github.com/slayercat/go@v0.0.0-20170428012452-c51559813f61/src/cmd/internal/obj/s390x/asmz.go (about)

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"cmd/internal/objabi"
    35  	"log"
    36  	"math"
    37  	"sort"
    38  )
    39  
    40  // ctxtz holds state while assembling a single function.
    41  // Each function gets a fresh ctxtz.
    42  // This allows for multiple functions to be safely concurrently assembled.
    43  type ctxtz struct {
    44  	ctxt       *obj.Link
    45  	newprog    obj.ProgAlloc
    46  	cursym     *obj.LSym
    47  	autosize   int32
    48  	instoffset int64
    49  	pc         int64
    50  }
    51  
    52  // instruction layout.
    53  const (
    54  	funcAlign = 16
    55  )
    56  
    57  type Optab struct {
    58  	as    obj.As // opcode
    59  	a1    uint8  // From
    60  	a2    uint8  // Reg
    61  	a3    uint8  // From3
    62  	a4    uint8  // To
    63  	type_ int8
    64  	param int16 // REGSP for auto variables
    65  }
    66  
    67  var optab = []Optab{
    68  	// instruction,  From,   Reg,    From3,  To, type, param
    69  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, 0, 0},
    70  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_LCON, C_TEXTSIZE, 0, 0},
    71  
    72  	// move register
    73  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    74  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    75  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    76  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    77  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    78  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_FREG, 1, 0},
    79  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    80  
    81  	// load constant
    82  	Optab{AMOVD, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    83  	Optab{AMOVW, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    84  	Optab{AMOVWZ, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    85  	Optab{AMOVD, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    86  	Optab{AMOVW, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    87  	Optab{AMOVWZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    88  	Optab{AMOVB, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    89  	Optab{AMOVBZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    90  
    91  	// store constant
    92  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    93  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    94  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    95  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    96  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    97  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    98  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    99  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   100  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   101  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   102  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   103  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   104  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   105  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   106  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   107  
   108  	// store
   109  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   110  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   111  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   112  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   113  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   114  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   115  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   116  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   117  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   118  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   119  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   120  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   121  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   122  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   123  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   124  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   125  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   126  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   127  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   128  
   129  	// load
   130  	Optab{AMOVD, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   131  	Optab{AMOVW, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   132  	Optab{AMOVWZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   133  	Optab{AMOVBZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   134  	Optab{AMOVB, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   135  	Optab{AMOVDBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   136  	Optab{AMOVHBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   137  	Optab{AMOVD, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   138  	Optab{AMOVW, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   139  	Optab{AMOVWZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   140  	Optab{AMOVBZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   141  	Optab{AMOVB, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   142  	Optab{AMOVDBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   143  	Optab{AMOVHBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   144  	Optab{AMOVD, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   145  	Optab{AMOVW, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   146  	Optab{AMOVWZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   147  	Optab{AMOVBZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   148  	Optab{AMOVB, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   149  
   150  	// interlocked load and op
   151  	Optab{ALAAG, C_REG, C_REG, C_NONE, C_LOREG, 99, 0},
   152  
   153  	// integer arithmetic
   154  	Optab{AADD, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   155  	Optab{AADD, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   156  	Optab{AADD, C_LCON, C_REG, C_NONE, C_REG, 22, 0},
   157  	Optab{AADD, C_LCON, C_NONE, C_NONE, C_REG, 22, 0},
   158  	Optab{AADD, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   159  	Optab{AADD, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   160  	Optab{ASUB, C_LCON, C_REG, C_NONE, C_REG, 21, 0},
   161  	Optab{ASUB, C_LCON, C_NONE, C_NONE, C_REG, 21, 0},
   162  	Optab{ASUB, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   163  	Optab{ASUB, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   164  	Optab{AMULHD, C_REG, C_NONE, C_NONE, C_REG, 4, 0},
   165  	Optab{AMULHD, C_REG, C_REG, C_NONE, C_REG, 4, 0},
   166  	Optab{ADIVW, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   167  	Optab{ADIVW, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   168  	Optab{ASUB, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   169  	Optab{ASUB, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   170  	Optab{ANEG, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   171  	Optab{ANEG, C_NONE, C_NONE, C_NONE, C_REG, 47, 0},
   172  
   173  	// integer logical
   174  	Optab{AAND, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   175  	Optab{AAND, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   176  	Optab{AAND, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   177  	Optab{AAND, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   178  	Optab{AAND, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   179  	Optab{AANDW, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   180  	Optab{AANDW, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   181  	Optab{AANDW, C_LCON, C_NONE, C_NONE, C_REG, 24, 0},
   182  	Optab{AANDW, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   183  	Optab{AANDW, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   184  	Optab{ASLD, C_REG, C_NONE, C_NONE, C_REG, 7, 0},
   185  	Optab{ASLD, C_REG, C_REG, C_NONE, C_REG, 7, 0},
   186  	Optab{ASLD, C_SCON, C_REG, C_NONE, C_REG, 7, 0},
   187  	Optab{ASLD, C_SCON, C_NONE, C_NONE, C_REG, 7, 0},
   188  
   189  	// compare and swap
   190  	Optab{ACSG, C_REG, C_REG, C_NONE, C_SOREG, 79, 0},
   191  
   192  	// floating point
   193  	Optab{AFADD, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   194  	Optab{AFABS, C_FREG, C_NONE, C_NONE, C_FREG, 33, 0},
   195  	Optab{AFABS, C_NONE, C_NONE, C_NONE, C_FREG, 33, 0},
   196  	Optab{AFMADD, C_FREG, C_FREG, C_NONE, C_FREG, 34, 0},
   197  	Optab{AFMUL, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   198  	Optab{AFMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, 36, REGSP},
   199  	Optab{AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, 36, 0},
   200  	Optab{AFMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, 75, 0},
   201  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   202  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, 35, 0},
   203  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, 74, 0},
   204  	Optab{AFMOVD, C_ZCON, C_NONE, C_NONE, C_FREG, 67, 0},
   205  	Optab{ALDGR, C_REG, C_NONE, C_NONE, C_FREG, 81, 0},
   206  	Optab{ALGDR, C_FREG, C_NONE, C_NONE, C_REG, 81, 0},
   207  	Optab{ACEFBRA, C_REG, C_NONE, C_NONE, C_FREG, 82, 0},
   208  	Optab{ACFEBRA, C_FREG, C_NONE, C_NONE, C_REG, 83, 0},
   209  	Optab{AFIEBR, C_SCON, C_FREG, C_NONE, C_FREG, 48, 0},
   210  
   211  	// load symbol address (plus offset)
   212  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_REG, 19, 0},
   213  	Optab{AMOVD, C_GOTADDR, C_NONE, C_NONE, C_REG, 93, 0},
   214  	Optab{AMOVD, C_TLS_LE, C_NONE, C_NONE, C_REG, 94, 0},
   215  	Optab{AMOVD, C_TLS_IE, C_NONE, C_NONE, C_REG, 95, 0},
   216  
   217  	// system call
   218  	Optab{ASYSCALL, C_NONE, C_NONE, C_NONE, C_NONE, 5, 0},
   219  	Optab{ASYSCALL, C_SCON, C_NONE, C_NONE, C_NONE, 77, 0},
   220  
   221  	// branch
   222  	Optab{ABEQ, C_NONE, C_NONE, C_NONE, C_SBRA, 16, 0},
   223  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_LBRA, 11, 0},
   224  	Optab{ABC, C_SCON, C_REG, C_NONE, C_LBRA, 16, 0},
   225  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_REG, 18, 0},
   226  	Optab{ABR, C_REG, C_NONE, C_NONE, C_REG, 18, 0},
   227  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   228  	Optab{ABC, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   229  	Optab{ACMPBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   230  	Optab{ACMPBEQ, C_REG, C_NONE, C_ADDCON, C_SBRA, 90, 0},
   231  	Optab{ACMPBEQ, C_REG, C_NONE, C_SCON, C_SBRA, 90, 0},
   232  	Optab{ACMPUBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   233  	Optab{ACMPUBEQ, C_REG, C_NONE, C_ANDCON, C_SBRA, 90, 0},
   234  
   235  	// move on condition
   236  	Optab{AMOVDEQ, C_REG, C_NONE, C_NONE, C_REG, 17, 0},
   237  
   238  	// find leftmost one
   239  	Optab{AFLOGR, C_REG, C_NONE, C_NONE, C_REG, 8, 0},
   240  
   241  	// compare
   242  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   243  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   244  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   245  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   246  	Optab{AFCMPO, C_FREG, C_NONE, C_NONE, C_FREG, 70, 0},
   247  	Optab{AFCMPO, C_FREG, C_REG, C_NONE, C_FREG, 70, 0},
   248  
   249  	// 32-bit access registers
   250  	Optab{AMOVW, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   251  	Optab{AMOVWZ, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   252  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   253  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   254  
   255  	// macros
   256  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LOREG, 96, 0},
   257  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LAUTO, 96, REGSP},
   258  
   259  	// load/store multiple
   260  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LOREG, 97, 0},
   261  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LAUTO, 97, REGSP},
   262  	Optab{ALMG, C_LOREG, C_REG, C_NONE, C_REG, 98, 0},
   263  	Optab{ALMG, C_LAUTO, C_REG, C_NONE, C_REG, 98, REGSP},
   264  
   265  	// bytes
   266  	Optab{ABYTE, C_SCON, C_NONE, C_NONE, C_NONE, 40, 0},
   267  	Optab{AWORD, C_LCON, C_NONE, C_NONE, C_NONE, 40, 0},
   268  	Optab{ADWORD, C_LCON, C_NONE, C_NONE, C_NONE, 31, 0},
   269  	Optab{ADWORD, C_DCON, C_NONE, C_NONE, C_NONE, 31, 0},
   270  
   271  	// fast synchronization
   272  	Optab{ASYNC, C_NONE, C_NONE, C_NONE, C_NONE, 80, 0},
   273  
   274  	// store clock
   275  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SAUTO, 88, REGSP},
   276  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SOREG, 88, 0},
   277  
   278  	// storage and storage
   279  	Optab{AMVC, C_SCON, C_NONE, C_LOREG, C_LOREG, 84, 0},
   280  	Optab{AMVC, C_SCON, C_NONE, C_LOREG, C_LAUTO, 84, REGSP},
   281  	Optab{AMVC, C_SCON, C_NONE, C_LAUTO, C_LAUTO, 84, REGSP},
   282  
   283  	// address
   284  	Optab{ALARL, C_LCON, C_NONE, C_NONE, C_REG, 85, 0},
   285  	Optab{ALARL, C_SYMADDR, C_NONE, C_NONE, C_REG, 85, 0},
   286  	Optab{ALA, C_SOREG, C_NONE, C_NONE, C_REG, 86, 0},
   287  	Optab{ALA, C_SAUTO, C_NONE, C_NONE, C_REG, 86, REGSP},
   288  	Optab{AEXRL, C_SYMADDR, C_NONE, C_NONE, C_REG, 87, 0},
   289  
   290  	// misc
   291  	Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, 78, 0},
   292  	Optab{obj.APCDATA, C_LCON, C_NONE, C_NONE, C_LCON, 0, 0},
   293  	Optab{obj.AFUNCDATA, C_SCON, C_NONE, C_NONE, C_ADDR, 0, 0},
   294  	Optab{obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0},
   295  	Optab{obj.ANOP, C_SAUTO, C_NONE, C_NONE, C_NONE, 0, 0},
   296  
   297  	// vector instructions
   298  
   299  	// VRX store
   300  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SOREG, 100, 0},
   301  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SAUTO, 100, REGSP},
   302  	Optab{AVSTEG, C_SCON, C_VREG, C_NONE, C_SOREG, 100, 0},
   303  	Optab{AVSTEG, C_SCON, C_VREG, C_NONE, C_SAUTO, 100, REGSP},
   304  
   305  	// VRX load
   306  	Optab{AVL, C_SOREG, C_NONE, C_NONE, C_VREG, 101, 0},
   307  	Optab{AVL, C_SAUTO, C_NONE, C_NONE, C_VREG, 101, REGSP},
   308  	Optab{AVLEG, C_SCON, C_NONE, C_SOREG, C_VREG, 101, 0},
   309  	Optab{AVLEG, C_SCON, C_NONE, C_SAUTO, C_VREG, 101, REGSP},
   310  
   311  	// VRV scatter
   312  	Optab{AVSCEG, C_SCON, C_VREG, C_NONE, C_SOREG, 102, 0},
   313  	Optab{AVSCEG, C_SCON, C_VREG, C_NONE, C_SAUTO, 102, REGSP},
   314  
   315  	// VRV gather
   316  	Optab{AVGEG, C_SCON, C_NONE, C_SOREG, C_VREG, 103, 0},
   317  	Optab{AVGEG, C_SCON, C_NONE, C_SAUTO, C_VREG, 103, REGSP},
   318  
   319  	// VRS element shift/rotate and load gr to/from vr element
   320  	Optab{AVESLG, C_SCON, C_VREG, C_NONE, C_VREG, 104, 0},
   321  	Optab{AVESLG, C_REG, C_VREG, C_NONE, C_VREG, 104, 0},
   322  	Optab{AVESLG, C_SCON, C_NONE, C_NONE, C_VREG, 104, 0},
   323  	Optab{AVESLG, C_REG, C_NONE, C_NONE, C_VREG, 104, 0},
   324  	Optab{AVLGVG, C_SCON, C_VREG, C_NONE, C_REG, 104, 0},
   325  	Optab{AVLGVG, C_REG, C_VREG, C_NONE, C_REG, 104, 0},
   326  	Optab{AVLVGG, C_SCON, C_REG, C_NONE, C_VREG, 104, 0},
   327  	Optab{AVLVGG, C_REG, C_REG, C_NONE, C_VREG, 104, 0},
   328  
   329  	// VRS store multiple
   330  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SOREG, 105, 0},
   331  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SAUTO, 105, REGSP},
   332  
   333  	// VRS load multiple
   334  	Optab{AVLM, C_SOREG, C_VREG, C_NONE, C_VREG, 106, 0},
   335  	Optab{AVLM, C_SAUTO, C_VREG, C_NONE, C_VREG, 106, REGSP},
   336  
   337  	// VRS store with length
   338  	Optab{AVSTL, C_REG, C_VREG, C_NONE, C_SOREG, 107, 0},
   339  	Optab{AVSTL, C_REG, C_VREG, C_NONE, C_SAUTO, 107, REGSP},
   340  
   341  	// VRS load with length
   342  	Optab{AVLL, C_REG, C_NONE, C_SOREG, C_VREG, 108, 0},
   343  	Optab{AVLL, C_REG, C_NONE, C_SAUTO, C_VREG, 108, REGSP},
   344  
   345  	// VRI-a
   346  	Optab{AVGBM, C_ANDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   347  	Optab{AVZERO, C_NONE, C_NONE, C_NONE, C_VREG, 109, 0},
   348  	Optab{AVREPIG, C_ADDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   349  	Optab{AVREPIG, C_SCON, C_NONE, C_NONE, C_VREG, 109, 0},
   350  	Optab{AVLEIG, C_SCON, C_NONE, C_ADDCON, C_VREG, 109, 0},
   351  	Optab{AVLEIG, C_SCON, C_NONE, C_SCON, C_VREG, 109, 0},
   352  
   353  	// VRI-b generate mask
   354  	Optab{AVGMG, C_SCON, C_NONE, C_SCON, C_VREG, 110, 0},
   355  
   356  	// VRI-c replicate
   357  	Optab{AVREPG, C_UCON, C_VREG, C_NONE, C_VREG, 111, 0},
   358  
   359  	// VRI-d element rotate and insert under mask and
   360  	// shift left double by byte
   361  	Optab{AVERIMG, C_SCON, C_VREG, C_VREG, C_VREG, 112, 0},
   362  	Optab{AVSLDB, C_SCON, C_VREG, C_VREG, C_VREG, 112, 0},
   363  
   364  	// VRI-d fp test data class immediate
   365  	Optab{AVFTCIDB, C_SCON, C_VREG, C_NONE, C_VREG, 113, 0},
   366  
   367  	// VRR-a load reg
   368  	Optab{AVLR, C_VREG, C_NONE, C_NONE, C_VREG, 114, 0},
   369  
   370  	// VRR-a compare
   371  	Optab{AVECG, C_VREG, C_NONE, C_NONE, C_VREG, 115, 0},
   372  
   373  	// VRR-b
   374  	Optab{AVCEQG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   375  	Optab{AVFAEF, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   376  	Optab{AVPKSG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   377  
   378  	// VRR-c
   379  	Optab{AVAQ, C_VREG, C_VREG, C_NONE, C_VREG, 118, 0},
   380  	Optab{AVAQ, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   381  	Optab{AVNOT, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   382  	Optab{AVPDI, C_SCON, C_VREG, C_VREG, C_VREG, 123, 0},
   383  
   384  	// VRR-c shifts
   385  	Optab{AVERLLVG, C_VREG, C_VREG, C_NONE, C_VREG, 119, 0},
   386  	Optab{AVERLLVG, C_VREG, C_NONE, C_NONE, C_VREG, 119, 0},
   387  
   388  	// VRR-d
   389  	//             2       3       1       4
   390  	Optab{AVACQ, C_VREG, C_VREG, C_VREG, C_VREG, 120, 0},
   391  
   392  	// VRR-e
   393  	Optab{AVSEL, C_VREG, C_VREG, C_VREG, C_VREG, 121, 0},
   394  
   395  	// VRR-f
   396  	Optab{AVLVGP, C_REG, C_REG, C_NONE, C_VREG, 122, 0},
   397  }
   398  
   399  var oprange [ALAST & obj.AMask][]Optab
   400  
   401  var xcmp [C_NCLASS][C_NCLASS]bool
   402  
   403  func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
   404  	p := cursym.Func.Text
   405  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   406  		return
   407  	}
   408  
   409  	if oprange[AORW&obj.AMask] == nil {
   410  		ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
   411  	}
   412  
   413  	c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}
   414  
   415  	buffer := make([]byte, 0)
   416  	changed := true
   417  	loop := 0
   418  	for changed {
   419  		if loop > 10 {
   420  			c.ctxt.Diag("stuck in spanz loop")
   421  			break
   422  		}
   423  		changed = false
   424  		buffer = buffer[:0]
   425  		c.cursym.R = make([]obj.Reloc, 0)
   426  		for p := c.cursym.Func.Text; p != nil; p = p.Link {
   427  			pc := int64(len(buffer))
   428  			if pc != p.Pc {
   429  				changed = true
   430  			}
   431  			p.Pc = pc
   432  			c.pc = p.Pc
   433  			c.asmout(p, &buffer)
   434  			if pc == int64(len(buffer)) {
   435  				switch p.As {
   436  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   437  					// ok
   438  				default:
   439  					c.ctxt.Diag("zero-width instruction\n%v", p)
   440  				}
   441  			}
   442  		}
   443  		loop++
   444  	}
   445  
   446  	c.cursym.Size = int64(len(buffer))
   447  	if c.cursym.Size%funcAlign != 0 {
   448  		c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
   449  	}
   450  	c.cursym.Grow(c.cursym.Size)
   451  	copy(c.cursym.P, buffer)
   452  }
   453  
   454  func isint32(v int64) bool {
   455  	return int64(int32(v)) == v
   456  }
   457  
   458  func isuint32(v uint64) bool {
   459  	return uint64(uint32(v)) == v
   460  }
   461  
   462  func (c *ctxtz) aclass(a *obj.Addr) int {
   463  	switch a.Type {
   464  	case obj.TYPE_NONE:
   465  		return C_NONE
   466  
   467  	case obj.TYPE_REG:
   468  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   469  			return C_REG
   470  		}
   471  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   472  			return C_FREG
   473  		}
   474  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   475  			return C_AREG
   476  		}
   477  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   478  			return C_VREG
   479  		}
   480  		return C_GOK
   481  
   482  	case obj.TYPE_MEM:
   483  		switch a.Name {
   484  		case obj.NAME_EXTERN,
   485  			obj.NAME_STATIC:
   486  			if a.Sym == nil {
   487  				// must have a symbol
   488  				break
   489  			}
   490  			c.instoffset = a.Offset
   491  			if a.Sym.Type == objabi.STLSBSS {
   492  				if c.ctxt.Flag_shared {
   493  					return C_TLS_IE // initial exec model
   494  				}
   495  				return C_TLS_LE // local exec model
   496  			}
   497  			return C_ADDR
   498  
   499  		case obj.NAME_GOTREF:
   500  			return C_GOTADDR
   501  
   502  		case obj.NAME_AUTO:
   503  			c.instoffset = int64(c.autosize) + a.Offset
   504  			if c.instoffset >= -BIG && c.instoffset < BIG {
   505  				return C_SAUTO
   506  			}
   507  			return C_LAUTO
   508  
   509  		case obj.NAME_PARAM:
   510  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   511  			if c.instoffset >= -BIG && c.instoffset < BIG {
   512  				return C_SAUTO
   513  			}
   514  			return C_LAUTO
   515  
   516  		case obj.NAME_NONE:
   517  			c.instoffset = a.Offset
   518  			if c.instoffset == 0 {
   519  				return C_ZOREG
   520  			}
   521  			if c.instoffset >= -BIG && c.instoffset < BIG {
   522  				return C_SOREG
   523  			}
   524  			return C_LOREG
   525  		}
   526  
   527  		return C_GOK
   528  
   529  	case obj.TYPE_TEXTSIZE:
   530  		return C_TEXTSIZE
   531  
   532  	case obj.TYPE_FCONST:
   533  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   534  			return C_ZCON
   535  		}
   536  		c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   537  
   538  	case obj.TYPE_CONST,
   539  		obj.TYPE_ADDR:
   540  		switch a.Name {
   541  		case obj.NAME_NONE:
   542  			c.instoffset = a.Offset
   543  			if a.Reg != 0 {
   544  				if -BIG <= c.instoffset && c.instoffset <= BIG {
   545  					return C_SACON
   546  				}
   547  				if isint32(c.instoffset) {
   548  					return C_LACON
   549  				}
   550  				return C_DACON
   551  			}
   552  			goto consize
   553  
   554  		case obj.NAME_EXTERN,
   555  			obj.NAME_STATIC:
   556  			s := a.Sym
   557  			if s == nil {
   558  				break
   559  			}
   560  			c.instoffset = a.Offset
   561  			if s.Type == objabi.SCONST {
   562  				goto consize
   563  			}
   564  
   565  			return C_SYMADDR
   566  
   567  		case obj.NAME_AUTO:
   568  			c.instoffset = int64(c.autosize) + a.Offset
   569  			if c.instoffset >= -BIG && c.instoffset < BIG {
   570  				return C_SACON
   571  			}
   572  			return C_LACON
   573  
   574  		case obj.NAME_PARAM:
   575  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   576  			if c.instoffset >= -BIG && c.instoffset < BIG {
   577  				return C_SACON
   578  			}
   579  			return C_LACON
   580  		}
   581  
   582  		return C_GOK
   583  
   584  	consize:
   585  		if c.instoffset == 0 {
   586  			return C_ZCON
   587  		}
   588  		if c.instoffset >= 0 {
   589  			if c.instoffset <= 0x7fff {
   590  				return C_SCON
   591  			}
   592  			if c.instoffset <= 0xffff {
   593  				return C_ANDCON
   594  			}
   595  			if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   596  				return C_UCON
   597  			}
   598  			if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
   599  				return C_LCON
   600  			}
   601  			return C_DCON
   602  		}
   603  
   604  		if c.instoffset >= -0x8000 {
   605  			return C_ADDCON
   606  		}
   607  		if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
   608  			return C_UCON
   609  		}
   610  		if isint32(c.instoffset) {
   611  			return C_LCON
   612  		}
   613  		return C_DCON
   614  
   615  	case obj.TYPE_BRANCH:
   616  		return C_SBRA
   617  	}
   618  
   619  	return C_GOK
   620  }
   621  
   622  func (c *ctxtz) oplook(p *obj.Prog) *Optab {
   623  	a1 := int(p.Optab)
   624  	if a1 != 0 {
   625  		return &optab[a1-1]
   626  	}
   627  	a1 = int(p.From.Class)
   628  	if a1 == 0 {
   629  		a1 = c.aclass(&p.From) + 1
   630  		p.From.Class = int8(a1)
   631  	}
   632  
   633  	a1--
   634  	a3 := C_NONE + 1
   635  	if p.From3 != nil {
   636  		a3 = int(p.From3.Class)
   637  		if a3 == 0 {
   638  			a3 = c.aclass(p.From3) + 1
   639  			p.From3.Class = int8(a3)
   640  		}
   641  	}
   642  
   643  	a3--
   644  	a4 := int(p.To.Class)
   645  	if a4 == 0 {
   646  		a4 = c.aclass(&p.To) + 1
   647  		p.To.Class = int8(a4)
   648  	}
   649  
   650  	a4--
   651  	a2 := C_NONE
   652  	if p.Reg != 0 {
   653  		if REG_R0 <= p.Reg && p.Reg <= REG_R15 {
   654  			a2 = C_REG
   655  		} else if REG_V0 <= p.Reg && p.Reg <= REG_V31 {
   656  			a2 = C_VREG
   657  		} else if REG_F0 <= p.Reg && p.Reg <= REG_F15 {
   658  			a2 = C_FREG
   659  		} else if REG_AR0 <= p.Reg && p.Reg <= REG_AR15 {
   660  			a2 = C_AREG
   661  		}
   662  	}
   663  
   664  	ops := oprange[p.As&obj.AMask]
   665  	c1 := &xcmp[a1]
   666  	c2 := &xcmp[a2]
   667  	c3 := &xcmp[a3]
   668  	c4 := &xcmp[a4]
   669  	for i := range ops {
   670  		op := &ops[i]
   671  		if (int(op.a2) == a2 || c2[op.a2]) && c4[op.a4] && c1[op.a1] && c3[op.a3] {
   672  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   673  			return op
   674  		}
   675  	}
   676  
   677  	// cannot find a case; abort
   678  	c.ctxt.Diag("illegal combination %v %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4))
   679  	c.ctxt.Diag("prog: %v\n", p)
   680  	return nil
   681  }
   682  
   683  func cmp(a int, b int) bool {
   684  	if a == b {
   685  		return true
   686  	}
   687  	switch a {
   688  	case C_DCON:
   689  		if b == C_LCON {
   690  			return true
   691  		}
   692  		fallthrough
   693  	case C_LCON:
   694  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   695  			return true
   696  		}
   697  
   698  	case C_ADDCON:
   699  		if b == C_ZCON || b == C_SCON {
   700  			return true
   701  		}
   702  
   703  	case C_ANDCON:
   704  		if b == C_ZCON || b == C_SCON {
   705  			return true
   706  		}
   707  
   708  	case C_UCON:
   709  		if b == C_ZCON || b == C_SCON {
   710  			return true
   711  		}
   712  
   713  	case C_SCON:
   714  		if b == C_ZCON {
   715  			return true
   716  		}
   717  
   718  	case C_LACON:
   719  		if b == C_SACON {
   720  			return true
   721  		}
   722  
   723  	case C_LBRA:
   724  		if b == C_SBRA {
   725  			return true
   726  		}
   727  
   728  	case C_LAUTO:
   729  		if b == C_SAUTO {
   730  			return true
   731  		}
   732  
   733  	case C_LOREG:
   734  		if b == C_ZOREG || b == C_SOREG {
   735  			return true
   736  		}
   737  
   738  	case C_SOREG:
   739  		if b == C_ZOREG {
   740  			return true
   741  		}
   742  
   743  	case C_ANY:
   744  		return true
   745  	}
   746  
   747  	return false
   748  }
   749  
   750  type ocmp []Optab
   751  
   752  func (x ocmp) Len() int {
   753  	return len(x)
   754  }
   755  
   756  func (x ocmp) Swap(i, j int) {
   757  	x[i], x[j] = x[j], x[i]
   758  }
   759  
   760  func (x ocmp) Less(i, j int) bool {
   761  	p1 := &x[i]
   762  	p2 := &x[j]
   763  	n := int(p1.as) - int(p2.as)
   764  	if n != 0 {
   765  		return n < 0
   766  	}
   767  	n = int(p1.a1) - int(p2.a1)
   768  	if n != 0 {
   769  		return n < 0
   770  	}
   771  	n = int(p1.a2) - int(p2.a2)
   772  	if n != 0 {
   773  		return n < 0
   774  	}
   775  	n = int(p1.a3) - int(p2.a3)
   776  	if n != 0 {
   777  		return n < 0
   778  	}
   779  	n = int(p1.a4) - int(p2.a4)
   780  	if n != 0 {
   781  		return n < 0
   782  	}
   783  	return false
   784  }
   785  func opset(a, b obj.As) {
   786  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   787  }
   788  
   789  func buildop(ctxt *obj.Link) {
   790  	if oprange[AORW&obj.AMask] != nil {
   791  		// Already initialized; stop now.
   792  		// This happens in the cmd/asm tests,
   793  		// each of which re-initializes the arch.
   794  		return
   795  	}
   796  
   797  	for i := 0; i < C_NCLASS; i++ {
   798  		for n := 0; n < C_NCLASS; n++ {
   799  			if cmp(n, i) {
   800  				xcmp[i][n] = true
   801  			}
   802  		}
   803  	}
   804  	sort.Sort(ocmp(optab))
   805  	for i := 0; i < len(optab); i++ {
   806  		r := optab[i].as
   807  		start := i
   808  		for ; i+1 < len(optab); i++ {
   809  			if optab[i+1].as != r {
   810  				break
   811  			}
   812  		}
   813  		oprange[r&obj.AMask] = optab[start : i+1]
   814  
   815  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   816  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   817  		switch r {
   818  		case AADD:
   819  			opset(AADDC, r)
   820  			opset(AADDW, r)
   821  			opset(AMULLD, r)
   822  			opset(AMULLW, r)
   823  		case ADIVW:
   824  			opset(AADDE, r)
   825  			opset(ADIVD, r)
   826  			opset(ADIVDU, r)
   827  			opset(ADIVWU, r)
   828  			opset(AMODD, r)
   829  			opset(AMODDU, r)
   830  			opset(AMODW, r)
   831  			opset(AMODWU, r)
   832  		case AMULHD:
   833  			opset(AMULHDU, r)
   834  		case AMOVBZ:
   835  			opset(AMOVH, r)
   836  			opset(AMOVHZ, r)
   837  		case ALA:
   838  			opset(ALAY, r)
   839  		case AMVC:
   840  			opset(ACLC, r)
   841  			opset(AXC, r)
   842  			opset(AOC, r)
   843  			opset(ANC, r)
   844  		case ASTCK:
   845  			opset(ASTCKC, r)
   846  			opset(ASTCKE, r)
   847  			opset(ASTCKF, r)
   848  		case ALAAG:
   849  			opset(ALAA, r)
   850  			opset(ALAAL, r)
   851  			opset(ALAALG, r)
   852  			opset(ALAN, r)
   853  			opset(ALANG, r)
   854  			opset(ALAX, r)
   855  			opset(ALAXG, r)
   856  			opset(ALAO, r)
   857  			opset(ALAOG, r)
   858  		case ASTMG:
   859  			opset(ASTMY, r)
   860  		case ALMG:
   861  			opset(ALMY, r)
   862  		case ABEQ:
   863  			opset(ABGE, r)
   864  			opset(ABGT, r)
   865  			opset(ABLE, r)
   866  			opset(ABLT, r)
   867  			opset(ABNE, r)
   868  			opset(ABVC, r)
   869  			opset(ABVS, r)
   870  			opset(ABLEU, r)
   871  			opset(ABLTU, r)
   872  		case ABR:
   873  			opset(ABL, r)
   874  		case ABC:
   875  			opset(ABCL, r)
   876  		case AFABS:
   877  			opset(AFNABS, r)
   878  			opset(AFNEG, r)
   879  			opset(AFNEGS, r)
   880  			opset(ALEDBR, r)
   881  			opset(ALDEBR, r)
   882  			opset(AFSQRT, r)
   883  			opset(AFSQRTS, r)
   884  		case AFADD:
   885  			opset(AFADDS, r)
   886  			opset(AFDIV, r)
   887  			opset(AFDIVS, r)
   888  			opset(AFSUB, r)
   889  			opset(AFSUBS, r)
   890  		case AFMADD:
   891  			opset(AFMADDS, r)
   892  			opset(AFMSUB, r)
   893  			opset(AFMSUBS, r)
   894  		case AFMUL:
   895  			opset(AFMULS, r)
   896  		case AFCMPO:
   897  			opset(AFCMPU, r)
   898  			opset(ACEBR, r)
   899  		case AAND:
   900  			opset(AOR, r)
   901  			opset(AXOR, r)
   902  		case AANDW:
   903  			opset(AORW, r)
   904  			opset(AXORW, r)
   905  		case ASLD:
   906  			opset(ASRD, r)
   907  			opset(ASLW, r)
   908  			opset(ASRW, r)
   909  			opset(ASRAD, r)
   910  			opset(ASRAW, r)
   911  			opset(ARLL, r)
   912  			opset(ARLLG, r)
   913  		case ACSG:
   914  			opset(ACS, r)
   915  		case ASUB:
   916  			opset(ASUBC, r)
   917  			opset(ASUBE, r)
   918  			opset(ASUBW, r)
   919  		case ANEG:
   920  			opset(ANEGW, r)
   921  		case AFMOVD:
   922  			opset(AFMOVS, r)
   923  		case AMOVDBR:
   924  			opset(AMOVWBR, r)
   925  		case ACMP:
   926  			opset(ACMPW, r)
   927  		case ACMPU:
   928  			opset(ACMPWU, r)
   929  		case ACEFBRA:
   930  			opset(ACDFBRA, r)
   931  			opset(ACEGBRA, r)
   932  			opset(ACDGBRA, r)
   933  			opset(ACELFBR, r)
   934  			opset(ACDLFBR, r)
   935  			opset(ACELGBR, r)
   936  			opset(ACDLGBR, r)
   937  		case ACFEBRA:
   938  			opset(ACFDBRA, r)
   939  			opset(ACGEBRA, r)
   940  			opset(ACGDBRA, r)
   941  			opset(ACLFEBR, r)
   942  			opset(ACLFDBR, r)
   943  			opset(ACLGEBR, r)
   944  			opset(ACLGDBR, r)
   945  		case AFIEBR:
   946  			opset(AFIDBR, r)
   947  		case ACMPBEQ:
   948  			opset(ACMPBGE, r)
   949  			opset(ACMPBGT, r)
   950  			opset(ACMPBLE, r)
   951  			opset(ACMPBLT, r)
   952  			opset(ACMPBNE, r)
   953  		case ACMPUBEQ:
   954  			opset(ACMPUBGE, r)
   955  			opset(ACMPUBGT, r)
   956  			opset(ACMPUBLE, r)
   957  			opset(ACMPUBLT, r)
   958  			opset(ACMPUBNE, r)
   959  		case AMOVDEQ:
   960  			opset(AMOVDGE, r)
   961  			opset(AMOVDGT, r)
   962  			opset(AMOVDLE, r)
   963  			opset(AMOVDLT, r)
   964  			opset(AMOVDNE, r)
   965  		case AVL:
   966  			opset(AVLLEZB, r)
   967  			opset(AVLLEZH, r)
   968  			opset(AVLLEZF, r)
   969  			opset(AVLLEZG, r)
   970  			opset(AVLREPB, r)
   971  			opset(AVLREPH, r)
   972  			opset(AVLREPF, r)
   973  			opset(AVLREPG, r)
   974  		case AVLEG:
   975  			opset(AVLBB, r)
   976  			opset(AVLEB, r)
   977  			opset(AVLEH, r)
   978  			opset(AVLEF, r)
   979  			opset(AVLEG, r)
   980  			opset(AVLREP, r)
   981  		case AVSTEG:
   982  			opset(AVSTEB, r)
   983  			opset(AVSTEH, r)
   984  			opset(AVSTEF, r)
   985  		case AVSCEG:
   986  			opset(AVSCEF, r)
   987  		case AVGEG:
   988  			opset(AVGEF, r)
   989  		case AVESLG:
   990  			opset(AVESLB, r)
   991  			opset(AVESLH, r)
   992  			opset(AVESLF, r)
   993  			opset(AVERLLB, r)
   994  			opset(AVERLLH, r)
   995  			opset(AVERLLF, r)
   996  			opset(AVERLLG, r)
   997  			opset(AVESRAB, r)
   998  			opset(AVESRAH, r)
   999  			opset(AVESRAF, r)
  1000  			opset(AVESRAG, r)
  1001  			opset(AVESRLB, r)
  1002  			opset(AVESRLH, r)
  1003  			opset(AVESRLF, r)
  1004  			opset(AVESRLG, r)
  1005  		case AVLGVG:
  1006  			opset(AVLGVB, r)
  1007  			opset(AVLGVH, r)
  1008  			opset(AVLGVF, r)
  1009  		case AVLVGG:
  1010  			opset(AVLVGB, r)
  1011  			opset(AVLVGH, r)
  1012  			opset(AVLVGF, r)
  1013  		case AVZERO:
  1014  			opset(AVONE, r)
  1015  		case AVREPIG:
  1016  			opset(AVREPIB, r)
  1017  			opset(AVREPIH, r)
  1018  			opset(AVREPIF, r)
  1019  		case AVLEIG:
  1020  			opset(AVLEIB, r)
  1021  			opset(AVLEIH, r)
  1022  			opset(AVLEIF, r)
  1023  		case AVGMG:
  1024  			opset(AVGMB, r)
  1025  			opset(AVGMH, r)
  1026  			opset(AVGMF, r)
  1027  		case AVREPG:
  1028  			opset(AVREPB, r)
  1029  			opset(AVREPH, r)
  1030  			opset(AVREPF, r)
  1031  		case AVERIMG:
  1032  			opset(AVERIMB, r)
  1033  			opset(AVERIMH, r)
  1034  			opset(AVERIMF, r)
  1035  		case AVFTCIDB:
  1036  			opset(AWFTCIDB, r)
  1037  		case AVLR:
  1038  			opset(AVUPHB, r)
  1039  			opset(AVUPHH, r)
  1040  			opset(AVUPHF, r)
  1041  			opset(AVUPLHB, r)
  1042  			opset(AVUPLHH, r)
  1043  			opset(AVUPLHF, r)
  1044  			opset(AVUPLB, r)
  1045  			opset(AVUPLHW, r)
  1046  			opset(AVUPLF, r)
  1047  			opset(AVUPLLB, r)
  1048  			opset(AVUPLLH, r)
  1049  			opset(AVUPLLF, r)
  1050  			opset(AVCLZB, r)
  1051  			opset(AVCLZH, r)
  1052  			opset(AVCLZF, r)
  1053  			opset(AVCLZG, r)
  1054  			opset(AVCTZB, r)
  1055  			opset(AVCTZH, r)
  1056  			opset(AVCTZF, r)
  1057  			opset(AVCTZG, r)
  1058  			opset(AVLDEB, r)
  1059  			opset(AWLDEB, r)
  1060  			opset(AVFLCDB, r)
  1061  			opset(AWFLCDB, r)
  1062  			opset(AVFLNDB, r)
  1063  			opset(AWFLNDB, r)
  1064  			opset(AVFLPDB, r)
  1065  			opset(AWFLPDB, r)
  1066  			opset(AVFSQDB, r)
  1067  			opset(AWFSQDB, r)
  1068  			opset(AVISTRB, r)
  1069  			opset(AVISTRH, r)
  1070  			opset(AVISTRF, r)
  1071  			opset(AVISTRBS, r)
  1072  			opset(AVISTRHS, r)
  1073  			opset(AVISTRFS, r)
  1074  			opset(AVLCB, r)
  1075  			opset(AVLCH, r)
  1076  			opset(AVLCF, r)
  1077  			opset(AVLCG, r)
  1078  			opset(AVLPB, r)
  1079  			opset(AVLPH, r)
  1080  			opset(AVLPF, r)
  1081  			opset(AVLPG, r)
  1082  			opset(AVPOPCT, r)
  1083  			opset(AVSEGB, r)
  1084  			opset(AVSEGH, r)
  1085  			opset(AVSEGF, r)
  1086  		case AVECG:
  1087  			opset(AVECB, r)
  1088  			opset(AVECH, r)
  1089  			opset(AVECF, r)
  1090  			opset(AVECLB, r)
  1091  			opset(AVECLH, r)
  1092  			opset(AVECLF, r)
  1093  			opset(AVECLG, r)
  1094  			opset(AWFCDB, r)
  1095  			opset(AWFKDB, r)
  1096  		case AVCEQG:
  1097  			opset(AVCEQB, r)
  1098  			opset(AVCEQH, r)
  1099  			opset(AVCEQF, r)
  1100  			opset(AVCEQBS, r)
  1101  			opset(AVCEQHS, r)
  1102  			opset(AVCEQFS, r)
  1103  			opset(AVCEQGS, r)
  1104  			opset(AVCHB, r)
  1105  			opset(AVCHH, r)
  1106  			opset(AVCHF, r)
  1107  			opset(AVCHG, r)
  1108  			opset(AVCHBS, r)
  1109  			opset(AVCHHS, r)
  1110  			opset(AVCHFS, r)
  1111  			opset(AVCHGS, r)
  1112  			opset(AVCHLB, r)
  1113  			opset(AVCHLH, r)
  1114  			opset(AVCHLF, r)
  1115  			opset(AVCHLG, r)
  1116  			opset(AVCHLBS, r)
  1117  			opset(AVCHLHS, r)
  1118  			opset(AVCHLFS, r)
  1119  			opset(AVCHLGS, r)
  1120  		case AVFAEF:
  1121  			opset(AVFAEB, r)
  1122  			opset(AVFAEH, r)
  1123  			opset(AVFAEBS, r)
  1124  			opset(AVFAEHS, r)
  1125  			opset(AVFAEFS, r)
  1126  			opset(AVFAEZB, r)
  1127  			opset(AVFAEZH, r)
  1128  			opset(AVFAEZF, r)
  1129  			opset(AVFAEZBS, r)
  1130  			opset(AVFAEZHS, r)
  1131  			opset(AVFAEZFS, r)
  1132  			opset(AVFEEB, r)
  1133  			opset(AVFEEH, r)
  1134  			opset(AVFEEF, r)
  1135  			opset(AVFEEBS, r)
  1136  			opset(AVFEEHS, r)
  1137  			opset(AVFEEFS, r)
  1138  			opset(AVFEEZB, r)
  1139  			opset(AVFEEZH, r)
  1140  			opset(AVFEEZF, r)
  1141  			opset(AVFEEZBS, r)
  1142  			opset(AVFEEZHS, r)
  1143  			opset(AVFEEZFS, r)
  1144  			opset(AVFENEB, r)
  1145  			opset(AVFENEH, r)
  1146  			opset(AVFENEF, r)
  1147  			opset(AVFENEBS, r)
  1148  			opset(AVFENEHS, r)
  1149  			opset(AVFENEFS, r)
  1150  			opset(AVFENEZB, r)
  1151  			opset(AVFENEZH, r)
  1152  			opset(AVFENEZF, r)
  1153  			opset(AVFENEZBS, r)
  1154  			opset(AVFENEZHS, r)
  1155  			opset(AVFENEZFS, r)
  1156  		case AVPKSG:
  1157  			opset(AVPKSH, r)
  1158  			opset(AVPKSF, r)
  1159  			opset(AVPKSHS, r)
  1160  			opset(AVPKSFS, r)
  1161  			opset(AVPKSGS, r)
  1162  			opset(AVPKLSH, r)
  1163  			opset(AVPKLSF, r)
  1164  			opset(AVPKLSG, r)
  1165  			opset(AVPKLSHS, r)
  1166  			opset(AVPKLSFS, r)
  1167  			opset(AVPKLSGS, r)
  1168  		case AVAQ:
  1169  			opset(AVAB, r)
  1170  			opset(AVAH, r)
  1171  			opset(AVAF, r)
  1172  			opset(AVAG, r)
  1173  			opset(AVACCB, r)
  1174  			opset(AVACCH, r)
  1175  			opset(AVACCF, r)
  1176  			opset(AVACCG, r)
  1177  			opset(AVACCQ, r)
  1178  			opset(AVN, r)
  1179  			opset(AVNC, r)
  1180  			opset(AVAVGB, r)
  1181  			opset(AVAVGH, r)
  1182  			opset(AVAVGF, r)
  1183  			opset(AVAVGG, r)
  1184  			opset(AVAVGLB, r)
  1185  			opset(AVAVGLH, r)
  1186  			opset(AVAVGLF, r)
  1187  			opset(AVAVGLG, r)
  1188  			opset(AVCKSM, r)
  1189  			opset(AVX, r)
  1190  			opset(AVFADB, r)
  1191  			opset(AWFADB, r)
  1192  			opset(AVFCEDB, r)
  1193  			opset(AVFCEDBS, r)
  1194  			opset(AWFCEDB, r)
  1195  			opset(AWFCEDBS, r)
  1196  			opset(AVFCHDB, r)
  1197  			opset(AVFCHDBS, r)
  1198  			opset(AWFCHDB, r)
  1199  			opset(AWFCHDBS, r)
  1200  			opset(AVFCHEDB, r)
  1201  			opset(AVFCHEDBS, r)
  1202  			opset(AWFCHEDB, r)
  1203  			opset(AWFCHEDBS, r)
  1204  			opset(AVFMDB, r)
  1205  			opset(AWFMDB, r)
  1206  			opset(AVGFMB, r)
  1207  			opset(AVGFMH, r)
  1208  			opset(AVGFMF, r)
  1209  			opset(AVGFMG, r)
  1210  			opset(AVMXB, r)
  1211  			opset(AVMXH, r)
  1212  			opset(AVMXF, r)
  1213  			opset(AVMXG, r)
  1214  			opset(AVMXLB, r)
  1215  			opset(AVMXLH, r)
  1216  			opset(AVMXLF, r)
  1217  			opset(AVMXLG, r)
  1218  			opset(AVMNB, r)
  1219  			opset(AVMNH, r)
  1220  			opset(AVMNF, r)
  1221  			opset(AVMNG, r)
  1222  			opset(AVMNLB, r)
  1223  			opset(AVMNLH, r)
  1224  			opset(AVMNLF, r)
  1225  			opset(AVMNLG, r)
  1226  			opset(AVMRHB, r)
  1227  			opset(AVMRHH, r)
  1228  			opset(AVMRHF, r)
  1229  			opset(AVMRHG, r)
  1230  			opset(AVMRLB, r)
  1231  			opset(AVMRLH, r)
  1232  			opset(AVMRLF, r)
  1233  			opset(AVMRLG, r)
  1234  			opset(AVMEB, r)
  1235  			opset(AVMEH, r)
  1236  			opset(AVMEF, r)
  1237  			opset(AVMLEB, r)
  1238  			opset(AVMLEH, r)
  1239  			opset(AVMLEF, r)
  1240  			opset(AVMOB, r)
  1241  			opset(AVMOH, r)
  1242  			opset(AVMOF, r)
  1243  			opset(AVMLOB, r)
  1244  			opset(AVMLOH, r)
  1245  			opset(AVMLOF, r)
  1246  			opset(AVMHB, r)
  1247  			opset(AVMHH, r)
  1248  			opset(AVMHF, r)
  1249  			opset(AVMLHB, r)
  1250  			opset(AVMLHH, r)
  1251  			opset(AVMLHF, r)
  1252  			opset(AVMLH, r)
  1253  			opset(AVMLHW, r)
  1254  			opset(AVMLF, r)
  1255  			opset(AVNO, r)
  1256  			opset(AVO, r)
  1257  			opset(AVPKH, r)
  1258  			opset(AVPKF, r)
  1259  			opset(AVPKG, r)
  1260  			opset(AVSUMGH, r)
  1261  			opset(AVSUMGF, r)
  1262  			opset(AVSUMQF, r)
  1263  			opset(AVSUMQG, r)
  1264  			opset(AVSUMB, r)
  1265  			opset(AVSUMH, r)
  1266  		case AVERLLVG:
  1267  			opset(AVERLLVB, r)
  1268  			opset(AVERLLVH, r)
  1269  			opset(AVERLLVF, r)
  1270  			opset(AVESLVB, r)
  1271  			opset(AVESLVH, r)
  1272  			opset(AVESLVF, r)
  1273  			opset(AVESLVG, r)
  1274  			opset(AVESRAVB, r)
  1275  			opset(AVESRAVH, r)
  1276  			opset(AVESRAVF, r)
  1277  			opset(AVESRAVG, r)
  1278  			opset(AVESRLVB, r)
  1279  			opset(AVESRLVH, r)
  1280  			opset(AVESRLVF, r)
  1281  			opset(AVESRLVG, r)
  1282  			opset(AVFDDB, r)
  1283  			opset(AWFDDB, r)
  1284  			opset(AVFSDB, r)
  1285  			opset(AWFSDB, r)
  1286  			opset(AVSL, r)
  1287  			opset(AVSLB, r)
  1288  			opset(AVSRA, r)
  1289  			opset(AVSRAB, r)
  1290  			opset(AVSRL, r)
  1291  			opset(AVSRLB, r)
  1292  			opset(AVSF, r)
  1293  			opset(AVSG, r)
  1294  			opset(AVSQ, r)
  1295  			opset(AVSCBIB, r)
  1296  			opset(AVSCBIH, r)
  1297  			opset(AVSCBIF, r)
  1298  			opset(AVSCBIG, r)
  1299  			opset(AVSCBIQ, r)
  1300  		case AVACQ:
  1301  			opset(AVACCCQ, r)
  1302  			opset(AVGFMAB, r)
  1303  			opset(AVGFMAH, r)
  1304  			opset(AVGFMAF, r)
  1305  			opset(AVGFMAG, r)
  1306  			opset(AVMALB, r)
  1307  			opset(AVMALHW, r)
  1308  			opset(AVMALF, r)
  1309  			opset(AVMAHB, r)
  1310  			opset(AVMAHH, r)
  1311  			opset(AVMAHF, r)
  1312  			opset(AVMALHB, r)
  1313  			opset(AVMALHH, r)
  1314  			opset(AVMALHF, r)
  1315  			opset(AVMAEB, r)
  1316  			opset(AVMAEH, r)
  1317  			opset(AVMAEF, r)
  1318  			opset(AVMALEB, r)
  1319  			opset(AVMALEH, r)
  1320  			opset(AVMALEF, r)
  1321  			opset(AVMAOB, r)
  1322  			opset(AVMAOH, r)
  1323  			opset(AVMAOF, r)
  1324  			opset(AVMALOB, r)
  1325  			opset(AVMALOH, r)
  1326  			opset(AVMALOF, r)
  1327  			opset(AVSTRCB, r)
  1328  			opset(AVSTRCH, r)
  1329  			opset(AVSTRCF, r)
  1330  			opset(AVSTRCBS, r)
  1331  			opset(AVSTRCHS, r)
  1332  			opset(AVSTRCFS, r)
  1333  			opset(AVSTRCZB, r)
  1334  			opset(AVSTRCZH, r)
  1335  			opset(AVSTRCZF, r)
  1336  			opset(AVSTRCZBS, r)
  1337  			opset(AVSTRCZHS, r)
  1338  			opset(AVSTRCZFS, r)
  1339  			opset(AVSBCBIQ, r)
  1340  			opset(AVSBIQ, r)
  1341  		case AVSEL:
  1342  			opset(AVFMADB, r)
  1343  			opset(AWFMADB, r)
  1344  			opset(AVFMSDB, r)
  1345  			opset(AWFMSDB, r)
  1346  			opset(AVPERM, r)
  1347  		}
  1348  	}
  1349  }
  1350  
  1351  const (
  1352  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1353  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1354  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1355  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1356  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1357  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1358  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1359  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1360  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1361  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1362  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1363  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1364  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1365  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1366  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1367  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1368  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1369  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1370  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1371  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1372  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1373  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1374  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1375  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1376  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1377  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1378  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1379  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1380  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1381  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1382  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1383  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1384  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1385  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1386  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1387  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1388  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1389  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1390  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1391  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1392  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1393  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1394  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1395  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1396  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1397  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1398  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1399  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1400  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1401  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1402  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1403  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1404  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1405  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1406  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1407  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1408  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1409  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1410  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1411  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1412  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1413  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1414  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1415  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1416  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1417  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1418  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1419  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1420  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1421  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1422  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1423  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1424  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1425  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1426  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1427  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1428  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1429  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1430  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1431  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1432  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1433  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1434  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1435  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1436  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1437  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1438  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1439  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1440  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1441  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1442  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1443  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1444  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1445  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1446  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1447  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1448  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1449  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1450  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1451  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1452  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1453  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1454  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1455  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1456  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1457  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1458  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1459  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1460  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1461  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1462  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1463  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1464  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1465  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1466  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1467  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1468  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1469  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1470  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1471  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1472  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1473  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1474  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1475  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1476  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1477  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1478  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1479  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1480  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1481  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1482  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1483  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1484  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1485  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1486  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1487  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1488  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1489  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1490  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1491  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1492  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1493  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1494  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1495  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1496  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1497  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1498  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1499  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1500  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1501  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1502  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1503  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1504  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1505  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1506  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1507  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1508  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1509  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1510  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1511  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1512  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1513  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1514  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1515  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1516  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1517  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1518  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1519  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1520  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1521  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1522  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1523  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1524  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1525  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1526  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1527  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1528  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1529  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1530  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1531  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1532  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1533  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1534  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1535  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1536  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1537  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1538  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1539  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1540  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1541  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1542  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1543  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1544  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1545  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1546  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1547  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1548  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1549  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1550  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1551  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1552  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1553  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1554  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1555  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1556  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1557  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1558  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1559  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1560  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1561  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1562  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1563  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1564  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1565  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1566  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1567  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1568  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1569  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1570  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1571  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1572  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1573  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1574  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1575  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1576  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1577  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1578  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1579  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1580  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1581  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1582  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1583  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1584  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1585  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1586  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1587  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1588  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1589  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1590  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1591  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1592  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1593  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1594  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1595  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1596  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1597  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1598  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1599  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1600  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1601  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1602  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1603  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1604  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1605  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1606  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1607  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1608  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1609  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1610  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1611  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1612  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1613  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1614  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1615  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1616  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1617  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1618  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1619  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1620  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1621  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1622  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1623  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1624  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1625  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1626  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1627  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1628  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1629  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1630  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1631  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1632  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1633  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1634  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1635  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1636  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1637  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1638  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1639  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1640  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1641  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1642  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1643  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1644  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1645  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1646  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1647  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1648  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1649  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1650  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1651  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1652  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1653  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1654  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1655  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1656  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1657  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1658  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1659  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1660  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1661  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1662  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1663  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1664  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1665  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1666  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1667  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1668  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1669  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1670  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1671  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1672  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1673  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1674  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1675  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1676  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1677  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1678  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1679  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1680  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1681  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1682  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1683  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1684  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1685  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1686  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1687  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1688  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1689  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1690  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1691  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1692  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1693  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1694  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1695  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1696  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1697  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1698  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1699  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1700  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1701  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1702  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1703  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1704  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1705  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1706  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1707  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1708  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1709  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1710  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1711  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1712  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1713  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1714  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1715  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1716  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1717  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1718  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1719  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1720  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1721  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1722  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1723  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1724  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1725  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1726  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1727  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1728  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1729  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1730  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1731  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1732  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1733  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1734  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1735  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1736  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1737  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1738  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1739  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1740  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1741  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1742  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1743  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1744  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1745  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1746  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1747  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1748  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1749  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1750  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1751  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1752  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1753  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1754  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1755  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1756  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1757  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1758  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1759  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1760  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1761  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1762  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1763  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1764  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1765  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1766  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1767  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1768  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1769  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1770  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1771  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1772  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1773  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1774  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1775  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1776  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1777  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1778  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1779  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1780  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1781  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1782  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1783  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1784  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1785  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1786  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1787  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1788  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1789  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1790  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1791  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1792  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1793  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1794  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1795  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1796  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1797  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1798  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1799  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1800  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1801  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1802  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1803  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1804  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1805  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1806  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1807  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1808  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1809  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1810  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1811  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1812  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1813  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1814  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1815  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1816  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1817  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1818  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1819  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1820  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1821  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1822  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1823  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1824  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1825  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1826  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1827  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1828  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1829  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1830  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1831  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1832  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1833  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1834  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1835  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1836  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1837  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1838  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1839  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1840  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1841  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1842  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1843  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1844  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1845  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1846  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1847  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1848  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1849  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1850  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1851  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1852  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1853  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1854  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1855  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1856  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1857  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1858  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1859  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1860  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1861  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1862  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1863  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1864  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1865  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1866  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  1867  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  1868  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  1869  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  1870  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  1871  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  1872  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  1873  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  1874  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  1875  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  1876  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  1877  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  1878  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  1879  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  1880  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  1881  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  1882  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  1883  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  1884  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  1885  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  1886  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  1887  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  1888  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  1889  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  1890  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  1891  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  1892  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  1893  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  1894  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  1895  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  1896  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  1897  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  1898  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  1899  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  1900  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  1901  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  1902  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  1903  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1904  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1905  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  1906  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  1907  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  1908  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  1909  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  1910  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  1911  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  1912  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  1913  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  1914  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  1915  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  1916  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  1917  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  1918  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  1919  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  1920  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  1921  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  1922  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  1923  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  1924  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  1925  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  1926  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  1927  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  1928  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  1929  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  1930  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  1931  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  1932  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  1933  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  1934  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  1935  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  1936  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  1937  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  1938  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  1939  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  1940  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  1941  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  1942  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  1943  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  1944  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  1945  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  1946  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  1947  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  1948  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  1949  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  1950  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1951  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1952  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1953  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1954  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1955  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1956  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  1957  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  1958  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  1959  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  1960  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1961  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  1962  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  1963  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1964  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  1965  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1966  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1967  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1968  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  1969  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  1970  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  1971  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  1972  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1973  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  1974  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  1975  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  1976  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  1977  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  1978  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  1979  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  1980  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  1981  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  1982  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  1983  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  1984  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  1985  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  1986  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  1987  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  1988  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  1989  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  1990  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  1991  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  1992  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  1993  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  1994  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  1995  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  1996  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  1997  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  1998  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  1999  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  2000  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  2001  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  2002  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  2003  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  2004  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  2005  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  2006  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  2007  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  2008  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  2009  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  2010  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  2011  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  2012  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  2013  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  2014  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  2015  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  2016  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  2017  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  2018  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  2019  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  2020  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2021  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2022  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2023  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2024  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2025  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2026  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2027  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2028  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2029  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2030  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2031  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2032  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2033  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2034  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2035  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2036  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2037  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2038  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2039  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2040  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2041  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2042  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2043  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2044  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2045  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2046  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2047  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2048  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2049  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2050  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2051  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2052  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2053  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2054  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2055  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2056  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2057  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2058  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2059  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2060  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2061  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2062  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2063  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2064  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2065  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2066  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2067  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2068  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2069  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2070  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2071  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2072  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2073  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2074  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2075  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2076  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2077  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2078  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2079  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2080  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2081  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2082  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2083  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2084  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2085  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2086  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2087  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2088  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2089  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2090  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2091  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2092  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2093  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2094  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2095  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2096  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2097  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2098  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2099  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2100  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2101  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2102  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2103  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2104  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2105  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2106  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2107  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2108  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2109  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2110  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2111  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2112  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2113  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2114  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2115  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2116  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2117  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2118  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2119  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2120  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2121  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2122  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2123  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2124  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2125  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2126  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2127  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2128  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2129  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2130  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2131  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2132  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2133  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2134  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2135  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2136  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2137  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2138  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2139  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2140  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2141  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2142  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2143  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2144  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2145  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2146  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2147  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2148  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2149  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2150  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2151  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2152  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2153  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2154  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2155  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2156  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2157  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2158  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2159  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2160  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2161  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2162  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2163  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2164  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2165  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2166  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2167  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2168  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2169  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2170  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2171  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2172  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2173  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2174  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2175  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2176  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2177  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2178  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2179  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2180  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2181  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2182  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2183  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2184  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2185  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2186  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2187  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2188  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2189  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2190  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2191  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2192  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2193  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2194  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2195  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2196  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2197  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2198  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2199  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2200  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2201  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2202  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2203  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2204  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2205  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2206  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2207  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2208  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2209  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2210  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2211  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2212  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2213  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2214  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2215  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2216  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2217  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2218  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2219  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2220  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2221  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2222  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2223  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2224  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2225  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2226  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2227  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2228  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2229  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2230  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2231  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2232  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2233  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2234  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2235  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2236  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2237  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2238  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2239  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2240  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2241  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2242  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2243  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2244  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2245  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2246  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2247  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2248  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2249  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2250  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2251  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2252  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2253  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2254  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2255  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2256  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2257  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2258  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2259  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2260  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2261  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2262  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2263  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2264  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2265  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2266  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2267  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2268  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2269  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2270  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2271  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2272  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2273  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2274  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2275  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2276  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2277  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2278  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2279  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2280  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2281  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2282  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2283  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2284  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2285  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2286  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2287  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2288  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2289  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2290  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2291  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2292  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2293  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2294  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2295  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2296  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2297  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2298  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2299  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2300  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2301  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2302  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2303  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2304  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2305  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2306  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2307  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2308  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2309  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2310  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2311  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2312  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2313  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2314  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2315  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2316  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2317  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2318  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2319  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2320  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2321  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2322  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2323  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2324  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2325  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2326  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2327  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2328  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2329  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2330  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2331  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2332  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2333  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2334  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2335  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2336  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2337  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2338  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2339  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2340  
  2341  	// added in z13
  2342  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2343  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2344  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2345  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2346  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2347  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2348  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2349  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2350  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2351  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2352  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2353  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2354  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2355  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2356  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2357  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2358  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2359  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2360  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2361  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2362  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2363  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2364  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2365  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2366  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2367  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2368  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2369  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2370  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2371  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2372  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2373  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2374  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2375  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2376  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2377  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2378  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2379  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2380  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2381  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2382  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2383  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2384  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2385  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2386  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2387  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2388  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2389  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2390  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2391  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2392  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2393  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2394  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2395  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2396  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2397  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2398  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2399  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2400  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2401  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2402  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2403  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2404  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2405  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2406  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2407  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2408  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2409  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2410  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2411  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2412  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2413  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2414  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2415  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2416  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2417  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2418  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2419  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2420  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2421  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2422  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2423  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2424  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2425  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2426  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2427  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2428  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2429  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2430  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2431  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2432  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2433  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2434  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2435  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2436  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2437  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2438  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2439  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2440  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2441  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2442  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2443  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2444  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2445  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2446  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2447  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2448  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2449  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2450  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2451  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2452  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2453  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2454  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2455  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2456  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2457  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2458  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2459  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2460  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2461  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2462  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2463  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2464  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2465  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2466  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2467  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2468  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2469  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2470  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2471  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2472  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2473  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2474  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2475  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2476  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2477  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2478  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2479  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2480  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2481  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2482  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2483  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2484  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2485  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2486  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2487  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2488  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2489  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2490  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2491  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2492  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2493  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2494  )
  2495  
  2496  func oclass(a *obj.Addr) int {
  2497  	return int(a.Class) - 1
  2498  }
  2499  
  2500  // Add a relocation for the immediate in a RIL style instruction.
  2501  // The addend will be adjusted as required.
  2502  func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2503  	if sym == nil {
  2504  		c.ctxt.Diag("require symbol to apply relocation")
  2505  	}
  2506  	offset := int64(2) // relocation offset from start of instruction
  2507  	rel := obj.Addrel(c.cursym)
  2508  	rel.Off = int32(c.pc + offset)
  2509  	rel.Siz = 4
  2510  	rel.Sym = sym
  2511  	rel.Add = add + offset + int64(rel.Siz)
  2512  	rel.Type = objabi.R_PCRELDBL
  2513  	return rel
  2514  }
  2515  
  2516  func (c *ctxtz) addrilrelocoffset(sym *obj.LSym, add, offset int64) *obj.Reloc {
  2517  	if sym == nil {
  2518  		c.ctxt.Diag("require symbol to apply relocation")
  2519  	}
  2520  	offset += int64(2) // relocation offset from start of instruction
  2521  	rel := obj.Addrel(c.cursym)
  2522  	rel.Off = int32(c.pc + offset)
  2523  	rel.Siz = 4
  2524  	rel.Sym = sym
  2525  	rel.Add = add + offset + int64(rel.Siz)
  2526  	rel.Type = objabi.R_PCRELDBL
  2527  	return rel
  2528  }
  2529  
  2530  // Add a CALL relocation for the immediate in a RIL style instruction.
  2531  // The addend will be adjusted as required.
  2532  func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2533  	if sym == nil {
  2534  		c.ctxt.Diag("require symbol to apply relocation")
  2535  	}
  2536  	offset := int64(2) // relocation offset from start of instruction
  2537  	rel := obj.Addrel(c.cursym)
  2538  	rel.Off = int32(c.pc + offset)
  2539  	rel.Siz = 4
  2540  	rel.Sym = sym
  2541  	rel.Add = add + offset + int64(rel.Siz)
  2542  	rel.Type = objabi.R_CALL
  2543  	return rel
  2544  }
  2545  
  2546  func (c *ctxtz) branchMask(p *obj.Prog) uint32 {
  2547  	switch p.As {
  2548  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2549  		return 0x8
  2550  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2551  		return 0xA
  2552  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2553  		return 0x2
  2554  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2555  		return 0xC
  2556  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2557  		return 0x4
  2558  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2559  		return 0x7
  2560  	case ABLEU: // LE or unordered
  2561  		return 0xD
  2562  	case ABLTU: // LT or unordered
  2563  		return 0x5
  2564  	case ABVC:
  2565  		return 0x0 // needs extra instruction
  2566  	case ABVS:
  2567  		return 0x1 // unordered
  2568  	}
  2569  	c.ctxt.Diag("unknown conditional branch %v", p.As)
  2570  	return 0xF
  2571  }
  2572  
  2573  func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
  2574  	o := c.oplook(p)
  2575  
  2576  	switch o.type_ {
  2577  	default:
  2578  		c.ctxt.Diag("unknown type %d", o.type_)
  2579  
  2580  	case 0: // PSEUDO OPS
  2581  		break
  2582  
  2583  	case 1: // mov reg reg
  2584  		switch p.As {
  2585  		default:
  2586  			c.ctxt.Diag("unhandled operation: %v", p.As)
  2587  		case AMOVD:
  2588  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2589  		// sign extend
  2590  		case AMOVW:
  2591  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2592  		case AMOVH:
  2593  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2594  		case AMOVB:
  2595  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2596  		// zero extend
  2597  		case AMOVWZ:
  2598  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2599  		case AMOVHZ:
  2600  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2601  		case AMOVBZ:
  2602  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2603  		// reverse bytes
  2604  		case AMOVDBR:
  2605  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2606  		case AMOVWBR:
  2607  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2608  		// floating point
  2609  		case AFMOVD, AFMOVS:
  2610  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2611  		}
  2612  
  2613  	case 2: // arithmetic op reg [reg] reg
  2614  		r := p.Reg
  2615  		if r == 0 {
  2616  			r = p.To.Reg
  2617  		}
  2618  
  2619  		var opcode uint32
  2620  
  2621  		switch p.As {
  2622  		default:
  2623  			c.ctxt.Diag("invalid opcode")
  2624  		case AADD:
  2625  			opcode = op_AGRK
  2626  		case AADDC:
  2627  			opcode = op_ALGRK
  2628  		case AADDE:
  2629  			opcode = op_ALCGR
  2630  		case AADDW:
  2631  			opcode = op_ARK
  2632  		case AMULLW:
  2633  			opcode = op_MSGFR
  2634  		case AMULLD:
  2635  			opcode = op_MSGR
  2636  		case ADIVW, AMODW:
  2637  			opcode = op_DSGFR
  2638  		case ADIVWU, AMODWU:
  2639  			opcode = op_DLR
  2640  		case ADIVD, AMODD:
  2641  			opcode = op_DSGR
  2642  		case ADIVDU, AMODDU:
  2643  			opcode = op_DLGR
  2644  		}
  2645  
  2646  		switch p.As {
  2647  		default:
  2648  
  2649  		case AADD, AADDC, AADDW:
  2650  			if p.As == AADDW && r == p.To.Reg {
  2651  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2652  			} else {
  2653  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2654  			}
  2655  
  2656  		case AADDE, AMULLW, AMULLD:
  2657  			if r == p.To.Reg {
  2658  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2659  			} else if p.From.Reg == p.To.Reg {
  2660  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2661  			} else {
  2662  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2663  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2664  			}
  2665  
  2666  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2667  			if p.As == ADIVWU || p.As == ADIVDU {
  2668  				zRI(op_LGHI, REGTMP, 0, asm)
  2669  			}
  2670  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2671  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2672  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2673  
  2674  		case AMODW, AMODWU, AMODD, AMODDU:
  2675  			if p.As == AMODWU || p.As == AMODDU {
  2676  				zRI(op_LGHI, REGTMP, 0, asm)
  2677  			}
  2678  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2679  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2680  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2681  
  2682  		}
  2683  
  2684  	case 3: // mov $constant reg
  2685  		v := c.vregoff(&p.From)
  2686  		switch p.As {
  2687  		case AMOVBZ:
  2688  			v = int64(uint8(v))
  2689  		case AMOVHZ:
  2690  			v = int64(uint16(v))
  2691  		case AMOVWZ:
  2692  			v = int64(uint32(v))
  2693  		case AMOVB:
  2694  			v = int64(int8(v))
  2695  		case AMOVH:
  2696  			v = int64(int16(v))
  2697  		case AMOVW:
  2698  			v = int64(int32(v))
  2699  		}
  2700  		if int64(int16(v)) == v {
  2701  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2702  		} else if v&0xffff0000 == v {
  2703  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2704  		} else if v&0xffff00000000 == v {
  2705  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2706  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2707  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2708  		} else if int64(int32(v)) == v {
  2709  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2710  		} else if int64(uint32(v)) == v {
  2711  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2712  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2713  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2714  		} else {
  2715  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2716  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2717  		}
  2718  
  2719  	case 4: // multiply high (a*b)>>64
  2720  		r := p.Reg
  2721  		if r == 0 {
  2722  			r = p.To.Reg
  2723  		}
  2724  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2725  		zRRE(op_MLGR, REGTMP, uint32(p.From.Reg), asm)
  2726  		switch p.As {
  2727  		case AMULHDU:
  2728  			// Unsigned: move result into correct register.
  2729  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2730  		case AMULHD:
  2731  			// Signed: need to convert result.
  2732  			// See Hacker's Delight 8-3.
  2733  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2734  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2735  			zRRE(op_SGR, REGTMP, REGTMP2, asm)
  2736  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2737  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2738  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), REGTMP, asm)
  2739  		}
  2740  
  2741  	case 5: // syscall
  2742  		zI(op_SVC, 0, asm)
  2743  
  2744  	case 6: // logical op reg [reg] reg
  2745  		var oprr, oprre, oprrf uint32
  2746  		switch p.As {
  2747  		case AAND:
  2748  			oprre = op_NGR
  2749  			oprrf = op_NGRK
  2750  		case AANDW:
  2751  			oprr = op_NR
  2752  			oprrf = op_NRK
  2753  		case AOR:
  2754  			oprre = op_OGR
  2755  			oprrf = op_OGRK
  2756  		case AORW:
  2757  			oprr = op_OR
  2758  			oprrf = op_ORK
  2759  		case AXOR:
  2760  			oprre = op_XGR
  2761  			oprrf = op_XGRK
  2762  		case AXORW:
  2763  			oprr = op_XR
  2764  			oprrf = op_XRK
  2765  		}
  2766  		if p.Reg == 0 {
  2767  			if oprr != 0 {
  2768  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2769  			} else {
  2770  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2771  			}
  2772  		} else {
  2773  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2774  		}
  2775  
  2776  	case 7: // shift/rotate reg [reg] reg
  2777  		d2 := c.vregoff(&p.From)
  2778  		b2 := p.From.Reg
  2779  		r3 := p.Reg
  2780  		if r3 == 0 {
  2781  			r3 = p.To.Reg
  2782  		}
  2783  		r1 := p.To.Reg
  2784  		var opcode uint32
  2785  		switch p.As {
  2786  		default:
  2787  		case ASLD:
  2788  			opcode = op_SLLG
  2789  		case ASRD:
  2790  			opcode = op_SRLG
  2791  		case ASLW:
  2792  			opcode = op_SLLK
  2793  		case ASRW:
  2794  			opcode = op_SRLK
  2795  		case ARLL:
  2796  			opcode = op_RLL
  2797  		case ARLLG:
  2798  			opcode = op_RLLG
  2799  		case ASRAW:
  2800  			opcode = op_SRAK
  2801  		case ASRAD:
  2802  			opcode = op_SRAG
  2803  		}
  2804  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2805  
  2806  	case 8: // find leftmost one
  2807  		if p.To.Reg&1 != 0 {
  2808  			c.ctxt.Diag("target must be an even-numbered register")
  2809  		}
  2810  		// FLOGR also writes a mask to p.To.Reg+1.
  2811  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2812  
  2813  	case 10: // subtract reg [reg] reg
  2814  		r := int(p.Reg)
  2815  
  2816  		switch p.As {
  2817  		default:
  2818  		case ASUB:
  2819  			if r == 0 {
  2820  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2821  			} else {
  2822  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2823  			}
  2824  		case ASUBC:
  2825  			if r == 0 {
  2826  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2827  			} else {
  2828  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2829  			}
  2830  		case ASUBE:
  2831  			if r == 0 {
  2832  				r = int(p.To.Reg)
  2833  			}
  2834  			if r == int(p.To.Reg) {
  2835  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2836  			} else if p.From.Reg == p.To.Reg {
  2837  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  2838  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2839  				zRRE(op_SLBGR, uint32(p.To.Reg), REGTMP, asm)
  2840  			} else {
  2841  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2842  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2843  			}
  2844  		case ASUBW:
  2845  			if r == 0 {
  2846  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2847  			} else {
  2848  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2849  			}
  2850  		}
  2851  
  2852  	case 11: // br/bl
  2853  		v := int32(0)
  2854  
  2855  		if p.Pcond != nil {
  2856  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2857  		}
  2858  
  2859  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  2860  			zRI(op_BRC, 0xF, uint32(v), asm)
  2861  		} else {
  2862  			if p.As == ABL {
  2863  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  2864  			} else {
  2865  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  2866  			}
  2867  			if p.To.Sym != nil {
  2868  				c.addcallreloc(p.To.Sym, p.To.Offset)
  2869  			}
  2870  		}
  2871  
  2872  	case 12:
  2873  		r1 := p.To.Reg
  2874  		d2 := c.vregoff(&p.From)
  2875  		b2 := p.From.Reg
  2876  		if b2 == 0 {
  2877  			b2 = o.param
  2878  		}
  2879  		x2 := p.From.Index
  2880  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  2881  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  2882  			if x2 != 0 {
  2883  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  2884  			}
  2885  			x2 = REGTMP
  2886  			d2 = 0
  2887  		}
  2888  		var opx, opxy uint32
  2889  		switch p.As {
  2890  		case AADD:
  2891  			opxy = op_AG
  2892  		case AADDC:
  2893  			opxy = op_ALG
  2894  		case AADDW:
  2895  			opx = op_A
  2896  			opxy = op_AY
  2897  		case AMULLW:
  2898  			opx = op_MS
  2899  			opxy = op_MSY
  2900  		case AMULLD:
  2901  			opxy = op_MSG
  2902  		case ASUB:
  2903  			opxy = op_SG
  2904  		case ASUBC:
  2905  			opxy = op_SLG
  2906  		case ASUBE:
  2907  			opxy = op_SLBG
  2908  		case ASUBW:
  2909  			opx = op_S
  2910  			opxy = op_SY
  2911  		case AAND:
  2912  			opxy = op_NG
  2913  		case AANDW:
  2914  			opx = op_N
  2915  			opxy = op_NY
  2916  		case AOR:
  2917  			opxy = op_OG
  2918  		case AORW:
  2919  			opx = op_O
  2920  			opxy = op_OY
  2921  		case AXOR:
  2922  			opxy = op_XG
  2923  		case AXORW:
  2924  			opx = op_X
  2925  			opxy = op_XY
  2926  		}
  2927  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  2928  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2929  		} else {
  2930  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2931  		}
  2932  
  2933  	case 15: // br/bl (reg)
  2934  		r := p.To.Reg
  2935  		if p.As == ABCL || p.As == ABL {
  2936  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  2937  		} else {
  2938  			zRR(op_BCR, 0xF, uint32(r), asm)
  2939  		}
  2940  
  2941  	case 16: // conditional branch
  2942  		v := int32(0)
  2943  		if p.Pcond != nil {
  2944  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2945  		}
  2946  		mask := c.branchMask(p)
  2947  		if p.To.Sym == nil && int32(int16(v)) == v {
  2948  			zRI(op_BRC, mask, uint32(v), asm)
  2949  		} else {
  2950  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  2951  		}
  2952  		if p.To.Sym != nil {
  2953  			c.addrilreloc(p.To.Sym, p.To.Offset)
  2954  		}
  2955  
  2956  	case 17: // move on condition
  2957  		m3 := c.branchMask(p)
  2958  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2959  
  2960  	case 18: // br/bl reg
  2961  		if p.As == ABL {
  2962  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  2963  		} else {
  2964  			zRR(op_BCR, 0xF, uint32(p.To.Reg), asm)
  2965  		}
  2966  
  2967  	case 19: // mov $sym+n(SB) reg
  2968  		d := c.vregoff(&p.From)
  2969  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  2970  		if d&1 != 0 {
  2971  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  2972  			d -= 1
  2973  		}
  2974  		c.addrilreloc(p.From.Sym, d)
  2975  
  2976  	case 21: // subtract $constant [reg] reg
  2977  		v := c.vregoff(&p.From)
  2978  		r := p.Reg
  2979  		if r == 0 {
  2980  			r = p.To.Reg
  2981  		}
  2982  		switch p.As {
  2983  		case ASUB:
  2984  			zRIL(_a, op_LGFI, uint32(REGTMP), uint32(v), asm)
  2985  			zRRF(op_SLGRK, uint32(REGTMP), 0, uint32(p.To.Reg), uint32(r), asm)
  2986  		case ASUBC:
  2987  			if r != p.To.Reg {
  2988  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2989  			}
  2990  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  2991  		case ASUBW:
  2992  			if r != p.To.Reg {
  2993  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  2994  			}
  2995  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  2996  		}
  2997  
  2998  	case 22: // add/multiply $constant [reg] reg
  2999  		v := c.vregoff(&p.From)
  3000  		r := p.Reg
  3001  		if r == 0 {
  3002  			r = p.To.Reg
  3003  		}
  3004  		var opri, opril, oprie uint32
  3005  		switch p.As {
  3006  		case AADD:
  3007  			opri = op_AGHI
  3008  			opril = op_AGFI
  3009  			oprie = op_AGHIK
  3010  		case AADDC:
  3011  			opril = op_ALGFI
  3012  			oprie = op_ALGHSIK
  3013  		case AADDW:
  3014  			opri = op_AHI
  3015  			opril = op_AFI
  3016  			oprie = op_AHIK
  3017  		case AMULLW:
  3018  			opri = op_MHI
  3019  			opril = op_MSFI
  3020  		case AMULLD:
  3021  			opri = op_MGHI
  3022  			opril = op_MSGFI
  3023  		}
  3024  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3025  			switch p.As {
  3026  			case AADD, AADDC, AMULLD:
  3027  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3028  			case AADDW, AMULLW:
  3029  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3030  			}
  3031  			r = p.To.Reg
  3032  		}
  3033  		if r == p.To.Reg {
  3034  			if opri != 0 && int64(int16(v)) == v {
  3035  				zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3036  			} else {
  3037  				zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3038  			}
  3039  		} else {
  3040  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3041  		}
  3042  
  3043  	case 23: // 64-bit logical op $constant reg
  3044  		// TODO(mundaym): merge with case 24.
  3045  		v := c.vregoff(&p.From)
  3046  		switch p.As {
  3047  		default:
  3048  			c.ctxt.Diag("%v is not supported", p)
  3049  		case AAND:
  3050  			if v >= 0 { // needs zero extend
  3051  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3052  				zRRE(op_NGR, uint32(p.To.Reg), REGTMP, asm)
  3053  			} else if int64(int16(v)) == v {
  3054  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3055  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3056  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3057  			}
  3058  		case AOR:
  3059  			if int64(uint32(v)) != v { // needs sign extend
  3060  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3061  				zRRE(op_OGR, uint32(p.To.Reg), REGTMP, asm)
  3062  			} else if int64(uint16(v)) == v {
  3063  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3064  			} else {
  3065  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3066  			}
  3067  		case AXOR:
  3068  			if int64(uint32(v)) != v { // needs sign extend
  3069  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3070  				zRRE(op_XGR, uint32(p.To.Reg), REGTMP, asm)
  3071  			} else {
  3072  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3073  			}
  3074  		}
  3075  
  3076  	case 24: // 32-bit logical op $constant reg
  3077  		v := c.vregoff(&p.From)
  3078  		switch p.As {
  3079  		case AANDW:
  3080  			if uint32(v&0xffff0000) == 0xffff0000 {
  3081  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3082  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3083  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3084  			} else {
  3085  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3086  			}
  3087  		case AORW:
  3088  			if uint32(v&0xffff0000) == 0 {
  3089  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3090  			} else if uint32(v&0x0000ffff) == 0 {
  3091  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3092  			} else {
  3093  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3094  			}
  3095  		case AXORW:
  3096  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3097  		}
  3098  
  3099  	case 26: // MOVD $offset(base)(index), reg
  3100  		v := c.regoff(&p.From)
  3101  		r := p.From.Reg
  3102  		if r == 0 {
  3103  			r = o.param
  3104  		}
  3105  		i := p.From.Index
  3106  		if v >= 0 && v < DISP12 {
  3107  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3108  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3109  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3110  		} else {
  3111  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3112  			zRX(op_LA, uint32(p.To.Reg), uint32(r), REGTMP, uint32(i), asm)
  3113  		}
  3114  
  3115  	case 31: // dword
  3116  		wd := uint64(c.vregoff(&p.From))
  3117  		*asm = append(*asm,
  3118  			uint8(wd>>56),
  3119  			uint8(wd>>48),
  3120  			uint8(wd>>40),
  3121  			uint8(wd>>32),
  3122  			uint8(wd>>24),
  3123  			uint8(wd>>16),
  3124  			uint8(wd>>8),
  3125  			uint8(wd))
  3126  
  3127  	case 32: // float op freg freg
  3128  		var opcode uint32
  3129  		switch p.As {
  3130  		default:
  3131  			c.ctxt.Diag("invalid opcode")
  3132  		case AFADD:
  3133  			opcode = op_ADBR
  3134  		case AFADDS:
  3135  			opcode = op_AEBR
  3136  		case AFDIV:
  3137  			opcode = op_DDBR
  3138  		case AFDIVS:
  3139  			opcode = op_DEBR
  3140  		case AFMUL:
  3141  			opcode = op_MDBR
  3142  		case AFMULS:
  3143  			opcode = op_MEEBR
  3144  		case AFSUB:
  3145  			opcode = op_SDBR
  3146  		case AFSUBS:
  3147  			opcode = op_SEBR
  3148  		}
  3149  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3150  
  3151  	case 33: // float op [freg] freg
  3152  		r := p.From.Reg
  3153  		if oclass(&p.From) == C_NONE {
  3154  			r = p.To.Reg
  3155  		}
  3156  		var opcode uint32
  3157  		switch p.As {
  3158  		default:
  3159  		case AFABS:
  3160  			opcode = op_LPDBR
  3161  		case AFNABS:
  3162  			opcode = op_LNDBR
  3163  		case AFNEG:
  3164  			opcode = op_LCDFR
  3165  		case AFNEGS:
  3166  			opcode = op_LCEBR
  3167  		case ALEDBR:
  3168  			opcode = op_LEDBR
  3169  		case ALDEBR:
  3170  			opcode = op_LDEBR
  3171  		case AFSQRT:
  3172  			opcode = op_SQDBR
  3173  		case AFSQRTS:
  3174  			opcode = op_SQEBR
  3175  		}
  3176  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3177  
  3178  	case 34: // float multiply-add freg freg freg
  3179  		var opcode uint32
  3180  		switch p.As {
  3181  		default:
  3182  			c.ctxt.Diag("invalid opcode")
  3183  		case AFMADD:
  3184  			opcode = op_MADBR
  3185  		case AFMADDS:
  3186  			opcode = op_MAEBR
  3187  		case AFMSUB:
  3188  			opcode = op_MSDBR
  3189  		case AFMSUBS:
  3190  			opcode = op_MSEBR
  3191  		}
  3192  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3193  
  3194  	case 35: // mov reg mem (no relocation)
  3195  		d2 := c.regoff(&p.To)
  3196  		b2 := p.To.Reg
  3197  		if b2 == 0 {
  3198  			b2 = o.param
  3199  		}
  3200  		x2 := p.To.Index
  3201  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3202  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3203  			if x2 != 0 {
  3204  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3205  			}
  3206  			x2 = REGTMP
  3207  			d2 = 0
  3208  		}
  3209  		zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3210  
  3211  	case 36: // mov mem reg (no relocation)
  3212  		d2 := c.regoff(&p.From)
  3213  		b2 := p.From.Reg
  3214  		if b2 == 0 {
  3215  			b2 = o.param
  3216  		}
  3217  		x2 := p.From.Index
  3218  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3219  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3220  			if x2 != 0 {
  3221  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3222  			}
  3223  			x2 = REGTMP
  3224  			d2 = 0
  3225  		}
  3226  		zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3227  
  3228  	case 40: // word/byte
  3229  		wd := uint32(c.regoff(&p.From))
  3230  		if p.As == AWORD { //WORD
  3231  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3232  		} else { //BYTE
  3233  			*asm = append(*asm, uint8(wd))
  3234  		}
  3235  
  3236  	case 47: // negate [reg] reg
  3237  		r := p.From.Reg
  3238  		if r == 0 {
  3239  			r = p.To.Reg
  3240  		}
  3241  		switch p.As {
  3242  		case ANEG:
  3243  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3244  		case ANEGW:
  3245  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3246  		}
  3247  
  3248  	case 48: // floating-point round to integer
  3249  		m3 := c.vregoff(&p.From)
  3250  		if 0 > m3 || m3 > 7 {
  3251  			c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3252  		}
  3253  		var opcode uint32
  3254  		switch p.As {
  3255  		case AFIEBR:
  3256  			opcode = op_FIEBR
  3257  		case AFIDBR:
  3258  			opcode = op_FIDBR
  3259  		}
  3260  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3261  
  3262  	case 67: // fmov $0 freg
  3263  		var opcode uint32
  3264  		switch p.As {
  3265  		case AFMOVS:
  3266  			opcode = op_LZER
  3267  		case AFMOVD:
  3268  			opcode = op_LZDR
  3269  		}
  3270  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3271  
  3272  	case 68: // movw areg reg
  3273  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3274  
  3275  	case 69: // movw reg areg
  3276  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3277  
  3278  	case 70: // cmp reg reg
  3279  		if p.As == ACMPW || p.As == ACMPWU {
  3280  			zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3281  		} else {
  3282  			zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3283  		}
  3284  
  3285  	case 71: // cmp reg $constant
  3286  		v := c.vregoff(&p.To)
  3287  		switch p.As {
  3288  		case ACMP, ACMPW:
  3289  			if int64(int32(v)) != v {
  3290  				c.ctxt.Diag("%v overflows an int32", v)
  3291  			}
  3292  		case ACMPU, ACMPWU:
  3293  			if int64(uint32(v)) != v {
  3294  				c.ctxt.Diag("%v overflows a uint32", v)
  3295  			}
  3296  		}
  3297  		if p.As == ACMP && int64(int16(v)) == v {
  3298  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3299  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3300  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3301  		} else {
  3302  			zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
  3303  		}
  3304  
  3305  	case 72: // mov $constant mem
  3306  		v := c.regoff(&p.From)
  3307  		d := c.regoff(&p.To)
  3308  		r := p.To.Reg
  3309  		x := p.To.Index
  3310  		if r == 0 {
  3311  			r = o.param
  3312  		}
  3313  		if int32(int16(v)) == v && x == 0 {
  3314  			if d < 0 || d >= DISP12 {
  3315  				if r == REGTMP || r == REGTMP2 {
  3316  					zRIL(_a, op_AGFI, uint32(r), uint32(d), asm)
  3317  				} else {
  3318  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3319  					zRRE(op_AGR, REGTMP, uint32(r), asm)
  3320  					r = REGTMP
  3321  				}
  3322  				d = 0
  3323  			}
  3324  			var opcode uint32
  3325  			switch p.As {
  3326  			case AMOVD:
  3327  				opcode = op_MVGHI
  3328  			case AMOVW, AMOVWZ:
  3329  				opcode = op_MVHI
  3330  			case AMOVH, AMOVHZ:
  3331  				opcode = op_MVHHI
  3332  			case AMOVB, AMOVBZ:
  3333  				opcode = op_MVI
  3334  			}
  3335  			if opcode == op_MVI {
  3336  				zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3337  			} else {
  3338  				zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3339  			}
  3340  		} else {
  3341  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3342  			if d < -DISP20/2 || d >= DISP20/2 {
  3343  				if r == REGTMP {
  3344  					zRIL(_a, op_AGFI, REGTMP, uint32(d), asm)
  3345  				} else {
  3346  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3347  					if x != 0 {
  3348  						zRRE(op_AGR, REGTMP, uint32(x), asm)
  3349  					}
  3350  					x = REGTMP
  3351  				}
  3352  				d = 0
  3353  			}
  3354  			zRXY(c.zopstore(p.As), REGTMP2, uint32(x), uint32(r), uint32(d), asm)
  3355  		}
  3356  
  3357  	case 73: // mov $constant addr (including relocation)
  3358  		v := c.regoff(&p.From)
  3359  		d := c.regoff(&p.To)
  3360  		a := uint32(0)
  3361  		if d&1 != 0 {
  3362  			d -= 1
  3363  			a = 1
  3364  		}
  3365  		zRIL(_b, op_LARL, REGTMP, uint32(d), asm)
  3366  		c.addrilreloc(p.To.Sym, int64(d))
  3367  		if int32(int16(v)) == v {
  3368  			var opcode uint32
  3369  			switch p.As {
  3370  			case AMOVD:
  3371  				opcode = op_MVGHI
  3372  			case AMOVW, AMOVWZ:
  3373  				opcode = op_MVHI
  3374  			case AMOVH, AMOVHZ:
  3375  				opcode = op_MVHHI
  3376  			case AMOVB, AMOVBZ:
  3377  				opcode = op_MVI
  3378  			}
  3379  			if opcode == op_MVI {
  3380  				zSI(opcode, uint32(v), REGTMP, a, asm)
  3381  			} else {
  3382  				zSIL(opcode, REGTMP, a, uint32(v), asm)
  3383  			}
  3384  		} else {
  3385  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3386  			zRXY(c.zopstore(p.As), REGTMP2, 0, REGTMP, a, asm)
  3387  		}
  3388  
  3389  	case 74: // mov reg addr (including relocation)
  3390  		i2 := c.regoff(&p.To)
  3391  		switch p.As {
  3392  		case AMOVD:
  3393  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3394  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3395  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3396  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3397  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3398  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3399  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3400  			adj := uint32(0) // adjustment needed for odd addresses
  3401  			if i2&1 != 0 {
  3402  				i2 -= 1
  3403  				adj = 1
  3404  			}
  3405  			zRX(op_STC, uint32(p.From.Reg), 0, REGTMP, adj, asm)
  3406  		case AFMOVD:
  3407  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3408  			zRX(op_STD, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3409  		case AFMOVS:
  3410  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3411  			zRX(op_STE, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3412  		}
  3413  		c.addrilreloc(p.To.Sym, int64(i2))
  3414  
  3415  	case 75: // mov addr reg (including relocation)
  3416  		i2 := c.regoff(&p.From)
  3417  		switch p.As {
  3418  		case AMOVD:
  3419  			if i2&1 != 0 {
  3420  				zRIL(_b, op_LARL, REGTMP, 0, asm)
  3421  				zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 1, asm)
  3422  				i2 -= 1
  3423  			} else {
  3424  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3425  			}
  3426  		case AMOVW:
  3427  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3428  		case AMOVWZ:
  3429  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3430  		case AMOVH:
  3431  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3432  		case AMOVHZ:
  3433  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3434  		case AMOVB, AMOVBZ:
  3435  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3436  			adj := uint32(0) // adjustment needed for odd addresses
  3437  			if i2&1 != 0 {
  3438  				i2 -= 1
  3439  				adj = 1
  3440  			}
  3441  			switch p.As {
  3442  			case AMOVB:
  3443  				zRXY(op_LGB, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3444  			case AMOVBZ:
  3445  				zRXY(op_LLGC, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3446  			}
  3447  		case AFMOVD:
  3448  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3449  			zRX(op_LD, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3450  		case AFMOVS:
  3451  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3452  			zRX(op_LE, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3453  		}
  3454  		c.addrilreloc(p.From.Sym, int64(i2))
  3455  
  3456  	case 77: // syscall $constant
  3457  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3458  			c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3459  			zE(op_TRAP2, asm) // trap always
  3460  		} else {
  3461  			zI(op_SVC, uint32(p.From.Offset), asm)
  3462  		}
  3463  
  3464  	case 78: // undef
  3465  		// "An instruction consisting entirely of binary 0s is guaranteed
  3466  		// always to be an illegal instruction."
  3467  		*asm = append(*asm, 0, 0, 0, 0)
  3468  
  3469  	case 79: // compare and swap reg reg reg
  3470  		v := c.regoff(&p.To)
  3471  		if v < 0 {
  3472  			v = 0
  3473  		}
  3474  		if p.As == ACS {
  3475  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3476  		} else if p.As == ACSG {
  3477  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3478  		}
  3479  
  3480  	case 80: // sync
  3481  		zRR(op_BCR, 0xE, 0, asm)
  3482  
  3483  	case 81: // float to fixed and fixed to float moves (no conversion)
  3484  		switch p.As {
  3485  		case ALDGR:
  3486  			zRRE(op_LDGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3487  		case ALGDR:
  3488  			zRRE(op_LGDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3489  		}
  3490  
  3491  	case 82: // fixed to float conversion
  3492  		var opcode uint32
  3493  		switch p.As {
  3494  		default:
  3495  			log.Fatalf("unexpected opcode %v", p.As)
  3496  		case ACEFBRA:
  3497  			opcode = op_CEFBRA
  3498  		case ACDFBRA:
  3499  			opcode = op_CDFBRA
  3500  		case ACEGBRA:
  3501  			opcode = op_CEGBRA
  3502  		case ACDGBRA:
  3503  			opcode = op_CDGBRA
  3504  		case ACELFBR:
  3505  			opcode = op_CELFBR
  3506  		case ACDLFBR:
  3507  			opcode = op_CDLFBR
  3508  		case ACELGBR:
  3509  			opcode = op_CELGBR
  3510  		case ACDLGBR:
  3511  			opcode = op_CDLGBR
  3512  		}
  3513  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3514  		// (usually round to nearest, ties to even)
  3515  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3516  		// M4 is reserved and must be 0
  3517  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3518  
  3519  	case 83: // float to fixed conversion
  3520  		var opcode uint32
  3521  		switch p.As {
  3522  		default:
  3523  			log.Fatalf("unexpected opcode %v", p.As)
  3524  		case ACFEBRA:
  3525  			opcode = op_CFEBRA
  3526  		case ACFDBRA:
  3527  			opcode = op_CFDBRA
  3528  		case ACGEBRA:
  3529  			opcode = op_CGEBRA
  3530  		case ACGDBRA:
  3531  			opcode = op_CGDBRA
  3532  		case ACLFEBR:
  3533  			opcode = op_CLFEBR
  3534  		case ACLFDBR:
  3535  			opcode = op_CLFDBR
  3536  		case ACLGEBR:
  3537  			opcode = op_CLGEBR
  3538  		case ACLGDBR:
  3539  			opcode = op_CLGDBR
  3540  		}
  3541  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3542  		// M4 is reserved and must be 0
  3543  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3544  
  3545  	case 84: // storage-and-storage operations $length mem mem
  3546  		l := c.regoff(&p.From)
  3547  		if l < 1 || l > 256 {
  3548  			c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3549  		}
  3550  		if p.From3.Index != 0 || p.To.Index != 0 {
  3551  			c.ctxt.Diag("cannot use index reg")
  3552  		}
  3553  		b1 := p.To.Reg
  3554  		b2 := p.From3.Reg
  3555  		if b1 == 0 {
  3556  			b1 = o.param
  3557  		}
  3558  		if b2 == 0 {
  3559  			b2 = o.param
  3560  		}
  3561  		d1 := c.regoff(&p.To)
  3562  		d2 := c.regoff(p.From3)
  3563  		if d1 < 0 || d1 >= DISP12 {
  3564  			if b2 == REGTMP {
  3565  				c.ctxt.Diag("REGTMP conflict")
  3566  			}
  3567  			if b1 != REGTMP {
  3568  				zRRE(op_LGR, REGTMP, uint32(b1), asm)
  3569  			}
  3570  			zRIL(_a, op_AGFI, REGTMP, uint32(d1), asm)
  3571  			if d1 == d2 && b1 == b2 {
  3572  				d2 = 0
  3573  				b2 = REGTMP
  3574  			}
  3575  			d1 = 0
  3576  			b1 = REGTMP
  3577  		}
  3578  		if d2 < 0 || d2 >= DISP12 {
  3579  			if b1 == REGTMP2 {
  3580  				c.ctxt.Diag("REGTMP2 conflict")
  3581  			}
  3582  			if b2 != REGTMP2 {
  3583  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3584  			}
  3585  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3586  			d2 = 0
  3587  			b2 = REGTMP2
  3588  		}
  3589  		var opcode uint32
  3590  		switch p.As {
  3591  		default:
  3592  			c.ctxt.Diag("unexpected opcode %v", p.As)
  3593  		case AMVC:
  3594  			opcode = op_MVC
  3595  		case ACLC:
  3596  			opcode = op_CLC
  3597  			// swap operand order for CLC so that it matches CMP
  3598  			b1, b2 = b2, b1
  3599  			d1, d2 = d2, d1
  3600  		case AXC:
  3601  			opcode = op_XC
  3602  		case AOC:
  3603  			opcode = op_OC
  3604  		case ANC:
  3605  			opcode = op_NC
  3606  		}
  3607  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3608  
  3609  	case 85: // load address relative long
  3610  		v := c.regoff(&p.From)
  3611  		if p.From.Sym == nil {
  3612  			if (v & 1) != 0 {
  3613  				c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3614  			}
  3615  		} else {
  3616  			c.addrilreloc(p.From.Sym, int64(v))
  3617  			v = 0
  3618  		}
  3619  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3620  
  3621  	case 86: // load address
  3622  		d := c.vregoff(&p.From)
  3623  		x := p.From.Index
  3624  		b := p.From.Reg
  3625  		if b == 0 {
  3626  			b = o.param
  3627  		}
  3628  		switch p.As {
  3629  		case ALA:
  3630  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3631  		case ALAY:
  3632  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3633  		}
  3634  
  3635  	case 87: // execute relative long
  3636  		v := c.vregoff(&p.From)
  3637  		if p.From.Sym == nil {
  3638  			if v&1 != 0 {
  3639  				c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3640  			}
  3641  		} else {
  3642  			c.addrilreloc(p.From.Sym, v)
  3643  			v = 0
  3644  		}
  3645  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3646  
  3647  	case 88: // store clock
  3648  		var opcode uint32
  3649  		switch p.As {
  3650  		case ASTCK:
  3651  			opcode = op_STCK
  3652  		case ASTCKC:
  3653  			opcode = op_STCKC
  3654  		case ASTCKE:
  3655  			opcode = op_STCKE
  3656  		case ASTCKF:
  3657  			opcode = op_STCKF
  3658  		}
  3659  		v := c.vregoff(&p.To)
  3660  		r := int(p.To.Reg)
  3661  		if r == 0 {
  3662  			r = int(o.param)
  3663  		}
  3664  		zS(opcode, uint32(r), uint32(v), asm)
  3665  
  3666  	case 89: // compare and branch reg reg
  3667  		var v int32
  3668  		if p.Pcond != nil {
  3669  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3670  		}
  3671  		var opcode, opcode2 uint32
  3672  		switch p.As {
  3673  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3674  			opcode = op_CGRJ
  3675  			opcode2 = op_CGR
  3676  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3677  			opcode = op_CLGRJ
  3678  			opcode2 = op_CLGR
  3679  		}
  3680  		mask := c.branchMask(p)
  3681  		if int32(int16(v)) != v {
  3682  			zRRE(opcode2, uint32(p.From.Reg), uint32(p.Reg), asm)
  3683  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRRE/2), asm)
  3684  		} else {
  3685  			zRIE(_b, opcode, uint32(p.From.Reg), uint32(p.Reg), uint32(v), 0, 0, mask, 0, asm)
  3686  		}
  3687  
  3688  	case 90: // compare and branch reg $constant
  3689  		var v int32
  3690  		if p.Pcond != nil {
  3691  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3692  		}
  3693  		var opcode, opcode2 uint32
  3694  		switch p.As {
  3695  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3696  			opcode = op_CGIJ
  3697  			opcode2 = op_CGFI
  3698  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3699  			opcode = op_CLGIJ
  3700  			opcode2 = op_CLGFI
  3701  		}
  3702  		mask := c.branchMask(p)
  3703  		if int32(int16(v)) != v {
  3704  			zRIL(_a, opcode2, uint32(p.From.Reg), uint32(c.regoff(p.From3)), asm)
  3705  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRIL/2), asm)
  3706  		} else {
  3707  			zRIE(_c, opcode, uint32(p.From.Reg), mask, uint32(v), 0, 0, 0, uint32(c.regoff(p.From3)), asm)
  3708  		}
  3709  
  3710  	case 93: // GOT lookup
  3711  		v := c.vregoff(&p.To)
  3712  		if v != 0 {
  3713  			c.ctxt.Diag("invalid offset against GOT slot %v", p)
  3714  		}
  3715  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3716  		rel := obj.Addrel(c.cursym)
  3717  		rel.Off = int32(c.pc + 2)
  3718  		rel.Siz = 4
  3719  		rel.Sym = p.From.Sym
  3720  		rel.Type = objabi.R_GOTPCREL
  3721  		rel.Add = 2 + int64(rel.Siz)
  3722  
  3723  	case 94: // TLS local exec model
  3724  		zRIL(_b, op_LARL, REGTMP, (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  3725  		zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3726  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  3727  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  3728  		rel := obj.Addrel(c.cursym)
  3729  		rel.Off = int32(c.pc + sizeRIL + sizeRXY + sizeRI)
  3730  		rel.Siz = 8
  3731  		rel.Sym = p.From.Sym
  3732  		rel.Type = objabi.R_TLS_LE
  3733  		rel.Add = 0
  3734  
  3735  	case 95: // TLS initial exec model
  3736  		// Assembly                   | Relocation symbol    | Done Here?
  3737  		// --------------------------------------------------------------
  3738  		// ear  %r11, %a0             |                      |
  3739  		// sllg %r11, %r11, 32        |                      |
  3740  		// ear  %r11, %a1             |                      |
  3741  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  3742  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  3743  		// la   %r10, 0(%r10, %r11)   |                      |
  3744  		// --------------------------------------------------------------
  3745  
  3746  		// R_390_TLS_IEENT
  3747  		zRIL(_b, op_LARL, REGTMP, 0, asm)
  3748  		ieent := obj.Addrel(c.cursym)
  3749  		ieent.Off = int32(c.pc + 2)
  3750  		ieent.Siz = 4
  3751  		ieent.Sym = p.From.Sym
  3752  		ieent.Type = objabi.R_TLS_IE
  3753  		ieent.Add = 2 + int64(ieent.Siz)
  3754  
  3755  		// R_390_TLS_LOAD
  3756  		zRXY(op_LGF, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3757  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  3758  		// not strictly required but might allow the linker to optimize
  3759  
  3760  	case 96: // clear macro
  3761  		length := c.vregoff(&p.From)
  3762  		offset := c.vregoff(&p.To)
  3763  		reg := p.To.Reg
  3764  		if reg == 0 {
  3765  			reg = o.param
  3766  		}
  3767  		if length <= 0 {
  3768  			c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  3769  		}
  3770  		for length > 0 {
  3771  			if offset < 0 || offset >= DISP12 {
  3772  				if offset >= -DISP20/2 && offset < DISP20/2 {
  3773  					zRXY(op_LAY, REGTMP, uint32(reg), 0, uint32(offset), asm)
  3774  				} else {
  3775  					if reg != REGTMP {
  3776  						zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3777  					}
  3778  					zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3779  				}
  3780  				reg = REGTMP
  3781  				offset = 0
  3782  			}
  3783  			size := length
  3784  			if size > 256 {
  3785  				size = 256
  3786  			}
  3787  
  3788  			switch size {
  3789  			case 1:
  3790  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  3791  			case 2:
  3792  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  3793  			case 4:
  3794  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  3795  			case 8:
  3796  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  3797  			default:
  3798  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  3799  			}
  3800  
  3801  			length -= size
  3802  			offset += size
  3803  		}
  3804  
  3805  	case 97: // store multiple
  3806  		rstart := p.From.Reg
  3807  		rend := p.Reg
  3808  		offset := c.regoff(&p.To)
  3809  		reg := p.To.Reg
  3810  		if reg == 0 {
  3811  			reg = o.param
  3812  		}
  3813  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3814  			if reg != REGTMP {
  3815  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3816  			}
  3817  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3818  			reg = REGTMP
  3819  			offset = 0
  3820  		}
  3821  		switch p.As {
  3822  		case ASTMY:
  3823  			if offset >= 0 && offset < DISP12 {
  3824  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3825  			} else {
  3826  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3827  			}
  3828  		case ASTMG:
  3829  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3830  		}
  3831  
  3832  	case 98: // load multiple
  3833  		rstart := p.Reg
  3834  		rend := p.To.Reg
  3835  		offset := c.regoff(&p.From)
  3836  		reg := p.From.Reg
  3837  		if reg == 0 {
  3838  			reg = o.param
  3839  		}
  3840  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3841  			if reg != REGTMP {
  3842  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3843  			}
  3844  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3845  			reg = REGTMP
  3846  			offset = 0
  3847  		}
  3848  		switch p.As {
  3849  		case ALMY:
  3850  			if offset >= 0 && offset < DISP12 {
  3851  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3852  			} else {
  3853  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3854  			}
  3855  		case ALMG:
  3856  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3857  		}
  3858  
  3859  	case 99: // interlocked load and op
  3860  		if p.To.Index != 0 {
  3861  			c.ctxt.Diag("cannot use indexed address")
  3862  		}
  3863  		offset := c.regoff(&p.To)
  3864  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3865  			c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  3866  		}
  3867  		var opcode uint32
  3868  		switch p.As {
  3869  		case ALAA:
  3870  			opcode = op_LAA
  3871  		case ALAAG:
  3872  			opcode = op_LAAG
  3873  		case ALAAL:
  3874  			opcode = op_LAAL
  3875  		case ALAALG:
  3876  			opcode = op_LAALG
  3877  		case ALAN:
  3878  			opcode = op_LAN
  3879  		case ALANG:
  3880  			opcode = op_LANG
  3881  		case ALAX:
  3882  			opcode = op_LAX
  3883  		case ALAXG:
  3884  			opcode = op_LAXG
  3885  		case ALAO:
  3886  			opcode = op_LAO
  3887  		case ALAOG:
  3888  			opcode = op_LAOG
  3889  		}
  3890  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  3891  
  3892  	case 100: // VRX STORE
  3893  		op, m3, _ := vop(p.As)
  3894  		v1 := p.From.Reg
  3895  		if p.Reg != 0 {
  3896  			m3 = uint32(c.vregoff(&p.From))
  3897  			v1 = p.Reg
  3898  		}
  3899  		b2 := p.To.Reg
  3900  		if b2 == 0 {
  3901  			b2 = o.param
  3902  		}
  3903  		d2 := uint32(c.vregoff(&p.To))
  3904  		zVRX(op, uint32(v1), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3905  
  3906  	case 101: // VRX LOAD
  3907  		op, m3, _ := vop(p.As)
  3908  		src := &p.From
  3909  		if p.From3 != nil {
  3910  			m3 = uint32(c.vregoff(&p.From))
  3911  			src = p.From3
  3912  		}
  3913  		b2 := src.Reg
  3914  		if b2 == 0 {
  3915  			b2 = o.param
  3916  		}
  3917  		d2 := uint32(c.vregoff(src))
  3918  		zVRX(op, uint32(p.To.Reg), uint32(src.Index), uint32(b2), d2, m3, asm)
  3919  
  3920  	case 102: // VRV SCATTER
  3921  		op, _, _ := vop(p.As)
  3922  		m3 := uint32(c.vregoff(&p.From))
  3923  		b2 := p.To.Reg
  3924  		if b2 == 0 {
  3925  			b2 = o.param
  3926  		}
  3927  		d2 := uint32(c.vregoff(&p.To))
  3928  		zVRV(op, uint32(p.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3929  
  3930  	case 103: // VRV GATHER
  3931  		op, _, _ := vop(p.As)
  3932  		m3 := uint32(c.vregoff(&p.From))
  3933  		b2 := p.From3.Reg
  3934  		if b2 == 0 {
  3935  			b2 = o.param
  3936  		}
  3937  		d2 := uint32(c.vregoff(p.From3))
  3938  		zVRV(op, uint32(p.To.Reg), uint32(p.From3.Index), uint32(b2), d2, m3, asm)
  3939  
  3940  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  3941  		op, m4, _ := vop(p.As)
  3942  		fr := p.Reg
  3943  		if fr == 0 {
  3944  			fr = p.To.Reg
  3945  		}
  3946  		bits := uint32(c.vregoff(&p.From))
  3947  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  3948  
  3949  	case 105: // VRS STORE MULTIPLE
  3950  		op, _, _ := vop(p.As)
  3951  		offset := uint32(c.vregoff(&p.To))
  3952  		reg := p.To.Reg
  3953  		if reg == 0 {
  3954  			reg = o.param
  3955  		}
  3956  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  3957  
  3958  	case 106: // VRS LOAD MULTIPLE
  3959  		op, _, _ := vop(p.As)
  3960  		offset := uint32(c.vregoff(&p.From))
  3961  		reg := p.From.Reg
  3962  		if reg == 0 {
  3963  			reg = o.param
  3964  		}
  3965  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  3966  
  3967  	case 107: // VRS STORE WITH LENGTH
  3968  		op, _, _ := vop(p.As)
  3969  		offset := uint32(c.vregoff(&p.To))
  3970  		reg := p.To.Reg
  3971  		if reg == 0 {
  3972  			reg = o.param
  3973  		}
  3974  		zVRS(op, uint32(p.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  3975  
  3976  	case 108: // VRS LOAD WITH LENGTH
  3977  		op, _, _ := vop(p.As)
  3978  		offset := uint32(c.vregoff(p.From3))
  3979  		reg := p.From3.Reg
  3980  		if reg == 0 {
  3981  			reg = o.param
  3982  		}
  3983  		zVRS(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  3984  
  3985  	case 109: // VRI-a
  3986  		op, m3, _ := vop(p.As)
  3987  		i2 := uint32(c.vregoff(&p.From))
  3988  		if p.From3 != nil {
  3989  			m3 = uint32(c.vregoff(&p.From))
  3990  			i2 = uint32(c.vregoff(p.From3))
  3991  		}
  3992  		switch p.As {
  3993  		case AVZERO:
  3994  			i2 = 0
  3995  		case AVONE:
  3996  			i2 = 0xffff
  3997  		}
  3998  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  3999  
  4000  	case 110:
  4001  		op, m4, _ := vop(p.As)
  4002  		i2 := uint32(c.vregoff(&p.From))
  4003  		i3 := uint32(c.vregoff(p.From3))
  4004  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  4005  
  4006  	case 111:
  4007  		op, m4, _ := vop(p.As)
  4008  		i2 := uint32(c.vregoff(&p.From))
  4009  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  4010  
  4011  	case 112:
  4012  		op, m5, _ := vop(p.As)
  4013  		i4 := uint32(c.vregoff(&p.From))
  4014  		zVRId(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.From3.Reg), i4, m5, asm)
  4015  
  4016  	case 113:
  4017  		op, m4, _ := vop(p.As)
  4018  		m5 := singleElementMask(p.As)
  4019  		i3 := uint32(c.vregoff(&p.From))
  4020  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  4021  
  4022  	case 114: // VRR-a
  4023  		op, m3, m5 := vop(p.As)
  4024  		m4 := singleElementMask(p.As)
  4025  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  4026  
  4027  	case 115: // VRR-a COMPARE
  4028  		op, m3, m5 := vop(p.As)
  4029  		m4 := singleElementMask(p.As)
  4030  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4031  
  4032  	case 117: // VRR-b
  4033  		op, m4, m5 := vop(p.As)
  4034  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4035  
  4036  	case 118: // VRR-c
  4037  		op, m4, m6 := vop(p.As)
  4038  		m5 := singleElementMask(p.As)
  4039  		v3 := p.Reg
  4040  		if v3 == 0 {
  4041  			v3 = p.To.Reg
  4042  		}
  4043  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4044  
  4045  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4046  		op, m4, m6 := vop(p.As)
  4047  		m5 := singleElementMask(p.As)
  4048  		v2 := p.Reg
  4049  		if v2 == 0 {
  4050  			v2 = p.To.Reg
  4051  		}
  4052  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4053  
  4054  	case 120: // VRR-d
  4055  		op, m6, _ := vop(p.As)
  4056  		m5 := singleElementMask(p.As)
  4057  		v1 := uint32(p.To.Reg)
  4058  		v2 := uint32(p.From.Reg)
  4059  		v3 := uint32(p.Reg)
  4060  		v4 := uint32(p.From3.Reg)
  4061  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4062  
  4063  	case 121: // VRR-e
  4064  		op, m6, _ := vop(p.As)
  4065  		m5 := singleElementMask(p.As)
  4066  		v1 := uint32(p.To.Reg)
  4067  		v2 := uint32(p.From.Reg)
  4068  		v3 := uint32(p.Reg)
  4069  		v4 := uint32(p.From3.Reg)
  4070  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4071  
  4072  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4073  		op, _, _ := vop(p.As)
  4074  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4075  
  4076  	case 123: // VPDI $m4, V2, V3, V1
  4077  		op, _, _ := vop(p.As)
  4078  		m4 := c.regoff(&p.From)
  4079  		zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.From3.Reg), 0, 0, uint32(m4), asm)
  4080  	}
  4081  }
  4082  
  4083  func (c *ctxtz) vregoff(a *obj.Addr) int64 {
  4084  	c.instoffset = 0
  4085  	if a != nil {
  4086  		c.aclass(a)
  4087  	}
  4088  	return c.instoffset
  4089  }
  4090  
  4091  func (c *ctxtz) regoff(a *obj.Addr) int32 {
  4092  	return int32(c.vregoff(a))
  4093  }
  4094  
  4095  // zopload returns the RXY op for the given load
  4096  func (c *ctxtz) zopload(a obj.As) uint32 {
  4097  	switch a {
  4098  	// fixed point load
  4099  	case AMOVD:
  4100  		return op_LG
  4101  	case AMOVW:
  4102  		return op_LGF
  4103  	case AMOVWZ:
  4104  		return op_LLGF
  4105  	case AMOVH:
  4106  		return op_LGH
  4107  	case AMOVHZ:
  4108  		return op_LLGH
  4109  	case AMOVB:
  4110  		return op_LGB
  4111  	case AMOVBZ:
  4112  		return op_LLGC
  4113  
  4114  	// floating point load
  4115  	case AFMOVD:
  4116  		return op_LDY
  4117  	case AFMOVS:
  4118  		return op_LEY
  4119  
  4120  	// byte reversed load
  4121  	case AMOVDBR:
  4122  		return op_LRVG
  4123  	case AMOVWBR:
  4124  		return op_LRV
  4125  	case AMOVHBR:
  4126  		return op_LRVH
  4127  	}
  4128  
  4129  	c.ctxt.Diag("unknown store opcode %v", a)
  4130  	return 0
  4131  }
  4132  
  4133  // zopstore returns the RXY op for the given store
  4134  func (c *ctxtz) zopstore(a obj.As) uint32 {
  4135  	switch a {
  4136  	// fixed point store
  4137  	case AMOVD:
  4138  		return op_STG
  4139  	case AMOVW, AMOVWZ:
  4140  		return op_STY
  4141  	case AMOVH, AMOVHZ:
  4142  		return op_STHY
  4143  	case AMOVB, AMOVBZ:
  4144  		return op_STCY
  4145  
  4146  	// floating point store
  4147  	case AFMOVD:
  4148  		return op_STDY
  4149  	case AFMOVS:
  4150  		return op_STEY
  4151  
  4152  	// byte reversed store
  4153  	case AMOVDBR:
  4154  		return op_STRVG
  4155  	case AMOVWBR:
  4156  		return op_STRV
  4157  	case AMOVHBR:
  4158  		return op_STRVH
  4159  	}
  4160  
  4161  	c.ctxt.Diag("unknown store opcode %v", a)
  4162  	return 0
  4163  }
  4164  
  4165  // zoprre returns the RRE op for the given a
  4166  func (c *ctxtz) zoprre(a obj.As) uint32 {
  4167  	switch a {
  4168  	case ACMP:
  4169  		return op_CGR
  4170  	case ACMPU:
  4171  		return op_CLGR
  4172  	case AFCMPO: //ordered
  4173  		return op_KDBR
  4174  	case AFCMPU: //unordered
  4175  		return op_CDBR
  4176  	case ACEBR:
  4177  		return op_CEBR
  4178  	}
  4179  	c.ctxt.Diag("unknown rre opcode %v", a)
  4180  	return 0
  4181  }
  4182  
  4183  // zoprr returns the RR op for the given a
  4184  func (c *ctxtz) zoprr(a obj.As) uint32 {
  4185  	switch a {
  4186  	case ACMPW:
  4187  		return op_CR
  4188  	case ACMPWU:
  4189  		return op_CLR
  4190  	}
  4191  	c.ctxt.Diag("unknown rr opcode %v", a)
  4192  	return 0
  4193  }
  4194  
  4195  // zopril returns the RIL op for the given a
  4196  func (c *ctxtz) zopril(a obj.As) uint32 {
  4197  	switch a {
  4198  	case ACMP:
  4199  		return op_CGFI
  4200  	case ACMPU:
  4201  		return op_CLGFI
  4202  	case ACMPW:
  4203  		return op_CFI
  4204  	case ACMPWU:
  4205  		return op_CLFI
  4206  	}
  4207  	c.ctxt.Diag("unknown ril opcode %v", a)
  4208  	return 0
  4209  }
  4210  
  4211  // z instructions sizes
  4212  const (
  4213  	sizeE    = 2
  4214  	sizeI    = 2
  4215  	sizeIE   = 4
  4216  	sizeMII  = 6
  4217  	sizeRI   = 4
  4218  	sizeRI1  = 4
  4219  	sizeRI2  = 4
  4220  	sizeRI3  = 4
  4221  	sizeRIE  = 6
  4222  	sizeRIE1 = 6
  4223  	sizeRIE2 = 6
  4224  	sizeRIE3 = 6
  4225  	sizeRIE4 = 6
  4226  	sizeRIE5 = 6
  4227  	sizeRIE6 = 6
  4228  	sizeRIL  = 6
  4229  	sizeRIL1 = 6
  4230  	sizeRIL2 = 6
  4231  	sizeRIL3 = 6
  4232  	sizeRIS  = 6
  4233  	sizeRR   = 2
  4234  	sizeRRD  = 4
  4235  	sizeRRE  = 4
  4236  	sizeRRF  = 4
  4237  	sizeRRF1 = 4
  4238  	sizeRRF2 = 4
  4239  	sizeRRF3 = 4
  4240  	sizeRRF4 = 4
  4241  	sizeRRF5 = 4
  4242  	sizeRRR  = 2
  4243  	sizeRRS  = 6
  4244  	sizeRS   = 4
  4245  	sizeRS1  = 4
  4246  	sizeRS2  = 4
  4247  	sizeRSI  = 4
  4248  	sizeRSL  = 6
  4249  	sizeRSY  = 6
  4250  	sizeRSY1 = 6
  4251  	sizeRSY2 = 6
  4252  	sizeRX   = 4
  4253  	sizeRX1  = 4
  4254  	sizeRX2  = 4
  4255  	sizeRXE  = 6
  4256  	sizeRXF  = 6
  4257  	sizeRXY  = 6
  4258  	sizeRXY1 = 6
  4259  	sizeRXY2 = 6
  4260  	sizeS    = 4
  4261  	sizeSI   = 4
  4262  	sizeSIL  = 6
  4263  	sizeSIY  = 6
  4264  	sizeSMI  = 6
  4265  	sizeSS   = 6
  4266  	sizeSS1  = 6
  4267  	sizeSS2  = 6
  4268  	sizeSS3  = 6
  4269  	sizeSS4  = 6
  4270  	sizeSS5  = 6
  4271  	sizeSS6  = 6
  4272  	sizeSSE  = 6
  4273  	sizeSSF  = 6
  4274  )
  4275  
  4276  // instruction format variations
  4277  type form int
  4278  
  4279  const (
  4280  	_a form = iota
  4281  	_b
  4282  	_c
  4283  	_d
  4284  	_e
  4285  	_f
  4286  )
  4287  
  4288  func zE(op uint32, asm *[]byte) {
  4289  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4290  }
  4291  
  4292  func zI(op, i1 uint32, asm *[]byte) {
  4293  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4294  }
  4295  
  4296  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4297  	*asm = append(*asm,
  4298  		uint8(op>>8),
  4299  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4300  		uint8(ri2),
  4301  		uint8(ri3>>16),
  4302  		uint8(ri3>>8),
  4303  		uint8(ri3))
  4304  }
  4305  
  4306  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4307  	*asm = append(*asm,
  4308  		uint8(op>>8),
  4309  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4310  		uint8(i2_ri2>>8),
  4311  		uint8(i2_ri2))
  4312  }
  4313  
  4314  // Expected argument values for the instruction formats.
  4315  //
  4316  // Format    a1  a2   a3  a4  a5  a6  a7
  4317  // ------------------------------------
  4318  // a         r1,  0,  i2,  0,  0, m3,  0
  4319  // b         r1, r2, ri4,  0,  0, m3,  0
  4320  // c         r1, m3, ri4,  0,  0,  0, i2
  4321  // d         r1, r3,  i2,  0,  0,  0,  0
  4322  // e         r1, r3, ri2,  0,  0,  0,  0
  4323  // f         r1, r2,   0, i3, i4,  0, i5
  4324  // g         r1, m3,  i2,  0,  0,  0,  0
  4325  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4326  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4327  
  4328  	switch f {
  4329  	default:
  4330  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4331  	case _f:
  4332  		*asm = append(*asm, uint8(i3), uint8(i4))
  4333  	}
  4334  
  4335  	switch f {
  4336  	case _a, _b:
  4337  		*asm = append(*asm, uint8(m3)<<4)
  4338  	default:
  4339  		*asm = append(*asm, uint8(i2_i5))
  4340  	}
  4341  
  4342  	*asm = append(*asm, uint8(op))
  4343  }
  4344  
  4345  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4346  	if f == _a || f == _b {
  4347  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4348  	}
  4349  	*asm = append(*asm,
  4350  		uint8(op>>8),
  4351  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4352  		uint8(i2_ri2>>24),
  4353  		uint8(i2_ri2>>16),
  4354  		uint8(i2_ri2>>8),
  4355  		uint8(i2_ri2))
  4356  }
  4357  
  4358  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4359  	*asm = append(*asm,
  4360  		uint8(op>>8),
  4361  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4362  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4363  		uint8(d4),
  4364  		uint8(i2),
  4365  		uint8(op))
  4366  }
  4367  
  4368  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4369  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4370  }
  4371  
  4372  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4373  	*asm = append(*asm,
  4374  		uint8(op>>8),
  4375  		uint8(op),
  4376  		uint8(r1)<<4,
  4377  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4378  }
  4379  
  4380  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4381  	*asm = append(*asm,
  4382  		uint8(op>>8),
  4383  		uint8(op),
  4384  		0,
  4385  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4386  }
  4387  
  4388  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4389  	*asm = append(*asm,
  4390  		uint8(op>>8),
  4391  		uint8(op),
  4392  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4393  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4394  }
  4395  
  4396  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4397  	*asm = append(*asm,
  4398  		uint8(op>>8),
  4399  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4400  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4401  		uint8(d4),
  4402  		uint8(m3)<<4,
  4403  		uint8(op))
  4404  }
  4405  
  4406  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4407  	*asm = append(*asm,
  4408  		uint8(op>>8),
  4409  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4410  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4411  		uint8(d2))
  4412  }
  4413  
  4414  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4415  	*asm = append(*asm,
  4416  		uint8(op>>8),
  4417  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4418  		uint8(ri2>>8),
  4419  		uint8(ri2))
  4420  }
  4421  
  4422  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4423  	*asm = append(*asm,
  4424  		uint8(op>>8),
  4425  		uint8(l1),
  4426  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4427  		uint8(d2),
  4428  		uint8(op))
  4429  }
  4430  
  4431  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4432  	dl2 := uint16(d2) & 0x0FFF
  4433  	*asm = append(*asm,
  4434  		uint8(op>>8),
  4435  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4436  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4437  		uint8(dl2),
  4438  		uint8(d2>>12),
  4439  		uint8(op))
  4440  }
  4441  
  4442  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4443  	*asm = append(*asm,
  4444  		uint8(op>>8),
  4445  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4446  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4447  		uint8(d2))
  4448  }
  4449  
  4450  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4451  	*asm = append(*asm,
  4452  		uint8(op>>8),
  4453  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4454  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4455  		uint8(d2),
  4456  		uint8(m3)<<4,
  4457  		uint8(op))
  4458  }
  4459  
  4460  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4461  	*asm = append(*asm,
  4462  		uint8(op>>8),
  4463  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4464  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4465  		uint8(d2),
  4466  		uint8(m1)<<4,
  4467  		uint8(op))
  4468  }
  4469  
  4470  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4471  	dl2 := uint16(d2) & 0x0FFF
  4472  	*asm = append(*asm,
  4473  		uint8(op>>8),
  4474  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4475  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4476  		uint8(dl2),
  4477  		uint8(d2>>12),
  4478  		uint8(op))
  4479  }
  4480  
  4481  func zS(op, b2, d2 uint32, asm *[]byte) {
  4482  	*asm = append(*asm,
  4483  		uint8(op>>8),
  4484  		uint8(op),
  4485  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4486  		uint8(d2))
  4487  }
  4488  
  4489  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4490  	*asm = append(*asm,
  4491  		uint8(op>>8),
  4492  		uint8(i2),
  4493  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4494  		uint8(d1))
  4495  }
  4496  
  4497  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4498  	*asm = append(*asm,
  4499  		uint8(op>>8),
  4500  		uint8(op),
  4501  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4502  		uint8(d1),
  4503  		uint8(i2>>8),
  4504  		uint8(i2))
  4505  }
  4506  
  4507  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4508  	dl1 := uint16(d1) & 0x0FFF
  4509  	*asm = append(*asm,
  4510  		uint8(op>>8),
  4511  		uint8(i2),
  4512  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4513  		uint8(dl1),
  4514  		uint8(d1>>12),
  4515  		uint8(op))
  4516  }
  4517  
  4518  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4519  	*asm = append(*asm,
  4520  		uint8(op>>8),
  4521  		uint8(m1)<<4,
  4522  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4523  		uint8(d3),
  4524  		uint8(ri2>>8),
  4525  		uint8(ri2))
  4526  }
  4527  
  4528  // Expected argument values for the instruction formats.
  4529  //
  4530  // Format    a1  a2  a3  a4  a5  a6
  4531  // -------------------------------
  4532  // a         l1,  0, b1, d1, b2, d2
  4533  // b         l1, l2, b1, d1, b2, d2
  4534  // c         l1, i3, b1, d1, b2, d2
  4535  // d         r1, r3, b1, d1, b2, d2
  4536  // e         r1, r3, b2, d2, b4, d4
  4537  // f          0, l2, b1, d1, b2, d2
  4538  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4539  	*asm = append(*asm, uint8(op>>8))
  4540  
  4541  	switch f {
  4542  	case _a:
  4543  		*asm = append(*asm, uint8(l1_r1))
  4544  	case _b, _c, _d, _e:
  4545  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4546  	case _f:
  4547  		*asm = append(*asm, uint8(l2_i3_r3))
  4548  	}
  4549  
  4550  	*asm = append(*asm,
  4551  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4552  		uint8(d1_d2),
  4553  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4554  		uint8(d2_d4))
  4555  }
  4556  
  4557  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4558  	*asm = append(*asm,
  4559  		uint8(op>>8),
  4560  		uint8(op),
  4561  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4562  		uint8(d1),
  4563  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4564  		uint8(d2))
  4565  }
  4566  
  4567  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4568  	*asm = append(*asm,
  4569  		uint8(op>>8),
  4570  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4571  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4572  		uint8(d1),
  4573  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4574  		uint8(d2))
  4575  }
  4576  
  4577  func rxb(va, vb, vc, vd uint32) uint8 {
  4578  	mask := uint8(0)
  4579  	if va >= REG_V16 && va <= REG_V31 {
  4580  		mask |= 0x8
  4581  	}
  4582  	if vb >= REG_V16 && vb <= REG_V31 {
  4583  		mask |= 0x4
  4584  	}
  4585  	if vc >= REG_V16 && vc <= REG_V31 {
  4586  		mask |= 0x2
  4587  	}
  4588  	if vd >= REG_V16 && vd <= REG_V31 {
  4589  		mask |= 0x1
  4590  	}
  4591  	return mask
  4592  }
  4593  
  4594  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4595  	*asm = append(*asm,
  4596  		uint8(op>>8),
  4597  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4598  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4599  		uint8(d2),
  4600  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4601  		uint8(op))
  4602  }
  4603  
  4604  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4605  	*asm = append(*asm,
  4606  		uint8(op>>8),
  4607  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4608  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4609  		uint8(d2),
  4610  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4611  		uint8(op))
  4612  }
  4613  
  4614  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4615  	*asm = append(*asm,
  4616  		uint8(op>>8),
  4617  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4618  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4619  		uint8(d2),
  4620  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4621  		uint8(op))
  4622  }
  4623  
  4624  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4625  	*asm = append(*asm,
  4626  		uint8(op>>8),
  4627  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4628  		0,
  4629  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4630  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4631  		uint8(op))
  4632  }
  4633  
  4634  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4635  	*asm = append(*asm,
  4636  		uint8(op>>8),
  4637  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4638  		uint8(v3)<<4,
  4639  		uint8(m5)<<4,
  4640  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4641  		uint8(op))
  4642  }
  4643  
  4644  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4645  	*asm = append(*asm,
  4646  		uint8(op>>8),
  4647  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4648  		uint8(v3)<<4,
  4649  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4650  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4651  		uint8(op))
  4652  }
  4653  
  4654  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4655  	*asm = append(*asm,
  4656  		uint8(op>>8),
  4657  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4658  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4659  		uint8(m6)<<4,
  4660  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4661  		uint8(op))
  4662  }
  4663  
  4664  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4665  	*asm = append(*asm,
  4666  		uint8(op>>8),
  4667  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4668  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4669  		uint8(m5),
  4670  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4671  		uint8(op))
  4672  }
  4673  
  4674  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4675  	*asm = append(*asm,
  4676  		uint8(op>>8),
  4677  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4678  		uint8(r3)<<4,
  4679  		0,
  4680  		rxb(v1, 0, 0, 0),
  4681  		uint8(op))
  4682  }
  4683  
  4684  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  4685  	*asm = append(*asm,
  4686  		uint8(op>>8),
  4687  		uint8(v1)<<4,
  4688  		uint8(i2>>8),
  4689  		uint8(i2),
  4690  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4691  		uint8(op))
  4692  }
  4693  
  4694  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  4695  	*asm = append(*asm,
  4696  		uint8(op>>8),
  4697  		uint8(v1)<<4,
  4698  		uint8(i2),
  4699  		uint8(i3),
  4700  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  4701  		uint8(op))
  4702  }
  4703  
  4704  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  4705  	*asm = append(*asm,
  4706  		uint8(op>>8),
  4707  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  4708  		uint8(i2>>8),
  4709  		uint8(i2),
  4710  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  4711  		uint8(op))
  4712  }
  4713  
  4714  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  4715  	*asm = append(*asm,
  4716  		uint8(op>>8),
  4717  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4718  		uint8(v3)<<4,
  4719  		uint8(i4),
  4720  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  4721  		uint8(op))
  4722  }
  4723  
  4724  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  4725  	*asm = append(*asm,
  4726  		uint8(op>>8),
  4727  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4728  		uint8(i3>>4),
  4729  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  4730  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  4731  		uint8(op))
  4732  }