github.com/slayercat/go@v0.0.0-20170428012452-c51559813f61/src/cmd/link/internal/ppc64/asm.go (about) 1 // Inferno utils/5l/asm.c 2 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/asm.c 3 // 4 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 5 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 6 // Portions Copyright © 1997-1999 Vita Nuova Limited 7 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 8 // Portions Copyright © 2004,2006 Bruce Ellis 9 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 10 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 11 // Portions Copyright © 2009 The Go Authors. All rights reserved. 12 // 13 // Permission is hereby granted, free of charge, to any person obtaining a copy 14 // of this software and associated documentation files (the "Software"), to deal 15 // in the Software without restriction, including without limitation the rights 16 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 17 // copies of the Software, and to permit persons to whom the Software is 18 // furnished to do so, subject to the following conditions: 19 // 20 // The above copyright notice and this permission notice shall be included in 21 // all copies or substantial portions of the Software. 22 // 23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 24 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 26 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 28 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 29 // THE SOFTWARE. 30 31 package ppc64 32 33 import ( 34 "cmd/internal/objabi" 35 "cmd/link/internal/ld" 36 "encoding/binary" 37 "fmt" 38 "log" 39 ) 40 41 func genplt(ctxt *ld.Link) { 42 // The ppc64 ABI PLT has similar concepts to other 43 // architectures, but is laid out quite differently. When we 44 // see an R_PPC64_REL24 relocation to a dynamic symbol 45 // (indicating that the call needs to go through the PLT), we 46 // generate up to three stubs and reserve a PLT slot. 47 // 48 // 1) The call site will be bl x; nop (where the relocation 49 // applies to the bl). We rewrite this to bl x_stub; ld 50 // r2,24(r1). The ld is necessary because x_stub will save 51 // r2 (the TOC pointer) at 24(r1) (the "TOC save slot"). 52 // 53 // 2) We reserve space for a pointer in the .plt section (once 54 // per referenced dynamic function). .plt is a data 55 // section filled solely by the dynamic linker (more like 56 // .plt.got on other architectures). Initially, the 57 // dynamic linker will fill each slot with a pointer to the 58 // corresponding x@plt entry point. 59 // 60 // 3) We generate the "call stub" x_stub (once per dynamic 61 // function/object file pair). This saves the TOC in the 62 // TOC save slot, reads the function pointer from x's .plt 63 // slot and calls it like any other global entry point 64 // (including setting r12 to the function address). 65 // 66 // 4) We generate the "symbol resolver stub" x@plt (once per 67 // dynamic function). This is solely a branch to the glink 68 // resolver stub. 69 // 70 // 5) We generate the glink resolver stub (only once). This 71 // computes which symbol resolver stub we came through and 72 // invokes the dynamic resolver via a pointer provided by 73 // the dynamic linker. This will patch up the .plt slot to 74 // point directly at the function so future calls go 75 // straight from the call stub to the real function, and 76 // then call the function. 77 78 // NOTE: It's possible we could make ppc64 closer to other 79 // architectures: ppc64's .plt is like .plt.got on other 80 // platforms and ppc64's .glink is like .plt on other 81 // platforms. 82 83 // Find all R_PPC64_REL24 relocations that reference dynamic 84 // imports. Reserve PLT entries for these symbols and 85 // generate call stubs. The call stubs need to live in .text, 86 // which is why we need to do this pass this early. 87 // 88 // This assumes "case 1" from the ABI, where the caller needs 89 // us to save and restore the TOC pointer. 90 var stubs []*ld.Symbol 91 for _, s := range ctxt.Textp { 92 for i := range s.R { 93 r := &s.R[i] 94 if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != ld.SDYNIMPORT { 95 continue 96 } 97 98 // Reserve PLT entry and generate symbol 99 // resolver 100 addpltsym(ctxt, r.Sym) 101 102 // Generate call stub 103 n := fmt.Sprintf("%s.%s", s.Name, r.Sym.Name) 104 105 stub := ctxt.Syms.Lookup(n, 0) 106 if s.Attr.Reachable() { 107 stub.Attr |= ld.AttrReachable 108 } 109 if stub.Size == 0 { 110 // Need outer to resolve .TOC. 111 stub.Outer = s 112 stubs = append(stubs, stub) 113 gencallstub(ctxt, 1, stub, r.Sym) 114 } 115 116 // Update the relocation to use the call stub 117 r.Sym = stub 118 119 // Restore TOC after bl. The compiler put a 120 // nop here for us to overwrite. 121 const o1 = 0xe8410018 // ld r2,24(r1) 122 ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1) 123 } 124 } 125 // Put call stubs at the beginning (instead of the end). 126 // So when resolving the relocations to calls to the stubs, 127 // the addresses are known and trampolines can be inserted 128 // when necessary. 129 ctxt.Textp = append(stubs, ctxt.Textp...) 130 } 131 132 func genaddmoduledata(ctxt *ld.Link) { 133 addmoduledata := ctxt.Syms.ROLookup("runtime.addmoduledata", 0) 134 if addmoduledata.Type == ld.STEXT { 135 return 136 } 137 addmoduledata.Attr |= ld.AttrReachable 138 initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0) 139 initfunc.Type = ld.STEXT 140 initfunc.Attr |= ld.AttrLocal 141 initfunc.Attr |= ld.AttrReachable 142 o := func(op uint32) { 143 ld.Adduint32(ctxt, initfunc, op) 144 } 145 // addis r2, r12, .TOC.-func@ha 146 rel := ld.Addrel(initfunc) 147 rel.Off = int32(initfunc.Size) 148 rel.Siz = 8 149 rel.Sym = ctxt.Syms.Lookup(".TOC.", 0) 150 rel.Type = objabi.R_ADDRPOWER_PCREL 151 o(0x3c4c0000) 152 // addi r2, r2, .TOC.-func@l 153 o(0x38420000) 154 // mflr r31 155 o(0x7c0802a6) 156 // stdu r31, -32(r1) 157 o(0xf801ffe1) 158 // addis r3, r2, local.moduledata@got@ha 159 rel = ld.Addrel(initfunc) 160 rel.Off = int32(initfunc.Size) 161 rel.Siz = 8 162 rel.Sym = ctxt.Syms.Lookup("local.moduledata", 0) 163 rel.Type = objabi.R_ADDRPOWER_GOT 164 o(0x3c620000) 165 // ld r3, local.moduledata@got@l(r3) 166 o(0xe8630000) 167 // bl runtime.addmoduledata 168 rel = ld.Addrel(initfunc) 169 rel.Off = int32(initfunc.Size) 170 rel.Siz = 4 171 rel.Sym = addmoduledata 172 rel.Type = objabi.R_CALLPOWER 173 o(0x48000001) 174 // nop 175 o(0x60000000) 176 // ld r31, 0(r1) 177 o(0xe8010000) 178 // mtlr r31 179 o(0x7c0803a6) 180 // addi r1,r1,32 181 o(0x38210020) 182 // blr 183 o(0x4e800020) 184 185 initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0) 186 ctxt.Textp = append(ctxt.Textp, initfunc) 187 initarray_entry.Attr |= ld.AttrReachable 188 initarray_entry.Attr |= ld.AttrLocal 189 initarray_entry.Type = ld.SINITARR 190 ld.Addaddr(ctxt, initarray_entry, initfunc) 191 } 192 193 func gentext(ctxt *ld.Link) { 194 if ctxt.DynlinkingGo() { 195 genaddmoduledata(ctxt) 196 } 197 198 if ld.Linkmode == ld.LinkInternal { 199 genplt(ctxt) 200 } 201 } 202 203 // Construct a call stub in stub that calls symbol targ via its PLT 204 // entry. 205 func gencallstub(ctxt *ld.Link, abicase int, stub *ld.Symbol, targ *ld.Symbol) { 206 if abicase != 1 { 207 // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC 208 // relocations, we'll need to implement cases 2 and 3. 209 log.Fatalf("gencallstub only implements case 1 calls") 210 } 211 212 plt := ctxt.Syms.Lookup(".plt", 0) 213 214 stub.Type = ld.STEXT 215 216 // Save TOC pointer in TOC save slot 217 ld.Adduint32(ctxt, stub, 0xf8410018) // std r2,24(r1) 218 219 // Load the function pointer from the PLT. 220 r := ld.Addrel(stub) 221 222 r.Off = int32(stub.Size) 223 r.Sym = plt 224 r.Add = int64(targ.Plt) 225 r.Siz = 2 226 if ctxt.Arch.ByteOrder == binary.BigEndian { 227 r.Off += int32(r.Siz) 228 } 229 r.Type = objabi.R_POWER_TOC 230 r.Variant = ld.RV_POWER_HA 231 ld.Adduint32(ctxt, stub, 0x3d820000) // addis r12,r2,targ@plt@toc@ha 232 r = ld.Addrel(stub) 233 r.Off = int32(stub.Size) 234 r.Sym = plt 235 r.Add = int64(targ.Plt) 236 r.Siz = 2 237 if ctxt.Arch.ByteOrder == binary.BigEndian { 238 r.Off += int32(r.Siz) 239 } 240 r.Type = objabi.R_POWER_TOC 241 r.Variant = ld.RV_POWER_LO 242 ld.Adduint32(ctxt, stub, 0xe98c0000) // ld r12,targ@plt@toc@l(r12) 243 244 // Jump to the loaded pointer 245 ld.Adduint32(ctxt, stub, 0x7d8903a6) // mtctr r12 246 ld.Adduint32(ctxt, stub, 0x4e800420) // bctr 247 } 248 249 func adddynrel(ctxt *ld.Link, s *ld.Symbol, r *ld.Reloc) bool { 250 targ := r.Sym 251 252 switch r.Type { 253 default: 254 if r.Type >= 256 { 255 ld.Errorf(s, "unexpected relocation type %d", r.Type) 256 return false 257 } 258 259 // Handle relocations found in ELF object files. 260 case 256 + ld.R_PPC64_REL24: 261 r.Type = objabi.R_CALLPOWER 262 263 // This is a local call, so the caller isn't setting 264 // up r12 and r2 is the same for the caller and 265 // callee. Hence, we need to go to the local entry 266 // point. (If we don't do this, the callee will try 267 // to use r12 to compute r2.) 268 r.Add += int64(r.Sym.Localentry) * 4 269 270 if targ.Type == ld.SDYNIMPORT { 271 // Should have been handled in elfsetupplt 272 ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import") 273 } 274 275 return true 276 277 case 256 + ld.R_PPC_REL32: 278 r.Type = objabi.R_PCREL 279 r.Add += 4 280 281 if targ.Type == ld.SDYNIMPORT { 282 ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import") 283 } 284 285 return true 286 287 case 256 + ld.R_PPC64_ADDR64: 288 r.Type = objabi.R_ADDR 289 if targ.Type == ld.SDYNIMPORT { 290 // These happen in .toc sections 291 ld.Adddynsym(ctxt, targ) 292 293 rela := ctxt.Syms.Lookup(".rela", 0) 294 ld.Addaddrplus(ctxt, rela, s, int64(r.Off)) 295 ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_PPC64_ADDR64)) 296 ld.Adduint64(ctxt, rela, uint64(r.Add)) 297 r.Type = 256 // ignore during relocsym 298 } 299 300 return true 301 302 case 256 + ld.R_PPC64_TOC16: 303 r.Type = objabi.R_POWER_TOC 304 r.Variant = ld.RV_POWER_LO | ld.RV_CHECK_OVERFLOW 305 return true 306 307 case 256 + ld.R_PPC64_TOC16_LO: 308 r.Type = objabi.R_POWER_TOC 309 r.Variant = ld.RV_POWER_LO 310 return true 311 312 case 256 + ld.R_PPC64_TOC16_HA: 313 r.Type = objabi.R_POWER_TOC 314 r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW 315 return true 316 317 case 256 + ld.R_PPC64_TOC16_HI: 318 r.Type = objabi.R_POWER_TOC 319 r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW 320 return true 321 322 case 256 + ld.R_PPC64_TOC16_DS: 323 r.Type = objabi.R_POWER_TOC 324 r.Variant = ld.RV_POWER_DS | ld.RV_CHECK_OVERFLOW 325 return true 326 327 case 256 + ld.R_PPC64_TOC16_LO_DS: 328 r.Type = objabi.R_POWER_TOC 329 r.Variant = ld.RV_POWER_DS 330 return true 331 332 case 256 + ld.R_PPC64_REL16_LO: 333 r.Type = objabi.R_PCREL 334 r.Variant = ld.RV_POWER_LO 335 r.Add += 2 // Compensate for relocation size of 2 336 return true 337 338 case 256 + ld.R_PPC64_REL16_HI: 339 r.Type = objabi.R_PCREL 340 r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW 341 r.Add += 2 342 return true 343 344 case 256 + ld.R_PPC64_REL16_HA: 345 r.Type = objabi.R_PCREL 346 r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW 347 r.Add += 2 348 return true 349 } 350 351 // Handle references to ELF symbols from our own object files. 352 if targ.Type != ld.SDYNIMPORT { 353 return true 354 } 355 356 // TODO(austin): Translate our relocations to ELF 357 358 return false 359 } 360 361 func elfreloc1(ctxt *ld.Link, r *ld.Reloc, sectoff int64) int { 362 ld.Thearch.Vput(uint64(sectoff)) 363 364 elfsym := r.Xsym.ElfsymForReloc() 365 switch r.Type { 366 default: 367 return -1 368 369 case objabi.R_ADDR: 370 switch r.Siz { 371 case 4: 372 ld.Thearch.Vput(ld.R_PPC64_ADDR32 | uint64(elfsym)<<32) 373 case 8: 374 ld.Thearch.Vput(ld.R_PPC64_ADDR64 | uint64(elfsym)<<32) 375 default: 376 return -1 377 } 378 379 case objabi.R_POWER_TLS: 380 ld.Thearch.Vput(ld.R_PPC64_TLS | uint64(elfsym)<<32) 381 382 case objabi.R_POWER_TLS_LE: 383 ld.Thearch.Vput(ld.R_PPC64_TPREL16 | uint64(elfsym)<<32) 384 385 case objabi.R_POWER_TLS_IE: 386 ld.Thearch.Vput(ld.R_PPC64_GOT_TPREL16_HA | uint64(elfsym)<<32) 387 ld.Thearch.Vput(uint64(r.Xadd)) 388 ld.Thearch.Vput(uint64(sectoff + 4)) 389 ld.Thearch.Vput(ld.R_PPC64_GOT_TPREL16_LO_DS | uint64(elfsym)<<32) 390 391 case objabi.R_ADDRPOWER: 392 ld.Thearch.Vput(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32) 393 ld.Thearch.Vput(uint64(r.Xadd)) 394 ld.Thearch.Vput(uint64(sectoff + 4)) 395 ld.Thearch.Vput(ld.R_PPC64_ADDR16_LO | uint64(elfsym)<<32) 396 397 case objabi.R_ADDRPOWER_DS: 398 ld.Thearch.Vput(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32) 399 ld.Thearch.Vput(uint64(r.Xadd)) 400 ld.Thearch.Vput(uint64(sectoff + 4)) 401 ld.Thearch.Vput(ld.R_PPC64_ADDR16_LO_DS | uint64(elfsym)<<32) 402 403 case objabi.R_ADDRPOWER_GOT: 404 ld.Thearch.Vput(ld.R_PPC64_GOT16_HA | uint64(elfsym)<<32) 405 ld.Thearch.Vput(uint64(r.Xadd)) 406 ld.Thearch.Vput(uint64(sectoff + 4)) 407 ld.Thearch.Vput(ld.R_PPC64_GOT16_LO_DS | uint64(elfsym)<<32) 408 409 case objabi.R_ADDRPOWER_PCREL: 410 ld.Thearch.Vput(ld.R_PPC64_REL16_HA | uint64(elfsym)<<32) 411 ld.Thearch.Vput(uint64(r.Xadd)) 412 ld.Thearch.Vput(uint64(sectoff + 4)) 413 ld.Thearch.Vput(ld.R_PPC64_REL16_LO | uint64(elfsym)<<32) 414 r.Xadd += 4 415 416 case objabi.R_ADDRPOWER_TOCREL: 417 ld.Thearch.Vput(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32) 418 ld.Thearch.Vput(uint64(r.Xadd)) 419 ld.Thearch.Vput(uint64(sectoff + 4)) 420 ld.Thearch.Vput(ld.R_PPC64_TOC16_LO | uint64(elfsym)<<32) 421 422 case objabi.R_ADDRPOWER_TOCREL_DS: 423 ld.Thearch.Vput(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32) 424 ld.Thearch.Vput(uint64(r.Xadd)) 425 ld.Thearch.Vput(uint64(sectoff + 4)) 426 ld.Thearch.Vput(ld.R_PPC64_TOC16_LO_DS | uint64(elfsym)<<32) 427 428 case objabi.R_CALLPOWER: 429 if r.Siz != 4 { 430 return -1 431 } 432 ld.Thearch.Vput(ld.R_PPC64_REL24 | uint64(elfsym)<<32) 433 434 } 435 ld.Thearch.Vput(uint64(r.Xadd)) 436 437 return 0 438 } 439 440 func elfsetupplt(ctxt *ld.Link) { 441 plt := ctxt.Syms.Lookup(".plt", 0) 442 if plt.Size == 0 { 443 // The dynamic linker stores the address of the 444 // dynamic resolver and the DSO identifier in the two 445 // doublewords at the beginning of the .plt section 446 // before the PLT array. Reserve space for these. 447 plt.Size = 16 448 } 449 } 450 451 func machoreloc1(s *ld.Symbol, r *ld.Reloc, sectoff int64) int { 452 return -1 453 } 454 455 // Return the value of .TOC. for symbol s 456 func symtoc(ctxt *ld.Link, s *ld.Symbol) int64 { 457 var toc *ld.Symbol 458 459 if s.Outer != nil { 460 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Outer.Version)) 461 } else { 462 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) 463 } 464 465 if toc == nil { 466 ld.Errorf(s, "TOC-relative relocation in object without .TOC.") 467 return 0 468 } 469 470 return toc.Value 471 } 472 473 func archrelocaddr(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, val *int64) int { 474 var o1, o2 uint32 475 if ctxt.Arch.ByteOrder == binary.BigEndian { 476 o1 = uint32(*val >> 32) 477 o2 = uint32(*val) 478 } else { 479 o1 = uint32(*val) 480 o2 = uint32(*val >> 32) 481 } 482 483 // We are spreading a 31-bit address across two instructions, putting the 484 // high (adjusted) part in the low 16 bits of the first instruction and the 485 // low part in the low 16 bits of the second instruction, or, in the DS case, 486 // bits 15-2 (inclusive) of the address into bits 15-2 of the second 487 // instruction (it is an error in this case if the low 2 bits of the address 488 // are non-zero). 489 490 t := ld.Symaddr(r.Sym) + r.Add 491 if t < 0 || t >= 1<<31 { 492 ld.Errorf(s, "relocation for %s is too big (>=2G): %d", s.Name, ld.Symaddr(r.Sym)) 493 } 494 if t&0x8000 != 0 { 495 t += 0x10000 496 } 497 498 switch r.Type { 499 case objabi.R_ADDRPOWER: 500 o1 |= (uint32(t) >> 16) & 0xffff 501 o2 |= uint32(t) & 0xffff 502 503 case objabi.R_ADDRPOWER_DS: 504 o1 |= (uint32(t) >> 16) & 0xffff 505 if t&3 != 0 { 506 ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym)) 507 } 508 o2 |= uint32(t) & 0xfffc 509 510 default: 511 return -1 512 } 513 514 if ctxt.Arch.ByteOrder == binary.BigEndian { 515 *val = int64(o1)<<32 | int64(o2) 516 } else { 517 *val = int64(o2)<<32 | int64(o1) 518 } 519 return 0 520 } 521 522 // resolve direct jump relocation r in s, and add trampoline if necessary 523 func trampoline(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol) { 524 525 t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) 526 switch r.Type { 527 case objabi.R_CALLPOWER: 528 529 // If branch offset is too far then create a trampoline. 530 531 if int64(int32(t<<6)>>6) != t || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) { 532 var tramp *ld.Symbol 533 for i := 0; ; i++ { 534 535 // Using r.Add as part of the name is significant in functions like duffzero where the call 536 // target is at some offset within the function. Calls to duff+8 and duff+256 must appear as 537 // distinct trampolines. 538 539 name := r.Sym.Name 540 if r.Add == 0 { 541 name = name + fmt.Sprintf("-tramp%d", i) 542 } else { 543 name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i) 544 } 545 546 // Look up the trampoline in case it already exists 547 548 tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version)) 549 if tramp.Value == 0 { 550 break 551 } 552 553 t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off)) 554 555 // If the offset of the trampoline that has been found is within range, use it. 556 if int64(int32(t<<6)>>6) == t { 557 break 558 } 559 } 560 if tramp.Type == 0 { 561 ctxt.AddTramp(tramp) 562 tramp.Size = 16 // 4 instructions 563 tramp.P = make([]byte, tramp.Size) 564 t = ld.Symaddr(r.Sym) + r.Add 565 f := t & 0xffff0000 566 o1 := uint32(0x3fe00000 | (f >> 16)) // lis r31,trampaddr hi (r31 is temp reg) 567 f = t & 0xffff 568 o2 := uint32(0x63ff0000 | f) // ori r31,trampaddr lo 569 o3 := uint32(0x7fe903a6) // mtctr 570 o4 := uint32(0x4e800420) // bctr 571 ld.SysArch.ByteOrder.PutUint32(tramp.P, o1) 572 ld.SysArch.ByteOrder.PutUint32(tramp.P[4:], o2) 573 ld.SysArch.ByteOrder.PutUint32(tramp.P[8:], o3) 574 ld.SysArch.ByteOrder.PutUint32(tramp.P[12:], o4) 575 } 576 r.Sym = tramp 577 r.Add = 0 // This was folded into the trampoline target address 578 r.Done = 0 579 } 580 default: 581 ld.Errorf(s, "trampoline called with non-jump reloc: %v", r.Type) 582 } 583 } 584 585 func archreloc(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, val *int64) int { 586 if ld.Linkmode == ld.LinkExternal { 587 switch r.Type { 588 default: 589 return -1 590 591 case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE: 592 r.Done = 0 593 // check Outer is nil, Type is TLSBSS? 594 r.Xadd = r.Add 595 r.Xsym = r.Sym 596 return 0 597 598 case objabi.R_ADDRPOWER, 599 objabi.R_ADDRPOWER_DS, 600 objabi.R_ADDRPOWER_TOCREL, 601 objabi.R_ADDRPOWER_TOCREL_DS, 602 objabi.R_ADDRPOWER_GOT, 603 objabi.R_ADDRPOWER_PCREL: 604 r.Done = 0 605 606 // set up addend for eventual relocation via outer symbol. 607 rs := r.Sym 608 r.Xadd = r.Add 609 for rs.Outer != nil { 610 r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer) 611 rs = rs.Outer 612 } 613 614 if rs.Type != ld.SHOSTOBJ && rs.Type != ld.SDYNIMPORT && rs.Sect == nil { 615 ld.Errorf(s, "missing section for %s", rs.Name) 616 } 617 r.Xsym = rs 618 619 return 0 620 621 case objabi.R_CALLPOWER: 622 r.Done = 0 623 r.Xsym = r.Sym 624 r.Xadd = r.Add 625 return 0 626 } 627 } 628 629 switch r.Type { 630 case objabi.R_CONST: 631 *val = r.Add 632 return 0 633 634 case objabi.R_GOTOFF: 635 *val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ctxt.Syms.Lookup(".got", 0)) 636 return 0 637 638 case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS: 639 return archrelocaddr(ctxt, r, s, val) 640 641 case objabi.R_CALLPOWER: 642 // Bits 6 through 29 = (S + A - P) >> 2 643 644 t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) 645 646 if t&3 != 0 { 647 ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) 648 } 649 // If branch offset is too far then create a trampoline. 650 651 if int64(int32(t<<6)>>6) != t { 652 ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t) 653 } 654 *val |= int64(uint32(t) &^ 0xfc000003) 655 return 0 656 657 case objabi.R_POWER_TOC: // S + A - .TOC. 658 *val = ld.Symaddr(r.Sym) + r.Add - symtoc(ctxt, s) 659 660 return 0 661 662 case objabi.R_POWER_TLS_LE: 663 // The thread pointer points 0x7000 bytes after the start of the the 664 // thread local storage area as documented in section "3.7.2 TLS 665 // Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI 666 // Specification". 667 v := r.Sym.Value - 0x7000 668 if int64(int16(v)) != v { 669 ld.Errorf(s, "TLS offset out of range %d", v) 670 } 671 *val = (*val &^ 0xffff) | (v & 0xffff) 672 return 0 673 } 674 675 return -1 676 } 677 678 func archrelocvariant(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, t int64) int64 { 679 switch r.Variant & ld.RV_TYPE_MASK { 680 default: 681 ld.Errorf(s, "unexpected relocation variant %d", r.Variant) 682 fallthrough 683 684 case ld.RV_NONE: 685 return t 686 687 case ld.RV_POWER_LO: 688 if r.Variant&ld.RV_CHECK_OVERFLOW != 0 { 689 // Whether to check for signed or unsigned 690 // overflow depends on the instruction 691 var o1 uint32 692 if ctxt.Arch.ByteOrder == binary.BigEndian { 693 o1 = ld.Be32(s.P[r.Off-2:]) 694 } else { 695 o1 = ld.Le32(s.P[r.Off:]) 696 } 697 switch o1 >> 26 { 698 case 24, // ori 699 26, // xori 700 28: // andi 701 if t>>16 != 0 { 702 goto overflow 703 } 704 705 default: 706 if int64(int16(t)) != t { 707 goto overflow 708 } 709 } 710 } 711 712 return int64(int16(t)) 713 714 case ld.RV_POWER_HA: 715 t += 0x8000 716 fallthrough 717 718 // Fallthrough 719 case ld.RV_POWER_HI: 720 t >>= 16 721 722 if r.Variant&ld.RV_CHECK_OVERFLOW != 0 { 723 // Whether to check for signed or unsigned 724 // overflow depends on the instruction 725 var o1 uint32 726 if ctxt.Arch.ByteOrder == binary.BigEndian { 727 o1 = ld.Be32(s.P[r.Off-2:]) 728 } else { 729 o1 = ld.Le32(s.P[r.Off:]) 730 } 731 switch o1 >> 26 { 732 case 25, // oris 733 27, // xoris 734 29: // andis 735 if t>>16 != 0 { 736 goto overflow 737 } 738 739 default: 740 if int64(int16(t)) != t { 741 goto overflow 742 } 743 } 744 } 745 746 return int64(int16(t)) 747 748 case ld.RV_POWER_DS: 749 var o1 uint32 750 if ctxt.Arch.ByteOrder == binary.BigEndian { 751 o1 = uint32(ld.Be16(s.P[r.Off:])) 752 } else { 753 o1 = uint32(ld.Le16(s.P[r.Off:])) 754 } 755 if t&3 != 0 { 756 ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) 757 } 758 if (r.Variant&ld.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t { 759 goto overflow 760 } 761 return int64(o1)&0x3 | int64(int16(t)) 762 } 763 764 overflow: 765 ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t) 766 return t 767 } 768 769 func addpltsym(ctxt *ld.Link, s *ld.Symbol) { 770 if s.Plt >= 0 { 771 return 772 } 773 774 ld.Adddynsym(ctxt, s) 775 776 if ld.Iself { 777 plt := ctxt.Syms.Lookup(".plt", 0) 778 rela := ctxt.Syms.Lookup(".rela.plt", 0) 779 if plt.Size == 0 { 780 elfsetupplt(ctxt) 781 } 782 783 // Create the glink resolver if necessary 784 glink := ensureglinkresolver(ctxt) 785 786 // Write symbol resolver stub (just a branch to the 787 // glink resolver stub) 788 r := ld.Addrel(glink) 789 790 r.Sym = glink 791 r.Off = int32(glink.Size) 792 r.Siz = 4 793 r.Type = objabi.R_CALLPOWER 794 ld.Adduint32(ctxt, glink, 0x48000000) // b .glink 795 796 // In the ppc64 ABI, the dynamic linker is responsible 797 // for writing the entire PLT. We just need to 798 // reserve 8 bytes for each PLT entry and generate a 799 // JMP_SLOT dynamic relocation for it. 800 // 801 // TODO(austin): ABI v1 is different 802 s.Plt = int32(plt.Size) 803 804 plt.Size += 8 805 806 ld.Addaddrplus(ctxt, rela, plt, int64(s.Plt)) 807 ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_PPC64_JMP_SLOT)) 808 ld.Adduint64(ctxt, rela, 0) 809 } else { 810 ld.Errorf(s, "addpltsym: unsupported binary format") 811 } 812 } 813 814 // Generate the glink resolver stub if necessary and return the .glink section 815 func ensureglinkresolver(ctxt *ld.Link) *ld.Symbol { 816 glink := ctxt.Syms.Lookup(".glink", 0) 817 if glink.Size != 0 { 818 return glink 819 } 820 821 // This is essentially the resolver from the ppc64 ELF ABI. 822 // At entry, r12 holds the address of the symbol resolver stub 823 // for the target routine and the argument registers hold the 824 // arguments for the target routine. 825 // 826 // This stub is PIC, so first get the PC of label 1 into r11. 827 // Other things will be relative to this. 828 ld.Adduint32(ctxt, glink, 0x7c0802a6) // mflr r0 829 ld.Adduint32(ctxt, glink, 0x429f0005) // bcl 20,31,1f 830 ld.Adduint32(ctxt, glink, 0x7d6802a6) // 1: mflr r11 831 ld.Adduint32(ctxt, glink, 0x7c0803a6) // mtlf r0 832 833 // Compute the .plt array index from the entry point address. 834 // Because this is PIC, everything is relative to label 1b (in 835 // r11): 836 // r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4 837 ld.Adduint32(ctxt, glink, 0x3800ffd0) // li r0,-(res_0-1b)=-48 838 ld.Adduint32(ctxt, glink, 0x7c006214) // add r0,r0,r12 839 ld.Adduint32(ctxt, glink, 0x7c0b0050) // sub r0,r0,r11 840 ld.Adduint32(ctxt, glink, 0x7800f082) // srdi r0,r0,2 841 842 // r11 = address of the first byte of the PLT 843 r := ld.Addrel(glink) 844 845 r.Off = int32(glink.Size) 846 r.Sym = ctxt.Syms.Lookup(".plt", 0) 847 r.Siz = 8 848 r.Type = objabi.R_ADDRPOWER 849 850 ld.Adduint32(ctxt, glink, 0x3d600000) // addis r11,0,.plt@ha 851 ld.Adduint32(ctxt, glink, 0x396b0000) // addi r11,r11,.plt@l 852 853 // Load r12 = dynamic resolver address and r11 = DSO 854 // identifier from the first two doublewords of the PLT. 855 ld.Adduint32(ctxt, glink, 0xe98b0000) // ld r12,0(r11) 856 ld.Adduint32(ctxt, glink, 0xe96b0008) // ld r11,8(r11) 857 858 // Jump to the dynamic resolver 859 ld.Adduint32(ctxt, glink, 0x7d8903a6) // mtctr r12 860 ld.Adduint32(ctxt, glink, 0x4e800420) // bctr 861 862 // The symbol resolvers must immediately follow. 863 // res_0: 864 865 // Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes 866 // before the first symbol resolver stub. 867 s := ctxt.Syms.Lookup(".dynamic", 0) 868 869 ld.Elfwritedynentsymplus(ctxt, s, ld.DT_PPC64_GLINK, glink, glink.Size-32) 870 871 return glink 872 } 873 874 func asmb(ctxt *ld.Link) { 875 if ctxt.Debugvlog != 0 { 876 ctxt.Logf("%5.2f asmb\n", ld.Cputime()) 877 } 878 879 if ld.Iself { 880 ld.Asmbelfsetup() 881 } 882 883 for _, sect := range ld.Segtext.Sections { 884 ld.Cseek(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff)) 885 // Handle additional text sections with Codeblk 886 if sect.Name == ".text" { 887 ld.Codeblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) 888 } else { 889 ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) 890 } 891 } 892 893 if ld.Segrodata.Filelen > 0 { 894 if ctxt.Debugvlog != 0 { 895 ctxt.Logf("%5.2f rodatblk\n", ld.Cputime()) 896 } 897 ld.Cseek(int64(ld.Segrodata.Fileoff)) 898 ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen)) 899 } 900 if ld.Segrelrodata.Filelen > 0 { 901 if ctxt.Debugvlog != 0 { 902 ctxt.Logf("%5.2f relrodatblk\n", ld.Cputime()) 903 } 904 ld.Cseek(int64(ld.Segrelrodata.Fileoff)) 905 ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen)) 906 } 907 908 if ctxt.Debugvlog != 0 { 909 ctxt.Logf("%5.2f datblk\n", ld.Cputime()) 910 } 911 912 ld.Cseek(int64(ld.Segdata.Fileoff)) 913 ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen)) 914 915 ld.Cseek(int64(ld.Segdwarf.Fileoff)) 916 ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen)) 917 918 /* output symbol table */ 919 ld.Symsize = 0 920 921 ld.Lcsize = 0 922 symo := uint32(0) 923 if !*ld.FlagS { 924 // TODO: rationalize 925 if ctxt.Debugvlog != 0 { 926 ctxt.Logf("%5.2f sym\n", ld.Cputime()) 927 } 928 switch ld.Headtype { 929 default: 930 if ld.Iself { 931 symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) 932 symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound))) 933 } 934 935 case objabi.Hplan9: 936 symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen) 937 } 938 939 ld.Cseek(int64(symo)) 940 switch ld.Headtype { 941 default: 942 if ld.Iself { 943 if ctxt.Debugvlog != 0 { 944 ctxt.Logf("%5.2f elfsym\n", ld.Cputime()) 945 } 946 ld.Asmelfsym(ctxt) 947 ld.Cflush() 948 ld.Cwrite(ld.Elfstrdat) 949 950 if ld.Linkmode == ld.LinkExternal { 951 ld.Elfemitreloc(ctxt) 952 } 953 } 954 955 case objabi.Hplan9: 956 ld.Asmplan9sym(ctxt) 957 ld.Cflush() 958 959 sym := ctxt.Syms.Lookup("pclntab", 0) 960 if sym != nil { 961 ld.Lcsize = int32(len(sym.P)) 962 for i := 0; int32(i) < ld.Lcsize; i++ { 963 ld.Cput(sym.P[i]) 964 } 965 966 ld.Cflush() 967 } 968 } 969 } 970 971 if ctxt.Debugvlog != 0 { 972 ctxt.Logf("%5.2f header\n", ld.Cputime()) 973 } 974 ld.Cseek(0) 975 switch ld.Headtype { 976 default: 977 case objabi.Hplan9: /* plan 9 */ 978 ld.Thearch.Lput(0x647) /* magic */ 979 ld.Thearch.Lput(uint32(ld.Segtext.Filelen)) /* sizes */ 980 ld.Thearch.Lput(uint32(ld.Segdata.Filelen)) 981 ld.Thearch.Lput(uint32(ld.Segdata.Length - ld.Segdata.Filelen)) 982 ld.Thearch.Lput(uint32(ld.Symsize)) /* nsyms */ 983 ld.Thearch.Lput(uint32(ld.Entryvalue(ctxt))) /* va of entry */ 984 ld.Thearch.Lput(0) 985 ld.Thearch.Lput(uint32(ld.Lcsize)) 986 987 case objabi.Hlinux, 988 objabi.Hfreebsd, 989 objabi.Hnetbsd, 990 objabi.Hopenbsd, 991 objabi.Hnacl: 992 ld.Asmbelf(ctxt, int64(symo)) 993 } 994 995 ld.Cflush() 996 if *ld.FlagC { 997 fmt.Printf("textsize=%d\n", ld.Segtext.Filelen) 998 fmt.Printf("datsize=%d\n", ld.Segdata.Filelen) 999 fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen) 1000 fmt.Printf("symsize=%d\n", ld.Symsize) 1001 fmt.Printf("lcsize=%d\n", ld.Lcsize) 1002 fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize)) 1003 } 1004 }