github.com/slayercat/go@v0.0.0-20170428012452-c51559813f61/src/regexp/backtrack.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // backtrack is a regular expression search with submatch
     6  // tracking for small regular expressions and texts. It allocates
     7  // a bit vector with (length of input) * (length of prog) bits,
     8  // to make sure it never explores the same (character position, instruction)
     9  // state multiple times. This limits the search to run in time linear in
    10  // the length of the test.
    11  //
    12  // backtrack is a fast replacement for the NFA code on small
    13  // regexps when onepass cannot be used.
    14  
    15  package regexp
    16  
    17  import "regexp/syntax"
    18  
    19  // A job is an entry on the backtracker's job stack. It holds
    20  // the instruction pc and the position in the input.
    21  type job struct {
    22  	pc  uint32
    23  	arg int
    24  	pos int
    25  }
    26  
    27  const (
    28  	visitedBits        = 32
    29  	maxBacktrackProg   = 500        // len(prog.Inst) <= max
    30  	maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
    31  )
    32  
    33  // bitState holds state for the backtracker.
    34  type bitState struct {
    35  	prog *syntax.Prog
    36  
    37  	end     int
    38  	cap     []int
    39  	jobs    []job
    40  	visited []uint32
    41  }
    42  
    43  var notBacktrack *bitState = nil
    44  
    45  // maxBitStateLen returns the maximum length of a string to search with
    46  // the backtracker using prog.
    47  func maxBitStateLen(prog *syntax.Prog) int {
    48  	if !shouldBacktrack(prog) {
    49  		return 0
    50  	}
    51  	return maxBacktrackVector / len(prog.Inst)
    52  }
    53  
    54  // newBitState returns a new bitState for the given prog,
    55  // or notBacktrack if the size of the prog exceeds the maximum size that
    56  // the backtracker will be run for.
    57  func newBitState(prog *syntax.Prog) *bitState {
    58  	if !shouldBacktrack(prog) {
    59  		return notBacktrack
    60  	}
    61  	return &bitState{
    62  		prog: prog,
    63  	}
    64  }
    65  
    66  // shouldBacktrack reports whether the program is too
    67  // long for the backtracker to run.
    68  func shouldBacktrack(prog *syntax.Prog) bool {
    69  	return len(prog.Inst) <= maxBacktrackProg
    70  }
    71  
    72  // reset resets the state of the backtracker.
    73  // end is the end position in the input.
    74  // ncap is the number of captures.
    75  func (b *bitState) reset(end int, ncap int) {
    76  	b.end = end
    77  
    78  	if cap(b.jobs) == 0 {
    79  		b.jobs = make([]job, 0, 256)
    80  	} else {
    81  		b.jobs = b.jobs[:0]
    82  	}
    83  
    84  	visitedSize := (len(b.prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
    85  	if cap(b.visited) < visitedSize {
    86  		b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
    87  	} else {
    88  		b.visited = b.visited[:visitedSize]
    89  		for i := range b.visited {
    90  			b.visited[i] = 0
    91  		}
    92  	}
    93  
    94  	if cap(b.cap) < ncap {
    95  		b.cap = make([]int, ncap)
    96  	} else {
    97  		b.cap = b.cap[:ncap]
    98  	}
    99  	for i := range b.cap {
   100  		b.cap[i] = -1
   101  	}
   102  }
   103  
   104  // shouldVisit reports whether the combination of (pc, pos) has not
   105  // been visited yet.
   106  func (b *bitState) shouldVisit(pc uint32, pos int) bool {
   107  	n := uint(int(pc)*(b.end+1) + pos)
   108  	if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
   109  		return false
   110  	}
   111  	b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
   112  	return true
   113  }
   114  
   115  // push pushes (pc, pos, arg) onto the job stack if it should be
   116  // visited.
   117  func (b *bitState) push(pc uint32, pos int, arg int) {
   118  	if b.prog.Inst[pc].Op == syntax.InstFail {
   119  		return
   120  	}
   121  
   122  	// Only check shouldVisit when arg == 0.
   123  	// When arg > 0, we are continuing a previous visit.
   124  	if arg == 0 && !b.shouldVisit(pc, pos) {
   125  		return
   126  	}
   127  
   128  	b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
   129  }
   130  
   131  // tryBacktrack runs a backtracking search starting at pos.
   132  func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
   133  	longest := m.re.longest
   134  	m.matched = false
   135  
   136  	b.push(pc, pos, 0)
   137  	for len(b.jobs) > 0 {
   138  		l := len(b.jobs) - 1
   139  		// Pop job off the stack.
   140  		pc := b.jobs[l].pc
   141  		pos := b.jobs[l].pos
   142  		arg := b.jobs[l].arg
   143  		b.jobs = b.jobs[:l]
   144  
   145  		// Optimization: rather than push and pop,
   146  		// code that is going to Push and continue
   147  		// the loop simply updates ip, p, and arg
   148  		// and jumps to CheckAndLoop. We have to
   149  		// do the ShouldVisit check that Push
   150  		// would have, but we avoid the stack
   151  		// manipulation.
   152  		goto Skip
   153  	CheckAndLoop:
   154  		if !b.shouldVisit(pc, pos) {
   155  			continue
   156  		}
   157  	Skip:
   158  
   159  		inst := b.prog.Inst[pc]
   160  
   161  		switch inst.Op {
   162  		default:
   163  			panic("bad inst")
   164  		case syntax.InstFail:
   165  			panic("unexpected InstFail")
   166  		case syntax.InstAlt:
   167  			// Cannot just
   168  			//   b.push(inst.Out, pos, 0)
   169  			//   b.push(inst.Arg, pos, 0)
   170  			// If during the processing of inst.Out, we encounter
   171  			// inst.Arg via another path, we want to process it then.
   172  			// Pushing it here will inhibit that. Instead, re-push
   173  			// inst with arg==1 as a reminder to push inst.Arg out
   174  			// later.
   175  			switch arg {
   176  			case 0:
   177  				b.push(pc, pos, 1)
   178  				pc = inst.Out
   179  				goto CheckAndLoop
   180  			case 1:
   181  				// Finished inst.Out; try inst.Arg.
   182  				arg = 0
   183  				pc = inst.Arg
   184  				goto CheckAndLoop
   185  			}
   186  			panic("bad arg in InstAlt")
   187  
   188  		case syntax.InstAltMatch:
   189  			// One opcode consumes runes; the other leads to match.
   190  			switch b.prog.Inst[inst.Out].Op {
   191  			case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
   192  				// inst.Arg is the match.
   193  				b.push(inst.Arg, pos, 0)
   194  				pc = inst.Arg
   195  				pos = b.end
   196  				goto CheckAndLoop
   197  			}
   198  			// inst.Out is the match - non-greedy
   199  			b.push(inst.Out, b.end, 0)
   200  			pc = inst.Out
   201  			goto CheckAndLoop
   202  
   203  		case syntax.InstRune:
   204  			r, width := i.step(pos)
   205  			if !inst.MatchRune(r) {
   206  				continue
   207  			}
   208  			pos += width
   209  			pc = inst.Out
   210  			goto CheckAndLoop
   211  
   212  		case syntax.InstRune1:
   213  			r, width := i.step(pos)
   214  			if r != inst.Rune[0] {
   215  				continue
   216  			}
   217  			pos += width
   218  			pc = inst.Out
   219  			goto CheckAndLoop
   220  
   221  		case syntax.InstRuneAnyNotNL:
   222  			r, width := i.step(pos)
   223  			if r == '\n' || r == endOfText {
   224  				continue
   225  			}
   226  			pos += width
   227  			pc = inst.Out
   228  			goto CheckAndLoop
   229  
   230  		case syntax.InstRuneAny:
   231  			r, width := i.step(pos)
   232  			if r == endOfText {
   233  				continue
   234  			}
   235  			pos += width
   236  			pc = inst.Out
   237  			goto CheckAndLoop
   238  
   239  		case syntax.InstCapture:
   240  			switch arg {
   241  			case 0:
   242  				if 0 <= inst.Arg && inst.Arg < uint32(len(b.cap)) {
   243  					// Capture pos to register, but save old value.
   244  					b.push(pc, b.cap[inst.Arg], 1) // come back when we're done.
   245  					b.cap[inst.Arg] = pos
   246  				}
   247  				pc = inst.Out
   248  				goto CheckAndLoop
   249  			case 1:
   250  				// Finished inst.Out; restore the old value.
   251  				b.cap[inst.Arg] = pos
   252  				continue
   253  
   254  			}
   255  			panic("bad arg in InstCapture")
   256  
   257  		case syntax.InstEmptyWidth:
   258  			if syntax.EmptyOp(inst.Arg)&^i.context(pos) != 0 {
   259  				continue
   260  			}
   261  			pc = inst.Out
   262  			goto CheckAndLoop
   263  
   264  		case syntax.InstNop:
   265  			pc = inst.Out
   266  			goto CheckAndLoop
   267  
   268  		case syntax.InstMatch:
   269  			// We found a match. If the caller doesn't care
   270  			// where the match is, no point going further.
   271  			if len(b.cap) == 0 {
   272  				m.matched = true
   273  				return m.matched
   274  			}
   275  
   276  			// Record best match so far.
   277  			// Only need to check end point, because this entire
   278  			// call is only considering one start position.
   279  			if len(b.cap) > 1 {
   280  				b.cap[1] = pos
   281  			}
   282  			if !m.matched || (longest && pos > 0 && pos > m.matchcap[1]) {
   283  				copy(m.matchcap, b.cap)
   284  			}
   285  			m.matched = true
   286  
   287  			// If going for first match, we're done.
   288  			if !longest {
   289  				return m.matched
   290  			}
   291  
   292  			// If we used the entire text, no longer match is possible.
   293  			if pos == b.end {
   294  				return m.matched
   295  			}
   296  
   297  			// Otherwise, continue on in hope of a longer match.
   298  			continue
   299  		}
   300  	}
   301  
   302  	return m.matched
   303  }
   304  
   305  // backtrack runs a backtracking search of prog on the input starting at pos.
   306  func (m *machine) backtrack(i input, pos int, end int, ncap int) bool {
   307  	if !i.canCheckPrefix() {
   308  		panic("backtrack called for a RuneReader")
   309  	}
   310  
   311  	startCond := m.re.cond
   312  	if startCond == ^syntax.EmptyOp(0) { // impossible
   313  		return false
   314  	}
   315  	if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
   316  		// Anchored match, past beginning of text.
   317  		return false
   318  	}
   319  
   320  	b := m.b
   321  	b.reset(end, ncap)
   322  
   323  	m.matchcap = m.matchcap[:ncap]
   324  	for i := range m.matchcap {
   325  		m.matchcap[i] = -1
   326  	}
   327  
   328  	// Anchored search must start at the beginning of the input
   329  	if startCond&syntax.EmptyBeginText != 0 {
   330  		if len(b.cap) > 0 {
   331  			b.cap[0] = pos
   332  		}
   333  		return m.tryBacktrack(b, i, uint32(m.p.Start), pos)
   334  	}
   335  
   336  	// Unanchored search, starting from each possible text position.
   337  	// Notice that we have to try the empty string at the end of
   338  	// the text, so the loop condition is pos <= end, not pos < end.
   339  	// This looks like it's quadratic in the size of the text,
   340  	// but we are not clearing visited between calls to TrySearch,
   341  	// so no work is duplicated and it ends up still being linear.
   342  	width := -1
   343  	for ; pos <= end && width != 0; pos += width {
   344  		if len(m.re.prefix) > 0 {
   345  			// Match requires literal prefix; fast search for it.
   346  			advance := i.index(m.re, pos)
   347  			if advance < 0 {
   348  				return false
   349  			}
   350  			pos += advance
   351  		}
   352  
   353  		if len(b.cap) > 0 {
   354  			b.cap[0] = pos
   355  		}
   356  		if m.tryBacktrack(b, i, uint32(m.p.Start), pos) {
   357  			// Match must be leftmost; done.
   358  			return true
   359  		}
   360  		_, width = i.step(pos)
   361  	}
   362  	return false
   363  }