github.com/slayercat/go@v0.0.0-20170428012452-c51559813f61/src/encoding/json/encode.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON as defined in
     6  // RFC 4627. The mapping between JSON and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // https://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"fmt"
    18  	"math"
    19  	"reflect"
    20  	"runtime"
    21  	"sort"
    22  	"strconv"
    23  	"strings"
    24  	"sync"
    25  	"sync/atomic"
    26  	"unicode"
    27  	"unicode/utf8"
    28  )
    29  
    30  // Marshal returns the JSON encoding of v.
    31  //
    32  // Marshal traverses the value v recursively.
    33  // If an encountered value implements the Marshaler interface
    34  // and is not a nil pointer, Marshal calls its MarshalJSON method
    35  // to produce JSON. If no MarshalJSON method is present but the
    36  // value implements encoding.TextMarshaler instead, Marshal calls
    37  // its MarshalText method and encodes the result as a JSON string.
    38  // The nil pointer exception is not strictly necessary
    39  // but mimics a similar, necessary exception in the behavior of
    40  // UnmarshalJSON.
    41  //
    42  // Otherwise, Marshal uses the following type-dependent default encodings:
    43  //
    44  // Boolean values encode as JSON booleans.
    45  //
    46  // Floating point, integer, and Number values encode as JSON numbers.
    47  //
    48  // String values encode as JSON strings coerced to valid UTF-8,
    49  // replacing invalid bytes with the Unicode replacement rune.
    50  // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
    51  // to keep some browsers from misinterpreting JSON output as HTML.
    52  // Ampersand "&" is also escaped to "\u0026" for the same reason.
    53  // This escaping can be disabled using an Encoder that had SetEscapeHTML(false)
    54  // called on it.
    55  //
    56  // Array and slice values encode as JSON arrays, except that
    57  // []byte encodes as a base64-encoded string, and a nil slice
    58  // encodes as the null JSON value.
    59  //
    60  // Struct values encode as JSON objects.
    61  // Each exported struct field becomes a member of the object, using the
    62  // field name as the object key, unless the field is omitted for one of the
    63  // reasons given below.
    64  //
    65  // The encoding of each struct field can be customized by the format string
    66  // stored under the "json" key in the struct field's tag.
    67  // The format string gives the name of the field, possibly followed by a
    68  // comma-separated list of options. The name may be empty in order to
    69  // specify options without overriding the default field name.
    70  //
    71  // The "omitempty" option specifies that the field should be omitted
    72  // from the encoding if the field has an empty value, defined as
    73  // false, 0, a nil pointer, a nil interface value, and any empty array,
    74  // slice, map, or string.
    75  //
    76  // As a special case, if the field tag is "-", the field is always omitted.
    77  // Note that a field with name "-" can still be generated using the tag "-,".
    78  //
    79  // Examples of struct field tags and their meanings:
    80  //
    81  //   // Field appears in JSON as key "myName".
    82  //   Field int `json:"myName"`
    83  //
    84  //   // Field appears in JSON as key "myName" and
    85  //   // the field is omitted from the object if its value is empty,
    86  //   // as defined above.
    87  //   Field int `json:"myName,omitempty"`
    88  //
    89  //   // Field appears in JSON as key "Field" (the default), but
    90  //   // the field is skipped if empty.
    91  //   // Note the leading comma.
    92  //   Field int `json:",omitempty"`
    93  //
    94  //   // Field is ignored by this package.
    95  //   Field int `json:"-"`
    96  //
    97  //   // Field appears in JSON as key "-".
    98  //   Field int `json:"-,"`
    99  //
   100  // The "string" option signals that a field is stored as JSON inside a
   101  // JSON-encoded string. It applies only to fields of string, floating point,
   102  // integer, or boolean types. This extra level of encoding is sometimes used
   103  // when communicating with JavaScript programs:
   104  //
   105  //    Int64String int64 `json:",string"`
   106  //
   107  // The key name will be used if it's a non-empty string consisting of
   108  // only Unicode letters, digits, and ASCII punctuation except quotation
   109  // marks, backslash, and comma.
   110  //
   111  // Anonymous struct fields are usually marshaled as if their inner exported fields
   112  // were fields in the outer struct, subject to the usual Go visibility rules amended
   113  // as described in the next paragraph.
   114  // An anonymous struct field with a name given in its JSON tag is treated as
   115  // having that name, rather than being anonymous.
   116  // An anonymous struct field of interface type is treated the same as having
   117  // that type as its name, rather than being anonymous.
   118  //
   119  // The Go visibility rules for struct fields are amended for JSON when
   120  // deciding which field to marshal or unmarshal. If there are
   121  // multiple fields at the same level, and that level is the least
   122  // nested (and would therefore be the nesting level selected by the
   123  // usual Go rules), the following extra rules apply:
   124  //
   125  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   126  // even if there are multiple untagged fields that would otherwise conflict.
   127  //
   128  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   129  //
   130  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   131  //
   132  // Handling of anonymous struct fields is new in Go 1.1.
   133  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   134  // an anonymous struct field in both current and earlier versions, give the field
   135  // a JSON tag of "-".
   136  //
   137  // Map values encode as JSON objects. The map's key type must either be a
   138  // string, an integer type, or implement encoding.TextMarshaler. The map keys
   139  // are sorted and used as JSON object keys by applying the following rules,
   140  // subject to the UTF-8 coercion described for string values above:
   141  //   - string keys are used directly
   142  //   - encoding.TextMarshalers are marshaled
   143  //   - integer keys are converted to strings
   144  //
   145  // Pointer values encode as the value pointed to.
   146  // A nil pointer encodes as the null JSON value.
   147  //
   148  // Interface values encode as the value contained in the interface.
   149  // A nil interface value encodes as the null JSON value.
   150  //
   151  // Channel, complex, and function values cannot be encoded in JSON.
   152  // Attempting to encode such a value causes Marshal to return
   153  // an UnsupportedTypeError.
   154  //
   155  // JSON cannot represent cyclic data structures and Marshal does not
   156  // handle them. Passing cyclic structures to Marshal will result in
   157  // an infinite recursion.
   158  //
   159  func Marshal(v interface{}) ([]byte, error) {
   160  	e := &encodeState{}
   161  	err := e.marshal(v, encOpts{escapeHTML: true})
   162  	if err != nil {
   163  		return nil, err
   164  	}
   165  	return e.Bytes(), nil
   166  }
   167  
   168  // MarshalIndent is like Marshal but applies Indent to format the output.
   169  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   170  	b, err := Marshal(v)
   171  	if err != nil {
   172  		return nil, err
   173  	}
   174  	var buf bytes.Buffer
   175  	err = Indent(&buf, b, prefix, indent)
   176  	if err != nil {
   177  		return nil, err
   178  	}
   179  	return buf.Bytes(), nil
   180  }
   181  
   182  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   183  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   184  // so that the JSON will be safe to embed inside HTML <script> tags.
   185  // For historical reasons, web browsers don't honor standard HTML
   186  // escaping within <script> tags, so an alternative JSON encoding must
   187  // be used.
   188  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   189  	// The characters can only appear in string literals,
   190  	// so just scan the string one byte at a time.
   191  	start := 0
   192  	for i, c := range src {
   193  		if c == '<' || c == '>' || c == '&' {
   194  			if start < i {
   195  				dst.Write(src[start:i])
   196  			}
   197  			dst.WriteString(`\u00`)
   198  			dst.WriteByte(hex[c>>4])
   199  			dst.WriteByte(hex[c&0xF])
   200  			start = i + 1
   201  		}
   202  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   203  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   204  			if start < i {
   205  				dst.Write(src[start:i])
   206  			}
   207  			dst.WriteString(`\u202`)
   208  			dst.WriteByte(hex[src[i+2]&0xF])
   209  			start = i + 3
   210  		}
   211  	}
   212  	if start < len(src) {
   213  		dst.Write(src[start:])
   214  	}
   215  }
   216  
   217  // Marshaler is the interface implemented by types that
   218  // can marshal themselves into valid JSON.
   219  type Marshaler interface {
   220  	MarshalJSON() ([]byte, error)
   221  }
   222  
   223  // An UnsupportedTypeError is returned by Marshal when attempting
   224  // to encode an unsupported value type.
   225  type UnsupportedTypeError struct {
   226  	Type reflect.Type
   227  }
   228  
   229  func (e *UnsupportedTypeError) Error() string {
   230  	return "json: unsupported type: " + e.Type.String()
   231  }
   232  
   233  type UnsupportedValueError struct {
   234  	Value reflect.Value
   235  	Str   string
   236  }
   237  
   238  func (e *UnsupportedValueError) Error() string {
   239  	return "json: unsupported value: " + e.Str
   240  }
   241  
   242  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   243  // attempting to encode a string value with invalid UTF-8 sequences.
   244  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   245  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   246  // This error is no longer generated but is kept for backwards compatibility
   247  // with programs that might mention it.
   248  type InvalidUTF8Error struct {
   249  	S string // the whole string value that caused the error
   250  }
   251  
   252  func (e *InvalidUTF8Error) Error() string {
   253  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   254  }
   255  
   256  type MarshalerError struct {
   257  	Type reflect.Type
   258  	Err  error
   259  }
   260  
   261  func (e *MarshalerError) Error() string {
   262  	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
   263  }
   264  
   265  var hex = "0123456789abcdef"
   266  
   267  // An encodeState encodes JSON into a bytes.Buffer.
   268  type encodeState struct {
   269  	bytes.Buffer // accumulated output
   270  	scratch      [64]byte
   271  }
   272  
   273  var encodeStatePool sync.Pool
   274  
   275  func newEncodeState() *encodeState {
   276  	if v := encodeStatePool.Get(); v != nil {
   277  		e := v.(*encodeState)
   278  		e.Reset()
   279  		return e
   280  	}
   281  	return new(encodeState)
   282  }
   283  
   284  func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) {
   285  	defer func() {
   286  		if r := recover(); r != nil {
   287  			if _, ok := r.(runtime.Error); ok {
   288  				panic(r)
   289  			}
   290  			if s, ok := r.(string); ok {
   291  				panic(s)
   292  			}
   293  			err = r.(error)
   294  		}
   295  	}()
   296  	e.reflectValue(reflect.ValueOf(v), opts)
   297  	return nil
   298  }
   299  
   300  func (e *encodeState) error(err error) {
   301  	panic(err)
   302  }
   303  
   304  func isEmptyValue(v reflect.Value) bool {
   305  	switch v.Kind() {
   306  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   307  		return v.Len() == 0
   308  	case reflect.Bool:
   309  		return !v.Bool()
   310  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   311  		return v.Int() == 0
   312  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   313  		return v.Uint() == 0
   314  	case reflect.Float32, reflect.Float64:
   315  		return v.Float() == 0
   316  	case reflect.Interface, reflect.Ptr:
   317  		return v.IsNil()
   318  	}
   319  	return false
   320  }
   321  
   322  func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
   323  	valueEncoder(v)(e, v, opts)
   324  }
   325  
   326  type encOpts struct {
   327  	// quoted causes primitive fields to be encoded inside JSON strings.
   328  	quoted bool
   329  	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
   330  	escapeHTML bool
   331  }
   332  
   333  type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
   334  
   335  var encoderCache struct {
   336  	sync.RWMutex
   337  	m map[reflect.Type]encoderFunc
   338  }
   339  
   340  func valueEncoder(v reflect.Value) encoderFunc {
   341  	if !v.IsValid() {
   342  		return invalidValueEncoder
   343  	}
   344  	return typeEncoder(v.Type())
   345  }
   346  
   347  func typeEncoder(t reflect.Type) encoderFunc {
   348  	encoderCache.RLock()
   349  	f := encoderCache.m[t]
   350  	encoderCache.RUnlock()
   351  	if f != nil {
   352  		return f
   353  	}
   354  
   355  	// To deal with recursive types, populate the map with an
   356  	// indirect func before we build it. This type waits on the
   357  	// real func (f) to be ready and then calls it. This indirect
   358  	// func is only used for recursive types.
   359  	encoderCache.Lock()
   360  	if encoderCache.m == nil {
   361  		encoderCache.m = make(map[reflect.Type]encoderFunc)
   362  	}
   363  	var wg sync.WaitGroup
   364  	wg.Add(1)
   365  	encoderCache.m[t] = func(e *encodeState, v reflect.Value, opts encOpts) {
   366  		wg.Wait()
   367  		f(e, v, opts)
   368  	}
   369  	encoderCache.Unlock()
   370  
   371  	// Compute fields without lock.
   372  	// Might duplicate effort but won't hold other computations back.
   373  	f = newTypeEncoder(t, true)
   374  	wg.Done()
   375  	encoderCache.Lock()
   376  	encoderCache.m[t] = f
   377  	encoderCache.Unlock()
   378  	return f
   379  }
   380  
   381  var (
   382  	marshalerType     = reflect.TypeOf(new(Marshaler)).Elem()
   383  	textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
   384  )
   385  
   386  // newTypeEncoder constructs an encoderFunc for a type.
   387  // The returned encoder only checks CanAddr when allowAddr is true.
   388  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   389  	if t.Implements(marshalerType) {
   390  		return marshalerEncoder
   391  	}
   392  	if t.Kind() != reflect.Ptr && allowAddr {
   393  		if reflect.PtrTo(t).Implements(marshalerType) {
   394  			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   395  		}
   396  	}
   397  
   398  	if t.Implements(textMarshalerType) {
   399  		return textMarshalerEncoder
   400  	}
   401  	if t.Kind() != reflect.Ptr && allowAddr {
   402  		if reflect.PtrTo(t).Implements(textMarshalerType) {
   403  			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   404  		}
   405  	}
   406  
   407  	switch t.Kind() {
   408  	case reflect.Bool:
   409  		return boolEncoder
   410  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   411  		return intEncoder
   412  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   413  		return uintEncoder
   414  	case reflect.Float32:
   415  		return float32Encoder
   416  	case reflect.Float64:
   417  		return float64Encoder
   418  	case reflect.String:
   419  		return stringEncoder
   420  	case reflect.Interface:
   421  		return interfaceEncoder
   422  	case reflect.Struct:
   423  		return newStructEncoder(t)
   424  	case reflect.Map:
   425  		return newMapEncoder(t)
   426  	case reflect.Slice:
   427  		return newSliceEncoder(t)
   428  	case reflect.Array:
   429  		return newArrayEncoder(t)
   430  	case reflect.Ptr:
   431  		return newPtrEncoder(t)
   432  	default:
   433  		return unsupportedTypeEncoder
   434  	}
   435  }
   436  
   437  func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   438  	e.WriteString("null")
   439  }
   440  
   441  func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   442  	if v.Kind() == reflect.Ptr && v.IsNil() {
   443  		e.WriteString("null")
   444  		return
   445  	}
   446  	m, ok := v.Interface().(Marshaler)
   447  	if !ok {
   448  		e.WriteString("null")
   449  		return
   450  	}
   451  	b, err := m.MarshalJSON()
   452  	if err == nil {
   453  		// copy JSON into buffer, checking validity.
   454  		err = compact(&e.Buffer, b, opts.escapeHTML)
   455  	}
   456  	if err != nil {
   457  		e.error(&MarshalerError{v.Type(), err})
   458  	}
   459  }
   460  
   461  func addrMarshalerEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   462  	va := v.Addr()
   463  	if va.IsNil() {
   464  		e.WriteString("null")
   465  		return
   466  	}
   467  	m := va.Interface().(Marshaler)
   468  	b, err := m.MarshalJSON()
   469  	if err == nil {
   470  		// copy JSON into buffer, checking validity.
   471  		err = compact(&e.Buffer, b, true)
   472  	}
   473  	if err != nil {
   474  		e.error(&MarshalerError{v.Type(), err})
   475  	}
   476  }
   477  
   478  func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   479  	if v.Kind() == reflect.Ptr && v.IsNil() {
   480  		e.WriteString("null")
   481  		return
   482  	}
   483  	m := v.Interface().(encoding.TextMarshaler)
   484  	b, err := m.MarshalText()
   485  	if err != nil {
   486  		e.error(&MarshalerError{v.Type(), err})
   487  	}
   488  	e.stringBytes(b, opts.escapeHTML)
   489  }
   490  
   491  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   492  	va := v.Addr()
   493  	if va.IsNil() {
   494  		e.WriteString("null")
   495  		return
   496  	}
   497  	m := va.Interface().(encoding.TextMarshaler)
   498  	b, err := m.MarshalText()
   499  	if err != nil {
   500  		e.error(&MarshalerError{v.Type(), err})
   501  	}
   502  	e.stringBytes(b, opts.escapeHTML)
   503  }
   504  
   505  func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   506  	if opts.quoted {
   507  		e.WriteByte('"')
   508  	}
   509  	if v.Bool() {
   510  		e.WriteString("true")
   511  	} else {
   512  		e.WriteString("false")
   513  	}
   514  	if opts.quoted {
   515  		e.WriteByte('"')
   516  	}
   517  }
   518  
   519  func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   520  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   521  	if opts.quoted {
   522  		e.WriteByte('"')
   523  	}
   524  	e.Write(b)
   525  	if opts.quoted {
   526  		e.WriteByte('"')
   527  	}
   528  }
   529  
   530  func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   531  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   532  	if opts.quoted {
   533  		e.WriteByte('"')
   534  	}
   535  	e.Write(b)
   536  	if opts.quoted {
   537  		e.WriteByte('"')
   538  	}
   539  }
   540  
   541  type floatEncoder int // number of bits
   542  
   543  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   544  	f := v.Float()
   545  	if math.IsInf(f, 0) || math.IsNaN(f) {
   546  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   547  	}
   548  
   549  	// Convert as if by ES6 number to string conversion.
   550  	// This matches most other JSON generators.
   551  	// See golang.org/issue/6384 and golang.org/issue/14135.
   552  	// Like fmt %g, but the exponent cutoffs are different
   553  	// and exponents themselves are not padded to two digits.
   554  	b := e.scratch[:0]
   555  	abs := math.Abs(f)
   556  	fmt := byte('f')
   557  	// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
   558  	if abs != 0 {
   559  		if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
   560  			fmt = 'e'
   561  		}
   562  	}
   563  	b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
   564  	if fmt == 'e' {
   565  		// clean up e-09 to e-9
   566  		n := len(b)
   567  		if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
   568  			b[n-2] = b[n-1]
   569  			b = b[:n-1]
   570  		}
   571  	}
   572  
   573  	if opts.quoted {
   574  		e.WriteByte('"')
   575  	}
   576  	e.Write(b)
   577  	if opts.quoted {
   578  		e.WriteByte('"')
   579  	}
   580  }
   581  
   582  var (
   583  	float32Encoder = (floatEncoder(32)).encode
   584  	float64Encoder = (floatEncoder(64)).encode
   585  )
   586  
   587  func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   588  	if v.Type() == numberType {
   589  		numStr := v.String()
   590  		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
   591  		// we keep compatibility so check validity after this.
   592  		if numStr == "" {
   593  			numStr = "0" // Number's zero-val
   594  		}
   595  		if !isValidNumber(numStr) {
   596  			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
   597  		}
   598  		e.WriteString(numStr)
   599  		return
   600  	}
   601  	if opts.quoted {
   602  		sb, err := Marshal(v.String())
   603  		if err != nil {
   604  			e.error(err)
   605  		}
   606  		e.string(string(sb), opts.escapeHTML)
   607  	} else {
   608  		e.string(v.String(), opts.escapeHTML)
   609  	}
   610  }
   611  
   612  func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   613  	if v.IsNil() {
   614  		e.WriteString("null")
   615  		return
   616  	}
   617  	e.reflectValue(v.Elem(), opts)
   618  }
   619  
   620  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   621  	e.error(&UnsupportedTypeError{v.Type()})
   622  }
   623  
   624  type structEncoder struct {
   625  	fields    []field
   626  	fieldEncs []encoderFunc
   627  }
   628  
   629  func (se *structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   630  	e.WriteByte('{')
   631  	first := true
   632  	for i, f := range se.fields {
   633  		fv := fieldByIndex(v, f.index)
   634  		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
   635  			continue
   636  		}
   637  		if first {
   638  			first = false
   639  		} else {
   640  			e.WriteByte(',')
   641  		}
   642  		e.string(f.name, opts.escapeHTML)
   643  		e.WriteByte(':')
   644  		opts.quoted = f.quoted
   645  		se.fieldEncs[i](e, fv, opts)
   646  	}
   647  	e.WriteByte('}')
   648  }
   649  
   650  func newStructEncoder(t reflect.Type) encoderFunc {
   651  	fields := cachedTypeFields(t)
   652  	se := &structEncoder{
   653  		fields:    fields,
   654  		fieldEncs: make([]encoderFunc, len(fields)),
   655  	}
   656  	for i, f := range fields {
   657  		se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
   658  	}
   659  	return se.encode
   660  }
   661  
   662  type mapEncoder struct {
   663  	elemEnc encoderFunc
   664  }
   665  
   666  func (me *mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   667  	if v.IsNil() {
   668  		e.WriteString("null")
   669  		return
   670  	}
   671  	e.WriteByte('{')
   672  
   673  	// Extract and sort the keys.
   674  	keys := v.MapKeys()
   675  	sv := make([]reflectWithString, len(keys))
   676  	for i, v := range keys {
   677  		sv[i].v = v
   678  		if err := sv[i].resolve(); err != nil {
   679  			e.error(&MarshalerError{v.Type(), err})
   680  		}
   681  	}
   682  	sort.Slice(sv, func(i, j int) bool { return sv[i].s < sv[j].s })
   683  
   684  	for i, kv := range sv {
   685  		if i > 0 {
   686  			e.WriteByte(',')
   687  		}
   688  		e.string(kv.s, opts.escapeHTML)
   689  		e.WriteByte(':')
   690  		me.elemEnc(e, v.MapIndex(kv.v), opts)
   691  	}
   692  	e.WriteByte('}')
   693  }
   694  
   695  func newMapEncoder(t reflect.Type) encoderFunc {
   696  	switch t.Key().Kind() {
   697  	case reflect.String,
   698  		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
   699  		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   700  	default:
   701  		if !t.Key().Implements(textMarshalerType) {
   702  			return unsupportedTypeEncoder
   703  		}
   704  	}
   705  	me := &mapEncoder{typeEncoder(t.Elem())}
   706  	return me.encode
   707  }
   708  
   709  func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
   710  	if v.IsNil() {
   711  		e.WriteString("null")
   712  		return
   713  	}
   714  	s := v.Bytes()
   715  	e.WriteByte('"')
   716  	if len(s) < 1024 {
   717  		// for small buffers, using Encode directly is much faster.
   718  		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
   719  		base64.StdEncoding.Encode(dst, s)
   720  		e.Write(dst)
   721  	} else {
   722  		// for large buffers, avoid unnecessary extra temporary
   723  		// buffer space.
   724  		enc := base64.NewEncoder(base64.StdEncoding, e)
   725  		enc.Write(s)
   726  		enc.Close()
   727  	}
   728  	e.WriteByte('"')
   729  }
   730  
   731  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   732  type sliceEncoder struct {
   733  	arrayEnc encoderFunc
   734  }
   735  
   736  func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   737  	if v.IsNil() {
   738  		e.WriteString("null")
   739  		return
   740  	}
   741  	se.arrayEnc(e, v, opts)
   742  }
   743  
   744  func newSliceEncoder(t reflect.Type) encoderFunc {
   745  	// Byte slices get special treatment; arrays don't.
   746  	if t.Elem().Kind() == reflect.Uint8 {
   747  		p := reflect.PtrTo(t.Elem())
   748  		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
   749  			return encodeByteSlice
   750  		}
   751  	}
   752  	enc := &sliceEncoder{newArrayEncoder(t)}
   753  	return enc.encode
   754  }
   755  
   756  type arrayEncoder struct {
   757  	elemEnc encoderFunc
   758  }
   759  
   760  func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   761  	e.WriteByte('[')
   762  	n := v.Len()
   763  	for i := 0; i < n; i++ {
   764  		if i > 0 {
   765  			e.WriteByte(',')
   766  		}
   767  		ae.elemEnc(e, v.Index(i), opts)
   768  	}
   769  	e.WriteByte(']')
   770  }
   771  
   772  func newArrayEncoder(t reflect.Type) encoderFunc {
   773  	enc := &arrayEncoder{typeEncoder(t.Elem())}
   774  	return enc.encode
   775  }
   776  
   777  type ptrEncoder struct {
   778  	elemEnc encoderFunc
   779  }
   780  
   781  func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   782  	if v.IsNil() {
   783  		e.WriteString("null")
   784  		return
   785  	}
   786  	pe.elemEnc(e, v.Elem(), opts)
   787  }
   788  
   789  func newPtrEncoder(t reflect.Type) encoderFunc {
   790  	enc := &ptrEncoder{typeEncoder(t.Elem())}
   791  	return enc.encode
   792  }
   793  
   794  type condAddrEncoder struct {
   795  	canAddrEnc, elseEnc encoderFunc
   796  }
   797  
   798  func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   799  	if v.CanAddr() {
   800  		ce.canAddrEnc(e, v, opts)
   801  	} else {
   802  		ce.elseEnc(e, v, opts)
   803  	}
   804  }
   805  
   806  // newCondAddrEncoder returns an encoder that checks whether its value
   807  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   808  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   809  	enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   810  	return enc.encode
   811  }
   812  
   813  func isValidTag(s string) bool {
   814  	if s == "" {
   815  		return false
   816  	}
   817  	for _, c := range s {
   818  		switch {
   819  		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
   820  			// Backslash and quote chars are reserved, but
   821  			// otherwise any punctuation chars are allowed
   822  			// in a tag name.
   823  		default:
   824  			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
   825  				return false
   826  			}
   827  		}
   828  	}
   829  	return true
   830  }
   831  
   832  func fieldByIndex(v reflect.Value, index []int) reflect.Value {
   833  	for _, i := range index {
   834  		if v.Kind() == reflect.Ptr {
   835  			if v.IsNil() {
   836  				return reflect.Value{}
   837  			}
   838  			v = v.Elem()
   839  		}
   840  		v = v.Field(i)
   841  	}
   842  	return v
   843  }
   844  
   845  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   846  	for _, i := range index {
   847  		if t.Kind() == reflect.Ptr {
   848  			t = t.Elem()
   849  		}
   850  		t = t.Field(i).Type
   851  	}
   852  	return t
   853  }
   854  
   855  type reflectWithString struct {
   856  	v reflect.Value
   857  	s string
   858  }
   859  
   860  func (w *reflectWithString) resolve() error {
   861  	if w.v.Kind() == reflect.String {
   862  		w.s = w.v.String()
   863  		return nil
   864  	}
   865  	if tm, ok := w.v.Interface().(encoding.TextMarshaler); ok {
   866  		buf, err := tm.MarshalText()
   867  		w.s = string(buf)
   868  		return err
   869  	}
   870  	switch w.v.Kind() {
   871  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   872  		w.s = strconv.FormatInt(w.v.Int(), 10)
   873  		return nil
   874  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   875  		w.s = strconv.FormatUint(w.v.Uint(), 10)
   876  		return nil
   877  	}
   878  	panic("unexpected map key type")
   879  }
   880  
   881  // NOTE: keep in sync with stringBytes below.
   882  func (e *encodeState) string(s string, escapeHTML bool) int {
   883  	len0 := e.Len()
   884  	e.WriteByte('"')
   885  	start := 0
   886  	for i := 0; i < len(s); {
   887  		if b := s[i]; b < utf8.RuneSelf {
   888  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   889  				i++
   890  				continue
   891  			}
   892  			if start < i {
   893  				e.WriteString(s[start:i])
   894  			}
   895  			switch b {
   896  			case '\\', '"':
   897  				e.WriteByte('\\')
   898  				e.WriteByte(b)
   899  			case '\n':
   900  				e.WriteByte('\\')
   901  				e.WriteByte('n')
   902  			case '\r':
   903  				e.WriteByte('\\')
   904  				e.WriteByte('r')
   905  			case '\t':
   906  				e.WriteByte('\\')
   907  				e.WriteByte('t')
   908  			default:
   909  				// This encodes bytes < 0x20 except for \t, \n and \r.
   910  				// If escapeHTML is set, it also escapes <, >, and &
   911  				// because they can lead to security holes when
   912  				// user-controlled strings are rendered into JSON
   913  				// and served to some browsers.
   914  				e.WriteString(`\u00`)
   915  				e.WriteByte(hex[b>>4])
   916  				e.WriteByte(hex[b&0xF])
   917  			}
   918  			i++
   919  			start = i
   920  			continue
   921  		}
   922  		c, size := utf8.DecodeRuneInString(s[i:])
   923  		if c == utf8.RuneError && size == 1 {
   924  			if start < i {
   925  				e.WriteString(s[start:i])
   926  			}
   927  			e.WriteString(`\ufffd`)
   928  			i += size
   929  			start = i
   930  			continue
   931  		}
   932  		// U+2028 is LINE SEPARATOR.
   933  		// U+2029 is PARAGRAPH SEPARATOR.
   934  		// They are both technically valid characters in JSON strings,
   935  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   936  		// and can lead to security holes there. It is valid JSON to
   937  		// escape them, so we do so unconditionally.
   938  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   939  		if c == '\u2028' || c == '\u2029' {
   940  			if start < i {
   941  				e.WriteString(s[start:i])
   942  			}
   943  			e.WriteString(`\u202`)
   944  			e.WriteByte(hex[c&0xF])
   945  			i += size
   946  			start = i
   947  			continue
   948  		}
   949  		i += size
   950  	}
   951  	if start < len(s) {
   952  		e.WriteString(s[start:])
   953  	}
   954  	e.WriteByte('"')
   955  	return e.Len() - len0
   956  }
   957  
   958  // NOTE: keep in sync with string above.
   959  func (e *encodeState) stringBytes(s []byte, escapeHTML bool) int {
   960  	len0 := e.Len()
   961  	e.WriteByte('"')
   962  	start := 0
   963  	for i := 0; i < len(s); {
   964  		if b := s[i]; b < utf8.RuneSelf {
   965  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   966  				i++
   967  				continue
   968  			}
   969  			if start < i {
   970  				e.Write(s[start:i])
   971  			}
   972  			switch b {
   973  			case '\\', '"':
   974  				e.WriteByte('\\')
   975  				e.WriteByte(b)
   976  			case '\n':
   977  				e.WriteByte('\\')
   978  				e.WriteByte('n')
   979  			case '\r':
   980  				e.WriteByte('\\')
   981  				e.WriteByte('r')
   982  			case '\t':
   983  				e.WriteByte('\\')
   984  				e.WriteByte('t')
   985  			default:
   986  				// This encodes bytes < 0x20 except for \t, \n and \r.
   987  				// If escapeHTML is set, it also escapes <, >, and &
   988  				// because they can lead to security holes when
   989  				// user-controlled strings are rendered into JSON
   990  				// and served to some browsers.
   991  				e.WriteString(`\u00`)
   992  				e.WriteByte(hex[b>>4])
   993  				e.WriteByte(hex[b&0xF])
   994  			}
   995  			i++
   996  			start = i
   997  			continue
   998  		}
   999  		c, size := utf8.DecodeRune(s[i:])
  1000  		if c == utf8.RuneError && size == 1 {
  1001  			if start < i {
  1002  				e.Write(s[start:i])
  1003  			}
  1004  			e.WriteString(`\ufffd`)
  1005  			i += size
  1006  			start = i
  1007  			continue
  1008  		}
  1009  		// U+2028 is LINE SEPARATOR.
  1010  		// U+2029 is PARAGRAPH SEPARATOR.
  1011  		// They are both technically valid characters in JSON strings,
  1012  		// but don't work in JSONP, which has to be evaluated as JavaScript,
  1013  		// and can lead to security holes there. It is valid JSON to
  1014  		// escape them, so we do so unconditionally.
  1015  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
  1016  		if c == '\u2028' || c == '\u2029' {
  1017  			if start < i {
  1018  				e.Write(s[start:i])
  1019  			}
  1020  			e.WriteString(`\u202`)
  1021  			e.WriteByte(hex[c&0xF])
  1022  			i += size
  1023  			start = i
  1024  			continue
  1025  		}
  1026  		i += size
  1027  	}
  1028  	if start < len(s) {
  1029  		e.Write(s[start:])
  1030  	}
  1031  	e.WriteByte('"')
  1032  	return e.Len() - len0
  1033  }
  1034  
  1035  // A field represents a single field found in a struct.
  1036  type field struct {
  1037  	name      string
  1038  	nameBytes []byte                 // []byte(name)
  1039  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
  1040  
  1041  	tag       bool
  1042  	index     []int
  1043  	typ       reflect.Type
  1044  	omitEmpty bool
  1045  	quoted    bool
  1046  }
  1047  
  1048  func fillField(f field) field {
  1049  	f.nameBytes = []byte(f.name)
  1050  	f.equalFold = foldFunc(f.nameBytes)
  1051  	return f
  1052  }
  1053  
  1054  // byIndex sorts field by index sequence.
  1055  type byIndex []field
  1056  
  1057  func (x byIndex) Len() int { return len(x) }
  1058  
  1059  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  1060  
  1061  func (x byIndex) Less(i, j int) bool {
  1062  	for k, xik := range x[i].index {
  1063  		if k >= len(x[j].index) {
  1064  			return false
  1065  		}
  1066  		if xik != x[j].index[k] {
  1067  			return xik < x[j].index[k]
  1068  		}
  1069  	}
  1070  	return len(x[i].index) < len(x[j].index)
  1071  }
  1072  
  1073  // typeFields returns a list of fields that JSON should recognize for the given type.
  1074  // The algorithm is breadth-first search over the set of structs to include - the top struct
  1075  // and then any reachable anonymous structs.
  1076  func typeFields(t reflect.Type) []field {
  1077  	// Anonymous fields to explore at the current level and the next.
  1078  	current := []field{}
  1079  	next := []field{{typ: t}}
  1080  
  1081  	// Count of queued names for current level and the next.
  1082  	count := map[reflect.Type]int{}
  1083  	nextCount := map[reflect.Type]int{}
  1084  
  1085  	// Types already visited at an earlier level.
  1086  	visited := map[reflect.Type]bool{}
  1087  
  1088  	// Fields found.
  1089  	var fields []field
  1090  
  1091  	for len(next) > 0 {
  1092  		current, next = next, current[:0]
  1093  		count, nextCount = nextCount, map[reflect.Type]int{}
  1094  
  1095  		for _, f := range current {
  1096  			if visited[f.typ] {
  1097  				continue
  1098  			}
  1099  			visited[f.typ] = true
  1100  
  1101  			// Scan f.typ for fields to include.
  1102  			for i := 0; i < f.typ.NumField(); i++ {
  1103  				sf := f.typ.Field(i)
  1104  				if sf.PkgPath != "" && !sf.Anonymous { // unexported
  1105  					continue
  1106  				}
  1107  				tag := sf.Tag.Get("json")
  1108  				if tag == "-" {
  1109  					continue
  1110  				}
  1111  				name, opts := parseTag(tag)
  1112  				if !isValidTag(name) {
  1113  					name = ""
  1114  				}
  1115  				index := make([]int, len(f.index)+1)
  1116  				copy(index, f.index)
  1117  				index[len(f.index)] = i
  1118  
  1119  				ft := sf.Type
  1120  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1121  					// Follow pointer.
  1122  					ft = ft.Elem()
  1123  				}
  1124  
  1125  				// Only strings, floats, integers, and booleans can be quoted.
  1126  				quoted := false
  1127  				if opts.Contains("string") {
  1128  					switch ft.Kind() {
  1129  					case reflect.Bool,
  1130  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1131  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
  1132  						reflect.Float32, reflect.Float64,
  1133  						reflect.String:
  1134  						quoted = true
  1135  					}
  1136  				}
  1137  
  1138  				// Record found field and index sequence.
  1139  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1140  					tagged := name != ""
  1141  					if name == "" {
  1142  						name = sf.Name
  1143  					}
  1144  					fields = append(fields, fillField(field{
  1145  						name:      name,
  1146  						tag:       tagged,
  1147  						index:     index,
  1148  						typ:       ft,
  1149  						omitEmpty: opts.Contains("omitempty"),
  1150  						quoted:    quoted,
  1151  					}))
  1152  					if count[f.typ] > 1 {
  1153  						// If there were multiple instances, add a second,
  1154  						// so that the annihilation code will see a duplicate.
  1155  						// It only cares about the distinction between 1 or 2,
  1156  						// so don't bother generating any more copies.
  1157  						fields = append(fields, fields[len(fields)-1])
  1158  					}
  1159  					continue
  1160  				}
  1161  
  1162  				// Record new anonymous struct to explore in next round.
  1163  				nextCount[ft]++
  1164  				if nextCount[ft] == 1 {
  1165  					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
  1166  				}
  1167  			}
  1168  		}
  1169  	}
  1170  
  1171  	sort.Slice(fields, func(i, j int) bool {
  1172  		x := fields
  1173  		// sort field by name, breaking ties with depth, then
  1174  		// breaking ties with "name came from json tag", then
  1175  		// breaking ties with index sequence.
  1176  		if x[i].name != x[j].name {
  1177  			return x[i].name < x[j].name
  1178  		}
  1179  		if len(x[i].index) != len(x[j].index) {
  1180  			return len(x[i].index) < len(x[j].index)
  1181  		}
  1182  		if x[i].tag != x[j].tag {
  1183  			return x[i].tag
  1184  		}
  1185  		return byIndex(x).Less(i, j)
  1186  	})
  1187  
  1188  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1189  	// except that fields with JSON tags are promoted.
  1190  
  1191  	// The fields are sorted in primary order of name, secondary order
  1192  	// of field index length. Loop over names; for each name, delete
  1193  	// hidden fields by choosing the one dominant field that survives.
  1194  	out := fields[:0]
  1195  	for advance, i := 0, 0; i < len(fields); i += advance {
  1196  		// One iteration per name.
  1197  		// Find the sequence of fields with the name of this first field.
  1198  		fi := fields[i]
  1199  		name := fi.name
  1200  		for advance = 1; i+advance < len(fields); advance++ {
  1201  			fj := fields[i+advance]
  1202  			if fj.name != name {
  1203  				break
  1204  			}
  1205  		}
  1206  		if advance == 1 { // Only one field with this name
  1207  			out = append(out, fi)
  1208  			continue
  1209  		}
  1210  		dominant, ok := dominantField(fields[i : i+advance])
  1211  		if ok {
  1212  			out = append(out, dominant)
  1213  		}
  1214  	}
  1215  
  1216  	fields = out
  1217  	sort.Sort(byIndex(fields))
  1218  
  1219  	return fields
  1220  }
  1221  
  1222  // dominantField looks through the fields, all of which are known to
  1223  // have the same name, to find the single field that dominates the
  1224  // others using Go's embedding rules, modified by the presence of
  1225  // JSON tags. If there are multiple top-level fields, the boolean
  1226  // will be false: This condition is an error in Go and we skip all
  1227  // the fields.
  1228  func dominantField(fields []field) (field, bool) {
  1229  	// The fields are sorted in increasing index-length order. The winner
  1230  	// must therefore be one with the shortest index length. Drop all
  1231  	// longer entries, which is easy: just truncate the slice.
  1232  	length := len(fields[0].index)
  1233  	tagged := -1 // Index of first tagged field.
  1234  	for i, f := range fields {
  1235  		if len(f.index) > length {
  1236  			fields = fields[:i]
  1237  			break
  1238  		}
  1239  		if f.tag {
  1240  			if tagged >= 0 {
  1241  				// Multiple tagged fields at the same level: conflict.
  1242  				// Return no field.
  1243  				return field{}, false
  1244  			}
  1245  			tagged = i
  1246  		}
  1247  	}
  1248  	if tagged >= 0 {
  1249  		return fields[tagged], true
  1250  	}
  1251  	// All remaining fields have the same length. If there's more than one,
  1252  	// we have a conflict (two fields named "X" at the same level) and we
  1253  	// return no field.
  1254  	if len(fields) > 1 {
  1255  		return field{}, false
  1256  	}
  1257  	return fields[0], true
  1258  }
  1259  
  1260  var fieldCache struct {
  1261  	value atomic.Value // map[reflect.Type][]field
  1262  	mu    sync.Mutex   // used only by writers
  1263  }
  1264  
  1265  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1266  func cachedTypeFields(t reflect.Type) []field {
  1267  	m, _ := fieldCache.value.Load().(map[reflect.Type][]field)
  1268  	f := m[t]
  1269  	if f != nil {
  1270  		return f
  1271  	}
  1272  
  1273  	// Compute fields without lock.
  1274  	// Might duplicate effort but won't hold other computations back.
  1275  	f = typeFields(t)
  1276  	if f == nil {
  1277  		f = []field{}
  1278  	}
  1279  
  1280  	fieldCache.mu.Lock()
  1281  	m, _ = fieldCache.value.Load().(map[reflect.Type][]field)
  1282  	newM := make(map[reflect.Type][]field, len(m)+1)
  1283  	for k, v := range m {
  1284  		newM[k] = v
  1285  	}
  1286  	newM[t] = f
  1287  	fieldCache.value.Store(newM)
  1288  	fieldCache.mu.Unlock()
  1289  	return f
  1290  }