github.com/slayercat/go@v0.0.0-20170428012452-c51559813f61/src/hash/crc32/crc32.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32,
     6  // checksum. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for
     7  // information.
     8  //
     9  // Polynomials are represented in LSB-first form also known as reversed representation.
    10  //
    11  // See http://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials
    12  // for information.
    13  package crc32
    14  
    15  import (
    16  	"hash"
    17  	"sync"
    18  )
    19  
    20  // The size of a CRC-32 checksum in bytes.
    21  const Size = 4
    22  
    23  // Predefined polynomials.
    24  const (
    25  	// IEEE is by far and away the most common CRC-32 polynomial.
    26  	// Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ...
    27  	IEEE = 0xedb88320
    28  
    29  	// Castagnoli's polynomial, used in iSCSI.
    30  	// Has better error detection characteristics than IEEE.
    31  	// http://dx.doi.org/10.1109/26.231911
    32  	Castagnoli = 0x82f63b78
    33  
    34  	// Koopman's polynomial.
    35  	// Also has better error detection characteristics than IEEE.
    36  	// http://dx.doi.org/10.1109/DSN.2002.1028931
    37  	Koopman = 0xeb31d82e
    38  )
    39  
    40  // Table is a 256-word table representing the polynomial for efficient processing.
    41  type Table [256]uint32
    42  
    43  // This file makes use of functions implemented in architecture-specific files.
    44  // The interface that they implement is as follows:
    45  //
    46  //    // archAvailableIEEE reports whether an architecture-specific CRC32-IEEE
    47  //    // algorithm is available.
    48  //    archAvailableIEEE() bool
    49  //
    50  //    // archInitIEEE initializes the architecture-specific CRC3-IEEE algorithm.
    51  //    // It can only be called if archAvailableIEEE() returns true.
    52  //    archInitIEEE()
    53  //
    54  //    // archUpdateIEEE updates the given CRC32-IEEE. It can only be called if
    55  //    // archInitIEEE() was previously called.
    56  //    archUpdateIEEE(crc uint32, p []byte) uint32
    57  //
    58  //    // archAvailableCastagnoli reports whether an architecture-specific
    59  //    // CRC32-C algorithm is available.
    60  //    archAvailableCastagnoli() bool
    61  //
    62  //    // archInitCastagnoli initializes the architecture-specific CRC32-C
    63  //    // algorithm. It can only be called if archAvailableCastagnoli() returns
    64  //    // true.
    65  //    archInitCastagnoli()
    66  //
    67  //    // archUpdateCastagnoli updates the given CRC32-C. It can only be called
    68  //    // if archInitCastagnoli() was previously called.
    69  //    archUpdateCastagnoli(crc uint32, p []byte) uint32
    70  
    71  // castagnoliTable points to a lazily initialized Table for the Castagnoli
    72  // polynomial. MakeTable will always return this value when asked to make a
    73  // Castagnoli table so we can compare against it to find when the caller is
    74  // using this polynomial.
    75  var castagnoliTable *Table
    76  var castagnoliTable8 *slicing8Table
    77  var castagnoliArchImpl bool
    78  var updateCastagnoli func(crc uint32, p []byte) uint32
    79  var castagnoliOnce sync.Once
    80  
    81  func castagnoliInit() {
    82  	castagnoliTable = simpleMakeTable(Castagnoli)
    83  	castagnoliArchImpl = archAvailableCastagnoli()
    84  
    85  	if castagnoliArchImpl {
    86  		archInitCastagnoli()
    87  		updateCastagnoli = archUpdateCastagnoli
    88  	} else {
    89  		// Initialize the slicing-by-8 table.
    90  		castagnoliTable8 = slicingMakeTable(Castagnoli)
    91  		updateCastagnoli = func(crc uint32, p []byte) uint32 {
    92  			return slicingUpdate(crc, castagnoliTable8, p)
    93  		}
    94  	}
    95  }
    96  
    97  // IEEETable is the table for the IEEE polynomial.
    98  var IEEETable = simpleMakeTable(IEEE)
    99  
   100  // ieeeTable8 is the slicing8Table for IEEE
   101  var ieeeTable8 *slicing8Table
   102  var ieeeArchImpl bool
   103  var updateIEEE func(crc uint32, p []byte) uint32
   104  var ieeeOnce sync.Once
   105  
   106  func ieeeInit() {
   107  	ieeeArchImpl = archAvailableIEEE()
   108  
   109  	if ieeeArchImpl {
   110  		archInitIEEE()
   111  		updateIEEE = archUpdateIEEE
   112  	} else {
   113  		// Initialize the slicing-by-8 table.
   114  		ieeeTable8 = slicingMakeTable(IEEE)
   115  		updateIEEE = func(crc uint32, p []byte) uint32 {
   116  			return slicingUpdate(crc, ieeeTable8, p)
   117  		}
   118  	}
   119  }
   120  
   121  // MakeTable returns a Table constructed from the specified polynomial.
   122  // The contents of this Table must not be modified.
   123  func MakeTable(poly uint32) *Table {
   124  	switch poly {
   125  	case IEEE:
   126  		ieeeOnce.Do(ieeeInit)
   127  		return IEEETable
   128  	case Castagnoli:
   129  		castagnoliOnce.Do(castagnoliInit)
   130  		return castagnoliTable
   131  	}
   132  	return simpleMakeTable(poly)
   133  }
   134  
   135  // digest represents the partial evaluation of a checksum.
   136  type digest struct {
   137  	crc uint32
   138  	tab *Table
   139  }
   140  
   141  // New creates a new hash.Hash32 computing the CRC-32 checksum
   142  // using the polynomial represented by the Table.
   143  // Its Sum method will lay the value out in big-endian byte order.
   144  func New(tab *Table) hash.Hash32 {
   145  	if tab == IEEETable {
   146  		ieeeOnce.Do(ieeeInit)
   147  	}
   148  	return &digest{0, tab}
   149  }
   150  
   151  // NewIEEE creates a new hash.Hash32 computing the CRC-32 checksum
   152  // using the IEEE polynomial.
   153  // Its Sum method will lay the value out in big-endian byte order.
   154  func NewIEEE() hash.Hash32 { return New(IEEETable) }
   155  
   156  func (d *digest) Size() int { return Size }
   157  
   158  func (d *digest) BlockSize() int { return 1 }
   159  
   160  func (d *digest) Reset() { d.crc = 0 }
   161  
   162  // Update returns the result of adding the bytes in p to the crc.
   163  func Update(crc uint32, tab *Table, p []byte) uint32 {
   164  	switch tab {
   165  	case castagnoliTable:
   166  		return updateCastagnoli(crc, p)
   167  	case IEEETable:
   168  		// Unfortunately, because IEEETable is exported, IEEE may be used without a
   169  		// call to MakeTable. We have to make sure it gets initialized in that case.
   170  		ieeeOnce.Do(ieeeInit)
   171  		return updateIEEE(crc, p)
   172  	default:
   173  		return simpleUpdate(crc, tab, p)
   174  	}
   175  }
   176  
   177  func (d *digest) Write(p []byte) (n int, err error) {
   178  	switch d.tab {
   179  	case castagnoliTable:
   180  		d.crc = updateCastagnoli(d.crc, p)
   181  	case IEEETable:
   182  		// We only create digest objects through New() which takes care of
   183  		// initialization in this case.
   184  		d.crc = updateIEEE(d.crc, p)
   185  	default:
   186  		d.crc = simpleUpdate(d.crc, d.tab, p)
   187  	}
   188  	return len(p), nil
   189  }
   190  
   191  func (d *digest) Sum32() uint32 { return d.crc }
   192  
   193  func (d *digest) Sum(in []byte) []byte {
   194  	s := d.Sum32()
   195  	return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s))
   196  }
   197  
   198  // Checksum returns the CRC-32 checksum of data
   199  // using the polynomial represented by the Table.
   200  func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) }
   201  
   202  // ChecksumIEEE returns the CRC-32 checksum of data
   203  // using the IEEE polynomial.
   204  func ChecksumIEEE(data []byte) uint32 {
   205  	ieeeOnce.Do(ieeeInit)
   206  	return updateIEEE(0, data)
   207  }