github.com/slayercat/go@v0.0.0-20170428012452-c51559813f61/src/time/time.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package time provides functionality for measuring and displaying time.
     6  //
     7  // The calendrical calculations always assume a Gregorian calendar, with
     8  // no leap seconds.
     9  //
    10  // Monotonic Clocks
    11  //
    12  // Operating systems provide both a “wall clock,” which is subject to
    13  // changes for clock synchronization, and a “monotonic clock,” which is
    14  // not. The general rule is that the wall clock is for telling time and
    15  // the monotonic clock is for measuring time. Rather than split the API,
    16  // in this package the Time returned by time.Now contains both a wall
    17  // clock reading and a monotonic clock reading; later time-telling
    18  // operations use the wall clock reading, but later time-measuring
    19  // operations, specifically comparisons and subtractions, use the
    20  // monotonic clock reading.
    21  //
    22  // For example, this code always computes a positive elapsed time of
    23  // approximately 20 milliseconds, even if the wall clock is changed during
    24  // the operation being timed:
    25  //
    26  //	t := time.Now()
    27  //	... operation that takes 20 milliseconds ...
    28  //	u := time.Now()
    29  //	elapsed := t.Sub(u)
    30  //
    31  // Other idioms, such as time.Since(start), time.Until(deadline), and
    32  // time.Now().Before(deadline), are similarly robust against wall clock
    33  // resets.
    34  //
    35  // The rest of this section gives the precise details of how operations
    36  // use monotonic clocks, but understanding those details is not required
    37  // to use this package.
    38  //
    39  // The Time returned by time.Now contains a monotonic clock reading.
    40  // If Time t has a monotonic clock reading, t.Add adds the same duration to
    41  // both the wall clock and monotonic clock readings to compute the result.
    42  // Similarly, t.In, t.Local, and t.UTC, which are defined to change only the Time's
    43  // Location, pass any monotonic clock reading through unmodified.
    44  // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
    45  // computations, they always strip any monotonic clock reading from their results.
    46  //
    47  // If Times t and u both contain monotonic clock readings, the operations
    48  // t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out
    49  // using the monotonic clock readings alone, ignoring the wall clock
    50  // readings. If either t or u contains no monotonic clock reading, these
    51  // operations fall back to using the wall clock readings.
    52  //
    53  // Because the monotonic clock reading has no meaning outside
    54  // the current process, the serialized forms generated by t.GobEncode,
    55  // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
    56  // clock reading, and t.Format provides no format for it. Similarly, the
    57  // constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix,
    58  // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
    59  // t.UnmarshalJSON, and t.UnmarshalText always create times with
    60  // no monotonic clock reading.
    61  //
    62  // Note that the Go == operator includes the monotonic clock reading in
    63  // its comparison. If time values returned from time.Now and time values
    64  // constructed by other means (for example, by time.Parse or time.Unix)
    65  // are meant to compare equal when used as map keys, the times returned
    66  // by time.Now must have the monotonic clock reading stripped, by setting
    67  // t = t.AddDate(0, 0, 0). In general, prefer t.Equal(u) to t == u, since
    68  // t.Equal uses the most accurate comparison available and correctly
    69  // handles the case when only one of its arguments has a monotonic clock
    70  // reading.
    71  //
    72  // For debugging, the result of t.String does include the monotonic
    73  // clock reading if present. If t != u because of different monotonic clock readings,
    74  // that difference will be visible when printing t.String() and u.String().
    75  //
    76  package time
    77  
    78  import "errors"
    79  
    80  // A Time represents an instant in time with nanosecond precision.
    81  //
    82  // Programs using times should typically store and pass them as values,
    83  // not pointers. That is, time variables and struct fields should be of
    84  // type time.Time, not *time.Time. A Time value can be used by
    85  // multiple goroutines simultaneously.
    86  //
    87  // Time instants can be compared using the Before, After, and Equal methods.
    88  // The Sub method subtracts two instants, producing a Duration.
    89  // The Add method adds a Time and a Duration, producing a Time.
    90  //
    91  // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
    92  // As this time is unlikely to come up in practice, the IsZero method gives
    93  // a simple way of detecting a time that has not been initialized explicitly.
    94  //
    95  // Each Time has associated with it a Location, consulted when computing the
    96  // presentation form of the time, such as in the Format, Hour, and Year methods.
    97  // The methods Local, UTC, and In return a Time with a specific location.
    98  // Changing the location in this way changes only the presentation; it does not
    99  // change the instant in time being denoted and therefore does not affect the
   100  // computations described in earlier paragraphs.
   101  //
   102  // Note that the Go == operator compares not just the time instant but also the
   103  // Location. Therefore, Time values should not be used as map or database keys
   104  // without first guaranteeing that the identical Location has been set for all
   105  // values, which can be achieved through use of the UTC or Local method.
   106  //
   107  // In addition to the required “wall clock” reading, a Time may contain an optional
   108  // reading of the current process's monotonic clock, to provide additional precision
   109  // for comparison or subtraction.
   110  // See the “Monotonic Clocks” section in the package documentation for details.
   111  //
   112  type Time struct {
   113  	// wall and ext encode the wall time seconds, wall time nanoseconds,
   114  	// and optional monotonic clock reading in nanoseconds.
   115  	//
   116  	// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
   117  	// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
   118  	// The nanoseconds field is in the range [0, 999999999].
   119  	// If the hasMonotonic bit is 0, then the 33-bit field must be zero
   120  	// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
   121  	// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
   122  	// unsigned wall seconds since Jan 1 year 1885, and ext holds a
   123  	// signed 64-bit monotonic clock reading, nanoseconds since process start.
   124  	wall uint64
   125  	ext  int64
   126  
   127  	// loc specifies the Location that should be used to
   128  	// determine the minute, hour, month, day, and year
   129  	// that correspond to this Time.
   130  	// The nil location means UTC.
   131  	// All UTC times are represented with loc==nil, never loc==&utcLoc.
   132  	loc *Location
   133  }
   134  
   135  const (
   136  	hasMonotonic = 1 << 63
   137  	maxWall      = wallToInternal + (1<<33 - 1) // year 2157
   138  	minWall      = wallToInternal               // year 1885
   139  	nsecMask     = 1<<30 - 1
   140  	nsecShift    = 30
   141  )
   142  
   143  // These helpers for manipulating the wall and monotonic clock readings
   144  // take pointer receivers, even when they don't modify the time,
   145  // to make them cheaper to call.
   146  
   147  // nsec returns the time's nanoseconds.
   148  func (t *Time) nsec() int32 {
   149  	return int32(t.wall & nsecMask)
   150  }
   151  
   152  // sec returns the time's seconds since Jan 1 year 1.
   153  func (t *Time) sec() int64 {
   154  	if t.wall&hasMonotonic != 0 {
   155  		return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
   156  	}
   157  	return int64(t.ext)
   158  }
   159  
   160  // unixSec returns the time's seconds since Jan 1 1970 (Unix time).
   161  func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
   162  
   163  // addSec adds d seconds to the time.
   164  func (t *Time) addSec(d int64) {
   165  	if t.wall&hasMonotonic != 0 {
   166  		sec := int64(t.wall << 1 >> (nsecShift + 1))
   167  		dsec := sec + d
   168  		if 0 <= dsec && dsec <= 1<<33-1 {
   169  			t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
   170  			return
   171  		}
   172  		// Wall second now out of range for packed field.
   173  		// Move to ext.
   174  		t.stripMono()
   175  	}
   176  
   177  	// TODO: Check for overflow.
   178  	t.ext += d
   179  }
   180  
   181  // setLoc sets the location associated with the time.
   182  func (t *Time) setLoc(loc *Location) {
   183  	if loc == &utcLoc {
   184  		loc = nil
   185  	}
   186  	t.loc = loc
   187  }
   188  
   189  // stripMono strips the monotonic clock reading in t.
   190  func (t *Time) stripMono() {
   191  	if t.wall&hasMonotonic != 0 {
   192  		t.ext = t.sec()
   193  		t.wall &= nsecMask
   194  	}
   195  }
   196  
   197  // setMono sets the monotonic clock reading in t.
   198  // If t cannot hold a monotonic clock reading,
   199  // because its wall time is too large,
   200  // setMono is a no-op.
   201  func (t *Time) setMono(m int64) {
   202  	if t.wall&hasMonotonic == 0 {
   203  		sec := int64(t.ext)
   204  		if sec < minWall || maxWall < sec {
   205  			return
   206  		}
   207  		t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
   208  	}
   209  	t.ext = m
   210  }
   211  
   212  // mono returns t's monotonic clock reading.
   213  // It returns 0 for a missing reading.
   214  // This function is used only for testing,
   215  // so it's OK that technically 0 is a valid
   216  // monotonic clock reading as well.
   217  func (t *Time) mono() int64 {
   218  	if t.wall&hasMonotonic == 0 {
   219  		return 0
   220  	}
   221  	return t.ext
   222  }
   223  
   224  // After reports whether the time instant t is after u.
   225  func (t Time) After(u Time) bool {
   226  	if t.wall&u.wall&hasMonotonic != 0 {
   227  		return t.ext > u.ext
   228  	}
   229  	ts := t.sec()
   230  	us := u.sec()
   231  	return ts > us || ts == us && t.nsec() > u.nsec()
   232  }
   233  
   234  // Before reports whether the time instant t is before u.
   235  func (t Time) Before(u Time) bool {
   236  	if t.wall&u.wall&hasMonotonic != 0 {
   237  		return t.ext < u.ext
   238  	}
   239  	return t.sec() < u.sec() || t.sec() == u.sec() && t.nsec() < u.nsec()
   240  }
   241  
   242  // Equal reports whether t and u represent the same time instant.
   243  // Two times can be equal even if they are in different locations.
   244  // For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
   245  // Do not use == with Time values.
   246  func (t Time) Equal(u Time) bool {
   247  	if t.wall&u.wall&hasMonotonic != 0 {
   248  		return t.ext == u.ext
   249  	}
   250  	return t.sec() == u.sec() && t.nsec() == u.nsec()
   251  }
   252  
   253  // A Month specifies a month of the year (January = 1, ...).
   254  type Month int
   255  
   256  const (
   257  	January Month = 1 + iota
   258  	February
   259  	March
   260  	April
   261  	May
   262  	June
   263  	July
   264  	August
   265  	September
   266  	October
   267  	November
   268  	December
   269  )
   270  
   271  var months = [...]string{
   272  	"January",
   273  	"February",
   274  	"March",
   275  	"April",
   276  	"May",
   277  	"June",
   278  	"July",
   279  	"August",
   280  	"September",
   281  	"October",
   282  	"November",
   283  	"December",
   284  }
   285  
   286  // String returns the English name of the month ("January", "February", ...).
   287  func (m Month) String() string {
   288  	if January <= m && m <= December {
   289  		return months[m-1]
   290  	}
   291  	buf := make([]byte, 20)
   292  	n := fmtInt(buf, uint64(m))
   293  	return "%!Month(" + string(buf[n:]) + ")"
   294  }
   295  
   296  // A Weekday specifies a day of the week (Sunday = 0, ...).
   297  type Weekday int
   298  
   299  const (
   300  	Sunday Weekday = iota
   301  	Monday
   302  	Tuesday
   303  	Wednesday
   304  	Thursday
   305  	Friday
   306  	Saturday
   307  )
   308  
   309  var days = [...]string{
   310  	"Sunday",
   311  	"Monday",
   312  	"Tuesday",
   313  	"Wednesday",
   314  	"Thursday",
   315  	"Friday",
   316  	"Saturday",
   317  }
   318  
   319  // String returns the English name of the day ("Sunday", "Monday", ...).
   320  func (d Weekday) String() string { return days[d] }
   321  
   322  // Computations on time.
   323  //
   324  // The zero value for a Time is defined to be
   325  //	January 1, year 1, 00:00:00.000000000 UTC
   326  // which (1) looks like a zero, or as close as you can get in a date
   327  // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   328  // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   329  // non-negative year even in time zones west of UTC, unlike 1-1-0
   330  // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   331  //
   332  // The zero Time value does not force a specific epoch for the time
   333  // representation. For example, to use the Unix epoch internally, we
   334  // could define that to distinguish a zero value from Jan 1 1970, that
   335  // time would be represented by sec=-1, nsec=1e9.  However, it does
   336  // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   337  // epoch, and that's what we do.
   338  //
   339  // The Add and Sub computations are oblivious to the choice of epoch.
   340  //
   341  // The presentation computations - year, month, minute, and so on - all
   342  // rely heavily on division and modulus by positive constants. For
   343  // calendrical calculations we want these divisions to round down, even
   344  // for negative values, so that the remainder is always positive, but
   345  // Go's division (like most hardware division instructions) rounds to
   346  // zero. We can still do those computations and then adjust the result
   347  // for a negative numerator, but it's annoying to write the adjustment
   348  // over and over. Instead, we can change to a different epoch so long
   349  // ago that all the times we care about will be positive, and then round
   350  // to zero and round down coincide. These presentation routines already
   351  // have to add the zone offset, so adding the translation to the
   352  // alternate epoch is cheap. For example, having a non-negative time t
   353  // means that we can write
   354  //
   355  //	sec = t % 60
   356  //
   357  // instead of
   358  //
   359  //	sec = t % 60
   360  //	if sec < 0 {
   361  //		sec += 60
   362  //	}
   363  //
   364  // everywhere.
   365  //
   366  // The calendar runs on an exact 400 year cycle: a 400-year calendar
   367  // printed for 1970-2469 will apply as well to 2370-2769.  Even the days
   368  // of the week match up. It simplifies the computations to choose the
   369  // cycle boundaries so that the exceptional years are always delayed as
   370  // long as possible. That means choosing a year equal to 1 mod 400, so
   371  // that the first leap year is the 4th year, the first missed leap year
   372  // is the 100th year, and the missed missed leap year is the 400th year.
   373  // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   374  // for 2401-2800.
   375  //
   376  // Finally, it's convenient if the delta between the Unix epoch and
   377  // long-ago epoch is representable by an int64 constant.
   378  //
   379  // These three considerations—choose an epoch as early as possible, that
   380  // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   381  // earlier than 1970—bring us to the year -292277022399.  We refer to
   382  // this year as the absolute zero year, and to times measured as a uint64
   383  // seconds since this year as absolute times.
   384  //
   385  // Times measured as an int64 seconds since the year 1—the representation
   386  // used for Time's sec field—are called internal times.
   387  //
   388  // Times measured as an int64 seconds since the year 1970 are called Unix
   389  // times.
   390  //
   391  // It is tempting to just use the year 1 as the absolute epoch, defining
   392  // that the routines are only valid for years >= 1.  However, the
   393  // routines would then be invalid when displaying the epoch in time zones
   394  // west of UTC, since it is year 0.  It doesn't seem tenable to say that
   395  // printing the zero time correctly isn't supported in half the time
   396  // zones. By comparison, it's reasonable to mishandle some times in
   397  // the year -292277022399.
   398  //
   399  // All this is opaque to clients of the API and can be changed if a
   400  // better implementation presents itself.
   401  
   402  const (
   403  	// The unsigned zero year for internal calculations.
   404  	// Must be 1 mod 400, and times before it will not compute correctly,
   405  	// but otherwise can be changed at will.
   406  	absoluteZeroYear = -292277022399
   407  
   408  	// The year of the zero Time.
   409  	// Assumed by the unixToInternal computation below.
   410  	internalYear = 1
   411  
   412  	// Offsets to convert between internal and absolute or Unix times.
   413  	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   414  	internalToAbsolute       = -absoluteToInternal
   415  
   416  	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   417  	internalToUnix int64 = -unixToInternal
   418  
   419  	wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
   420  	internalToWall int64 = -wallToInternal
   421  )
   422  
   423  // IsZero reports whether t represents the zero time instant,
   424  // January 1, year 1, 00:00:00 UTC.
   425  func (t Time) IsZero() bool {
   426  	return t.sec() == 0 && t.nsec() == 0
   427  }
   428  
   429  // abs returns the time t as an absolute time, adjusted by the zone offset.
   430  // It is called when computing a presentation property like Month or Hour.
   431  func (t Time) abs() uint64 {
   432  	l := t.loc
   433  	// Avoid function calls when possible.
   434  	if l == nil || l == &localLoc {
   435  		l = l.get()
   436  	}
   437  	sec := t.unixSec()
   438  	if l != &utcLoc {
   439  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   440  			sec += int64(l.cacheZone.offset)
   441  		} else {
   442  			_, offset, _, _, _ := l.lookup(sec)
   443  			sec += int64(offset)
   444  		}
   445  	}
   446  	return uint64(sec + (unixToInternal + internalToAbsolute))
   447  }
   448  
   449  // locabs is a combination of the Zone and abs methods,
   450  // extracting both return values from a single zone lookup.
   451  func (t Time) locabs() (name string, offset int, abs uint64) {
   452  	l := t.loc
   453  	if l == nil || l == &localLoc {
   454  		l = l.get()
   455  	}
   456  	// Avoid function call if we hit the local time cache.
   457  	sec := t.unixSec()
   458  	if l != &utcLoc {
   459  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   460  			name = l.cacheZone.name
   461  			offset = l.cacheZone.offset
   462  		} else {
   463  			name, offset, _, _, _ = l.lookup(sec)
   464  		}
   465  		sec += int64(offset)
   466  	} else {
   467  		name = "UTC"
   468  	}
   469  	abs = uint64(sec + (unixToInternal + internalToAbsolute))
   470  	return
   471  }
   472  
   473  // Date returns the year, month, and day in which t occurs.
   474  func (t Time) Date() (year int, month Month, day int) {
   475  	year, month, day, _ = t.date(true)
   476  	return
   477  }
   478  
   479  // Year returns the year in which t occurs.
   480  func (t Time) Year() int {
   481  	year, _, _, _ := t.date(false)
   482  	return year
   483  }
   484  
   485  // Month returns the month of the year specified by t.
   486  func (t Time) Month() Month {
   487  	_, month, _, _ := t.date(true)
   488  	return month
   489  }
   490  
   491  // Day returns the day of the month specified by t.
   492  func (t Time) Day() int {
   493  	_, _, day, _ := t.date(true)
   494  	return day
   495  }
   496  
   497  // Weekday returns the day of the week specified by t.
   498  func (t Time) Weekday() Weekday {
   499  	return absWeekday(t.abs())
   500  }
   501  
   502  // absWeekday is like Weekday but operates on an absolute time.
   503  func absWeekday(abs uint64) Weekday {
   504  	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   505  	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   506  	return Weekday(int(sec) / secondsPerDay)
   507  }
   508  
   509  // ISOWeek returns the ISO 8601 year and week number in which t occurs.
   510  // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   511  // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   512  // of year n+1.
   513  func (t Time) ISOWeek() (year, week int) {
   514  	year, month, day, yday := t.date(true)
   515  	wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
   516  	const (
   517  		Mon int = iota
   518  		Tue
   519  		Wed
   520  		Thu
   521  		Fri
   522  		Sat
   523  		Sun
   524  	)
   525  
   526  	// Calculate week as number of Mondays in year up to
   527  	// and including today, plus 1 because the first week is week 0.
   528  	// Putting the + 1 inside the numerator as a + 7 keeps the
   529  	// numerator from being negative, which would cause it to
   530  	// round incorrectly.
   531  	week = (yday - wday + 7) / 7
   532  
   533  	// The week number is now correct under the assumption
   534  	// that the first Monday of the year is in week 1.
   535  	// If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
   536  	// is actually in week 2.
   537  	jan1wday := (wday - yday + 7*53) % 7
   538  	if Tue <= jan1wday && jan1wday <= Thu {
   539  		week++
   540  	}
   541  
   542  	// If the week number is still 0, we're in early January but in
   543  	// the last week of last year.
   544  	if week == 0 {
   545  		year--
   546  		week = 52
   547  		// A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
   548  		// meaning Jan 1 of the next year is a Friday
   549  		// or it was a leap year and Jan 1 of the next year is a Saturday.
   550  		if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
   551  			week++
   552  		}
   553  	}
   554  
   555  	// December 29 to 31 are in week 1 of next year if
   556  	// they are after the last Thursday of the year and
   557  	// December 31 is a Monday, Tuesday, or Wednesday.
   558  	if month == December && day >= 29 && wday < Thu {
   559  		if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
   560  			year++
   561  			week = 1
   562  		}
   563  	}
   564  
   565  	return
   566  }
   567  
   568  // Clock returns the hour, minute, and second within the day specified by t.
   569  func (t Time) Clock() (hour, min, sec int) {
   570  	return absClock(t.abs())
   571  }
   572  
   573  // absClock is like clock but operates on an absolute time.
   574  func absClock(abs uint64) (hour, min, sec int) {
   575  	sec = int(abs % secondsPerDay)
   576  	hour = sec / secondsPerHour
   577  	sec -= hour * secondsPerHour
   578  	min = sec / secondsPerMinute
   579  	sec -= min * secondsPerMinute
   580  	return
   581  }
   582  
   583  // Hour returns the hour within the day specified by t, in the range [0, 23].
   584  func (t Time) Hour() int {
   585  	return int(t.abs()%secondsPerDay) / secondsPerHour
   586  }
   587  
   588  // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   589  func (t Time) Minute() int {
   590  	return int(t.abs()%secondsPerHour) / secondsPerMinute
   591  }
   592  
   593  // Second returns the second offset within the minute specified by t, in the range [0, 59].
   594  func (t Time) Second() int {
   595  	return int(t.abs() % secondsPerMinute)
   596  }
   597  
   598  // Nanosecond returns the nanosecond offset within the second specified by t,
   599  // in the range [0, 999999999].
   600  func (t Time) Nanosecond() int {
   601  	return int(t.nsec())
   602  }
   603  
   604  // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   605  // and [1,366] in leap years.
   606  func (t Time) YearDay() int {
   607  	_, _, _, yday := t.date(false)
   608  	return yday + 1
   609  }
   610  
   611  // A Duration represents the elapsed time between two instants
   612  // as an int64 nanosecond count. The representation limits the
   613  // largest representable duration to approximately 290 years.
   614  type Duration int64
   615  
   616  const (
   617  	minDuration Duration = -1 << 63
   618  	maxDuration Duration = 1<<63 - 1
   619  )
   620  
   621  // Common durations. There is no definition for units of Day or larger
   622  // to avoid confusion across daylight savings time zone transitions.
   623  //
   624  // To count the number of units in a Duration, divide:
   625  //	second := time.Second
   626  //	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   627  //
   628  // To convert an integer number of units to a Duration, multiply:
   629  //	seconds := 10
   630  //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   631  //
   632  const (
   633  	Nanosecond  Duration = 1
   634  	Microsecond          = 1000 * Nanosecond
   635  	Millisecond          = 1000 * Microsecond
   636  	Second               = 1000 * Millisecond
   637  	Minute               = 60 * Second
   638  	Hour                 = 60 * Minute
   639  )
   640  
   641  // String returns a string representing the duration in the form "72h3m0.5s".
   642  // Leading zero units are omitted. As a special case, durations less than one
   643  // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   644  // that the leading digit is non-zero. The zero duration formats as 0s.
   645  func (d Duration) String() string {
   646  	// Largest time is 2540400h10m10.000000000s
   647  	var buf [32]byte
   648  	w := len(buf)
   649  
   650  	u := uint64(d)
   651  	neg := d < 0
   652  	if neg {
   653  		u = -u
   654  	}
   655  
   656  	if u < uint64(Second) {
   657  		// Special case: if duration is smaller than a second,
   658  		// use smaller units, like 1.2ms
   659  		var prec int
   660  		w--
   661  		buf[w] = 's'
   662  		w--
   663  		switch {
   664  		case u == 0:
   665  			return "0s"
   666  		case u < uint64(Microsecond):
   667  			// print nanoseconds
   668  			prec = 0
   669  			buf[w] = 'n'
   670  		case u < uint64(Millisecond):
   671  			// print microseconds
   672  			prec = 3
   673  			// U+00B5 'µ' micro sign == 0xC2 0xB5
   674  			w-- // Need room for two bytes.
   675  			copy(buf[w:], "µ")
   676  		default:
   677  			// print milliseconds
   678  			prec = 6
   679  			buf[w] = 'm'
   680  		}
   681  		w, u = fmtFrac(buf[:w], u, prec)
   682  		w = fmtInt(buf[:w], u)
   683  	} else {
   684  		w--
   685  		buf[w] = 's'
   686  
   687  		w, u = fmtFrac(buf[:w], u, 9)
   688  
   689  		// u is now integer seconds
   690  		w = fmtInt(buf[:w], u%60)
   691  		u /= 60
   692  
   693  		// u is now integer minutes
   694  		if u > 0 {
   695  			w--
   696  			buf[w] = 'm'
   697  			w = fmtInt(buf[:w], u%60)
   698  			u /= 60
   699  
   700  			// u is now integer hours
   701  			// Stop at hours because days can be different lengths.
   702  			if u > 0 {
   703  				w--
   704  				buf[w] = 'h'
   705  				w = fmtInt(buf[:w], u)
   706  			}
   707  		}
   708  	}
   709  
   710  	if neg {
   711  		w--
   712  		buf[w] = '-'
   713  	}
   714  
   715  	return string(buf[w:])
   716  }
   717  
   718  // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   719  // tail of buf, omitting trailing zeros.  it omits the decimal
   720  // point too when the fraction is 0.  It returns the index where the
   721  // output bytes begin and the value v/10**prec.
   722  func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   723  	// Omit trailing zeros up to and including decimal point.
   724  	w := len(buf)
   725  	print := false
   726  	for i := 0; i < prec; i++ {
   727  		digit := v % 10
   728  		print = print || digit != 0
   729  		if print {
   730  			w--
   731  			buf[w] = byte(digit) + '0'
   732  		}
   733  		v /= 10
   734  	}
   735  	if print {
   736  		w--
   737  		buf[w] = '.'
   738  	}
   739  	return w, v
   740  }
   741  
   742  // fmtInt formats v into the tail of buf.
   743  // It returns the index where the output begins.
   744  func fmtInt(buf []byte, v uint64) int {
   745  	w := len(buf)
   746  	if v == 0 {
   747  		w--
   748  		buf[w] = '0'
   749  	} else {
   750  		for v > 0 {
   751  			w--
   752  			buf[w] = byte(v%10) + '0'
   753  			v /= 10
   754  		}
   755  	}
   756  	return w
   757  }
   758  
   759  // Nanoseconds returns the duration as an integer nanosecond count.
   760  func (d Duration) Nanoseconds() int64 { return int64(d) }
   761  
   762  // These methods return float64 because the dominant
   763  // use case is for printing a floating point number like 1.5s, and
   764  // a truncation to integer would make them not useful in those cases.
   765  // Splitting the integer and fraction ourselves guarantees that
   766  // converting the returned float64 to an integer rounds the same
   767  // way that a pure integer conversion would have, even in cases
   768  // where, say, float64(d.Nanoseconds())/1e9 would have rounded
   769  // differently.
   770  
   771  // Seconds returns the duration as a floating point number of seconds.
   772  func (d Duration) Seconds() float64 {
   773  	sec := d / Second
   774  	nsec := d % Second
   775  	return float64(sec) + float64(nsec)/1e9
   776  }
   777  
   778  // Minutes returns the duration as a floating point number of minutes.
   779  func (d Duration) Minutes() float64 {
   780  	min := d / Minute
   781  	nsec := d % Minute
   782  	return float64(min) + float64(nsec)/(60*1e9)
   783  }
   784  
   785  // Hours returns the duration as a floating point number of hours.
   786  func (d Duration) Hours() float64 {
   787  	hour := d / Hour
   788  	nsec := d % Hour
   789  	return float64(hour) + float64(nsec)/(60*60*1e9)
   790  }
   791  
   792  // Truncate returns the result of rounding d toward zero to a multiple of m.
   793  // If m <= 0, Truncate returns d unchanged.
   794  func (d Duration) Truncate(m Duration) Duration {
   795  	if m <= 0 {
   796  		return d
   797  	}
   798  	return d - d%m
   799  }
   800  
   801  // lessThanHalf reports whether x+x < y but avoids overflow,
   802  // assuming x and y are both positive (Duration is signed).
   803  func lessThanHalf(x, y Duration) bool {
   804  	return uint64(x)+uint64(x) < uint64(y)
   805  }
   806  
   807  // Round returns the result of rounding d to the nearest multiple of m.
   808  // The rounding behavior for halfway values is to round away from zero.
   809  // If the result exceeds the maximum (or minimum)
   810  // value that can be stored in a Duration,
   811  // Round returns the maximum (or minimum) duration.
   812  // If m <= 0, Round returns d unchanged.
   813  func (d Duration) Round(m Duration) Duration {
   814  	if m <= 0 {
   815  		return d
   816  	}
   817  	r := d % m
   818  	if d < 0 {
   819  		r = -r
   820  		if lessThanHalf(r, m) {
   821  			return d + r
   822  		}
   823  		if d1 := d - m + r; d1 < d {
   824  			return d1
   825  		}
   826  		return minDuration // overflow
   827  	}
   828  	if lessThanHalf(r, m) {
   829  		return d - r
   830  	}
   831  	if d1 := d + m - r; d1 > d {
   832  		return d1
   833  	}
   834  	return maxDuration // overflow
   835  }
   836  
   837  // Add returns the time t+d.
   838  func (t Time) Add(d Duration) Time {
   839  	dsec := int64(d / 1e9)
   840  	nsec := t.nsec() + int32(d%1e9)
   841  	if nsec >= 1e9 {
   842  		dsec++
   843  		nsec -= 1e9
   844  	} else if nsec < 0 {
   845  		dsec--
   846  		nsec += 1e9
   847  	}
   848  	t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
   849  	t.addSec(dsec)
   850  	if t.wall&hasMonotonic != 0 {
   851  		te := t.ext + int64(d)
   852  		if d < 0 && te > int64(t.ext) || d > 0 && te < int64(t.ext) {
   853  			// Monotonic clock reading now out of range; degrade to wall-only.
   854  			t.stripMono()
   855  		} else {
   856  			t.ext = te
   857  		}
   858  	}
   859  	return t
   860  }
   861  
   862  // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
   863  // value that can be stored in a Duration, the maximum (or minimum) duration
   864  // will be returned.
   865  // To compute t-d for a duration d, use t.Add(-d).
   866  func (t Time) Sub(u Time) Duration {
   867  	if t.wall&u.wall&hasMonotonic != 0 {
   868  		te := int64(t.ext)
   869  		ue := int64(u.ext)
   870  		d := Duration(te - ue)
   871  		if d < 0 && te > ue {
   872  			return maxDuration // t - u is positive out of range
   873  		}
   874  		if d > 0 && te < ue {
   875  			return minDuration // t - u is negative out of range
   876  		}
   877  		return d
   878  	}
   879  	d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
   880  	// Check for overflow or underflow.
   881  	switch {
   882  	case u.Add(d).Equal(t):
   883  		return d // d is correct
   884  	case t.Before(u):
   885  		return minDuration // t - u is negative out of range
   886  	default:
   887  		return maxDuration // t - u is positive out of range
   888  	}
   889  }
   890  
   891  // Since returns the time elapsed since t.
   892  // It is shorthand for time.Now().Sub(t).
   893  func Since(t Time) Duration {
   894  	return Now().Sub(t)
   895  }
   896  
   897  // Until returns the duration until t.
   898  // It is shorthand for t.Sub(time.Now()).
   899  func Until(t Time) Duration {
   900  	return t.Sub(Now())
   901  }
   902  
   903  // AddDate returns the time corresponding to adding the
   904  // given number of years, months, and days to t.
   905  // For example, AddDate(-1, 2, 3) applied to January 1, 2011
   906  // returns March 4, 2010.
   907  //
   908  // AddDate normalizes its result in the same way that Date does,
   909  // so, for example, adding one month to October 31 yields
   910  // December 1, the normalized form for November 31.
   911  func (t Time) AddDate(years int, months int, days int) Time {
   912  	year, month, day := t.Date()
   913  	hour, min, sec := t.Clock()
   914  	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
   915  }
   916  
   917  const (
   918  	secondsPerMinute = 60
   919  	secondsPerHour   = 60 * 60
   920  	secondsPerDay    = 24 * secondsPerHour
   921  	secondsPerWeek   = 7 * secondsPerDay
   922  	daysPer400Years  = 365*400 + 97
   923  	daysPer100Years  = 365*100 + 24
   924  	daysPer4Years    = 365*4 + 1
   925  )
   926  
   927  // date computes the year, day of year, and when full=true,
   928  // the month and day in which t occurs.
   929  func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   930  	return absDate(t.abs(), full)
   931  }
   932  
   933  // absDate is like date but operates on an absolute time.
   934  func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   935  	// Split into time and day.
   936  	d := abs / secondsPerDay
   937  
   938  	// Account for 400 year cycles.
   939  	n := d / daysPer400Years
   940  	y := 400 * n
   941  	d -= daysPer400Years * n
   942  
   943  	// Cut off 100-year cycles.
   944  	// The last cycle has one extra leap year, so on the last day
   945  	// of that year, day / daysPer100Years will be 4 instead of 3.
   946  	// Cut it back down to 3 by subtracting n>>2.
   947  	n = d / daysPer100Years
   948  	n -= n >> 2
   949  	y += 100 * n
   950  	d -= daysPer100Years * n
   951  
   952  	// Cut off 4-year cycles.
   953  	// The last cycle has a missing leap year, which does not
   954  	// affect the computation.
   955  	n = d / daysPer4Years
   956  	y += 4 * n
   957  	d -= daysPer4Years * n
   958  
   959  	// Cut off years within a 4-year cycle.
   960  	// The last year is a leap year, so on the last day of that year,
   961  	// day / 365 will be 4 instead of 3.  Cut it back down to 3
   962  	// by subtracting n>>2.
   963  	n = d / 365
   964  	n -= n >> 2
   965  	y += n
   966  	d -= 365 * n
   967  
   968  	year = int(int64(y) + absoluteZeroYear)
   969  	yday = int(d)
   970  
   971  	if !full {
   972  		return
   973  	}
   974  
   975  	day = yday
   976  	if isLeap(year) {
   977  		// Leap year
   978  		switch {
   979  		case day > 31+29-1:
   980  			// After leap day; pretend it wasn't there.
   981  			day--
   982  		case day == 31+29-1:
   983  			// Leap day.
   984  			month = February
   985  			day = 29
   986  			return
   987  		}
   988  	}
   989  
   990  	// Estimate month on assumption that every month has 31 days.
   991  	// The estimate may be too low by at most one month, so adjust.
   992  	month = Month(day / 31)
   993  	end := int(daysBefore[month+1])
   994  	var begin int
   995  	if day >= end {
   996  		month++
   997  		begin = end
   998  	} else {
   999  		begin = int(daysBefore[month])
  1000  	}
  1001  
  1002  	month++ // because January is 1
  1003  	day = day - begin + 1
  1004  	return
  1005  }
  1006  
  1007  // daysBefore[m] counts the number of days in a non-leap year
  1008  // before month m begins. There is an entry for m=12, counting
  1009  // the number of days before January of next year (365).
  1010  var daysBefore = [...]int32{
  1011  	0,
  1012  	31,
  1013  	31 + 28,
  1014  	31 + 28 + 31,
  1015  	31 + 28 + 31 + 30,
  1016  	31 + 28 + 31 + 30 + 31,
  1017  	31 + 28 + 31 + 30 + 31 + 30,
  1018  	31 + 28 + 31 + 30 + 31 + 30 + 31,
  1019  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
  1020  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
  1021  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
  1022  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
  1023  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
  1024  }
  1025  
  1026  func daysIn(m Month, year int) int {
  1027  	if m == February && isLeap(year) {
  1028  		return 29
  1029  	}
  1030  	return int(daysBefore[m] - daysBefore[m-1])
  1031  }
  1032  
  1033  // Provided by package runtime.
  1034  func now() (sec int64, nsec int32, mono int64)
  1035  
  1036  // Now returns the current local time.
  1037  func Now() Time {
  1038  	sec, nsec, mono := now()
  1039  	sec += unixToInternal - minWall
  1040  	if uint64(sec)>>33 != 0 {
  1041  		return Time{uint64(nsec), sec + minWall, Local}
  1042  	}
  1043  	return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local}
  1044  }
  1045  
  1046  func unixTime(sec int64, nsec int32) Time {
  1047  	return Time{uint64(nsec), sec + unixToInternal, Local}
  1048  }
  1049  
  1050  // UTC returns t with the location set to UTC.
  1051  func (t Time) UTC() Time {
  1052  	t.setLoc(&utcLoc)
  1053  	return t
  1054  }
  1055  
  1056  // Local returns t with the location set to local time.
  1057  func (t Time) Local() Time {
  1058  	t.setLoc(Local)
  1059  	return t
  1060  }
  1061  
  1062  // In returns t with the location information set to loc.
  1063  //
  1064  // In panics if loc is nil.
  1065  func (t Time) In(loc *Location) Time {
  1066  	if loc == nil {
  1067  		panic("time: missing Location in call to Time.In")
  1068  	}
  1069  	t.setLoc(loc)
  1070  	return t
  1071  }
  1072  
  1073  // Location returns the time zone information associated with t.
  1074  func (t Time) Location() *Location {
  1075  	l := t.loc
  1076  	if l == nil {
  1077  		l = UTC
  1078  	}
  1079  	return l
  1080  }
  1081  
  1082  // Zone computes the time zone in effect at time t, returning the abbreviated
  1083  // name of the zone (such as "CET") and its offset in seconds east of UTC.
  1084  func (t Time) Zone() (name string, offset int) {
  1085  	name, offset, _, _, _ = t.loc.lookup(t.unixSec())
  1086  	return
  1087  }
  1088  
  1089  // Unix returns t as a Unix time, the number of seconds elapsed
  1090  // since January 1, 1970 UTC.
  1091  func (t Time) Unix() int64 {
  1092  	return t.unixSec()
  1093  }
  1094  
  1095  // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
  1096  // since January 1, 1970 UTC. The result is undefined if the Unix time
  1097  // in nanoseconds cannot be represented by an int64 (a date before the year
  1098  // 1678 or after 2262). Note that this means the result of calling UnixNano
  1099  // on the zero Time is undefined.
  1100  func (t Time) UnixNano() int64 {
  1101  	return (t.unixSec())*1e9 + int64(t.nsec())
  1102  }
  1103  
  1104  const timeBinaryVersion byte = 1
  1105  
  1106  // MarshalBinary implements the encoding.BinaryMarshaler interface.
  1107  func (t Time) MarshalBinary() ([]byte, error) {
  1108  	var offsetMin int16 // minutes east of UTC. -1 is UTC.
  1109  
  1110  	if t.Location() == UTC {
  1111  		offsetMin = -1
  1112  	} else {
  1113  		_, offset := t.Zone()
  1114  		if offset%60 != 0 {
  1115  			return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
  1116  		}
  1117  		offset /= 60
  1118  		if offset < -32768 || offset == -1 || offset > 32767 {
  1119  			return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
  1120  		}
  1121  		offsetMin = int16(offset)
  1122  	}
  1123  
  1124  	sec := t.sec()
  1125  	nsec := t.nsec()
  1126  	enc := []byte{
  1127  		timeBinaryVersion, // byte 0 : version
  1128  		byte(sec >> 56),   // bytes 1-8: seconds
  1129  		byte(sec >> 48),
  1130  		byte(sec >> 40),
  1131  		byte(sec >> 32),
  1132  		byte(sec >> 24),
  1133  		byte(sec >> 16),
  1134  		byte(sec >> 8),
  1135  		byte(sec),
  1136  		byte(nsec >> 24), // bytes 9-12: nanoseconds
  1137  		byte(nsec >> 16),
  1138  		byte(nsec >> 8),
  1139  		byte(nsec),
  1140  		byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
  1141  		byte(offsetMin),
  1142  	}
  1143  
  1144  	return enc, nil
  1145  }
  1146  
  1147  // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
  1148  func (t *Time) UnmarshalBinary(data []byte) error {
  1149  	buf := data
  1150  	if len(buf) == 0 {
  1151  		return errors.New("Time.UnmarshalBinary: no data")
  1152  	}
  1153  
  1154  	if buf[0] != timeBinaryVersion {
  1155  		return errors.New("Time.UnmarshalBinary: unsupported version")
  1156  	}
  1157  
  1158  	if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
  1159  		return errors.New("Time.UnmarshalBinary: invalid length")
  1160  	}
  1161  
  1162  	buf = buf[1:]
  1163  	sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
  1164  		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
  1165  
  1166  	buf = buf[8:]
  1167  	nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
  1168  
  1169  	buf = buf[4:]
  1170  	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
  1171  
  1172  	*t = Time{}
  1173  	t.wall = uint64(nsec)
  1174  	t.ext = sec
  1175  
  1176  	if offset == -1*60 {
  1177  		t.setLoc(&utcLoc)
  1178  	} else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff {
  1179  		t.setLoc(Local)
  1180  	} else {
  1181  		t.setLoc(FixedZone("", offset))
  1182  	}
  1183  
  1184  	return nil
  1185  }
  1186  
  1187  // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
  1188  // The same semantics will be provided by the generic MarshalBinary, MarshalText,
  1189  // UnmarshalBinary, UnmarshalText.
  1190  
  1191  // GobEncode implements the gob.GobEncoder interface.
  1192  func (t Time) GobEncode() ([]byte, error) {
  1193  	return t.MarshalBinary()
  1194  }
  1195  
  1196  // GobDecode implements the gob.GobDecoder interface.
  1197  func (t *Time) GobDecode(data []byte) error {
  1198  	return t.UnmarshalBinary(data)
  1199  }
  1200  
  1201  // MarshalJSON implements the json.Marshaler interface.
  1202  // The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
  1203  func (t Time) MarshalJSON() ([]byte, error) {
  1204  	if y := t.Year(); y < 0 || y >= 10000 {
  1205  		// RFC 3339 is clear that years are 4 digits exactly.
  1206  		// See golang.org/issue/4556#c15 for more discussion.
  1207  		return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
  1208  	}
  1209  
  1210  	b := make([]byte, 0, len(RFC3339Nano)+2)
  1211  	b = append(b, '"')
  1212  	b = t.AppendFormat(b, RFC3339Nano)
  1213  	b = append(b, '"')
  1214  	return b, nil
  1215  }
  1216  
  1217  // UnmarshalJSON implements the json.Unmarshaler interface.
  1218  // The time is expected to be a quoted string in RFC 3339 format.
  1219  func (t *Time) UnmarshalJSON(data []byte) error {
  1220  	// Ignore null, like in the main JSON package.
  1221  	if string(data) == "null" {
  1222  		return nil
  1223  	}
  1224  	// Fractional seconds are handled implicitly by Parse.
  1225  	var err error
  1226  	*t, err = Parse(`"`+RFC3339+`"`, string(data))
  1227  	return err
  1228  }
  1229  
  1230  // MarshalText implements the encoding.TextMarshaler interface.
  1231  // The time is formatted in RFC 3339 format, with sub-second precision added if present.
  1232  func (t Time) MarshalText() ([]byte, error) {
  1233  	if y := t.Year(); y < 0 || y >= 10000 {
  1234  		return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
  1235  	}
  1236  
  1237  	b := make([]byte, 0, len(RFC3339Nano))
  1238  	return t.AppendFormat(b, RFC3339Nano), nil
  1239  }
  1240  
  1241  // UnmarshalText implements the encoding.TextUnmarshaler interface.
  1242  // The time is expected to be in RFC 3339 format.
  1243  func (t *Time) UnmarshalText(data []byte) error {
  1244  	// Fractional seconds are handled implicitly by Parse.
  1245  	var err error
  1246  	*t, err = Parse(RFC3339, string(data))
  1247  	return err
  1248  }
  1249  
  1250  // Unix returns the local Time corresponding to the given Unix time,
  1251  // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
  1252  // It is valid to pass nsec outside the range [0, 999999999].
  1253  // Not all sec values have a corresponding time value. One such
  1254  // value is 1<<63-1 (the largest int64 value).
  1255  func Unix(sec int64, nsec int64) Time {
  1256  	if nsec < 0 || nsec >= 1e9 {
  1257  		n := nsec / 1e9
  1258  		sec += n
  1259  		nsec -= n * 1e9
  1260  		if nsec < 0 {
  1261  			nsec += 1e9
  1262  			sec--
  1263  		}
  1264  	}
  1265  	return unixTime(sec, int32(nsec))
  1266  }
  1267  
  1268  func isLeap(year int) bool {
  1269  	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
  1270  }
  1271  
  1272  // norm returns nhi, nlo such that
  1273  //	hi * base + lo == nhi * base + nlo
  1274  //	0 <= nlo < base
  1275  func norm(hi, lo, base int) (nhi, nlo int) {
  1276  	if lo < 0 {
  1277  		n := (-lo-1)/base + 1
  1278  		hi -= n
  1279  		lo += n * base
  1280  	}
  1281  	if lo >= base {
  1282  		n := lo / base
  1283  		hi += n
  1284  		lo -= n * base
  1285  	}
  1286  	return hi, lo
  1287  }
  1288  
  1289  // Date returns the Time corresponding to
  1290  //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
  1291  // in the appropriate zone for that time in the given location.
  1292  //
  1293  // The month, day, hour, min, sec, and nsec values may be outside
  1294  // their usual ranges and will be normalized during the conversion.
  1295  // For example, October 32 converts to November 1.
  1296  //
  1297  // A daylight savings time transition skips or repeats times.
  1298  // For example, in the United States, March 13, 2011 2:15am never occurred,
  1299  // while November 6, 2011 1:15am occurred twice. In such cases, the
  1300  // choice of time zone, and therefore the time, is not well-defined.
  1301  // Date returns a time that is correct in one of the two zones involved
  1302  // in the transition, but it does not guarantee which.
  1303  //
  1304  // Date panics if loc is nil.
  1305  func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
  1306  	if loc == nil {
  1307  		panic("time: missing Location in call to Date")
  1308  	}
  1309  
  1310  	// Normalize month, overflowing into year.
  1311  	m := int(month) - 1
  1312  	year, m = norm(year, m, 12)
  1313  	month = Month(m) + 1
  1314  
  1315  	// Normalize nsec, sec, min, hour, overflowing into day.
  1316  	sec, nsec = norm(sec, nsec, 1e9)
  1317  	min, sec = norm(min, sec, 60)
  1318  	hour, min = norm(hour, min, 60)
  1319  	day, hour = norm(day, hour, 24)
  1320  
  1321  	y := uint64(int64(year) - absoluteZeroYear)
  1322  
  1323  	// Compute days since the absolute epoch.
  1324  
  1325  	// Add in days from 400-year cycles.
  1326  	n := y / 400
  1327  	y -= 400 * n
  1328  	d := daysPer400Years * n
  1329  
  1330  	// Add in 100-year cycles.
  1331  	n = y / 100
  1332  	y -= 100 * n
  1333  	d += daysPer100Years * n
  1334  
  1335  	// Add in 4-year cycles.
  1336  	n = y / 4
  1337  	y -= 4 * n
  1338  	d += daysPer4Years * n
  1339  
  1340  	// Add in non-leap years.
  1341  	n = y
  1342  	d += 365 * n
  1343  
  1344  	// Add in days before this month.
  1345  	d += uint64(daysBefore[month-1])
  1346  	if isLeap(year) && month >= March {
  1347  		d++ // February 29
  1348  	}
  1349  
  1350  	// Add in days before today.
  1351  	d += uint64(day - 1)
  1352  
  1353  	// Add in time elapsed today.
  1354  	abs := d * secondsPerDay
  1355  	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1356  
  1357  	unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1358  
  1359  	// Look for zone offset for t, so we can adjust to UTC.
  1360  	// The lookup function expects UTC, so we pass t in the
  1361  	// hope that it will not be too close to a zone transition,
  1362  	// and then adjust if it is.
  1363  	_, offset, _, start, end := loc.lookup(unix)
  1364  	if offset != 0 {
  1365  		switch utc := unix - int64(offset); {
  1366  		case utc < start:
  1367  			_, offset, _, _, _ = loc.lookup(start - 1)
  1368  		case utc >= end:
  1369  			_, offset, _, _, _ = loc.lookup(end)
  1370  		}
  1371  		unix -= int64(offset)
  1372  	}
  1373  
  1374  	t := unixTime(unix, int32(nsec))
  1375  	t.setLoc(loc)
  1376  	return t
  1377  }
  1378  
  1379  // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1380  // If d <= 0, Truncate returns t unchanged.
  1381  //
  1382  // Truncate operates on the time as an absolute duration since the
  1383  // zero time; it does not operate on the presentation form of the
  1384  // time. Thus, Truncate(Hour) may return a time with a non-zero
  1385  // minute, depending on the time's Location.
  1386  func (t Time) Truncate(d Duration) Time {
  1387  	t.stripMono()
  1388  	if d <= 0 {
  1389  		return t
  1390  	}
  1391  	_, r := div(t, d)
  1392  	return t.Add(-r)
  1393  }
  1394  
  1395  // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1396  // The rounding behavior for halfway values is to round up.
  1397  // If d <= 0, Round returns t unchanged.
  1398  //
  1399  // Round operates on the time as an absolute duration since the
  1400  // zero time; it does not operate on the presentation form of the
  1401  // time. Thus, Round(Hour) may return a time with a non-zero
  1402  // minute, depending on the time's Location.
  1403  func (t Time) Round(d Duration) Time {
  1404  	t.stripMono()
  1405  	if d <= 0 {
  1406  		return t
  1407  	}
  1408  	_, r := div(t, d)
  1409  	if lessThanHalf(r, d) {
  1410  		return t.Add(-r)
  1411  	}
  1412  	return t.Add(d - r)
  1413  }
  1414  
  1415  // div divides t by d and returns the quotient parity and remainder.
  1416  // We don't use the quotient parity anymore (round half up instead of round to even)
  1417  // but it's still here in case we change our minds.
  1418  func div(t Time, d Duration) (qmod2 int, r Duration) {
  1419  	neg := false
  1420  	nsec := t.nsec()
  1421  	sec := t.sec()
  1422  	if sec < 0 {
  1423  		// Operate on absolute value.
  1424  		neg = true
  1425  		sec = -sec
  1426  		nsec = -nsec
  1427  		if nsec < 0 {
  1428  			nsec += 1e9
  1429  			sec-- // sec >= 1 before the -- so safe
  1430  		}
  1431  	}
  1432  
  1433  	switch {
  1434  	// Special case: 2d divides 1 second.
  1435  	case d < Second && Second%(d+d) == 0:
  1436  		qmod2 = int(nsec/int32(d)) & 1
  1437  		r = Duration(nsec % int32(d))
  1438  
  1439  	// Special case: d is a multiple of 1 second.
  1440  	case d%Second == 0:
  1441  		d1 := int64(d / Second)
  1442  		qmod2 = int(sec/d1) & 1
  1443  		r = Duration(sec%d1)*Second + Duration(nsec)
  1444  
  1445  	// General case.
  1446  	// This could be faster if more cleverness were applied,
  1447  	// but it's really only here to avoid special case restrictions in the API.
  1448  	// No one will care about these cases.
  1449  	default:
  1450  		// Compute nanoseconds as 128-bit number.
  1451  		sec := uint64(sec)
  1452  		tmp := (sec >> 32) * 1e9
  1453  		u1 := tmp >> 32
  1454  		u0 := tmp << 32
  1455  		tmp = (sec & 0xFFFFFFFF) * 1e9
  1456  		u0x, u0 := u0, u0+tmp
  1457  		if u0 < u0x {
  1458  			u1++
  1459  		}
  1460  		u0x, u0 = u0, u0+uint64(nsec)
  1461  		if u0 < u0x {
  1462  			u1++
  1463  		}
  1464  
  1465  		// Compute remainder by subtracting r<<k for decreasing k.
  1466  		// Quotient parity is whether we subtract on last round.
  1467  		d1 := uint64(d)
  1468  		for d1>>63 != 1 {
  1469  			d1 <<= 1
  1470  		}
  1471  		d0 := uint64(0)
  1472  		for {
  1473  			qmod2 = 0
  1474  			if u1 > d1 || u1 == d1 && u0 >= d0 {
  1475  				// subtract
  1476  				qmod2 = 1
  1477  				u0x, u0 = u0, u0-d0
  1478  				if u0 > u0x {
  1479  					u1--
  1480  				}
  1481  				u1 -= d1
  1482  			}
  1483  			if d1 == 0 && d0 == uint64(d) {
  1484  				break
  1485  			}
  1486  			d0 >>= 1
  1487  			d0 |= (d1 & 1) << 63
  1488  			d1 >>= 1
  1489  		}
  1490  		r = Duration(u0)
  1491  	}
  1492  
  1493  	if neg && r != 0 {
  1494  		// If input was negative and not an exact multiple of d, we computed q, r such that
  1495  		//	q*d + r = -t
  1496  		// But the right answers are given by -(q-1), d-r:
  1497  		//	q*d + r = -t
  1498  		//	-q*d - r = t
  1499  		//	-(q-1)*d + (d - r) = t
  1500  		qmod2 ^= 1
  1501  		r = d - r
  1502  	}
  1503  	return
  1504  }