github.com/slayercat/go@v0.0.0-20170428012452-c51559813f61/src/cmd/link/internal/ld/data.go (about)

     1  // Derived from Inferno utils/6l/obj.c and utils/6l/span.c
     2  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c
     3  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c
     4  //
     5  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     6  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     7  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     8  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     9  //	Portions Copyright © 2004,2006 Bruce Ellis
    10  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    11  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    12  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    13  //
    14  // Permission is hereby granted, free of charge, to any person obtaining a copy
    15  // of this software and associated documentation files (the "Software"), to deal
    16  // in the Software without restriction, including without limitation the rights
    17  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    18  // copies of the Software, and to permit persons to whom the Software is
    19  // furnished to do so, subject to the following conditions:
    20  //
    21  // The above copyright notice and this permission notice shall be included in
    22  // all copies or substantial portions of the Software.
    23  //
    24  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    25  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    26  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    27  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    28  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    29  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    30  // THE SOFTWARE.
    31  
    32  package ld
    33  
    34  import (
    35  	"cmd/internal/gcprog"
    36  	"cmd/internal/objabi"
    37  	"cmd/internal/sys"
    38  	"fmt"
    39  	"log"
    40  	"os"
    41  	"sort"
    42  	"strconv"
    43  	"strings"
    44  	"sync"
    45  )
    46  
    47  func Symgrow(s *Symbol, siz int64) {
    48  	if int64(int(siz)) != siz {
    49  		log.Fatalf("symgrow size %d too long", siz)
    50  	}
    51  	if int64(len(s.P)) >= siz {
    52  		return
    53  	}
    54  	if cap(s.P) < int(siz) {
    55  		p := make([]byte, 2*(siz+1))
    56  		s.P = append(p[:0], s.P...)
    57  	}
    58  	s.P = s.P[:siz]
    59  }
    60  
    61  func Addrel(s *Symbol) *Reloc {
    62  	s.R = append(s.R, Reloc{})
    63  	return &s.R[len(s.R)-1]
    64  }
    65  
    66  func setuintxx(ctxt *Link, s *Symbol, off int64, v uint64, wid int64) int64 {
    67  	if s.Type == 0 {
    68  		s.Type = SDATA
    69  	}
    70  	s.Attr |= AttrReachable
    71  	if s.Size < off+wid {
    72  		s.Size = off + wid
    73  		Symgrow(s, s.Size)
    74  	}
    75  
    76  	switch wid {
    77  	case 1:
    78  		s.P[off] = uint8(v)
    79  	case 2:
    80  		ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v))
    81  	case 4:
    82  		ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v))
    83  	case 8:
    84  		ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v)
    85  	}
    86  
    87  	return off + wid
    88  }
    89  
    90  func Addbytes(s *Symbol, bytes []byte) int64 {
    91  	if s.Type == 0 {
    92  		s.Type = SDATA
    93  	}
    94  	s.Attr |= AttrReachable
    95  	s.P = append(s.P, bytes...)
    96  	s.Size = int64(len(s.P))
    97  
    98  	return s.Size
    99  }
   100  
   101  func adduintxx(ctxt *Link, s *Symbol, v uint64, wid int) int64 {
   102  	off := s.Size
   103  	setuintxx(ctxt, s, off, v, int64(wid))
   104  	return off
   105  }
   106  
   107  func Adduint8(ctxt *Link, s *Symbol, v uint8) int64 {
   108  	off := s.Size
   109  	if s.Type == 0 {
   110  		s.Type = SDATA
   111  	}
   112  	s.Attr |= AttrReachable
   113  	s.Size++
   114  	s.P = append(s.P, v)
   115  
   116  	return off
   117  }
   118  
   119  func Adduint16(ctxt *Link, s *Symbol, v uint16) int64 {
   120  	return adduintxx(ctxt, s, uint64(v), 2)
   121  }
   122  
   123  func Adduint32(ctxt *Link, s *Symbol, v uint32) int64 {
   124  	return adduintxx(ctxt, s, uint64(v), 4)
   125  }
   126  
   127  func Adduint64(ctxt *Link, s *Symbol, v uint64) int64 {
   128  	return adduintxx(ctxt, s, v, 8)
   129  }
   130  
   131  func adduint(ctxt *Link, s *Symbol, v uint64) int64 {
   132  	return adduintxx(ctxt, s, v, SysArch.PtrSize)
   133  }
   134  
   135  func setuint8(ctxt *Link, s *Symbol, r int64, v uint8) int64 {
   136  	return setuintxx(ctxt, s, r, uint64(v), 1)
   137  }
   138  
   139  func setuint32(ctxt *Link, s *Symbol, r int64, v uint32) int64 {
   140  	return setuintxx(ctxt, s, r, uint64(v), 4)
   141  }
   142  
   143  func setuint(ctxt *Link, s *Symbol, r int64, v uint64) int64 {
   144  	return setuintxx(ctxt, s, r, v, int64(SysArch.PtrSize))
   145  }
   146  
   147  func Addaddrplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 {
   148  	if s.Type == 0 {
   149  		s.Type = SDATA
   150  	}
   151  	s.Attr |= AttrReachable
   152  	i := s.Size
   153  	s.Size += int64(ctxt.Arch.PtrSize)
   154  	Symgrow(s, s.Size)
   155  	r := Addrel(s)
   156  	r.Sym = t
   157  	r.Off = int32(i)
   158  	r.Siz = uint8(ctxt.Arch.PtrSize)
   159  	r.Type = objabi.R_ADDR
   160  	r.Add = add
   161  	return i + int64(r.Siz)
   162  }
   163  
   164  func Addpcrelplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 {
   165  	if s.Type == 0 {
   166  		s.Type = SDATA
   167  	}
   168  	s.Attr |= AttrReachable
   169  	i := s.Size
   170  	s.Size += 4
   171  	Symgrow(s, s.Size)
   172  	r := Addrel(s)
   173  	r.Sym = t
   174  	r.Off = int32(i)
   175  	r.Add = add
   176  	r.Type = objabi.R_PCREL
   177  	r.Siz = 4
   178  	if SysArch.Family == sys.S390X {
   179  		r.Variant = RV_390_DBL
   180  	}
   181  	return i + int64(r.Siz)
   182  }
   183  
   184  func Addaddr(ctxt *Link, s *Symbol, t *Symbol) int64 {
   185  	return Addaddrplus(ctxt, s, t, 0)
   186  }
   187  
   188  func setaddrplus(ctxt *Link, s *Symbol, off int64, t *Symbol, add int64) int64 {
   189  	if s.Type == 0 {
   190  		s.Type = SDATA
   191  	}
   192  	s.Attr |= AttrReachable
   193  	if off+int64(ctxt.Arch.PtrSize) > s.Size {
   194  		s.Size = off + int64(ctxt.Arch.PtrSize)
   195  		Symgrow(s, s.Size)
   196  	}
   197  
   198  	r := Addrel(s)
   199  	r.Sym = t
   200  	r.Off = int32(off)
   201  	r.Siz = uint8(ctxt.Arch.PtrSize)
   202  	r.Type = objabi.R_ADDR
   203  	r.Add = add
   204  	return off + int64(r.Siz)
   205  }
   206  
   207  func setaddr(ctxt *Link, s *Symbol, off int64, t *Symbol) int64 {
   208  	return setaddrplus(ctxt, s, off, t, 0)
   209  }
   210  
   211  func addsize(ctxt *Link, s *Symbol, t *Symbol) int64 {
   212  	if s.Type == 0 {
   213  		s.Type = SDATA
   214  	}
   215  	s.Attr |= AttrReachable
   216  	i := s.Size
   217  	s.Size += int64(ctxt.Arch.PtrSize)
   218  	Symgrow(s, s.Size)
   219  	r := Addrel(s)
   220  	r.Sym = t
   221  	r.Off = int32(i)
   222  	r.Siz = uint8(ctxt.Arch.PtrSize)
   223  	r.Type = objabi.R_SIZE
   224  	return i + int64(r.Siz)
   225  }
   226  
   227  func addaddrplus4(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 {
   228  	if s.Type == 0 {
   229  		s.Type = SDATA
   230  	}
   231  	s.Attr |= AttrReachable
   232  	i := s.Size
   233  	s.Size += 4
   234  	Symgrow(s, s.Size)
   235  	r := Addrel(s)
   236  	r.Sym = t
   237  	r.Off = int32(i)
   238  	r.Siz = 4
   239  	r.Type = objabi.R_ADDR
   240  	r.Add = add
   241  	return i + int64(r.Siz)
   242  }
   243  
   244  /*
   245   * divide-and-conquer list-link (by Sub) sort of Symbol* by Value.
   246   * Used for sub-symbols when loading host objects (see e.g. ldelf.go).
   247   */
   248  
   249  func listsort(l *Symbol) *Symbol {
   250  	if l == nil || l.Sub == nil {
   251  		return l
   252  	}
   253  
   254  	l1 := l
   255  	l2 := l
   256  	for {
   257  		l2 = l2.Sub
   258  		if l2 == nil {
   259  			break
   260  		}
   261  		l2 = l2.Sub
   262  		if l2 == nil {
   263  			break
   264  		}
   265  		l1 = l1.Sub
   266  	}
   267  
   268  	l2 = l1.Sub
   269  	l1.Sub = nil
   270  	l1 = listsort(l)
   271  	l2 = listsort(l2)
   272  
   273  	/* set up lead element */
   274  	if l1.Value < l2.Value {
   275  		l = l1
   276  		l1 = l1.Sub
   277  	} else {
   278  		l = l2
   279  		l2 = l2.Sub
   280  	}
   281  
   282  	le := l
   283  
   284  	for {
   285  		if l1 == nil {
   286  			for l2 != nil {
   287  				le.Sub = l2
   288  				le = l2
   289  				l2 = l2.Sub
   290  			}
   291  
   292  			le.Sub = nil
   293  			break
   294  		}
   295  
   296  		if l2 == nil {
   297  			for l1 != nil {
   298  				le.Sub = l1
   299  				le = l1
   300  				l1 = l1.Sub
   301  			}
   302  
   303  			break
   304  		}
   305  
   306  		if l1.Value < l2.Value {
   307  			le.Sub = l1
   308  			le = l1
   309  			l1 = l1.Sub
   310  		} else {
   311  			le.Sub = l2
   312  			le = l2
   313  			l2 = l2.Sub
   314  		}
   315  	}
   316  
   317  	le.Sub = nil
   318  	return l
   319  }
   320  
   321  // isRuntimeDepPkg returns whether pkg is the runtime package or its dependency
   322  func isRuntimeDepPkg(pkg string) bool {
   323  	switch pkg {
   324  	case "runtime",
   325  		"sync/atomic": // runtime may call to sync/atomic, due to go:linkname
   326  		return true
   327  	}
   328  	return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test")
   329  }
   330  
   331  // detect too-far jumps in function s, and add trampolines if necessary
   332  // ARM supports trampoline insertion for internal and external linking
   333  // PPC64 & PPC64LE support trampoline insertion for internal linking only
   334  func trampoline(ctxt *Link, s *Symbol) {
   335  	if Thearch.Trampoline == nil {
   336  		return // no need or no support of trampolines on this arch
   337  	}
   338  
   339  	if Linkmode == LinkExternal && SysArch.Family == sys.PPC64 {
   340  		return
   341  	}
   342  
   343  	for ri := range s.R {
   344  		r := &s.R[ri]
   345  		if !r.Type.IsDirectJump() {
   346  			continue
   347  		}
   348  		if Symaddr(r.Sym) == 0 && r.Sym.Type != SDYNIMPORT {
   349  			if r.Sym.File != s.File {
   350  				if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) {
   351  					Errorf(s, "unresolved inter-package jump to %s(%s)", r.Sym, r.Sym.File)
   352  				}
   353  				// runtime and its dependent packages may call to each other.
   354  				// they are fine, as they will be laid down together.
   355  			}
   356  			continue
   357  		}
   358  
   359  		Thearch.Trampoline(ctxt, r, s)
   360  	}
   361  
   362  }
   363  
   364  // resolve relocations in s.
   365  func relocsym(ctxt *Link, s *Symbol) {
   366  	var r *Reloc
   367  	var rs *Symbol
   368  	var i16 int16
   369  	var off int32
   370  	var siz int32
   371  	var fl int32
   372  	var o int64
   373  
   374  	for ri := int32(0); ri < int32(len(s.R)); ri++ {
   375  		r = &s.R[ri]
   376  
   377  		r.Done = 1
   378  		off = r.Off
   379  		siz = int32(r.Siz)
   380  		if off < 0 || off+siz > int32(len(s.P)) {
   381  			rname := ""
   382  			if r.Sym != nil {
   383  				rname = r.Sym.Name
   384  			}
   385  			Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P))
   386  			continue
   387  		}
   388  
   389  		if r.Sym != nil && (r.Sym.Type&(SMASK|SHIDDEN) == 0 || r.Sym.Type&SMASK == SXREF) {
   390  			// When putting the runtime but not main into a shared library
   391  			// these symbols are undefined and that's OK.
   392  			if Buildmode == BuildmodeShared {
   393  				if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" {
   394  					r.Sym.Type = SDYNIMPORT
   395  				} else if strings.HasPrefix(r.Sym.Name, "go.info.") {
   396  					// Skip go.info symbols. They are only needed to communicate
   397  					// DWARF info between the compiler and linker.
   398  					continue
   399  				}
   400  			} else {
   401  				Errorf(s, "relocation target %s not defined", r.Sym.Name)
   402  				continue
   403  			}
   404  		}
   405  
   406  		if r.Type >= 256 {
   407  			continue
   408  		}
   409  		if r.Siz == 0 { // informational relocation - no work to do
   410  			continue
   411  		}
   412  
   413  		// We need to be able to reference dynimport symbols when linking against
   414  		// shared libraries, and Solaris needs it always
   415  		if Headtype != objabi.Hsolaris && r.Sym != nil && r.Sym.Type == SDYNIMPORT && !ctxt.DynlinkingGo() {
   416  			if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") {
   417  				Errorf(s, "unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type)
   418  			}
   419  		}
   420  		if r.Sym != nil && r.Sym.Type != STLSBSS && r.Type != objabi.R_WEAKADDROFF && !r.Sym.Attr.Reachable() {
   421  			Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name)
   422  		}
   423  
   424  		// TODO(mundaym): remove this special case - see issue 14218.
   425  		if SysArch.Family == sys.S390X {
   426  			switch r.Type {
   427  			case objabi.R_PCRELDBL:
   428  				r.Type = objabi.R_PCREL
   429  				r.Variant = RV_390_DBL
   430  			case objabi.R_CALL:
   431  				r.Variant = RV_390_DBL
   432  			}
   433  		}
   434  
   435  		switch r.Type {
   436  		default:
   437  			switch siz {
   438  			default:
   439  				Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
   440  			case 1:
   441  				o = int64(s.P[off])
   442  			case 2:
   443  				o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:]))
   444  			case 4:
   445  				o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:]))
   446  			case 8:
   447  				o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:]))
   448  			}
   449  			if Thearch.Archreloc(ctxt, r, s, &o) < 0 {
   450  				Errorf(s, "unknown reloc to %v: %v", r.Sym.Name, r.Type)
   451  			}
   452  
   453  		case objabi.R_TLS_LE:
   454  			isAndroidX86 := objabi.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386))
   455  
   456  			if Linkmode == LinkExternal && Iself && !isAndroidX86 {
   457  				r.Done = 0
   458  				if r.Sym == nil {
   459  					r.Sym = ctxt.Tlsg
   460  				}
   461  				r.Xsym = r.Sym
   462  				r.Xadd = r.Add
   463  				o = 0
   464  				if SysArch.Family != sys.AMD64 {
   465  					o = r.Add
   466  				}
   467  				break
   468  			}
   469  
   470  			if Iself && SysArch.Family == sys.ARM {
   471  				// On ELF ARM, the thread pointer is 8 bytes before
   472  				// the start of the thread-local data block, so add 8
   473  				// to the actual TLS offset (r->sym->value).
   474  				// This 8 seems to be a fundamental constant of
   475  				// ELF on ARM (or maybe Glibc on ARM); it is not
   476  				// related to the fact that our own TLS storage happens
   477  				// to take up 8 bytes.
   478  				o = 8 + r.Sym.Value
   479  			} else if Iself || Headtype == objabi.Hplan9 || Headtype == objabi.Hdarwin || isAndroidX86 {
   480  				o = int64(ctxt.Tlsoffset) + r.Add
   481  			} else if Headtype == objabi.Hwindows {
   482  				o = r.Add
   483  			} else {
   484  				log.Fatalf("unexpected R_TLS_LE relocation for %v", Headtype)
   485  			}
   486  
   487  		case objabi.R_TLS_IE:
   488  			isAndroidX86 := objabi.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386))
   489  
   490  			if Linkmode == LinkExternal && Iself && !isAndroidX86 {
   491  				r.Done = 0
   492  				if r.Sym == nil {
   493  					r.Sym = ctxt.Tlsg
   494  				}
   495  				r.Xsym = r.Sym
   496  				r.Xadd = r.Add
   497  				o = 0
   498  				if SysArch.Family != sys.AMD64 {
   499  					o = r.Add
   500  				}
   501  				break
   502  			}
   503  			if Buildmode == BuildmodePIE && Iself {
   504  				// We are linking the final executable, so we
   505  				// can optimize any TLS IE relocation to LE.
   506  				if Thearch.TLSIEtoLE == nil {
   507  					log.Fatalf("internal linking of TLS IE not supported on %v", SysArch.Family)
   508  				}
   509  				Thearch.TLSIEtoLE(s, int(off), int(r.Siz))
   510  				o = int64(ctxt.Tlsoffset)
   511  				// TODO: o += r.Add when SysArch.Family != sys.AMD64?
   512  				// Why do we treat r.Add differently on AMD64?
   513  				// Is the external linker using Xadd at all?
   514  			} else {
   515  				log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name)
   516  			}
   517  
   518  		case objabi.R_ADDR:
   519  			if Linkmode == LinkExternal && r.Sym.Type != SCONST {
   520  				r.Done = 0
   521  
   522  				// set up addend for eventual relocation via outer symbol.
   523  				rs = r.Sym
   524  
   525  				r.Xadd = r.Add
   526  				for rs.Outer != nil {
   527  					r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
   528  					rs = rs.Outer
   529  				}
   530  
   531  				if rs.Type != SHOSTOBJ && rs.Type != SDYNIMPORT && rs.Sect == nil {
   532  					Errorf(s, "missing section for relocation target %s", rs.Name)
   533  				}
   534  				r.Xsym = rs
   535  
   536  				o = r.Xadd
   537  				if Iself {
   538  					if SysArch.Family == sys.AMD64 {
   539  						o = 0
   540  					}
   541  				} else if Headtype == objabi.Hdarwin {
   542  					// ld64 for arm64 has a bug where if the address pointed to by o exists in the
   543  					// symbol table (dynid >= 0), or is inside a symbol that exists in the symbol
   544  					// table, then it will add o twice into the relocated value.
   545  					// The workaround is that on arm64 don't ever add symaddr to o and always use
   546  					// extern relocation by requiring rs->dynid >= 0.
   547  					if rs.Type != SHOSTOBJ {
   548  						if SysArch.Family == sys.ARM64 && rs.Dynid < 0 {
   549  							Errorf(s, "R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o)
   550  						}
   551  						if SysArch.Family != sys.ARM64 {
   552  							o += Symaddr(rs)
   553  						}
   554  					}
   555  				} else if Headtype == objabi.Hwindows {
   556  					// nothing to do
   557  				} else {
   558  					Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype)
   559  				}
   560  
   561  				break
   562  			}
   563  
   564  			o = Symaddr(r.Sym) + r.Add
   565  
   566  			// On amd64, 4-byte offsets will be sign-extended, so it is impossible to
   567  			// access more than 2GB of static data; fail at link time is better than
   568  			// fail at runtime. See https://golang.org/issue/7980.
   569  			// Instead of special casing only amd64, we treat this as an error on all
   570  			// 64-bit architectures so as to be future-proof.
   571  			if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 {
   572  				Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add)
   573  				errorexit()
   574  			}
   575  
   576  		case objabi.R_DWARFREF:
   577  			if r.Sym.Sect == nil {
   578  				Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name)
   579  			}
   580  			if Linkmode == LinkExternal {
   581  				r.Done = 0
   582  				// PE code emits IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL
   583  				// for R_DWARFREF relocations, while R_ADDR is replaced with
   584  				// IMAGE_REL_I386_DIR32, IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_AMD64_ADDR32.
   585  				// Do not replace R_DWARFREF with R_ADDR for windows -
   586  				// let PE code emit correct relocations.
   587  				if Headtype != objabi.Hwindows {
   588  					r.Type = objabi.R_ADDR
   589  				}
   590  
   591  				r.Xsym = ctxt.Syms.ROLookup(r.Sym.Sect.Name, 0)
   592  				r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr)
   593  				o = r.Xadd
   594  				rs = r.Xsym
   595  				if Iself && SysArch.Family == sys.AMD64 {
   596  					o = 0
   597  				}
   598  				break
   599  			}
   600  			o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr)
   601  
   602  		case objabi.R_WEAKADDROFF:
   603  			if !r.Sym.Attr.Reachable() {
   604  				continue
   605  			}
   606  			fallthrough
   607  		case objabi.R_ADDROFF:
   608  			// The method offset tables using this relocation expect the offset to be relative
   609  			// to the start of the first text section, even if there are multiple.
   610  
   611  			if r.Sym.Sect.Name == ".text" {
   612  				o = Symaddr(r.Sym) - int64(Segtext.Sections[0].Vaddr) + r.Add
   613  			} else {
   614  				o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add
   615  			}
   616  
   617  			// r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call.
   618  		case objabi.R_GOTPCREL:
   619  			if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin && r.Sym != nil && r.Sym.Type != SCONST {
   620  				r.Done = 0
   621  				r.Xadd = r.Add
   622  				r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk
   623  				r.Xsym = r.Sym
   624  
   625  				o = r.Xadd
   626  				o += int64(r.Siz)
   627  				break
   628  			}
   629  			fallthrough
   630  		case objabi.R_CALL, objabi.R_PCREL:
   631  			if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != SCONST && (r.Sym.Sect != s.Sect || r.Type == objabi.R_GOTPCREL) {
   632  				r.Done = 0
   633  
   634  				// set up addend for eventual relocation via outer symbol.
   635  				rs = r.Sym
   636  
   637  				r.Xadd = r.Add
   638  				for rs.Outer != nil {
   639  					r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
   640  					rs = rs.Outer
   641  				}
   642  
   643  				r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk
   644  				if rs.Type != SHOSTOBJ && rs.Type != SDYNIMPORT && rs.Sect == nil {
   645  					Errorf(s, "missing section for relocation target %s", rs.Name)
   646  				}
   647  				r.Xsym = rs
   648  
   649  				o = r.Xadd
   650  				if Iself {
   651  					if SysArch.Family == sys.AMD64 {
   652  						o = 0
   653  					}
   654  				} else if Headtype == objabi.Hdarwin {
   655  					if r.Type == objabi.R_CALL {
   656  						if rs.Type != SHOSTOBJ {
   657  							o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr)
   658  						}
   659  						o -= int64(r.Off) // relative to section offset, not symbol
   660  					} else if SysArch.Family == sys.ARM {
   661  						// see ../arm/asm.go:/machoreloc1
   662  						o += Symaddr(rs) - int64(s.Value) - int64(r.Off)
   663  					} else {
   664  						o += int64(r.Siz)
   665  					}
   666  				} else if Headtype == objabi.Hwindows && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL
   667  					// PE/COFF's PC32 relocation uses the address after the relocated
   668  					// bytes as the base. Compensate by skewing the addend.
   669  					o += int64(r.Siz)
   670  				} else {
   671  					Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype)
   672  				}
   673  
   674  				break
   675  			}
   676  
   677  			o = 0
   678  			if r.Sym != nil {
   679  				o += Symaddr(r.Sym)
   680  			}
   681  
   682  			o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz))
   683  
   684  		case objabi.R_SIZE:
   685  			o = r.Sym.Size + r.Add
   686  		}
   687  
   688  		if r.Variant != RV_NONE {
   689  			o = Thearch.Archrelocvariant(ctxt, r, s, o)
   690  		}
   691  
   692  		if false {
   693  			nam := "<nil>"
   694  			if r.Sym != nil {
   695  				nam = r.Sym.Name
   696  			}
   697  			fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, r.Variant, o)
   698  		}
   699  		switch siz {
   700  		default:
   701  			Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
   702  			fallthrough
   703  
   704  			// TODO(rsc): Remove.
   705  		case 1:
   706  			s.P[off] = byte(int8(o))
   707  
   708  		case 2:
   709  			if o != int64(int16(o)) {
   710  				Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o)
   711  			}
   712  			i16 = int16(o)
   713  			ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16))
   714  
   715  		case 4:
   716  			if r.Type == objabi.R_PCREL || r.Type == objabi.R_CALL {
   717  				if o != int64(int32(o)) {
   718  					Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o)
   719  				}
   720  			} else {
   721  				if o != int64(int32(o)) && o != int64(uint32(o)) {
   722  					Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o))
   723  				}
   724  			}
   725  
   726  			fl = int32(o)
   727  			ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl))
   728  
   729  		case 8:
   730  			ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o))
   731  		}
   732  	}
   733  }
   734  
   735  func (ctxt *Link) reloc() {
   736  	if ctxt.Debugvlog != 0 {
   737  		ctxt.Logf("%5.2f reloc\n", Cputime())
   738  	}
   739  
   740  	for _, s := range ctxt.Textp {
   741  		relocsym(ctxt, s)
   742  	}
   743  	for _, sym := range datap {
   744  		relocsym(ctxt, sym)
   745  	}
   746  	for _, s := range dwarfp {
   747  		relocsym(ctxt, s)
   748  	}
   749  }
   750  
   751  func dynrelocsym(ctxt *Link, s *Symbol) {
   752  	if Headtype == objabi.Hwindows && Linkmode != LinkExternal {
   753  		rel := ctxt.Syms.Lookup(".rel", 0)
   754  		if s == rel {
   755  			return
   756  		}
   757  		for ri := 0; ri < len(s.R); ri++ {
   758  			r := &s.R[ri]
   759  			targ := r.Sym
   760  			if targ == nil {
   761  				continue
   762  			}
   763  			if !targ.Attr.Reachable() {
   764  				if r.Type == objabi.R_WEAKADDROFF {
   765  					continue
   766  				}
   767  				Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name)
   768  			}
   769  			if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files.
   770  				targ.Plt = int32(rel.Size)
   771  				r.Sym = rel
   772  				r.Add = int64(targ.Plt)
   773  
   774  				// jmp *addr
   775  				if SysArch.Family == sys.I386 {
   776  					Adduint8(ctxt, rel, 0xff)
   777  					Adduint8(ctxt, rel, 0x25)
   778  					Addaddr(ctxt, rel, targ)
   779  					Adduint8(ctxt, rel, 0x90)
   780  					Adduint8(ctxt, rel, 0x90)
   781  				} else {
   782  					Adduint8(ctxt, rel, 0xff)
   783  					Adduint8(ctxt, rel, 0x24)
   784  					Adduint8(ctxt, rel, 0x25)
   785  					addaddrplus4(ctxt, rel, targ, 0)
   786  					Adduint8(ctxt, rel, 0x90)
   787  				}
   788  			} else if r.Sym.Plt >= 0 {
   789  				r.Sym = rel
   790  				r.Add = int64(targ.Plt)
   791  			}
   792  		}
   793  
   794  		return
   795  	}
   796  
   797  	for ri := 0; ri < len(s.R); ri++ {
   798  		r := &s.R[ri]
   799  		if Buildmode == BuildmodePIE && Linkmode == LinkInternal {
   800  			// It's expected that some relocations will be done
   801  			// later by relocsym (R_TLS_LE, R_ADDROFF), so
   802  			// don't worry if Adddynrel returns false.
   803  			Thearch.Adddynrel(ctxt, s, r)
   804  			continue
   805  		}
   806  		if r.Sym != nil && r.Sym.Type == SDYNIMPORT || r.Type >= 256 {
   807  			if r.Sym != nil && !r.Sym.Attr.Reachable() {
   808  				Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name)
   809  			}
   810  			if !Thearch.Adddynrel(ctxt, s, r) {
   811  				Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d stype=%d)", r.Sym.Name, r.Type, r.Sym.Type)
   812  			}
   813  		}
   814  	}
   815  }
   816  
   817  func dynreloc(ctxt *Link, data *[SXREF][]*Symbol) {
   818  	// -d suppresses dynamic loader format, so we may as well not
   819  	// compute these sections or mark their symbols as reachable.
   820  	if *FlagD && Headtype != objabi.Hwindows {
   821  		return
   822  	}
   823  	if ctxt.Debugvlog != 0 {
   824  		ctxt.Logf("%5.2f reloc\n", Cputime())
   825  	}
   826  
   827  	for _, s := range ctxt.Textp {
   828  		dynrelocsym(ctxt, s)
   829  	}
   830  	for _, syms := range data {
   831  		for _, sym := range syms {
   832  			dynrelocsym(ctxt, sym)
   833  		}
   834  	}
   835  	if Iself {
   836  		elfdynhash(ctxt)
   837  	}
   838  }
   839  
   840  func Codeblk(ctxt *Link, addr int64, size int64) {
   841  	CodeblkPad(ctxt, addr, size, zeros[:])
   842  }
   843  func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) {
   844  	if *flagA {
   845  		ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset())
   846  	}
   847  
   848  	blk(ctxt, ctxt.Textp, addr, size, pad)
   849  
   850  	/* again for printing */
   851  	if !*flagA {
   852  		return
   853  	}
   854  
   855  	syms := ctxt.Textp
   856  	for i, sym := range syms {
   857  		if !sym.Attr.Reachable() {
   858  			continue
   859  		}
   860  		if sym.Value >= addr {
   861  			syms = syms[i:]
   862  			break
   863  		}
   864  	}
   865  
   866  	eaddr := addr + size
   867  	var q []byte
   868  	for _, sym := range syms {
   869  		if !sym.Attr.Reachable() {
   870  			continue
   871  		}
   872  		if sym.Value >= eaddr {
   873  			break
   874  		}
   875  
   876  		if addr < sym.Value {
   877  			ctxt.Logf("%-20s %.8x|", "_", uint64(addr))
   878  			for ; addr < sym.Value; addr++ {
   879  				ctxt.Logf(" %.2x", 0)
   880  			}
   881  			ctxt.Logf("\n")
   882  		}
   883  
   884  		ctxt.Logf("%.6x\t%-20s\n", uint64(addr), sym.Name)
   885  		q = sym.P
   886  
   887  		for len(q) >= 16 {
   888  			ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16])
   889  			addr += 16
   890  			q = q[16:]
   891  		}
   892  
   893  		if len(q) > 0 {
   894  			ctxt.Logf("%.6x\t% x\n", uint64(addr), q)
   895  			addr += int64(len(q))
   896  		}
   897  	}
   898  
   899  	if addr < eaddr {
   900  		ctxt.Logf("%-20s %.8x|", "_", uint64(addr))
   901  		for ; addr < eaddr; addr++ {
   902  			ctxt.Logf(" %.2x", 0)
   903  		}
   904  	}
   905  }
   906  
   907  func blk(ctxt *Link, syms []*Symbol, addr, size int64, pad []byte) {
   908  	for i, s := range syms {
   909  		if s.Type&SSUB == 0 && s.Value >= addr {
   910  			syms = syms[i:]
   911  			break
   912  		}
   913  	}
   914  
   915  	eaddr := addr + size
   916  	for _, s := range syms {
   917  		if s.Type&SSUB != 0 {
   918  			continue
   919  		}
   920  		if s.Value >= eaddr {
   921  			break
   922  		}
   923  		if s.Value < addr {
   924  			Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type)
   925  			errorexit()
   926  		}
   927  		if addr < s.Value {
   928  			strnputPad("", int(s.Value-addr), pad)
   929  			addr = s.Value
   930  		}
   931  		Cwrite(s.P)
   932  		addr += int64(len(s.P))
   933  		if addr < s.Value+s.Size {
   934  			strnputPad("", int(s.Value+s.Size-addr), pad)
   935  			addr = s.Value + s.Size
   936  		}
   937  		if addr != s.Value+s.Size {
   938  			Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size)
   939  			errorexit()
   940  		}
   941  		if s.Value+s.Size >= eaddr {
   942  			break
   943  		}
   944  	}
   945  
   946  	if addr < eaddr {
   947  		strnputPad("", int(eaddr-addr), pad)
   948  	}
   949  	Cflush()
   950  }
   951  
   952  func Datblk(ctxt *Link, addr int64, size int64) {
   953  	if *flagA {
   954  		ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset())
   955  	}
   956  
   957  	blk(ctxt, datap, addr, size, zeros[:])
   958  
   959  	/* again for printing */
   960  	if !*flagA {
   961  		return
   962  	}
   963  
   964  	syms := datap
   965  	for i, sym := range syms {
   966  		if sym.Value >= addr {
   967  			syms = syms[i:]
   968  			break
   969  		}
   970  	}
   971  
   972  	eaddr := addr + size
   973  	for _, sym := range syms {
   974  		if sym.Value >= eaddr {
   975  			break
   976  		}
   977  		if addr < sym.Value {
   978  			ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr))
   979  			addr = sym.Value
   980  		}
   981  
   982  		ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr))
   983  		for i, b := range sym.P {
   984  			if i > 0 && i%16 == 0 {
   985  				ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i))
   986  			}
   987  			ctxt.Logf(" %.2x", b)
   988  		}
   989  
   990  		addr += int64(len(sym.P))
   991  		for ; addr < sym.Value+sym.Size; addr++ {
   992  			ctxt.Logf(" %.2x", 0)
   993  		}
   994  		ctxt.Logf("\n")
   995  
   996  		if Linkmode != LinkExternal {
   997  			continue
   998  		}
   999  		for _, r := range sym.R {
  1000  			rsname := ""
  1001  			if r.Sym != nil {
  1002  				rsname = r.Sym.Name
  1003  			}
  1004  			typ := "?"
  1005  			switch r.Type {
  1006  			case objabi.R_ADDR:
  1007  				typ = "addr"
  1008  			case objabi.R_PCREL:
  1009  				typ = "pcrel"
  1010  			case objabi.R_CALL:
  1011  				typ = "call"
  1012  			}
  1013  			ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add)
  1014  		}
  1015  	}
  1016  
  1017  	if addr < eaddr {
  1018  		ctxt.Logf("\t%.8x| 00 ...\n", uint(addr))
  1019  	}
  1020  	ctxt.Logf("\t%.8x|\n", uint(eaddr))
  1021  }
  1022  
  1023  func Dwarfblk(ctxt *Link, addr int64, size int64) {
  1024  	if *flagA {
  1025  		ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset())
  1026  	}
  1027  
  1028  	blk(ctxt, dwarfp, addr, size, zeros[:])
  1029  }
  1030  
  1031  var zeros [512]byte
  1032  
  1033  // strnput writes the first n bytes of s.
  1034  // If n is larger than len(s),
  1035  // it is padded with NUL bytes.
  1036  func strnput(s string, n int) {
  1037  	strnputPad(s, n, zeros[:])
  1038  }
  1039  
  1040  // strnput writes the first n bytes of s.
  1041  // If n is larger than len(s),
  1042  // it is padded with the bytes in pad (repeated as needed).
  1043  func strnputPad(s string, n int, pad []byte) {
  1044  	if len(s) >= n {
  1045  		Cwritestring(s[:n])
  1046  	} else {
  1047  		Cwritestring(s)
  1048  		n -= len(s)
  1049  		for n > len(pad) {
  1050  			Cwrite(pad)
  1051  			n -= len(pad)
  1052  
  1053  		}
  1054  		Cwrite(pad[:n])
  1055  	}
  1056  }
  1057  
  1058  var strdata []*Symbol
  1059  
  1060  func addstrdata1(ctxt *Link, arg string) {
  1061  	eq := strings.Index(arg, "=")
  1062  	dot := strings.LastIndex(arg[:eq+1], ".")
  1063  	if eq < 0 || dot < 0 {
  1064  		Exitf("-X flag requires argument of the form importpath.name=value")
  1065  	}
  1066  	addstrdata(ctxt, objabi.PathToPrefix(arg[:dot])+arg[dot:eq], arg[eq+1:])
  1067  }
  1068  
  1069  func addstrdata(ctxt *Link, name string, value string) {
  1070  	p := fmt.Sprintf("%s.str", name)
  1071  	sp := ctxt.Syms.Lookup(p, 0)
  1072  
  1073  	Addstring(sp, value)
  1074  	sp.Type = SRODATA
  1075  
  1076  	s := ctxt.Syms.Lookup(name, 0)
  1077  	s.Size = 0
  1078  	s.Attr |= AttrDuplicateOK
  1079  	reachable := s.Attr.Reachable()
  1080  	Addaddr(ctxt, s, sp)
  1081  	adduintxx(ctxt, s, uint64(len(value)), SysArch.PtrSize)
  1082  
  1083  	// addstring, addaddr, etc., mark the symbols as reachable.
  1084  	// In this case that is not necessarily true, so stick to what
  1085  	// we know before entering this function.
  1086  	s.Attr.Set(AttrReachable, reachable)
  1087  
  1088  	strdata = append(strdata, s)
  1089  
  1090  	sp.Attr.Set(AttrReachable, reachable)
  1091  }
  1092  
  1093  func (ctxt *Link) checkstrdata() {
  1094  	for _, s := range strdata {
  1095  		if s.Type == STEXT {
  1096  			Errorf(s, "cannot use -X with text symbol")
  1097  		} else if s.Gotype != nil && s.Gotype.Name != "type.string" {
  1098  			Errorf(s, "cannot use -X with non-string symbol")
  1099  		}
  1100  	}
  1101  }
  1102  
  1103  func Addstring(s *Symbol, str string) int64 {
  1104  	if s.Type == 0 {
  1105  		s.Type = SNOPTRDATA
  1106  	}
  1107  	s.Attr |= AttrReachable
  1108  	r := s.Size
  1109  	if s.Name == ".shstrtab" {
  1110  		elfsetstring(s, str, int(r))
  1111  	}
  1112  	s.P = append(s.P, str...)
  1113  	s.P = append(s.P, 0)
  1114  	s.Size = int64(len(s.P))
  1115  	return r
  1116  }
  1117  
  1118  // addgostring adds str, as a Go string value, to s. symname is the name of the
  1119  // symbol used to define the string data and must be unique per linked object.
  1120  func addgostring(ctxt *Link, s *Symbol, symname, str string) {
  1121  	sym := ctxt.Syms.Lookup(symname, 0)
  1122  	if sym.Type != Sxxx {
  1123  		Errorf(s, "duplicate symname in addgostring: %s", symname)
  1124  	}
  1125  	sym.Attr |= AttrReachable
  1126  	sym.Attr |= AttrLocal
  1127  	sym.Type = SRODATA
  1128  	sym.Size = int64(len(str))
  1129  	sym.P = []byte(str)
  1130  	Addaddr(ctxt, s, sym)
  1131  	adduint(ctxt, s, uint64(len(str)))
  1132  }
  1133  
  1134  func addinitarrdata(ctxt *Link, s *Symbol) {
  1135  	p := s.Name + ".ptr"
  1136  	sp := ctxt.Syms.Lookup(p, 0)
  1137  	sp.Type = SINITARR
  1138  	sp.Size = 0
  1139  	sp.Attr |= AttrDuplicateOK
  1140  	Addaddr(ctxt, sp, s)
  1141  }
  1142  
  1143  func dosymtype(ctxt *Link) {
  1144  	for _, s := range ctxt.Syms.Allsym {
  1145  		if len(s.P) > 0 {
  1146  			if s.Type == SBSS {
  1147  				s.Type = SDATA
  1148  			}
  1149  			if s.Type == SNOPTRBSS {
  1150  				s.Type = SNOPTRDATA
  1151  			}
  1152  		}
  1153  		// Create a new entry in the .init_array section that points to the
  1154  		// library initializer function.
  1155  		switch Buildmode {
  1156  		case BuildmodeCArchive, BuildmodeCShared:
  1157  			if s.Name == *flagEntrySymbol {
  1158  				addinitarrdata(ctxt, s)
  1159  			}
  1160  		}
  1161  	}
  1162  }
  1163  
  1164  // symalign returns the required alignment for the given symbol s.
  1165  func symalign(s *Symbol) int32 {
  1166  	min := int32(Thearch.Minalign)
  1167  	if s.Align >= min {
  1168  		return s.Align
  1169  	} else if s.Align != 0 {
  1170  		return min
  1171  	}
  1172  	if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") {
  1173  		// String data is just bytes.
  1174  		// If we align it, we waste a lot of space to padding.
  1175  		return min
  1176  	}
  1177  	align := int32(Thearch.Maxalign)
  1178  	for int64(align) > s.Size && align > min {
  1179  		align >>= 1
  1180  	}
  1181  	return align
  1182  }
  1183  
  1184  func aligndatsize(datsize int64, s *Symbol) int64 {
  1185  	return Rnd(datsize, int64(symalign(s)))
  1186  }
  1187  
  1188  const debugGCProg = false
  1189  
  1190  type GCProg struct {
  1191  	ctxt *Link
  1192  	sym  *Symbol
  1193  	w    gcprog.Writer
  1194  }
  1195  
  1196  func (p *GCProg) Init(ctxt *Link, name string) {
  1197  	p.ctxt = ctxt
  1198  	p.sym = ctxt.Syms.Lookup(name, 0)
  1199  	p.w.Init(p.writeByte(ctxt))
  1200  	if debugGCProg {
  1201  		fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name)
  1202  		p.w.Debug(os.Stderr)
  1203  	}
  1204  }
  1205  
  1206  func (p *GCProg) writeByte(ctxt *Link) func(x byte) {
  1207  	return func(x byte) {
  1208  		Adduint8(ctxt, p.sym, x)
  1209  	}
  1210  }
  1211  
  1212  func (p *GCProg) End(size int64) {
  1213  	p.w.ZeroUntil(size / int64(SysArch.PtrSize))
  1214  	p.w.End()
  1215  	if debugGCProg {
  1216  		fmt.Fprintf(os.Stderr, "ld: end GCProg\n")
  1217  	}
  1218  }
  1219  
  1220  func (p *GCProg) AddSym(s *Symbol) {
  1221  	typ := s.Gotype
  1222  	// Things without pointers should be in SNOPTRDATA or SNOPTRBSS;
  1223  	// everything we see should have pointers and should therefore have a type.
  1224  	if typ == nil {
  1225  		switch s.Name {
  1226  		case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss":
  1227  			// Ignore special symbols that are sometimes laid out
  1228  			// as real symbols. See comment about dyld on darwin in
  1229  			// the address function.
  1230  			return
  1231  		}
  1232  		Errorf(s, "missing Go type information for global symbol: size %d", s.Size)
  1233  		return
  1234  	}
  1235  
  1236  	ptrsize := int64(SysArch.PtrSize)
  1237  	nptr := decodetypePtrdata(p.ctxt.Arch, typ) / ptrsize
  1238  
  1239  	if debugGCProg {
  1240  		fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr)
  1241  	}
  1242  
  1243  	if decodetypeUsegcprog(typ) == 0 {
  1244  		// Copy pointers from mask into program.
  1245  		mask := decodetypeGcmask(p.ctxt, typ)
  1246  		for i := int64(0); i < nptr; i++ {
  1247  			if (mask[i/8]>>uint(i%8))&1 != 0 {
  1248  				p.w.Ptr(s.Value/ptrsize + i)
  1249  			}
  1250  		}
  1251  		return
  1252  	}
  1253  
  1254  	// Copy program.
  1255  	prog := decodetypeGcprog(p.ctxt, typ)
  1256  	p.w.ZeroUntil(s.Value / ptrsize)
  1257  	p.w.Append(prog[4:], nptr)
  1258  }
  1259  
  1260  // dataSortKey is used to sort a slice of data symbol *Symbol pointers.
  1261  // The sort keys are kept inline to improve cache behavior while sorting.
  1262  type dataSortKey struct {
  1263  	size int64
  1264  	name string
  1265  	sym  *Symbol
  1266  }
  1267  
  1268  type bySizeAndName []dataSortKey
  1269  
  1270  func (d bySizeAndName) Len() int      { return len(d) }
  1271  func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
  1272  func (d bySizeAndName) Less(i, j int) bool {
  1273  	s1, s2 := d[i], d[j]
  1274  	if s1.size != s2.size {
  1275  		return s1.size < s2.size
  1276  	}
  1277  	return s1.name < s2.name
  1278  }
  1279  
  1280  const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31)
  1281  
  1282  func checkdatsize(ctxt *Link, datsize int64, symn SymKind) {
  1283  	if datsize > cutoff {
  1284  		Errorf(nil, "too much data in section %v (over %d bytes)", symn, cutoff)
  1285  	}
  1286  }
  1287  
  1288  // datap is a collection of reachable data symbols in address order.
  1289  // Generated by dodata.
  1290  var datap []*Symbol
  1291  
  1292  func (ctxt *Link) dodata() {
  1293  	if ctxt.Debugvlog != 0 {
  1294  		ctxt.Logf("%5.2f dodata\n", Cputime())
  1295  	}
  1296  
  1297  	if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin {
  1298  		// The values in moduledata are filled out by relocations
  1299  		// pointing to the addresses of these special symbols.
  1300  		// Typically these symbols have no size and are not laid
  1301  		// out with their matching section.
  1302  		//
  1303  		// However on darwin, dyld will find the special symbol
  1304  		// in the first loaded module, even though it is local.
  1305  		//
  1306  		// (An hypothesis, formed without looking in the dyld sources:
  1307  		// these special symbols have no size, so their address
  1308  		// matches a real symbol. The dynamic linker assumes we
  1309  		// want the normal symbol with the same address and finds
  1310  		// it in the other module.)
  1311  		//
  1312  		// To work around this we lay out the symbls whose
  1313  		// addresses are vital for multi-module programs to work
  1314  		// as normal symbols, and give them a little size.
  1315  		bss := ctxt.Syms.Lookup("runtime.bss", 0)
  1316  		bss.Size = 8
  1317  		bss.Attr.Set(AttrSpecial, false)
  1318  
  1319  		ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(AttrSpecial, false)
  1320  
  1321  		data := ctxt.Syms.Lookup("runtime.data", 0)
  1322  		data.Size = 8
  1323  		data.Attr.Set(AttrSpecial, false)
  1324  
  1325  		ctxt.Syms.Lookup("runtime.edata", 0).Attr.Set(AttrSpecial, false)
  1326  
  1327  		types := ctxt.Syms.Lookup("runtime.types", 0)
  1328  		types.Type = STYPE
  1329  		types.Size = 8
  1330  		types.Attr.Set(AttrSpecial, false)
  1331  
  1332  		etypes := ctxt.Syms.Lookup("runtime.etypes", 0)
  1333  		etypes.Type = SFUNCTAB
  1334  		etypes.Attr.Set(AttrSpecial, false)
  1335  	}
  1336  
  1337  	// Collect data symbols by type into data.
  1338  	var data [SXREF][]*Symbol
  1339  	for _, s := range ctxt.Syms.Allsym {
  1340  		if !s.Attr.Reachable() || s.Attr.Special() {
  1341  			continue
  1342  		}
  1343  		if s.Type <= STEXT || s.Type >= SXREF {
  1344  			continue
  1345  		}
  1346  		data[s.Type] = append(data[s.Type], s)
  1347  	}
  1348  
  1349  	// Now that we have the data symbols, but before we start
  1350  	// to assign addresses, record all the necessary
  1351  	// dynamic relocations. These will grow the relocation
  1352  	// symbol, which is itself data.
  1353  	//
  1354  	// On darwin, we need the symbol table numbers for dynreloc.
  1355  	if Headtype == objabi.Hdarwin {
  1356  		machosymorder(ctxt)
  1357  	}
  1358  	dynreloc(ctxt, &data)
  1359  
  1360  	if UseRelro() {
  1361  		// "read only" data with relocations needs to go in its own section
  1362  		// when building a shared library. We do this by boosting objects of
  1363  		// type SXXX with relocations to type SXXXRELRO.
  1364  		for _, symnro := range ReadOnly {
  1365  			symnrelro := RelROMap[symnro]
  1366  
  1367  			ro := []*Symbol{}
  1368  			relro := data[symnrelro]
  1369  
  1370  			for _, s := range data[symnro] {
  1371  				isRelro := len(s.R) > 0
  1372  				switch s.Type {
  1373  				case STYPE, STYPERELRO, SGOFUNCRELRO:
  1374  					// Symbols are not sorted yet, so it is possible
  1375  					// that an Outer symbol has been changed to a
  1376  					// relro Type before it reaches here.
  1377  					isRelro = true
  1378  				}
  1379  				if isRelro {
  1380  					s.Type = symnrelro
  1381  					if s.Outer != nil {
  1382  						s.Outer.Type = s.Type
  1383  					}
  1384  					relro = append(relro, s)
  1385  				} else {
  1386  					ro = append(ro, s)
  1387  				}
  1388  			}
  1389  
  1390  			// Check that we haven't made two symbols with the same .Outer into
  1391  			// different types (because references two symbols with non-nil Outer
  1392  			// become references to the outer symbol + offset it's vital that the
  1393  			// symbol and the outer end up in the same section).
  1394  			for _, s := range relro {
  1395  				if s.Outer != nil && s.Outer.Type != s.Type {
  1396  					Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)",
  1397  						s.Outer.Name, s.Type, s.Outer.Type)
  1398  				}
  1399  			}
  1400  
  1401  			data[symnro] = ro
  1402  			data[symnrelro] = relro
  1403  		}
  1404  	}
  1405  
  1406  	// Sort symbols.
  1407  	var dataMaxAlign [SXREF]int32
  1408  	var wg sync.WaitGroup
  1409  	for symn := range data {
  1410  		symn := SymKind(symn)
  1411  		wg.Add(1)
  1412  		go func() {
  1413  			data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn])
  1414  			wg.Done()
  1415  		}()
  1416  	}
  1417  	wg.Wait()
  1418  
  1419  	// Allocate sections.
  1420  	// Data is processed before segtext, because we need
  1421  	// to see all symbols in the .data and .bss sections in order
  1422  	// to generate garbage collection information.
  1423  	datsize := int64(0)
  1424  
  1425  	// Writable data sections that do not need any specialized handling.
  1426  	writable := []SymKind{
  1427  		SELFSECT,
  1428  		SMACHO,
  1429  		SMACHOGOT,
  1430  		SWINDOWS,
  1431  	}
  1432  	for _, symn := range writable {
  1433  		for _, s := range data[symn] {
  1434  			sect := addsection(&Segdata, s.Name, 06)
  1435  			sect.Align = symalign(s)
  1436  			datsize = Rnd(datsize, int64(sect.Align))
  1437  			sect.Vaddr = uint64(datsize)
  1438  			s.Sect = sect
  1439  			s.Type = SDATA
  1440  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1441  			datsize += s.Size
  1442  			sect.Length = uint64(datsize) - sect.Vaddr
  1443  		}
  1444  		checkdatsize(ctxt, datsize, symn)
  1445  	}
  1446  
  1447  	// .got (and .toc on ppc64)
  1448  	if len(data[SELFGOT]) > 0 {
  1449  		sect := addsection(&Segdata, ".got", 06)
  1450  		sect.Align = dataMaxAlign[SELFGOT]
  1451  		datsize = Rnd(datsize, int64(sect.Align))
  1452  		sect.Vaddr = uint64(datsize)
  1453  		var toc *Symbol
  1454  		for _, s := range data[SELFGOT] {
  1455  			datsize = aligndatsize(datsize, s)
  1456  			s.Sect = sect
  1457  			s.Type = SDATA
  1458  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1459  
  1460  			// Resolve .TOC. symbol for this object file (ppc64)
  1461  			toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version))
  1462  			if toc != nil {
  1463  				toc.Sect = sect
  1464  				toc.Outer = s
  1465  				toc.Sub = s.Sub
  1466  				s.Sub = toc
  1467  
  1468  				toc.Value = 0x8000
  1469  			}
  1470  
  1471  			datsize += s.Size
  1472  		}
  1473  		checkdatsize(ctxt, datsize, SELFGOT)
  1474  		sect.Length = uint64(datsize) - sect.Vaddr
  1475  	}
  1476  
  1477  	/* pointer-free data */
  1478  	sect := addsection(&Segdata, ".noptrdata", 06)
  1479  	sect.Align = dataMaxAlign[SNOPTRDATA]
  1480  	datsize = Rnd(datsize, int64(sect.Align))
  1481  	sect.Vaddr = uint64(datsize)
  1482  	ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect
  1483  	ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect
  1484  	for _, s := range data[SNOPTRDATA] {
  1485  		datsize = aligndatsize(datsize, s)
  1486  		s.Sect = sect
  1487  		s.Type = SDATA
  1488  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1489  		datsize += s.Size
  1490  	}
  1491  	checkdatsize(ctxt, datsize, SNOPTRDATA)
  1492  	sect.Length = uint64(datsize) - sect.Vaddr
  1493  
  1494  	hasinitarr := *FlagLinkshared
  1495  
  1496  	/* shared library initializer */
  1497  	switch Buildmode {
  1498  	case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared, BuildmodePlugin:
  1499  		hasinitarr = true
  1500  	}
  1501  	if hasinitarr {
  1502  		sect := addsection(&Segdata, ".init_array", 06)
  1503  		sect.Align = dataMaxAlign[SINITARR]
  1504  		datsize = Rnd(datsize, int64(sect.Align))
  1505  		sect.Vaddr = uint64(datsize)
  1506  		for _, s := range data[SINITARR] {
  1507  			datsize = aligndatsize(datsize, s)
  1508  			s.Sect = sect
  1509  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1510  			datsize += s.Size
  1511  		}
  1512  		sect.Length = uint64(datsize) - sect.Vaddr
  1513  		checkdatsize(ctxt, datsize, SINITARR)
  1514  	}
  1515  
  1516  	/* data */
  1517  	sect = addsection(&Segdata, ".data", 06)
  1518  	sect.Align = dataMaxAlign[SDATA]
  1519  	datsize = Rnd(datsize, int64(sect.Align))
  1520  	sect.Vaddr = uint64(datsize)
  1521  	ctxt.Syms.Lookup("runtime.data", 0).Sect = sect
  1522  	ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect
  1523  	var gc GCProg
  1524  	gc.Init(ctxt, "runtime.gcdata")
  1525  	for _, s := range data[SDATA] {
  1526  		s.Sect = sect
  1527  		s.Type = SDATA
  1528  		datsize = aligndatsize(datsize, s)
  1529  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1530  		gc.AddSym(s)
  1531  		datsize += s.Size
  1532  	}
  1533  	checkdatsize(ctxt, datsize, SDATA)
  1534  	sect.Length = uint64(datsize) - sect.Vaddr
  1535  	gc.End(int64(sect.Length))
  1536  
  1537  	/* bss */
  1538  	sect = addsection(&Segdata, ".bss", 06)
  1539  	sect.Align = dataMaxAlign[SBSS]
  1540  	datsize = Rnd(datsize, int64(sect.Align))
  1541  	sect.Vaddr = uint64(datsize)
  1542  	ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect
  1543  	ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect
  1544  	gc = GCProg{}
  1545  	gc.Init(ctxt, "runtime.gcbss")
  1546  	for _, s := range data[SBSS] {
  1547  		s.Sect = sect
  1548  		datsize = aligndatsize(datsize, s)
  1549  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1550  		gc.AddSym(s)
  1551  		datsize += s.Size
  1552  	}
  1553  	checkdatsize(ctxt, datsize, SBSS)
  1554  	sect.Length = uint64(datsize) - sect.Vaddr
  1555  	gc.End(int64(sect.Length))
  1556  
  1557  	/* pointer-free bss */
  1558  	sect = addsection(&Segdata, ".noptrbss", 06)
  1559  	sect.Align = dataMaxAlign[SNOPTRBSS]
  1560  	datsize = Rnd(datsize, int64(sect.Align))
  1561  	sect.Vaddr = uint64(datsize)
  1562  	ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect
  1563  	ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect
  1564  	for _, s := range data[SNOPTRBSS] {
  1565  		datsize = aligndatsize(datsize, s)
  1566  		s.Sect = sect
  1567  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1568  		datsize += s.Size
  1569  	}
  1570  
  1571  	sect.Length = uint64(datsize) - sect.Vaddr
  1572  	ctxt.Syms.Lookup("runtime.end", 0).Sect = sect
  1573  	checkdatsize(ctxt, datsize, SNOPTRBSS)
  1574  
  1575  	if len(data[STLSBSS]) > 0 {
  1576  		var sect *Section
  1577  		if Iself && (Linkmode == LinkExternal || !*FlagD) {
  1578  			sect = addsection(&Segdata, ".tbss", 06)
  1579  			sect.Align = int32(SysArch.PtrSize)
  1580  			sect.Vaddr = 0
  1581  		}
  1582  		datsize = 0
  1583  
  1584  		for _, s := range data[STLSBSS] {
  1585  			datsize = aligndatsize(datsize, s)
  1586  			s.Sect = sect
  1587  			s.Value = datsize
  1588  			datsize += s.Size
  1589  		}
  1590  		checkdatsize(ctxt, datsize, STLSBSS)
  1591  
  1592  		if sect != nil {
  1593  			sect.Length = uint64(datsize)
  1594  		}
  1595  	}
  1596  
  1597  	/*
  1598  	 * We finished data, begin read-only data.
  1599  	 * Not all systems support a separate read-only non-executable data section.
  1600  	 * ELF systems do.
  1601  	 * OS X and Plan 9 do not.
  1602  	 * Windows PE may, but if so we have not implemented it.
  1603  	 * And if we're using external linking mode, the point is moot,
  1604  	 * since it's not our decision; that code expects the sections in
  1605  	 * segtext.
  1606  	 */
  1607  	var segro *Segment
  1608  	if Iself && Linkmode == LinkInternal {
  1609  		segro = &Segrodata
  1610  	} else {
  1611  		segro = &Segtext
  1612  	}
  1613  
  1614  	datsize = 0
  1615  
  1616  	/* read-only executable ELF, Mach-O sections */
  1617  	if len(data[STEXT]) != 0 {
  1618  		Errorf(nil, "dodata found an STEXT symbol: %s", data[STEXT][0].Name)
  1619  	}
  1620  	for _, s := range data[SELFRXSECT] {
  1621  		sect := addsection(&Segtext, s.Name, 04)
  1622  		sect.Align = symalign(s)
  1623  		datsize = Rnd(datsize, int64(sect.Align))
  1624  		sect.Vaddr = uint64(datsize)
  1625  		s.Sect = sect
  1626  		s.Type = SRODATA
  1627  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1628  		datsize += s.Size
  1629  		sect.Length = uint64(datsize) - sect.Vaddr
  1630  		checkdatsize(ctxt, datsize, SELFRXSECT)
  1631  	}
  1632  
  1633  	/* read-only data */
  1634  	sect = addsection(segro, ".rodata", 04)
  1635  
  1636  	sect.Vaddr = 0
  1637  	ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect
  1638  	ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect
  1639  	if !UseRelro() {
  1640  		ctxt.Syms.Lookup("runtime.types", 0).Sect = sect
  1641  		ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect
  1642  	}
  1643  	for _, symn := range ReadOnly {
  1644  		align := dataMaxAlign[symn]
  1645  		if sect.Align < align {
  1646  			sect.Align = align
  1647  		}
  1648  	}
  1649  	datsize = Rnd(datsize, int64(sect.Align))
  1650  	for _, symn := range ReadOnly {
  1651  		for _, s := range data[symn] {
  1652  			datsize = aligndatsize(datsize, s)
  1653  			s.Sect = sect
  1654  			s.Type = SRODATA
  1655  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1656  			datsize += s.Size
  1657  		}
  1658  		checkdatsize(ctxt, datsize, symn)
  1659  	}
  1660  	sect.Length = uint64(datsize) - sect.Vaddr
  1661  
  1662  	/* read-only ELF, Mach-O sections */
  1663  	for _, s := range data[SELFROSECT] {
  1664  		sect = addsection(segro, s.Name, 04)
  1665  		sect.Align = symalign(s)
  1666  		datsize = Rnd(datsize, int64(sect.Align))
  1667  		sect.Vaddr = uint64(datsize)
  1668  		s.Sect = sect
  1669  		s.Type = SRODATA
  1670  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1671  		datsize += s.Size
  1672  		sect.Length = uint64(datsize) - sect.Vaddr
  1673  	}
  1674  	checkdatsize(ctxt, datsize, SELFROSECT)
  1675  
  1676  	for _, s := range data[SMACHOPLT] {
  1677  		sect = addsection(segro, s.Name, 04)
  1678  		sect.Align = symalign(s)
  1679  		datsize = Rnd(datsize, int64(sect.Align))
  1680  		sect.Vaddr = uint64(datsize)
  1681  		s.Sect = sect
  1682  		s.Type = SRODATA
  1683  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1684  		datsize += s.Size
  1685  		sect.Length = uint64(datsize) - sect.Vaddr
  1686  	}
  1687  	checkdatsize(ctxt, datsize, SMACHOPLT)
  1688  
  1689  	// There is some data that are conceptually read-only but are written to by
  1690  	// relocations. On GNU systems, we can arrange for the dynamic linker to
  1691  	// mprotect sections after relocations are applied by giving them write
  1692  	// permissions in the object file and calling them ".data.rel.ro.FOO". We
  1693  	// divide the .rodata section between actual .rodata and .data.rel.ro.rodata,
  1694  	// but for the other sections that this applies to, we just write a read-only
  1695  	// .FOO section or a read-write .data.rel.ro.FOO section depending on the
  1696  	// situation.
  1697  	// TODO(mwhudson): It would make sense to do this more widely, but it makes
  1698  	// the system linker segfault on darwin.
  1699  	addrelrosection := func(suffix string) *Section {
  1700  		return addsection(segro, suffix, 04)
  1701  	}
  1702  
  1703  	if UseRelro() {
  1704  		addrelrosection = func(suffix string) *Section {
  1705  			seg := &Segrelrodata
  1706  			if Linkmode == LinkExternal {
  1707  				// Using a separate segment with an external
  1708  				// linker results in some programs moving
  1709  				// their data sections unexpectedly, which
  1710  				// corrupts the moduledata. So we use the
  1711  				// rodata segment and let the external linker
  1712  				// sort out a rel.ro segment.
  1713  				seg = &Segrodata
  1714  			}
  1715  			return addsection(seg, ".data.rel.ro"+suffix, 06)
  1716  		}
  1717  		/* data only written by relocations */
  1718  		sect = addrelrosection("")
  1719  
  1720  		sect.Vaddr = 0
  1721  		ctxt.Syms.Lookup("runtime.types", 0).Sect = sect
  1722  		ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect
  1723  		for _, symnro := range ReadOnly {
  1724  			symn := RelROMap[symnro]
  1725  			align := dataMaxAlign[symn]
  1726  			if sect.Align < align {
  1727  				sect.Align = align
  1728  			}
  1729  		}
  1730  		datsize = Rnd(datsize, int64(sect.Align))
  1731  		for _, symnro := range ReadOnly {
  1732  			symn := RelROMap[symnro]
  1733  			for _, s := range data[symn] {
  1734  				datsize = aligndatsize(datsize, s)
  1735  				if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect {
  1736  					Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name)
  1737  				}
  1738  				s.Sect = sect
  1739  				s.Type = SRODATA
  1740  				s.Value = int64(uint64(datsize) - sect.Vaddr)
  1741  				datsize += s.Size
  1742  			}
  1743  			checkdatsize(ctxt, datsize, symn)
  1744  		}
  1745  
  1746  		sect.Length = uint64(datsize) - sect.Vaddr
  1747  	}
  1748  
  1749  	/* typelink */
  1750  	sect = addrelrosection(".typelink")
  1751  	sect.Align = dataMaxAlign[STYPELINK]
  1752  	datsize = Rnd(datsize, int64(sect.Align))
  1753  	sect.Vaddr = uint64(datsize)
  1754  	typelink := ctxt.Syms.Lookup("runtime.typelink", 0)
  1755  	typelink.Sect = sect
  1756  	typelink.Type = SRODATA
  1757  	datsize += typelink.Size
  1758  	checkdatsize(ctxt, datsize, STYPELINK)
  1759  	sect.Length = uint64(datsize) - sect.Vaddr
  1760  
  1761  	/* itablink */
  1762  	sect = addrelrosection(".itablink")
  1763  	sect.Align = dataMaxAlign[SITABLINK]
  1764  	datsize = Rnd(datsize, int64(sect.Align))
  1765  	sect.Vaddr = uint64(datsize)
  1766  	ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect
  1767  	ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect
  1768  	for _, s := range data[SITABLINK] {
  1769  		datsize = aligndatsize(datsize, s)
  1770  		s.Sect = sect
  1771  		s.Type = SRODATA
  1772  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1773  		datsize += s.Size
  1774  	}
  1775  	checkdatsize(ctxt, datsize, SITABLINK)
  1776  	sect.Length = uint64(datsize) - sect.Vaddr
  1777  
  1778  	/* gosymtab */
  1779  	sect = addrelrosection(".gosymtab")
  1780  	sect.Align = dataMaxAlign[SSYMTAB]
  1781  	datsize = Rnd(datsize, int64(sect.Align))
  1782  	sect.Vaddr = uint64(datsize)
  1783  	ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect
  1784  	ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect
  1785  	for _, s := range data[SSYMTAB] {
  1786  		datsize = aligndatsize(datsize, s)
  1787  		s.Sect = sect
  1788  		s.Type = SRODATA
  1789  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1790  		datsize += s.Size
  1791  	}
  1792  	checkdatsize(ctxt, datsize, SSYMTAB)
  1793  	sect.Length = uint64(datsize) - sect.Vaddr
  1794  
  1795  	/* gopclntab */
  1796  	sect = addrelrosection(".gopclntab")
  1797  	sect.Align = dataMaxAlign[SPCLNTAB]
  1798  	datsize = Rnd(datsize, int64(sect.Align))
  1799  	sect.Vaddr = uint64(datsize)
  1800  	ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect
  1801  	ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect
  1802  	for _, s := range data[SPCLNTAB] {
  1803  		datsize = aligndatsize(datsize, s)
  1804  		s.Sect = sect
  1805  		s.Type = SRODATA
  1806  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1807  		datsize += s.Size
  1808  	}
  1809  	checkdatsize(ctxt, datsize, SRODATA)
  1810  	sect.Length = uint64(datsize) - sect.Vaddr
  1811  
  1812  	// 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits.
  1813  	if datsize != int64(uint32(datsize)) {
  1814  		Errorf(nil, "read-only data segment too large: %d", datsize)
  1815  	}
  1816  
  1817  	for symn := SELFRXSECT; symn < SXREF; symn++ {
  1818  		datap = append(datap, data[symn]...)
  1819  	}
  1820  
  1821  	dwarfgeneratedebugsyms(ctxt)
  1822  
  1823  	var s *Symbol
  1824  	var i int
  1825  	for i, s = range dwarfp {
  1826  		if s.Type != SDWARFSECT {
  1827  			break
  1828  		}
  1829  		sect = addsection(&Segdwarf, s.Name, 04)
  1830  		sect.Align = 1
  1831  		datsize = Rnd(datsize, int64(sect.Align))
  1832  		sect.Vaddr = uint64(datsize)
  1833  		s.Sect = sect
  1834  		s.Type = SRODATA
  1835  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1836  		datsize += s.Size
  1837  		sect.Length = uint64(datsize) - sect.Vaddr
  1838  	}
  1839  	checkdatsize(ctxt, datsize, SDWARFSECT)
  1840  
  1841  	if i < len(dwarfp) {
  1842  		sect = addsection(&Segdwarf, ".debug_info", 04)
  1843  		sect.Align = 1
  1844  		datsize = Rnd(datsize, int64(sect.Align))
  1845  		sect.Vaddr = uint64(datsize)
  1846  		for _, s := range dwarfp[i:] {
  1847  			if s.Type != SDWARFINFO {
  1848  				break
  1849  			}
  1850  			s.Sect = sect
  1851  			s.Type = SRODATA
  1852  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1853  			s.Attr |= AttrLocal
  1854  			datsize += s.Size
  1855  		}
  1856  		sect.Length = uint64(datsize) - sect.Vaddr
  1857  		checkdatsize(ctxt, datsize, SDWARFINFO)
  1858  	}
  1859  
  1860  	/* number the sections */
  1861  	n := int32(1)
  1862  
  1863  	for _, sect := range Segtext.Sections {
  1864  		sect.Extnum = int16(n)
  1865  		n++
  1866  	}
  1867  	for _, sect := range Segrodata.Sections {
  1868  		sect.Extnum = int16(n)
  1869  		n++
  1870  	}
  1871  	for _, sect := range Segrelrodata.Sections {
  1872  		sect.Extnum = int16(n)
  1873  		n++
  1874  	}
  1875  	for _, sect := range Segdata.Sections {
  1876  		sect.Extnum = int16(n)
  1877  		n++
  1878  	}
  1879  	for _, sect := range Segdwarf.Sections {
  1880  		sect.Extnum = int16(n)
  1881  		n++
  1882  	}
  1883  }
  1884  
  1885  func dodataSect(ctxt *Link, symn SymKind, syms []*Symbol) (result []*Symbol, maxAlign int32) {
  1886  	if Headtype == objabi.Hdarwin {
  1887  		// Some symbols may no longer belong in syms
  1888  		// due to movement in machosymorder.
  1889  		newSyms := make([]*Symbol, 0, len(syms))
  1890  		for _, s := range syms {
  1891  			if s.Type == symn {
  1892  				newSyms = append(newSyms, s)
  1893  			}
  1894  		}
  1895  		syms = newSyms
  1896  	}
  1897  
  1898  	var head, tail *Symbol
  1899  	symsSort := make([]dataSortKey, 0, len(syms))
  1900  	for _, s := range syms {
  1901  		if s.Attr.OnList() {
  1902  			log.Fatalf("symbol %s listed multiple times", s.Name)
  1903  		}
  1904  		s.Attr |= AttrOnList
  1905  		switch {
  1906  		case s.Size < int64(len(s.P)):
  1907  			Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P))
  1908  		case s.Size < 0:
  1909  			Errorf(s, "negative size (%d bytes)", s.Size)
  1910  		case s.Size > cutoff:
  1911  			Errorf(s, "symbol too large (%d bytes)", s.Size)
  1912  		}
  1913  
  1914  		// If the usually-special section-marker symbols are being laid
  1915  		// out as regular symbols, put them either at the beginning or
  1916  		// end of their section.
  1917  		if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin {
  1918  			switch s.Name {
  1919  			case "runtime.text", "runtime.bss", "runtime.data", "runtime.types":
  1920  				head = s
  1921  				continue
  1922  			case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes":
  1923  				tail = s
  1924  				continue
  1925  			}
  1926  		}
  1927  
  1928  		key := dataSortKey{
  1929  			size: s.Size,
  1930  			name: s.Name,
  1931  			sym:  s,
  1932  		}
  1933  
  1934  		switch s.Type {
  1935  		case SELFGOT:
  1936  			// For ppc64, we want to interleave the .got and .toc sections
  1937  			// from input files. Both are type SELFGOT, so in that case
  1938  			// we skip size comparison and fall through to the name
  1939  			// comparison (conveniently, .got sorts before .toc).
  1940  			key.size = 0
  1941  		}
  1942  
  1943  		symsSort = append(symsSort, key)
  1944  	}
  1945  
  1946  	sort.Sort(bySizeAndName(symsSort))
  1947  
  1948  	off := 0
  1949  	if head != nil {
  1950  		syms[0] = head
  1951  		off++
  1952  	}
  1953  	for i, symSort := range symsSort {
  1954  		syms[i+off] = symSort.sym
  1955  		align := symalign(symSort.sym)
  1956  		if maxAlign < align {
  1957  			maxAlign = align
  1958  		}
  1959  	}
  1960  	if tail != nil {
  1961  		syms[len(syms)-1] = tail
  1962  	}
  1963  
  1964  	if Iself && symn == SELFROSECT {
  1965  		// Make .rela and .rela.plt contiguous, the ELF ABI requires this
  1966  		// and Solaris actually cares.
  1967  		reli, plti := -1, -1
  1968  		for i, s := range syms {
  1969  			switch s.Name {
  1970  			case ".rel.plt", ".rela.plt":
  1971  				plti = i
  1972  			case ".rel", ".rela":
  1973  				reli = i
  1974  			}
  1975  		}
  1976  		if reli >= 0 && plti >= 0 && plti != reli+1 {
  1977  			var first, second int
  1978  			if plti > reli {
  1979  				first, second = reli, plti
  1980  			} else {
  1981  				first, second = plti, reli
  1982  			}
  1983  			rel, plt := syms[reli], syms[plti]
  1984  			copy(syms[first+2:], syms[first+1:second])
  1985  			syms[first+0] = rel
  1986  			syms[first+1] = plt
  1987  
  1988  			// Make sure alignment doesn't introduce a gap.
  1989  			// Setting the alignment explicitly prevents
  1990  			// symalign from basing it on the size and
  1991  			// getting it wrong.
  1992  			rel.Align = int32(SysArch.RegSize)
  1993  			plt.Align = int32(SysArch.RegSize)
  1994  		}
  1995  	}
  1996  
  1997  	return syms, maxAlign
  1998  }
  1999  
  2000  // Add buildid to beginning of text segment, on non-ELF systems.
  2001  // Non-ELF binary formats are not always flexible enough to
  2002  // give us a place to put the Go build ID. On those systems, we put it
  2003  // at the very beginning of the text segment.
  2004  // This ``header'' is read by cmd/go.
  2005  func (ctxt *Link) textbuildid() {
  2006  	if Iself || Buildmode == BuildmodePlugin || *flagBuildid == "" {
  2007  		return
  2008  	}
  2009  
  2010  	sym := ctxt.Syms.Lookup("go.buildid", 0)
  2011  	sym.Attr |= AttrReachable
  2012  	// The \xff is invalid UTF-8, meant to make it less likely
  2013  	// to find one of these accidentally.
  2014  	data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff"
  2015  	sym.Type = STEXT
  2016  	sym.P = []byte(data)
  2017  	sym.Size = int64(len(sym.P))
  2018  
  2019  	ctxt.Textp = append(ctxt.Textp, nil)
  2020  	copy(ctxt.Textp[1:], ctxt.Textp)
  2021  	ctxt.Textp[0] = sym
  2022  }
  2023  
  2024  // assign addresses to text
  2025  func (ctxt *Link) textaddress() {
  2026  	addsection(&Segtext, ".text", 05)
  2027  
  2028  	// Assign PCs in text segment.
  2029  	// Could parallelize, by assigning to text
  2030  	// and then letting threads copy down, but probably not worth it.
  2031  	sect := Segtext.Sections[0]
  2032  
  2033  	sect.Align = int32(Funcalign)
  2034  
  2035  	text := ctxt.Syms.Lookup("runtime.text", 0)
  2036  	text.Sect = sect
  2037  
  2038  	if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin {
  2039  		etext := ctxt.Syms.Lookup("runtime.etext", 0)
  2040  		etext.Sect = sect
  2041  
  2042  		ctxt.Textp = append(ctxt.Textp, etext, nil)
  2043  		copy(ctxt.Textp[1:], ctxt.Textp)
  2044  		ctxt.Textp[0] = text
  2045  	}
  2046  
  2047  	va := uint64(*FlagTextAddr)
  2048  	n := 1
  2049  	sect.Vaddr = va
  2050  	ntramps := 0
  2051  	for _, sym := range ctxt.Textp {
  2052  		sect, n, va = assignAddress(ctxt, sect, n, sym, va)
  2053  
  2054  		trampoline(ctxt, sym) // resolve jumps, may add trampolines if jump too far
  2055  
  2056  		// lay down trampolines after each function
  2057  		for ; ntramps < len(ctxt.tramps); ntramps++ {
  2058  			tramp := ctxt.tramps[ntramps]
  2059  			sect, n, va = assignAddress(ctxt, sect, n, tramp, va)
  2060  		}
  2061  	}
  2062  
  2063  	sect.Length = va - sect.Vaddr
  2064  	ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect
  2065  
  2066  	// merge tramps into Textp, keeping Textp in address order
  2067  	if ntramps != 0 {
  2068  		newtextp := make([]*Symbol, 0, len(ctxt.Textp)+ntramps)
  2069  		i := 0
  2070  		for _, sym := range ctxt.Textp {
  2071  			for ; i < ntramps && ctxt.tramps[i].Value < sym.Value; i++ {
  2072  				newtextp = append(newtextp, ctxt.tramps[i])
  2073  			}
  2074  			newtextp = append(newtextp, sym)
  2075  		}
  2076  		newtextp = append(newtextp, ctxt.tramps[i:ntramps]...)
  2077  
  2078  		ctxt.Textp = newtextp
  2079  	}
  2080  }
  2081  
  2082  // assigns address for a text symbol, returns (possibly new) section, its number, and the address
  2083  // Note: once we have trampoline insertion support for external linking, this function
  2084  // will not need to create new text sections, and so no need to return sect and n.
  2085  func assignAddress(ctxt *Link, sect *Section, n int, sym *Symbol, va uint64) (*Section, int, uint64) {
  2086  	sym.Sect = sect
  2087  	if sym.Type&SSUB != 0 {
  2088  		return sect, n, va
  2089  	}
  2090  	if sym.Align != 0 {
  2091  		va = uint64(Rnd(int64(va), int64(sym.Align)))
  2092  	} else {
  2093  		va = uint64(Rnd(int64(va), int64(Funcalign)))
  2094  	}
  2095  	sym.Value = 0
  2096  	for sub := sym; sub != nil; sub = sub.Sub {
  2097  		sub.Value += int64(va)
  2098  	}
  2099  
  2100  	funcsize := uint64(MINFUNC) // spacing required for findfunctab
  2101  	if sym.Size > MINFUNC {
  2102  		funcsize = uint64(sym.Size)
  2103  	}
  2104  
  2105  	// On ppc64x a text section should not be larger than 2^26 bytes due to the size of
  2106  	// call target offset field in the bl instruction.  Splitting into smaller text
  2107  	// sections smaller than this limit allows the GNU linker to modify the long calls
  2108  	// appropriately.  The limit allows for the space needed for tables inserted by the linker.
  2109  
  2110  	// If this function doesn't fit in the current text section, then create a new one.
  2111  
  2112  	// Only break at outermost syms.
  2113  
  2114  	if SysArch.InFamily(sys.PPC64) && sym.Outer == nil && Iself && Linkmode == LinkExternal && va-sect.Vaddr+funcsize > 0x1c00000 {
  2115  
  2116  		// Set the length for the previous text section
  2117  		sect.Length = va - sect.Vaddr
  2118  
  2119  		// Create new section, set the starting Vaddr
  2120  		sect = addsection(&Segtext, ".text", 05)
  2121  		sect.Vaddr = va
  2122  		sym.Sect = sect
  2123  
  2124  		// Create a symbol for the start of the secondary text sections
  2125  		ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0).Sect = sect
  2126  		n++
  2127  	}
  2128  	va += funcsize
  2129  
  2130  	return sect, n, va
  2131  }
  2132  
  2133  // assign addresses
  2134  func (ctxt *Link) address() {
  2135  	va := uint64(*FlagTextAddr)
  2136  	Segtext.Rwx = 05
  2137  	Segtext.Vaddr = va
  2138  	Segtext.Fileoff = uint64(HEADR)
  2139  	for _, s := range Segtext.Sections {
  2140  		va = uint64(Rnd(int64(va), int64(s.Align)))
  2141  		s.Vaddr = va
  2142  		va += s.Length
  2143  	}
  2144  
  2145  	Segtext.Length = va - uint64(*FlagTextAddr)
  2146  	Segtext.Filelen = Segtext.Length
  2147  	if Headtype == objabi.Hnacl {
  2148  		va += 32 // room for the "halt sled"
  2149  	}
  2150  
  2151  	if len(Segrodata.Sections) > 0 {
  2152  		// align to page boundary so as not to mix
  2153  		// rodata and executable text.
  2154  		//
  2155  		// Note: gold or GNU ld will reduce the size of the executable
  2156  		// file by arranging for the relro segment to end at a page
  2157  		// boundary, and overlap the end of the text segment with the
  2158  		// start of the relro segment in the file.  The PT_LOAD segments
  2159  		// will be such that the last page of the text segment will be
  2160  		// mapped twice, once r-x and once starting out rw- and, after
  2161  		// relocation processing, changed to r--.
  2162  		//
  2163  		// Ideally the last page of the text segment would not be
  2164  		// writable even for this short period.
  2165  		va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2166  
  2167  		Segrodata.Rwx = 04
  2168  		Segrodata.Vaddr = va
  2169  		Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
  2170  		Segrodata.Filelen = 0
  2171  		for _, s := range Segrodata.Sections {
  2172  			va = uint64(Rnd(int64(va), int64(s.Align)))
  2173  			s.Vaddr = va
  2174  			va += s.Length
  2175  		}
  2176  
  2177  		Segrodata.Length = va - Segrodata.Vaddr
  2178  		Segrodata.Filelen = Segrodata.Length
  2179  	}
  2180  	if len(Segrelrodata.Sections) > 0 {
  2181  		// align to page boundary so as not to mix
  2182  		// rodata, rel-ro data, and executable text.
  2183  		va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2184  
  2185  		Segrelrodata.Rwx = 06
  2186  		Segrelrodata.Vaddr = va
  2187  		Segrelrodata.Fileoff = va - Segrodata.Vaddr + Segrodata.Fileoff
  2188  		Segrelrodata.Filelen = 0
  2189  		for _, s := range Segrelrodata.Sections {
  2190  			va = uint64(Rnd(int64(va), int64(s.Align)))
  2191  			s.Vaddr = va
  2192  			va += s.Length
  2193  		}
  2194  
  2195  		Segrelrodata.Length = va - Segrelrodata.Vaddr
  2196  		Segrelrodata.Filelen = Segrelrodata.Length
  2197  	}
  2198  
  2199  	va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2200  	Segdata.Rwx = 06
  2201  	Segdata.Vaddr = va
  2202  	Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
  2203  	Segdata.Filelen = 0
  2204  	if Headtype == objabi.Hwindows {
  2205  		Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN))
  2206  	}
  2207  	if Headtype == objabi.Hplan9 {
  2208  		Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen
  2209  	}
  2210  	var data *Section
  2211  	var noptr *Section
  2212  	var bss *Section
  2213  	var noptrbss *Section
  2214  	var vlen int64
  2215  	for i, s := range Segdata.Sections {
  2216  		if Iself && s.Name == ".tbss" {
  2217  			continue
  2218  		}
  2219  		vlen = int64(s.Length)
  2220  		if i+1 < len(Segdata.Sections) && !(Iself && Segdata.Sections[i+1].Name == ".tbss") {
  2221  			vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr)
  2222  		}
  2223  		s.Vaddr = va
  2224  		va += uint64(vlen)
  2225  		Segdata.Length = va - Segdata.Vaddr
  2226  		if s.Name == ".data" {
  2227  			data = s
  2228  		}
  2229  		if s.Name == ".noptrdata" {
  2230  			noptr = s
  2231  		}
  2232  		if s.Name == ".bss" {
  2233  			bss = s
  2234  		}
  2235  		if s.Name == ".noptrbss" {
  2236  			noptrbss = s
  2237  		}
  2238  	}
  2239  
  2240  	Segdata.Filelen = bss.Vaddr - Segdata.Vaddr
  2241  
  2242  	va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2243  	Segdwarf.Rwx = 06
  2244  	Segdwarf.Vaddr = va
  2245  	Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(*FlagRound)))
  2246  	Segdwarf.Filelen = 0
  2247  	if Headtype == objabi.Hwindows {
  2248  		Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN)))
  2249  	}
  2250  	for i, s := range Segdwarf.Sections {
  2251  		vlen = int64(s.Length)
  2252  		if i+1 < len(Segdwarf.Sections) {
  2253  			vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr)
  2254  		}
  2255  		s.Vaddr = va
  2256  		va += uint64(vlen)
  2257  		if Headtype == objabi.Hwindows {
  2258  			va = uint64(Rnd(int64(va), PEFILEALIGN))
  2259  		}
  2260  		Segdwarf.Length = va - Segdwarf.Vaddr
  2261  	}
  2262  
  2263  	Segdwarf.Filelen = va - Segdwarf.Vaddr
  2264  
  2265  	var (
  2266  		text     = Segtext.Sections[0]
  2267  		rodata   = ctxt.Syms.Lookup("runtime.rodata", 0).Sect
  2268  		itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect
  2269  		symtab   = ctxt.Syms.Lookup("runtime.symtab", 0).Sect
  2270  		pclntab  = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect
  2271  		types    = ctxt.Syms.Lookup("runtime.types", 0).Sect
  2272  	)
  2273  	lasttext := text
  2274  	// Could be multiple .text sections
  2275  	for _, sect := range Segtext.Sections {
  2276  		if sect.Name == ".text" {
  2277  			lasttext = sect
  2278  		}
  2279  	}
  2280  
  2281  	for _, s := range datap {
  2282  		if s.Sect != nil {
  2283  			s.Value += int64(s.Sect.Vaddr)
  2284  		}
  2285  		for sub := s.Sub; sub != nil; sub = sub.Sub {
  2286  			sub.Value += s.Value
  2287  		}
  2288  	}
  2289  
  2290  	for _, sym := range dwarfp {
  2291  		if sym.Sect != nil {
  2292  			sym.Value += int64(sym.Sect.Vaddr)
  2293  		}
  2294  		for sub := sym.Sub; sub != nil; sub = sub.Sub {
  2295  			sub.Value += sym.Value
  2296  		}
  2297  	}
  2298  
  2299  	if Buildmode == BuildmodeShared {
  2300  		s := ctxt.Syms.Lookup("go.link.abihashbytes", 0)
  2301  		sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0)
  2302  		s.Sect = sectSym.Sect
  2303  		s.Value = int64(sectSym.Sect.Vaddr + 16)
  2304  	}
  2305  
  2306  	ctxt.xdefine("runtime.text", STEXT, int64(text.Vaddr))
  2307  	ctxt.xdefine("runtime.etext", STEXT, int64(lasttext.Vaddr+lasttext.Length))
  2308  
  2309  	// If there are multiple text sections, create runtime.text.n for
  2310  	// their section Vaddr, using n for index
  2311  	n := 1
  2312  	for _, sect := range Segtext.Sections[1:] {
  2313  		if sect.Name == ".text" {
  2314  			symname := fmt.Sprintf("runtime.text.%d", n)
  2315  			ctxt.xdefine(symname, STEXT, int64(sect.Vaddr))
  2316  			n++
  2317  		} else {
  2318  			break
  2319  		}
  2320  	}
  2321  
  2322  	ctxt.xdefine("runtime.rodata", SRODATA, int64(rodata.Vaddr))
  2323  	ctxt.xdefine("runtime.erodata", SRODATA, int64(rodata.Vaddr+rodata.Length))
  2324  	ctxt.xdefine("runtime.types", SRODATA, int64(types.Vaddr))
  2325  	ctxt.xdefine("runtime.etypes", SRODATA, int64(types.Vaddr+types.Length))
  2326  	ctxt.xdefine("runtime.itablink", SRODATA, int64(itablink.Vaddr))
  2327  	ctxt.xdefine("runtime.eitablink", SRODATA, int64(itablink.Vaddr+itablink.Length))
  2328  
  2329  	sym := ctxt.Syms.Lookup("runtime.gcdata", 0)
  2330  	sym.Attr |= AttrLocal
  2331  	ctxt.xdefine("runtime.egcdata", SRODATA, Symaddr(sym)+sym.Size)
  2332  	ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = sym.Sect
  2333  
  2334  	sym = ctxt.Syms.Lookup("runtime.gcbss", 0)
  2335  	sym.Attr |= AttrLocal
  2336  	ctxt.xdefine("runtime.egcbss", SRODATA, Symaddr(sym)+sym.Size)
  2337  	ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = sym.Sect
  2338  
  2339  	ctxt.xdefine("runtime.symtab", SRODATA, int64(symtab.Vaddr))
  2340  	ctxt.xdefine("runtime.esymtab", SRODATA, int64(symtab.Vaddr+symtab.Length))
  2341  	ctxt.xdefine("runtime.pclntab", SRODATA, int64(pclntab.Vaddr))
  2342  	ctxt.xdefine("runtime.epclntab", SRODATA, int64(pclntab.Vaddr+pclntab.Length))
  2343  	ctxt.xdefine("runtime.noptrdata", SNOPTRDATA, int64(noptr.Vaddr))
  2344  	ctxt.xdefine("runtime.enoptrdata", SNOPTRDATA, int64(noptr.Vaddr+noptr.Length))
  2345  	ctxt.xdefine("runtime.bss", SBSS, int64(bss.Vaddr))
  2346  	ctxt.xdefine("runtime.ebss", SBSS, int64(bss.Vaddr+bss.Length))
  2347  	ctxt.xdefine("runtime.data", SDATA, int64(data.Vaddr))
  2348  	ctxt.xdefine("runtime.edata", SDATA, int64(data.Vaddr+data.Length))
  2349  	ctxt.xdefine("runtime.noptrbss", SNOPTRBSS, int64(noptrbss.Vaddr))
  2350  	ctxt.xdefine("runtime.enoptrbss", SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length))
  2351  	ctxt.xdefine("runtime.end", SBSS, int64(Segdata.Vaddr+Segdata.Length))
  2352  }
  2353  
  2354  // add a trampoline with symbol s (to be laid down after the current function)
  2355  func (ctxt *Link) AddTramp(s *Symbol) {
  2356  	s.Type = STEXT
  2357  	s.Attr |= AttrReachable
  2358  	s.Attr |= AttrOnList
  2359  	ctxt.tramps = append(ctxt.tramps, s)
  2360  	if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 {
  2361  		ctxt.Logf("trampoline %s inserted\n", s)
  2362  	}
  2363  }