired.addList(v.Args[1].ID, prefs)
  2270  					}
  2271  					desired.addList(v.Args[0].ID, prefs)
  2272  				}
  2273  			}
  2274  
  2275  			// For each predecessor of b, expand its list of live-at-end values.
  2276  			// invariant: live contains the values live at the start of b (excluding phi inputs)
  2277  			for i, e := range b.Preds {
  2278  				p := e.b
  2279  				// Compute additional distance for the edge.
  2280  				// Note: delta must be at least 1 to distinguish the control
  2281  				// value use from the first user in a successor block.
  2282  				delta := int32(normalDistance)
  2283  				if len(p.Succs) == 2 {
  2284  					if p.Succs[0].b == b && p.Likely == BranchLikely ||
  2285  						p.Succs[1].b == b && p.Likely == BranchUnlikely {
  2286  						delta = likelyDistance
  2287  					}
  2288  					if p.Succs[0].b == b && p.Likely == BranchUnlikely ||
  2289  						p.Succs[1].b == b && p.Likely == BranchLikely {
  2290  						delta = unlikelyDistance
  2291  					}
  2292  				}
  2293  
  2294  				// Update any desired registers at the end of p.
  2295  				s.desired[p.ID].merge(&desired)
  2296  
  2297  				// Start t off with the previously known live values at the end of p.
  2298  				t.clear()
  2299  				for _, e := range s.live[p.ID] {
  2300  					t.set(e.ID, e.dist, e.pos)
  2301  				}
  2302  				update := false
  2303  
  2304  				// Add new live values from scanning this block.
  2305  				for _, e := range live.contents() {
  2306  					d := e.val + delta
  2307  					if !t.contains(e.key) || d < t.get(e.key) {
  2308  						update = true
  2309  						t.set(e.key, d, e.aux)
  2310  					}
  2311  				}
  2312  				// Also add the correct arg from the saved phi values.
  2313  				// All phis are at distance delta (we consider them
  2314  				// simultaneously happening at the start of the block).
  2315  				for _, v := range phis {
  2316  					id := v.Args[i].ID
  2317  					if s.values[id].needReg && (!t.contains(id) || delta < t.get(id)) {
  2318  						update = true
  2319  						t.set(id, delta, v.Pos)
  2320  					}
  2321  				}
  2322  
  2323  				if !update {
  2324  					continue
  2325  				}
  2326  				// The live set has changed, update it.
  2327  				l := s.live[p.ID][:0]
  2328  				if cap(l) < t.size() {
  2329  					l = make([]liveInfo, 0, t.size())
  2330  				}
  2331  				for _, e := range t.contents() {
  2332  					l = append(l, liveInfo{e.key, e.val, e.aux})
  2333  				}
  2334  				s.live[p.ID] = l
  2335  				changed = true
  2336  			}
  2337  		}
  2338  
  2339  		if !changed {
  2340  			break
  2341  		}
  2342  	}
  2343  	if f.pass.debug > regDebug {
  2344  		fmt.Println("live values at end of each block")
  2345  		for _, b := range f.Blocks {
  2346  			fmt.Printf("  %s:", b)
  2347  			for _, x := range s.live[b.ID] {
  2348  				fmt.Printf(" v%d", x.ID)
  2349  				for _, e := range s.desired[b.ID].entries {
  2350  					if e.ID != x.ID {
  2351  						continue
  2352  					}
  2353  					fmt.Printf("[")
  2354  					first := true
  2355  					for _, r := range e.regs {
  2356  						if r == noRegister {
  2357  							continue
  2358  						}
  2359  						if !first {
  2360  							fmt.Printf(",")
  2361  						}
  2362  						fmt.Print(s.registers[r].Name())
  2363  						first = false
  2364  					}
  2365  					fmt.Printf("]")
  2366  				}
  2367  			}
  2368  			fmt.Printf(" avoid=%x", int64(s.desired[b.ID].avoid))
  2369  			fmt.Println()
  2370  		}
  2371  	}
  2372  }
  2373  
  2374  // A desiredState represents desired register assignments.
  2375  type desiredState struct {
  2376  	// Desired assignments will be small, so we just use a list
  2377  	// of valueID+registers entries.
  2378  	entries []desiredStateEntry
  2379  	// Registers that other values want to be in.  This value will
  2380  	// contain at least the union of the regs fields of entries, but
  2381  	// may contain additional entries for values that were once in
  2382  	// this data structure but are no longer.
  2383  	avoid regMask
  2384  }
  2385  type desiredStateEntry struct {
  2386  	// (pre-regalloc) value
  2387  	ID ID
  2388  	// Registers it would like to be in, in priority order.
  2389  	// Unused slots are filled with noRegister.
  2390  	regs [4]register
  2391  }
  2392  
  2393  func (d *desiredState) clear() {
  2394  	d.entries = d.entries[:0]
  2395  	d.avoid = 0
  2396  }
  2397  
  2398  // get returns a list of desired registers for value vid.
  2399  func (d *desiredState) get(vid ID) [4]register {
  2400  	for _, e := range d.entries {
  2401  		if e.ID == vid {
  2402  			return e.regs
  2403  		}
  2404  	}
  2405  	return [4]register{noRegister, noRegister, noRegister, noRegister}
  2406  }
  2407  
  2408  // add records that we'd like value vid to be in register r.
  2409  func (d *desiredState) add(vid ID, r register) {
  2410  	d.avoid |= regMask(1) << r
  2411  	for i := range d.entries {
  2412  		e := &d.entries[i]
  2413  		if e.ID != vid {
  2414  			continue
  2415  		}
  2416  		if e.regs[0] == r {
  2417  			// Already known and highest priority
  2418  			return
  2419  		}
  2420  		for j := 1; j < len(e.regs); j++ {
  2421  			if e.regs[j] == r {
  2422  				// Move from lower priority to top priority
  2423  				copy(e.regs[1:], e.regs[:j])
  2424  				e.regs[0] = r
  2425  				return
  2426  			}
  2427  		}
  2428  		copy(e.regs[1:], e.regs[:])
  2429  		e.regs[0] = r
  2430  		return
  2431  	}
  2432  	d.entries = append(d.entries, desiredStateEntry{vid, [4]register{r, noRegister, noRegister, noRegister}})
  2433  }
  2434  
  2435  func (d *desiredState) addList(vid ID, regs [4]register) {
  2436  	// regs is in priority order, so iterate in reverse order.
  2437  	for i := len(regs) - 1; i >= 0; i-- {
  2438  		r := regs[i]
  2439  		if r != noRegister {
  2440  			d.add(vid, r)
  2441  		}
  2442  	}
  2443  }
  2444  
  2445  // clobber erases any desired registers in the set m.
  2446  func (d *desiredState) clobber(m regMask) {
  2447  	for i := 0; i < len(d.entries); {
  2448  		e := &d.entries[i]
  2449  		j := 0
  2450  		for _, r := range e.regs {
  2451  			if r != noRegister && m>>r&1 == 0 {
  2452  				e.regs[j] = r
  2453  				j++
  2454  			}
  2455  		}
  2456  		if j == 0 {
  2457  			// No more desired registers for this value.
  2458  			d.entries[i] = d.entries[len(d.entries)-1]
  2459  			d.entries = d.entries[:len(d.entries)-1]
  2460  			continue
  2461  		}
  2462  		for ; j < len(e.regs); j++ {
  2463  			e.regs[j] = noRegister
  2464  		}
  2465  		i++
  2466  	}
  2467  	d.avoid &^= m
  2468  }
  2469  
  2470  // copy copies a desired state from another desiredState x.
  2471  func (d *desiredState) copy(x *desiredState) {
  2472  	d.entries = append(d.entries[:0], x.entries...)
  2473  	d.avoid = x.avoid
  2474  }
  2475  
  2476  // remove removes the desired registers for vid and returns them.
  2477  func (d *desiredState) remove(vid ID) [4]register {
  2478  	for i := range d.entries {
  2479  		if d.entries[i].ID == vid {
  2480  			regs := d.entries[i].regs
  2481  			d.entries[i] = d.entries[len(d.entries)-1]
  2482  			d.entries = d.entries[:len(d.entries)-1]
  2483  			return regs
  2484  		}
  2485  	}
  2486  	return [4]register{noRegister, noRegister, noRegister, noRegister}
  2487  }
  2488  
  2489  // merge merges another desired state x into d.
  2490  func (d *desiredState) merge(x *desiredState) {
  2491  	d.avoid |= x.avoid
  2492  	// There should only be a few desired registers, so
  2493  	// linear insert is ok.
  2494  	for _, e := range x.entries {
  2495  		d.addList(e.ID, e.regs)
  2496  	}
  2497  }
  2498  
  2499  func min32(x, y int32) int32 {
  2500  	if x < y {
  2501  		return x
  2502  	}
  2503  	return y
  2504  }
  2505  func max32(x, y int32) int32 {
  2506  	if x > y {
  2507  		return x
  2508  	}
  2509  	return y
  2510  }