github.com/slayercat/go@v0.0.0-20170428012452-c51559813f61/src/time/format.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package time
     6  
     7  import "errors"
     8  
     9  // These are predefined layouts for use in Time.Format and Time.Parse.
    10  // The reference time used in the layouts is the specific time:
    11  //	Mon Jan 2 15:04:05 MST 2006
    12  // which is Unix time 1136239445. Since MST is GMT-0700,
    13  // the reference time can be thought of as
    14  //	01/02 03:04:05PM '06 -0700
    15  // To define your own format, write down what the reference time would look
    16  // like formatted your way; see the values of constants like ANSIC,
    17  // StampMicro or Kitchen for examples. The model is to demonstrate what the
    18  // reference time looks like so that the Format and Parse methods can apply
    19  // the same transformation to a general time value.
    20  //
    21  // Within the format string, an underscore _ represents a space that may be
    22  // replaced by a digit if the following number (a day) has two digits; for
    23  // compatibility with fixed-width Unix time formats.
    24  //
    25  // A decimal point followed by one or more zeros represents a fractional
    26  // second, printed to the given number of decimal places. A decimal point
    27  // followed by one or more nines represents a fractional second, printed to
    28  // the given number of decimal places, with trailing zeros removed.
    29  // When parsing (only), the input may contain a fractional second
    30  // field immediately after the seconds field, even if the layout does not
    31  // signify its presence. In that case a decimal point followed by a maximal
    32  // series of digits is parsed as a fractional second.
    33  //
    34  // Numeric time zone offsets format as follows:
    35  //	-0700  ±hhmm
    36  //	-07:00 ±hh:mm
    37  //	-07    ±hh
    38  // Replacing the sign in the format with a Z triggers
    39  // the ISO 8601 behavior of printing Z instead of an
    40  // offset for the UTC zone. Thus:
    41  //	Z0700  Z or ±hhmm
    42  //	Z07:00 Z or ±hh:mm
    43  //	Z07    Z or ±hh
    44  //
    45  // The recognized day of week formats are "Mon" and "Monday".
    46  // The recognized month formats are "Jan" and "January".
    47  //
    48  // Text in the format string that is not recognized as part of the reference
    49  // time is echoed verbatim during Format and expected to appear verbatim
    50  // in the input to Parse.
    51  //
    52  // The executable example for time.Format demonstrates the working
    53  // of the layout string in detail and is a good reference.
    54  //
    55  // Note that the RFC822, RFC850, and RFC1123 formats should be applied
    56  // only to local times. Applying them to UTC times will use "UTC" as the
    57  // time zone abbreviation, while strictly speaking those RFCs require the
    58  // use of "GMT" in that case.
    59  // In general RFC1123Z should be used instead of RFC1123 for servers
    60  // that insist on that format, and RFC3339 should be preferred for new protocols.
    61  // RFC822, RFC822Z, RFC1123, and RFC1123Z are useful for formatting;
    62  // when used with time.Parse they do not accept all the time formats
    63  // permitted by the RFCs.
    64  const (
    65  	ANSIC       = "Mon Jan _2 15:04:05 2006"
    66  	UnixDate    = "Mon Jan _2 15:04:05 MST 2006"
    67  	RubyDate    = "Mon Jan 02 15:04:05 -0700 2006"
    68  	RFC822      = "02 Jan 06 15:04 MST"
    69  	RFC822Z     = "02 Jan 06 15:04 -0700" // RFC822 with numeric zone
    70  	RFC850      = "Monday, 02-Jan-06 15:04:05 MST"
    71  	RFC1123     = "Mon, 02 Jan 2006 15:04:05 MST"
    72  	RFC1123Z    = "Mon, 02 Jan 2006 15:04:05 -0700" // RFC1123 with numeric zone
    73  	RFC3339     = "2006-01-02T15:04:05Z07:00"
    74  	RFC3339Nano = "2006-01-02T15:04:05.999999999Z07:00"
    75  	Kitchen     = "3:04PM"
    76  	// Handy time stamps.
    77  	Stamp      = "Jan _2 15:04:05"
    78  	StampMilli = "Jan _2 15:04:05.000"
    79  	StampMicro = "Jan _2 15:04:05.000000"
    80  	StampNano  = "Jan _2 15:04:05.000000000"
    81  )
    82  
    83  const (
    84  	_                        = iota
    85  	stdLongMonth             = iota + stdNeedDate  // "January"
    86  	stdMonth                                       // "Jan"
    87  	stdNumMonth                                    // "1"
    88  	stdZeroMonth                                   // "01"
    89  	stdLongWeekDay                                 // "Monday"
    90  	stdWeekDay                                     // "Mon"
    91  	stdDay                                         // "2"
    92  	stdUnderDay                                    // "_2"
    93  	stdZeroDay                                     // "02"
    94  	stdHour                  = iota + stdNeedClock // "15"
    95  	stdHour12                                      // "3"
    96  	stdZeroHour12                                  // "03"
    97  	stdMinute                                      // "4"
    98  	stdZeroMinute                                  // "04"
    99  	stdSecond                                      // "5"
   100  	stdZeroSecond                                  // "05"
   101  	stdLongYear              = iota + stdNeedDate  // "2006"
   102  	stdYear                                        // "06"
   103  	stdPM                    = iota + stdNeedClock // "PM"
   104  	stdpm                                          // "pm"
   105  	stdTZ                    = iota                // "MST"
   106  	stdISO8601TZ                                   // "Z0700"  // prints Z for UTC
   107  	stdISO8601SecondsTZ                            // "Z070000"
   108  	stdISO8601ShortTZ                              // "Z07"
   109  	stdISO8601ColonTZ                              // "Z07:00" // prints Z for UTC
   110  	stdISO8601ColonSecondsTZ                       // "Z07:00:00"
   111  	stdNumTZ                                       // "-0700"  // always numeric
   112  	stdNumSecondsTz                                // "-070000"
   113  	stdNumShortTZ                                  // "-07"    // always numeric
   114  	stdNumColonTZ                                  // "-07:00" // always numeric
   115  	stdNumColonSecondsTZ                           // "-07:00:00"
   116  	stdFracSecond0                                 // ".0", ".00", ... , trailing zeros included
   117  	stdFracSecond9                                 // ".9", ".99", ..., trailing zeros omitted
   118  
   119  	stdNeedDate  = 1 << 8             // need month, day, year
   120  	stdNeedClock = 2 << 8             // need hour, minute, second
   121  	stdArgShift  = 16                 // extra argument in high bits, above low stdArgShift
   122  	stdMask      = 1<<stdArgShift - 1 // mask out argument
   123  )
   124  
   125  // std0x records the std values for "01", "02", ..., "06".
   126  var std0x = [...]int{stdZeroMonth, stdZeroDay, stdZeroHour12, stdZeroMinute, stdZeroSecond, stdYear}
   127  
   128  // startsWithLowerCase reports whether the string has a lower-case letter at the beginning.
   129  // Its purpose is to prevent matching strings like "Month" when looking for "Mon".
   130  func startsWithLowerCase(str string) bool {
   131  	if len(str) == 0 {
   132  		return false
   133  	}
   134  	c := str[0]
   135  	return 'a' <= c && c <= 'z'
   136  }
   137  
   138  // nextStdChunk finds the first occurrence of a std string in
   139  // layout and returns the text before, the std string, and the text after.
   140  func nextStdChunk(layout string) (prefix string, std int, suffix string) {
   141  	for i := 0; i < len(layout); i++ {
   142  		switch c := int(layout[i]); c {
   143  		case 'J': // January, Jan
   144  			if len(layout) >= i+3 && layout[i:i+3] == "Jan" {
   145  				if len(layout) >= i+7 && layout[i:i+7] == "January" {
   146  					return layout[0:i], stdLongMonth, layout[i+7:]
   147  				}
   148  				if !startsWithLowerCase(layout[i+3:]) {
   149  					return layout[0:i], stdMonth, layout[i+3:]
   150  				}
   151  			}
   152  
   153  		case 'M': // Monday, Mon, MST
   154  			if len(layout) >= i+3 {
   155  				if layout[i:i+3] == "Mon" {
   156  					if len(layout) >= i+6 && layout[i:i+6] == "Monday" {
   157  						return layout[0:i], stdLongWeekDay, layout[i+6:]
   158  					}
   159  					if !startsWithLowerCase(layout[i+3:]) {
   160  						return layout[0:i], stdWeekDay, layout[i+3:]
   161  					}
   162  				}
   163  				if layout[i:i+3] == "MST" {
   164  					return layout[0:i], stdTZ, layout[i+3:]
   165  				}
   166  			}
   167  
   168  		case '0': // 01, 02, 03, 04, 05, 06
   169  			if len(layout) >= i+2 && '1' <= layout[i+1] && layout[i+1] <= '6' {
   170  				return layout[0:i], std0x[layout[i+1]-'1'], layout[i+2:]
   171  			}
   172  
   173  		case '1': // 15, 1
   174  			if len(layout) >= i+2 && layout[i+1] == '5' {
   175  				return layout[0:i], stdHour, layout[i+2:]
   176  			}
   177  			return layout[0:i], stdNumMonth, layout[i+1:]
   178  
   179  		case '2': // 2006, 2
   180  			if len(layout) >= i+4 && layout[i:i+4] == "2006" {
   181  				return layout[0:i], stdLongYear, layout[i+4:]
   182  			}
   183  			return layout[0:i], stdDay, layout[i+1:]
   184  
   185  		case '_': // _2, _2006
   186  			if len(layout) >= i+2 && layout[i+1] == '2' {
   187  				//_2006 is really a literal _, followed by stdLongYear
   188  				if len(layout) >= i+5 && layout[i+1:i+5] == "2006" {
   189  					return layout[0 : i+1], stdLongYear, layout[i+5:]
   190  				}
   191  				return layout[0:i], stdUnderDay, layout[i+2:]
   192  			}
   193  
   194  		case '3':
   195  			return layout[0:i], stdHour12, layout[i+1:]
   196  
   197  		case '4':
   198  			return layout[0:i], stdMinute, layout[i+1:]
   199  
   200  		case '5':
   201  			return layout[0:i], stdSecond, layout[i+1:]
   202  
   203  		case 'P': // PM
   204  			if len(layout) >= i+2 && layout[i+1] == 'M' {
   205  				return layout[0:i], stdPM, layout[i+2:]
   206  			}
   207  
   208  		case 'p': // pm
   209  			if len(layout) >= i+2 && layout[i+1] == 'm' {
   210  				return layout[0:i], stdpm, layout[i+2:]
   211  			}
   212  
   213  		case '-': // -070000, -07:00:00, -0700, -07:00, -07
   214  			if len(layout) >= i+7 && layout[i:i+7] == "-070000" {
   215  				return layout[0:i], stdNumSecondsTz, layout[i+7:]
   216  			}
   217  			if len(layout) >= i+9 && layout[i:i+9] == "-07:00:00" {
   218  				return layout[0:i], stdNumColonSecondsTZ, layout[i+9:]
   219  			}
   220  			if len(layout) >= i+5 && layout[i:i+5] == "-0700" {
   221  				return layout[0:i], stdNumTZ, layout[i+5:]
   222  			}
   223  			if len(layout) >= i+6 && layout[i:i+6] == "-07:00" {
   224  				return layout[0:i], stdNumColonTZ, layout[i+6:]
   225  			}
   226  			if len(layout) >= i+3 && layout[i:i+3] == "-07" {
   227  				return layout[0:i], stdNumShortTZ, layout[i+3:]
   228  			}
   229  
   230  		case 'Z': // Z070000, Z07:00:00, Z0700, Z07:00,
   231  			if len(layout) >= i+7 && layout[i:i+7] == "Z070000" {
   232  				return layout[0:i], stdISO8601SecondsTZ, layout[i+7:]
   233  			}
   234  			if len(layout) >= i+9 && layout[i:i+9] == "Z07:00:00" {
   235  				return layout[0:i], stdISO8601ColonSecondsTZ, layout[i+9:]
   236  			}
   237  			if len(layout) >= i+5 && layout[i:i+5] == "Z0700" {
   238  				return layout[0:i], stdISO8601TZ, layout[i+5:]
   239  			}
   240  			if len(layout) >= i+6 && layout[i:i+6] == "Z07:00" {
   241  				return layout[0:i], stdISO8601ColonTZ, layout[i+6:]
   242  			}
   243  			if len(layout) >= i+3 && layout[i:i+3] == "Z07" {
   244  				return layout[0:i], stdISO8601ShortTZ, layout[i+3:]
   245  			}
   246  
   247  		case '.': // .000 or .999 - repeated digits for fractional seconds.
   248  			if i+1 < len(layout) && (layout[i+1] == '0' || layout[i+1] == '9') {
   249  				ch := layout[i+1]
   250  				j := i + 1
   251  				for j < len(layout) && layout[j] == ch {
   252  					j++
   253  				}
   254  				// String of digits must end here - only fractional second is all digits.
   255  				if !isDigit(layout, j) {
   256  					std := stdFracSecond0
   257  					if layout[i+1] == '9' {
   258  						std = stdFracSecond9
   259  					}
   260  					std |= (j - (i + 1)) << stdArgShift
   261  					return layout[0:i], std, layout[j:]
   262  				}
   263  			}
   264  		}
   265  	}
   266  	return layout, 0, ""
   267  }
   268  
   269  var longDayNames = []string{
   270  	"Sunday",
   271  	"Monday",
   272  	"Tuesday",
   273  	"Wednesday",
   274  	"Thursday",
   275  	"Friday",
   276  	"Saturday",
   277  }
   278  
   279  var shortDayNames = []string{
   280  	"Sun",
   281  	"Mon",
   282  	"Tue",
   283  	"Wed",
   284  	"Thu",
   285  	"Fri",
   286  	"Sat",
   287  }
   288  
   289  var shortMonthNames = []string{
   290  	"---",
   291  	"Jan",
   292  	"Feb",
   293  	"Mar",
   294  	"Apr",
   295  	"May",
   296  	"Jun",
   297  	"Jul",
   298  	"Aug",
   299  	"Sep",
   300  	"Oct",
   301  	"Nov",
   302  	"Dec",
   303  }
   304  
   305  var longMonthNames = []string{
   306  	"---",
   307  	"January",
   308  	"February",
   309  	"March",
   310  	"April",
   311  	"May",
   312  	"June",
   313  	"July",
   314  	"August",
   315  	"September",
   316  	"October",
   317  	"November",
   318  	"December",
   319  }
   320  
   321  // match reports whether s1 and s2 match ignoring case.
   322  // It is assumed s1 and s2 are the same length.
   323  func match(s1, s2 string) bool {
   324  	for i := 0; i < len(s1); i++ {
   325  		c1 := s1[i]
   326  		c2 := s2[i]
   327  		if c1 != c2 {
   328  			// Switch to lower-case; 'a'-'A' is known to be a single bit.
   329  			c1 |= 'a' - 'A'
   330  			c2 |= 'a' - 'A'
   331  			if c1 != c2 || c1 < 'a' || c1 > 'z' {
   332  				return false
   333  			}
   334  		}
   335  	}
   336  	return true
   337  }
   338  
   339  func lookup(tab []string, val string) (int, string, error) {
   340  	for i, v := range tab {
   341  		if len(val) >= len(v) && match(val[0:len(v)], v) {
   342  			return i, val[len(v):], nil
   343  		}
   344  	}
   345  	return -1, val, errBad
   346  }
   347  
   348  // appendInt appends the decimal form of x to b and returns the result.
   349  // If the decimal form (excluding sign) is shorter than width, the result is padded with leading 0's.
   350  // Duplicates functionality in strconv, but avoids dependency.
   351  func appendInt(b []byte, x int, width int) []byte {
   352  	u := uint(x)
   353  	if x < 0 {
   354  		b = append(b, '-')
   355  		u = uint(-x)
   356  	}
   357  
   358  	// Assemble decimal in reverse order.
   359  	var buf [20]byte
   360  	i := len(buf)
   361  	for u >= 10 {
   362  		i--
   363  		q := u / 10
   364  		buf[i] = byte('0' + u - q*10)
   365  		u = q
   366  	}
   367  	i--
   368  	buf[i] = byte('0' + u)
   369  
   370  	// Add 0-padding.
   371  	for w := len(buf) - i; w < width; w++ {
   372  		b = append(b, '0')
   373  	}
   374  
   375  	return append(b, buf[i:]...)
   376  }
   377  
   378  // Never printed, just needs to be non-nil for return by atoi.
   379  var atoiError = errors.New("time: invalid number")
   380  
   381  // Duplicates functionality in strconv, but avoids dependency.
   382  func atoi(s string) (x int, err error) {
   383  	neg := false
   384  	if s != "" && (s[0] == '-' || s[0] == '+') {
   385  		neg = s[0] == '-'
   386  		s = s[1:]
   387  	}
   388  	q, rem, err := leadingInt(s)
   389  	x = int(q)
   390  	if err != nil || rem != "" {
   391  		return 0, atoiError
   392  	}
   393  	if neg {
   394  		x = -x
   395  	}
   396  	return x, nil
   397  }
   398  
   399  // formatNano appends a fractional second, as nanoseconds, to b
   400  // and returns the result.
   401  func formatNano(b []byte, nanosec uint, n int, trim bool) []byte {
   402  	u := nanosec
   403  	var buf [9]byte
   404  	for start := len(buf); start > 0; {
   405  		start--
   406  		buf[start] = byte(u%10 + '0')
   407  		u /= 10
   408  	}
   409  
   410  	if n > 9 {
   411  		n = 9
   412  	}
   413  	if trim {
   414  		for n > 0 && buf[n-1] == '0' {
   415  			n--
   416  		}
   417  		if n == 0 {
   418  			return b
   419  		}
   420  	}
   421  	b = append(b, '.')
   422  	return append(b, buf[:n]...)
   423  }
   424  
   425  // String returns the time formatted using the format string
   426  //	"2006-01-02 15:04:05.999999999 -0700 MST"
   427  //
   428  // If the time has a monotonic clock reading, the returned string
   429  // includes a final field "m=±<value>", where value is the monotonic
   430  // clock reading formatted as a decimal number of seconds.
   431  func (t Time) String() string {
   432  	s := t.Format("2006-01-02 15:04:05.999999999 -0700 MST")
   433  
   434  	// Format monotonic clock reading as m=±ddd.nnnnnnnnn.
   435  	if t.wall&hasMonotonic != 0 {
   436  		m2 := uint64(t.ext)
   437  		sign := byte('+')
   438  		if t.ext < 0 {
   439  			sign = '-'
   440  			m2 = -m2
   441  		}
   442  		m1, m2 := m2/1e9, m2%1e9
   443  		m0, m1 := m1/1e9, m1%1e9
   444  		var buf []byte
   445  		buf = append(buf, " m="...)
   446  		buf = append(buf, sign)
   447  		wid := 0
   448  		if m0 != 0 {
   449  			buf = appendInt(buf, int(m0), 0)
   450  			wid = 9
   451  		}
   452  		buf = appendInt(buf, int(m1), wid)
   453  		buf = append(buf, '.')
   454  		buf = appendInt(buf, int(m2), 9)
   455  		s += string(buf)
   456  	}
   457  	return s
   458  }
   459  
   460  // Format returns a textual representation of the time value formatted
   461  // according to layout, which defines the format by showing how the reference
   462  // time, defined to be
   463  //	Mon Jan 2 15:04:05 -0700 MST 2006
   464  // would be displayed if it were the value; it serves as an example of the
   465  // desired output. The same display rules will then be applied to the time
   466  // value.
   467  //
   468  // A fractional second is represented by adding a period and zeros
   469  // to the end of the seconds section of layout string, as in "15:04:05.000"
   470  // to format a time stamp with millisecond precision.
   471  //
   472  // Predefined layouts ANSIC, UnixDate, RFC3339 and others describe standard
   473  // and convenient representations of the reference time. For more information
   474  // about the formats and the definition of the reference time, see the
   475  // documentation for ANSIC and the other constants defined by this package.
   476  func (t Time) Format(layout string) string {
   477  	const bufSize = 64
   478  	var b []byte
   479  	max := len(layout) + 10
   480  	if max < bufSize {
   481  		var buf [bufSize]byte
   482  		b = buf[:0]
   483  	} else {
   484  		b = make([]byte, 0, max)
   485  	}
   486  	b = t.AppendFormat(b, layout)
   487  	return string(b)
   488  }
   489  
   490  // AppendFormat is like Format but appends the textual
   491  // representation to b and returns the extended buffer.
   492  func (t Time) AppendFormat(b []byte, layout string) []byte {
   493  	var (
   494  		name, offset, abs = t.locabs()
   495  
   496  		year  int = -1
   497  		month Month
   498  		day   int
   499  		hour  int = -1
   500  		min   int
   501  		sec   int
   502  	)
   503  	// Each iteration generates one std value.
   504  	for layout != "" {
   505  		prefix, std, suffix := nextStdChunk(layout)
   506  		if prefix != "" {
   507  			b = append(b, prefix...)
   508  		}
   509  		if std == 0 {
   510  			break
   511  		}
   512  		layout = suffix
   513  
   514  		// Compute year, month, day if needed.
   515  		if year < 0 && std&stdNeedDate != 0 {
   516  			year, month, day, _ = absDate(abs, true)
   517  		}
   518  
   519  		// Compute hour, minute, second if needed.
   520  		if hour < 0 && std&stdNeedClock != 0 {
   521  			hour, min, sec = absClock(abs)
   522  		}
   523  
   524  		switch std & stdMask {
   525  		case stdYear:
   526  			y := year
   527  			if y < 0 {
   528  				y = -y
   529  			}
   530  			b = appendInt(b, y%100, 2)
   531  		case stdLongYear:
   532  			b = appendInt(b, year, 4)
   533  		case stdMonth:
   534  			b = append(b, month.String()[:3]...)
   535  		case stdLongMonth:
   536  			m := month.String()
   537  			b = append(b, m...)
   538  		case stdNumMonth:
   539  			b = appendInt(b, int(month), 0)
   540  		case stdZeroMonth:
   541  			b = appendInt(b, int(month), 2)
   542  		case stdWeekDay:
   543  			b = append(b, absWeekday(abs).String()[:3]...)
   544  		case stdLongWeekDay:
   545  			s := absWeekday(abs).String()
   546  			b = append(b, s...)
   547  		case stdDay:
   548  			b = appendInt(b, day, 0)
   549  		case stdUnderDay:
   550  			if day < 10 {
   551  				b = append(b, ' ')
   552  			}
   553  			b = appendInt(b, day, 0)
   554  		case stdZeroDay:
   555  			b = appendInt(b, day, 2)
   556  		case stdHour:
   557  			b = appendInt(b, hour, 2)
   558  		case stdHour12:
   559  			// Noon is 12PM, midnight is 12AM.
   560  			hr := hour % 12
   561  			if hr == 0 {
   562  				hr = 12
   563  			}
   564  			b = appendInt(b, hr, 0)
   565  		case stdZeroHour12:
   566  			// Noon is 12PM, midnight is 12AM.
   567  			hr := hour % 12
   568  			if hr == 0 {
   569  				hr = 12
   570  			}
   571  			b = appendInt(b, hr, 2)
   572  		case stdMinute:
   573  			b = appendInt(b, min, 0)
   574  		case stdZeroMinute:
   575  			b = appendInt(b, min, 2)
   576  		case stdSecond:
   577  			b = appendInt(b, sec, 0)
   578  		case stdZeroSecond:
   579  			b = appendInt(b, sec, 2)
   580  		case stdPM:
   581  			if hour >= 12 {
   582  				b = append(b, "PM"...)
   583  			} else {
   584  				b = append(b, "AM"...)
   585  			}
   586  		case stdpm:
   587  			if hour >= 12 {
   588  				b = append(b, "pm"...)
   589  			} else {
   590  				b = append(b, "am"...)
   591  			}
   592  		case stdISO8601TZ, stdISO8601ColonTZ, stdISO8601SecondsTZ, stdISO8601ShortTZ, stdISO8601ColonSecondsTZ, stdNumTZ, stdNumColonTZ, stdNumSecondsTz, stdNumShortTZ, stdNumColonSecondsTZ:
   593  			// Ugly special case. We cheat and take the "Z" variants
   594  			// to mean "the time zone as formatted for ISO 8601".
   595  			if offset == 0 && (std == stdISO8601TZ || std == stdISO8601ColonTZ || std == stdISO8601SecondsTZ || std == stdISO8601ShortTZ || std == stdISO8601ColonSecondsTZ) {
   596  				b = append(b, 'Z')
   597  				break
   598  			}
   599  			zone := offset / 60 // convert to minutes
   600  			absoffset := offset
   601  			if zone < 0 {
   602  				b = append(b, '-')
   603  				zone = -zone
   604  				absoffset = -absoffset
   605  			} else {
   606  				b = append(b, '+')
   607  			}
   608  			b = appendInt(b, zone/60, 2)
   609  			if std == stdISO8601ColonTZ || std == stdNumColonTZ || std == stdISO8601ColonSecondsTZ || std == stdNumColonSecondsTZ {
   610  				b = append(b, ':')
   611  			}
   612  			if std != stdNumShortTZ && std != stdISO8601ShortTZ {
   613  				b = appendInt(b, zone%60, 2)
   614  			}
   615  
   616  			// append seconds if appropriate
   617  			if std == stdISO8601SecondsTZ || std == stdNumSecondsTz || std == stdNumColonSecondsTZ || std == stdISO8601ColonSecondsTZ {
   618  				if std == stdNumColonSecondsTZ || std == stdISO8601ColonSecondsTZ {
   619  					b = append(b, ':')
   620  				}
   621  				b = appendInt(b, absoffset%60, 2)
   622  			}
   623  
   624  		case stdTZ:
   625  			if name != "" {
   626  				b = append(b, name...)
   627  				break
   628  			}
   629  			// No time zone known for this time, but we must print one.
   630  			// Use the -0700 format.
   631  			zone := offset / 60 // convert to minutes
   632  			if zone < 0 {
   633  				b = append(b, '-')
   634  				zone = -zone
   635  			} else {
   636  				b = append(b, '+')
   637  			}
   638  			b = appendInt(b, zone/60, 2)
   639  			b = appendInt(b, zone%60, 2)
   640  		case stdFracSecond0, stdFracSecond9:
   641  			b = formatNano(b, uint(t.Nanosecond()), std>>stdArgShift, std&stdMask == stdFracSecond9)
   642  		}
   643  	}
   644  	return b
   645  }
   646  
   647  var errBad = errors.New("bad value for field") // placeholder not passed to user
   648  
   649  // ParseError describes a problem parsing a time string.
   650  type ParseError struct {
   651  	Layout     string
   652  	Value      string
   653  	LayoutElem string
   654  	ValueElem  string
   655  	Message    string
   656  }
   657  
   658  func quote(s string) string {
   659  	return "\"" + s + "\""
   660  }
   661  
   662  // Error returns the string representation of a ParseError.
   663  func (e *ParseError) Error() string {
   664  	if e.Message == "" {
   665  		return "parsing time " +
   666  			quote(e.Value) + " as " +
   667  			quote(e.Layout) + ": cannot parse " +
   668  			quote(e.ValueElem) + " as " +
   669  			quote(e.LayoutElem)
   670  	}
   671  	return "parsing time " +
   672  		quote(e.Value) + e.Message
   673  }
   674  
   675  // isDigit reports whether s[i] is in range and is a decimal digit.
   676  func isDigit(s string, i int) bool {
   677  	if len(s) <= i {
   678  		return false
   679  	}
   680  	c := s[i]
   681  	return '0' <= c && c <= '9'
   682  }
   683  
   684  // getnum parses s[0:1] or s[0:2] (fixed forces the latter)
   685  // as a decimal integer and returns the integer and the
   686  // remainder of the string.
   687  func getnum(s string, fixed bool) (int, string, error) {
   688  	if !isDigit(s, 0) {
   689  		return 0, s, errBad
   690  	}
   691  	if !isDigit(s, 1) {
   692  		if fixed {
   693  			return 0, s, errBad
   694  		}
   695  		return int(s[0] - '0'), s[1:], nil
   696  	}
   697  	return int(s[0]-'0')*10 + int(s[1]-'0'), s[2:], nil
   698  }
   699  
   700  func cutspace(s string) string {
   701  	for len(s) > 0 && s[0] == ' ' {
   702  		s = s[1:]
   703  	}
   704  	return s
   705  }
   706  
   707  // skip removes the given prefix from value,
   708  // treating runs of space characters as equivalent.
   709  func skip(value, prefix string) (string, error) {
   710  	for len(prefix) > 0 {
   711  		if prefix[0] == ' ' {
   712  			if len(value) > 0 && value[0] != ' ' {
   713  				return value, errBad
   714  			}
   715  			prefix = cutspace(prefix)
   716  			value = cutspace(value)
   717  			continue
   718  		}
   719  		if len(value) == 0 || value[0] != prefix[0] {
   720  			return value, errBad
   721  		}
   722  		prefix = prefix[1:]
   723  		value = value[1:]
   724  	}
   725  	return value, nil
   726  }
   727  
   728  // Parse parses a formatted string and returns the time value it represents.
   729  // The layout  defines the format by showing how the reference time,
   730  // defined to be
   731  //	Mon Jan 2 15:04:05 -0700 MST 2006
   732  // would be interpreted if it were the value; it serves as an example of
   733  // the input format. The same interpretation will then be made to the
   734  // input string.
   735  //
   736  // Predefined layouts ANSIC, UnixDate, RFC3339 and others describe standard
   737  // and convenient representations of the reference time. For more information
   738  // about the formats and the definition of the reference time, see the
   739  // documentation for ANSIC and the other constants defined by this package.
   740  // Also, the executable example for time.Format demonstrates the working
   741  // of the layout string in detail and is a good reference.
   742  //
   743  // Elements omitted from the value are assumed to be zero or, when
   744  // zero is impossible, one, so parsing "3:04pm" returns the time
   745  // corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is
   746  // 0, this time is before the zero Time).
   747  // Years must be in the range 0000..9999. The day of the week is checked
   748  // for syntax but it is otherwise ignored.
   749  //
   750  // In the absence of a time zone indicator, Parse returns a time in UTC.
   751  //
   752  // When parsing a time with a zone offset like -0700, if the offset corresponds
   753  // to a time zone used by the current location (Local), then Parse uses that
   754  // location and zone in the returned time. Otherwise it records the time as
   755  // being in a fabricated location with time fixed at the given zone offset.
   756  //
   757  // When parsing a time with a zone abbreviation like MST, if the zone abbreviation
   758  // has a defined offset in the current location, then that offset is used.
   759  // The zone abbreviation "UTC" is recognized as UTC regardless of location.
   760  // If the zone abbreviation is unknown, Parse records the time as being
   761  // in a fabricated location with the given zone abbreviation and a zero offset.
   762  // This choice means that such a time can be parsed and reformatted with the
   763  // same layout losslessly, but the exact instant used in the representation will
   764  // differ by the actual zone offset. To avoid such problems, prefer time layouts
   765  // that use a numeric zone offset, or use ParseInLocation.
   766  func Parse(layout, value string) (Time, error) {
   767  	return parse(layout, value, UTC, Local)
   768  }
   769  
   770  // ParseInLocation is like Parse but differs in two important ways.
   771  // First, in the absence of time zone information, Parse interprets a time as UTC;
   772  // ParseInLocation interprets the time as in the given location.
   773  // Second, when given a zone offset or abbreviation, Parse tries to match it
   774  // against the Local location; ParseInLocation uses the given location.
   775  func ParseInLocation(layout, value string, loc *Location) (Time, error) {
   776  	return parse(layout, value, loc, loc)
   777  }
   778  
   779  func parse(layout, value string, defaultLocation, local *Location) (Time, error) {
   780  	alayout, avalue := layout, value
   781  	rangeErrString := "" // set if a value is out of range
   782  	amSet := false       // do we need to subtract 12 from the hour for midnight?
   783  	pmSet := false       // do we need to add 12 to the hour?
   784  
   785  	// Time being constructed.
   786  	var (
   787  		year       int
   788  		month      int = 1 // January
   789  		day        int = 1
   790  		hour       int
   791  		min        int
   792  		sec        int
   793  		nsec       int
   794  		z          *Location
   795  		zoneOffset int = -1
   796  		zoneName   string
   797  	)
   798  
   799  	// Each iteration processes one std value.
   800  	for {
   801  		var err error
   802  		prefix, std, suffix := nextStdChunk(layout)
   803  		stdstr := layout[len(prefix) : len(layout)-len(suffix)]
   804  		value, err = skip(value, prefix)
   805  		if err != nil {
   806  			return Time{}, &ParseError{alayout, avalue, prefix, value, ""}
   807  		}
   808  		if std == 0 {
   809  			if len(value) != 0 {
   810  				return Time{}, &ParseError{alayout, avalue, "", value, ": extra text: " + value}
   811  			}
   812  			break
   813  		}
   814  		layout = suffix
   815  		var p string
   816  		switch std & stdMask {
   817  		case stdYear:
   818  			if len(value) < 2 {
   819  				err = errBad
   820  				break
   821  			}
   822  			p, value = value[0:2], value[2:]
   823  			year, err = atoi(p)
   824  			if year >= 69 { // Unix time starts Dec 31 1969 in some time zones
   825  				year += 1900
   826  			} else {
   827  				year += 2000
   828  			}
   829  		case stdLongYear:
   830  			if len(value) < 4 || !isDigit(value, 0) {
   831  				err = errBad
   832  				break
   833  			}
   834  			p, value = value[0:4], value[4:]
   835  			year, err = atoi(p)
   836  		case stdMonth:
   837  			month, value, err = lookup(shortMonthNames, value)
   838  		case stdLongMonth:
   839  			month, value, err = lookup(longMonthNames, value)
   840  		case stdNumMonth, stdZeroMonth:
   841  			month, value, err = getnum(value, std == stdZeroMonth)
   842  			if month <= 0 || 12 < month {
   843  				rangeErrString = "month"
   844  			}
   845  		case stdWeekDay:
   846  			// Ignore weekday except for error checking.
   847  			_, value, err = lookup(shortDayNames, value)
   848  		case stdLongWeekDay:
   849  			_, value, err = lookup(longDayNames, value)
   850  		case stdDay, stdUnderDay, stdZeroDay:
   851  			if std == stdUnderDay && len(value) > 0 && value[0] == ' ' {
   852  				value = value[1:]
   853  			}
   854  			day, value, err = getnum(value, std == stdZeroDay)
   855  			if day < 0 {
   856  				// Note that we allow any one- or two-digit day here.
   857  				rangeErrString = "day"
   858  			}
   859  		case stdHour:
   860  			hour, value, err = getnum(value, false)
   861  			if hour < 0 || 24 <= hour {
   862  				rangeErrString = "hour"
   863  			}
   864  		case stdHour12, stdZeroHour12:
   865  			hour, value, err = getnum(value, std == stdZeroHour12)
   866  			if hour < 0 || 12 < hour {
   867  				rangeErrString = "hour"
   868  			}
   869  		case stdMinute, stdZeroMinute:
   870  			min, value, err = getnum(value, std == stdZeroMinute)
   871  			if min < 0 || 60 <= min {
   872  				rangeErrString = "minute"
   873  			}
   874  		case stdSecond, stdZeroSecond:
   875  			sec, value, err = getnum(value, std == stdZeroSecond)
   876  			if sec < 0 || 60 <= sec {
   877  				rangeErrString = "second"
   878  				break
   879  			}
   880  			// Special case: do we have a fractional second but no
   881  			// fractional second in the format?
   882  			if len(value) >= 2 && value[0] == '.' && isDigit(value, 1) {
   883  				_, std, _ = nextStdChunk(layout)
   884  				std &= stdMask
   885  				if std == stdFracSecond0 || std == stdFracSecond9 {
   886  					// Fractional second in the layout; proceed normally
   887  					break
   888  				}
   889  				// No fractional second in the layout but we have one in the input.
   890  				n := 2
   891  				for ; n < len(value) && isDigit(value, n); n++ {
   892  				}
   893  				nsec, rangeErrString, err = parseNanoseconds(value, n)
   894  				value = value[n:]
   895  			}
   896  		case stdPM:
   897  			if len(value) < 2 {
   898  				err = errBad
   899  				break
   900  			}
   901  			p, value = value[0:2], value[2:]
   902  			switch p {
   903  			case "PM":
   904  				pmSet = true
   905  			case "AM":
   906  				amSet = true
   907  			default:
   908  				err = errBad
   909  			}
   910  		case stdpm:
   911  			if len(value) < 2 {
   912  				err = errBad
   913  				break
   914  			}
   915  			p, value = value[0:2], value[2:]
   916  			switch p {
   917  			case "pm":
   918  				pmSet = true
   919  			case "am":
   920  				amSet = true
   921  			default:
   922  				err = errBad
   923  			}
   924  		case stdISO8601TZ, stdISO8601ColonTZ, stdISO8601SecondsTZ, stdISO8601ShortTZ, stdISO8601ColonSecondsTZ, stdNumTZ, stdNumShortTZ, stdNumColonTZ, stdNumSecondsTz, stdNumColonSecondsTZ:
   925  			if (std == stdISO8601TZ || std == stdISO8601ShortTZ || std == stdISO8601ColonTZ) && len(value) >= 1 && value[0] == 'Z' {
   926  				value = value[1:]
   927  				z = UTC
   928  				break
   929  			}
   930  			var sign, hour, min, seconds string
   931  			if std == stdISO8601ColonTZ || std == stdNumColonTZ {
   932  				if len(value) < 6 {
   933  					err = errBad
   934  					break
   935  				}
   936  				if value[3] != ':' {
   937  					err = errBad
   938  					break
   939  				}
   940  				sign, hour, min, seconds, value = value[0:1], value[1:3], value[4:6], "00", value[6:]
   941  			} else if std == stdNumShortTZ || std == stdISO8601ShortTZ {
   942  				if len(value) < 3 {
   943  					err = errBad
   944  					break
   945  				}
   946  				sign, hour, min, seconds, value = value[0:1], value[1:3], "00", "00", value[3:]
   947  			} else if std == stdISO8601ColonSecondsTZ || std == stdNumColonSecondsTZ {
   948  				if len(value) < 9 {
   949  					err = errBad
   950  					break
   951  				}
   952  				if value[3] != ':' || value[6] != ':' {
   953  					err = errBad
   954  					break
   955  				}
   956  				sign, hour, min, seconds, value = value[0:1], value[1:3], value[4:6], value[7:9], value[9:]
   957  			} else if std == stdISO8601SecondsTZ || std == stdNumSecondsTz {
   958  				if len(value) < 7 {
   959  					err = errBad
   960  					break
   961  				}
   962  				sign, hour, min, seconds, value = value[0:1], value[1:3], value[3:5], value[5:7], value[7:]
   963  			} else {
   964  				if len(value) < 5 {
   965  					err = errBad
   966  					break
   967  				}
   968  				sign, hour, min, seconds, value = value[0:1], value[1:3], value[3:5], "00", value[5:]
   969  			}
   970  			var hr, mm, ss int
   971  			hr, err = atoi(hour)
   972  			if err == nil {
   973  				mm, err = atoi(min)
   974  			}
   975  			if err == nil {
   976  				ss, err = atoi(seconds)
   977  			}
   978  			zoneOffset = (hr*60+mm)*60 + ss // offset is in seconds
   979  			switch sign[0] {
   980  			case '+':
   981  			case '-':
   982  				zoneOffset = -zoneOffset
   983  			default:
   984  				err = errBad
   985  			}
   986  		case stdTZ:
   987  			// Does it look like a time zone?
   988  			if len(value) >= 3 && value[0:3] == "UTC" {
   989  				z = UTC
   990  				value = value[3:]
   991  				break
   992  			}
   993  			n, ok := parseTimeZone(value)
   994  			if !ok {
   995  				err = errBad
   996  				break
   997  			}
   998  			zoneName, value = value[:n], value[n:]
   999  
  1000  		case stdFracSecond0:
  1001  			// stdFracSecond0 requires the exact number of digits as specified in
  1002  			// the layout.
  1003  			ndigit := 1 + (std >> stdArgShift)
  1004  			if len(value) < ndigit {
  1005  				err = errBad
  1006  				break
  1007  			}
  1008  			nsec, rangeErrString, err = parseNanoseconds(value, ndigit)
  1009  			value = value[ndigit:]
  1010  
  1011  		case stdFracSecond9:
  1012  			if len(value) < 2 || value[0] != '.' || value[1] < '0' || '9' < value[1] {
  1013  				// Fractional second omitted.
  1014  				break
  1015  			}
  1016  			// Take any number of digits, even more than asked for,
  1017  			// because it is what the stdSecond case would do.
  1018  			i := 0
  1019  			for i < 9 && i+1 < len(value) && '0' <= value[i+1] && value[i+1] <= '9' {
  1020  				i++
  1021  			}
  1022  			nsec, rangeErrString, err = parseNanoseconds(value, 1+i)
  1023  			value = value[1+i:]
  1024  		}
  1025  		if rangeErrString != "" {
  1026  			return Time{}, &ParseError{alayout, avalue, stdstr, value, ": " + rangeErrString + " out of range"}
  1027  		}
  1028  		if err != nil {
  1029  			return Time{}, &ParseError{alayout, avalue, stdstr, value, ""}
  1030  		}
  1031  	}
  1032  	if pmSet && hour < 12 {
  1033  		hour += 12
  1034  	} else if amSet && hour == 12 {
  1035  		hour = 0
  1036  	}
  1037  
  1038  	// Validate the day of the month.
  1039  	if day < 1 || day > daysIn(Month(month), year) {
  1040  		return Time{}, &ParseError{alayout, avalue, "", value, ": day out of range"}
  1041  	}
  1042  
  1043  	if z != nil {
  1044  		return Date(year, Month(month), day, hour, min, sec, nsec, z), nil
  1045  	}
  1046  
  1047  	if zoneOffset != -1 {
  1048  		t := Date(year, Month(month), day, hour, min, sec, nsec, UTC)
  1049  		t.addSec(-int64(zoneOffset))
  1050  
  1051  		// Look for local zone with the given offset.
  1052  		// If that zone was in effect at the given time, use it.
  1053  		name, offset, _, _, _ := local.lookup(t.unixSec())
  1054  		if offset == zoneOffset && (zoneName == "" || name == zoneName) {
  1055  			t.setLoc(local)
  1056  			return t, nil
  1057  		}
  1058  
  1059  		// Otherwise create fake zone to record offset.
  1060  		t.setLoc(FixedZone(zoneName, zoneOffset))
  1061  		return t, nil
  1062  	}
  1063  
  1064  	if zoneName != "" {
  1065  		t := Date(year, Month(month), day, hour, min, sec, nsec, UTC)
  1066  		// Look for local zone with the given offset.
  1067  		// If that zone was in effect at the given time, use it.
  1068  		offset, _, ok := local.lookupName(zoneName, t.unixSec())
  1069  		if ok {
  1070  			t.addSec(-int64(offset))
  1071  			t.setLoc(local)
  1072  			return t, nil
  1073  		}
  1074  
  1075  		// Otherwise, create fake zone with unknown offset.
  1076  		if len(zoneName) > 3 && zoneName[:3] == "GMT" {
  1077  			offset, _ = atoi(zoneName[3:]) // Guaranteed OK by parseGMT.
  1078  			offset *= 3600
  1079  		}
  1080  		t.setLoc(FixedZone(zoneName, offset))
  1081  		return t, nil
  1082  	}
  1083  
  1084  	// Otherwise, fall back to default.
  1085  	return Date(year, Month(month), day, hour, min, sec, nsec, defaultLocation), nil
  1086  }
  1087  
  1088  // parseTimeZone parses a time zone string and returns its length. Time zones
  1089  // are human-generated and unpredictable. We can't do precise error checking.
  1090  // On the other hand, for a correct parse there must be a time zone at the
  1091  // beginning of the string, so it's almost always true that there's one
  1092  // there. We look at the beginning of the string for a run of upper-case letters.
  1093  // If there are more than 5, it's an error.
  1094  // If there are 4 or 5 and the last is a T, it's a time zone.
  1095  // If there are 3, it's a time zone.
  1096  // Otherwise, other than special cases, it's not a time zone.
  1097  // GMT is special because it can have an hour offset.
  1098  func parseTimeZone(value string) (length int, ok bool) {
  1099  	if len(value) < 3 {
  1100  		return 0, false
  1101  	}
  1102  	// Special case 1: ChST and MeST are the only zones with a lower-case letter.
  1103  	if len(value) >= 4 && (value[:4] == "ChST" || value[:4] == "MeST") {
  1104  		return 4, true
  1105  	}
  1106  	// Special case 2: GMT may have an hour offset; treat it specially.
  1107  	if value[:3] == "GMT" {
  1108  		length = parseGMT(value)
  1109  		return length, true
  1110  	}
  1111  	// How many upper-case letters are there? Need at least three, at most five.
  1112  	var nUpper int
  1113  	for nUpper = 0; nUpper < 6; nUpper++ {
  1114  		if nUpper >= len(value) {
  1115  			break
  1116  		}
  1117  		if c := value[nUpper]; c < 'A' || 'Z' < c {
  1118  			break
  1119  		}
  1120  	}
  1121  	switch nUpper {
  1122  	case 0, 1, 2, 6:
  1123  		return 0, false
  1124  	case 5: // Must end in T to match.
  1125  		if value[4] == 'T' {
  1126  			return 5, true
  1127  		}
  1128  	case 4:
  1129  		// Must end in T, except one special case.
  1130  		if value[3] == 'T' || value[:4] == "WITA" {
  1131  			return 4, true
  1132  		}
  1133  	case 3:
  1134  		return 3, true
  1135  	}
  1136  	return 0, false
  1137  }
  1138  
  1139  // parseGMT parses a GMT time zone. The input string is known to start "GMT".
  1140  // The function checks whether that is followed by a sign and a number in the
  1141  // range -14 through 12 excluding zero.
  1142  func parseGMT(value string) int {
  1143  	value = value[3:]
  1144  	if len(value) == 0 {
  1145  		return 3
  1146  	}
  1147  	sign := value[0]
  1148  	if sign != '-' && sign != '+' {
  1149  		return 3
  1150  	}
  1151  	x, rem, err := leadingInt(value[1:])
  1152  	if err != nil {
  1153  		return 3
  1154  	}
  1155  	if sign == '-' {
  1156  		x = -x
  1157  	}
  1158  	if x == 0 || x < -14 || 12 < x {
  1159  		return 3
  1160  	}
  1161  	return 3 + len(value) - len(rem)
  1162  }
  1163  
  1164  func parseNanoseconds(value string, nbytes int) (ns int, rangeErrString string, err error) {
  1165  	if value[0] != '.' {
  1166  		err = errBad
  1167  		return
  1168  	}
  1169  	if ns, err = atoi(value[1:nbytes]); err != nil {
  1170  		return
  1171  	}
  1172  	if ns < 0 || 1e9 <= ns {
  1173  		rangeErrString = "fractional second"
  1174  		return
  1175  	}
  1176  	// We need nanoseconds, which means scaling by the number
  1177  	// of missing digits in the format, maximum length 10. If it's
  1178  	// longer than 10, we won't scale.
  1179  	scaleDigits := 10 - nbytes
  1180  	for i := 0; i < scaleDigits; i++ {
  1181  		ns *= 10
  1182  	}
  1183  	return
  1184  }
  1185  
  1186  var errLeadingInt = errors.New("time: bad [0-9]*") // never printed
  1187  
  1188  // leadingInt consumes the leading [0-9]* from s.
  1189  func leadingInt(s string) (x int64, rem string, err error) {
  1190  	i := 0
  1191  	for ; i < len(s); i++ {
  1192  		c := s[i]
  1193  		if c < '0' || c > '9' {
  1194  			break
  1195  		}
  1196  		if x > (1<<63-1)/10 {
  1197  			// overflow
  1198  			return 0, "", errLeadingInt
  1199  		}
  1200  		x = x*10 + int64(c) - '0'
  1201  		if x < 0 {
  1202  			// overflow
  1203  			return 0, "", errLeadingInt
  1204  		}
  1205  	}
  1206  	return x, s[i:], nil
  1207  }
  1208  
  1209  // leadingFraction consumes the leading [0-9]* from s.
  1210  // It is used only for fractions, so does not return an error on overflow,
  1211  // it just stops accumulating precision.
  1212  func leadingFraction(s string) (x int64, scale float64, rem string) {
  1213  	i := 0
  1214  	scale = 1
  1215  	overflow := false
  1216  	for ; i < len(s); i++ {
  1217  		c := s[i]
  1218  		if c < '0' || c > '9' {
  1219  			break
  1220  		}
  1221  		if overflow {
  1222  			continue
  1223  		}
  1224  		if x > (1<<63-1)/10 {
  1225  			// It's possible for overflow to give a positive number, so take care.
  1226  			overflow = true
  1227  			continue
  1228  		}
  1229  		y := x*10 + int64(c) - '0'
  1230  		if y < 0 {
  1231  			overflow = true
  1232  			continue
  1233  		}
  1234  		x = y
  1235  		scale *= 10
  1236  	}
  1237  	return x, scale, s[i:]
  1238  }
  1239  
  1240  var unitMap = map[string]int64{
  1241  	"ns": int64(Nanosecond),
  1242  	"us": int64(Microsecond),
  1243  	"µs": int64(Microsecond), // U+00B5 = micro symbol
  1244  	"μs": int64(Microsecond), // U+03BC = Greek letter mu
  1245  	"ms": int64(Millisecond),
  1246  	"s":  int64(Second),
  1247  	"m":  int64(Minute),
  1248  	"h":  int64(Hour),
  1249  }
  1250  
  1251  // ParseDuration parses a duration string.
  1252  // A duration string is a possibly signed sequence of
  1253  // decimal numbers, each with optional fraction and a unit suffix,
  1254  // such as "300ms", "-1.5h" or "2h45m".
  1255  // Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h".
  1256  func ParseDuration(s string) (Duration, error) {
  1257  	// [-+]?([0-9]*(\.[0-9]*)?[a-z]+)+
  1258  	orig := s
  1259  	var d int64
  1260  	neg := false
  1261  
  1262  	// Consume [-+]?
  1263  	if s != "" {
  1264  		c := s[0]
  1265  		if c == '-' || c == '+' {
  1266  			neg = c == '-'
  1267  			s = s[1:]
  1268  		}
  1269  	}
  1270  	// Special case: if all that is left is "0", this is zero.
  1271  	if s == "0" {
  1272  		return 0, nil
  1273  	}
  1274  	if s == "" {
  1275  		return 0, errors.New("time: invalid duration " + orig)
  1276  	}
  1277  	for s != "" {
  1278  		var (
  1279  			v, f  int64       // integers before, after decimal point
  1280  			scale float64 = 1 // value = v + f/scale
  1281  		)
  1282  
  1283  		var err error
  1284  
  1285  		// The next character must be [0-9.]
  1286  		if !(s[0] == '.' || '0' <= s[0] && s[0] <= '9') {
  1287  			return 0, errors.New("time: invalid duration " + orig)
  1288  		}
  1289  		// Consume [0-9]*
  1290  		pl := len(s)
  1291  		v, s, err = leadingInt(s)
  1292  		if err != nil {
  1293  			return 0, errors.New("time: invalid duration " + orig)
  1294  		}
  1295  		pre := pl != len(s) // whether we consumed anything before a period
  1296  
  1297  		// Consume (\.[0-9]*)?
  1298  		post := false
  1299  		if s != "" && s[0] == '.' {
  1300  			s = s[1:]
  1301  			pl := len(s)
  1302  			f, scale, s = leadingFraction(s)
  1303  			post = pl != len(s)
  1304  		}
  1305  		if !pre && !post {
  1306  			// no digits (e.g. ".s" or "-.s")
  1307  			return 0, errors.New("time: invalid duration " + orig)
  1308  		}
  1309  
  1310  		// Consume unit.
  1311  		i := 0
  1312  		for ; i < len(s); i++ {
  1313  			c := s[i]
  1314  			if c == '.' || '0' <= c && c <= '9' {
  1315  				break
  1316  			}
  1317  		}
  1318  		if i == 0 {
  1319  			return 0, errors.New("time: missing unit in duration " + orig)
  1320  		}
  1321  		u := s[:i]
  1322  		s = s[i:]
  1323  		unit, ok := unitMap[u]
  1324  		if !ok {
  1325  			return 0, errors.New("time: unknown unit " + u + " in duration " + orig)
  1326  		}
  1327  		if v > (1<<63-1)/unit {
  1328  			// overflow
  1329  			return 0, errors.New("time: invalid duration " + orig)
  1330  		}
  1331  		v *= unit
  1332  		if f > 0 {
  1333  			// float64 is needed to be nanosecond accurate for fractions of hours.
  1334  			// v >= 0 && (f*unit/scale) <= 3.6e+12 (ns/h, h is the largest unit)
  1335  			v += int64(float64(f) * (float64(unit) / scale))
  1336  			if v < 0 {
  1337  				// overflow
  1338  				return 0, errors.New("time: invalid duration " + orig)
  1339  			}
  1340  		}
  1341  		d += v
  1342  		if d < 0 {
  1343  			// overflow
  1344  			return 0, errors.New("time: invalid duration " + orig)
  1345  		}
  1346  	}
  1347  
  1348  	if neg {
  1349  		d = -d
  1350  	}
  1351  	return Duration(d), nil
  1352  }