github.com/snowblossomcoin/go-ethereum@v1.9.25/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h (about)

     1  /**********************************************************************
     2   * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell      *
     3   * Distributed under the MIT software license, see the accompanying   *
     4   * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
     5   **********************************************************************/
     6  
     7  #ifndef _SECP256K1_ECMULT_GEN_IMPL_H_
     8  #define _SECP256K1_ECMULT_GEN_IMPL_H_
     9  
    10  #include "scalar.h"
    11  #include "group.h"
    12  #include "ecmult_gen.h"
    13  #include "hash_impl.h"
    14  #ifdef USE_ECMULT_STATIC_PRECOMPUTATION
    15  #include "ecmult_static_context.h"
    16  #endif
    17  static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
    18      ctx->prec = NULL;
    19  }
    20  
    21  static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
    22  #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
    23      secp256k1_ge prec[1024];
    24      secp256k1_gej gj;
    25      secp256k1_gej nums_gej;
    26      int i, j;
    27  #endif
    28  
    29      if (ctx->prec != NULL) {
    30          return;
    31      }
    32  #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
    33      ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
    34  
    35      /* get the generator */
    36      secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
    37  
    38      /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
    39      {
    40          static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
    41          secp256k1_fe nums_x;
    42          secp256k1_ge nums_ge;
    43          int r;
    44          r = secp256k1_fe_set_b32(&nums_x, nums_b32);
    45          (void)r;
    46          VERIFY_CHECK(r);
    47          r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
    48          (void)r;
    49          VERIFY_CHECK(r);
    50          secp256k1_gej_set_ge(&nums_gej, &nums_ge);
    51          /* Add G to make the bits in x uniformly distributed. */
    52          secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
    53      }
    54  
    55      /* compute prec. */
    56      {
    57          secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
    58          secp256k1_gej gbase;
    59          secp256k1_gej numsbase;
    60          gbase = gj; /* 16^j * G */
    61          numsbase = nums_gej; /* 2^j * nums. */
    62          for (j = 0; j < 64; j++) {
    63              /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
    64              precj[j*16] = numsbase;
    65              for (i = 1; i < 16; i++) {
    66                  secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
    67              }
    68              /* Multiply gbase by 16. */
    69              for (i = 0; i < 4; i++) {
    70                  secp256k1_gej_double_var(&gbase, &gbase, NULL);
    71              }
    72              /* Multiply numbase by 2. */
    73              secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
    74              if (j == 62) {
    75                  /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
    76                  secp256k1_gej_neg(&numsbase, &numsbase);
    77                  secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
    78              }
    79          }
    80          secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb);
    81      }
    82      for (j = 0; j < 64; j++) {
    83          for (i = 0; i < 16; i++) {
    84              secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
    85          }
    86      }
    87  #else
    88      (void)cb;
    89      ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
    90  #endif
    91      secp256k1_ecmult_gen_blind(ctx, NULL);
    92  }
    93  
    94  static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
    95      return ctx->prec != NULL;
    96  }
    97  
    98  static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
    99                                                 const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
   100      if (src->prec == NULL) {
   101          dst->prec = NULL;
   102      } else {
   103  #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
   104          dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
   105          memcpy(dst->prec, src->prec, sizeof(*dst->prec));
   106  #else
   107          (void)cb;
   108          dst->prec = src->prec;
   109  #endif
   110          dst->initial = src->initial;
   111          dst->blind = src->blind;
   112      }
   113  }
   114  
   115  static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
   116  #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
   117      free(ctx->prec);
   118  #endif
   119      secp256k1_scalar_clear(&ctx->blind);
   120      secp256k1_gej_clear(&ctx->initial);
   121      ctx->prec = NULL;
   122  }
   123  
   124  static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
   125      secp256k1_ge add;
   126      secp256k1_ge_storage adds;
   127      secp256k1_scalar gnb;
   128      int bits;
   129      int i, j;
   130      memset(&adds, 0, sizeof(adds));
   131      *r = ctx->initial;
   132      /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
   133      secp256k1_scalar_add(&gnb, gn, &ctx->blind);
   134      add.infinity = 0;
   135      for (j = 0; j < 64; j++) {
   136          bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
   137          for (i = 0; i < 16; i++) {
   138              /** This uses a conditional move to avoid any secret data in array indexes.
   139               *   _Any_ use of secret indexes has been demonstrated to result in timing
   140               *   sidechannels, even when the cache-line access patterns are uniform.
   141               *  See also:
   142               *   "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
   143               *    (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
   144               *   "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
   145               *    by Dag Arne Osvik, Adi Shamir, and Eran Tromer
   146               *    (http://www.tau.ac.il/~tromer/papers/cache.pdf)
   147               */
   148              secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
   149          }
   150          secp256k1_ge_from_storage(&add, &adds);
   151          secp256k1_gej_add_ge(r, r, &add);
   152      }
   153      bits = 0;
   154      secp256k1_ge_clear(&add);
   155      secp256k1_scalar_clear(&gnb);
   156  }
   157  
   158  /* Setup blinding values for secp256k1_ecmult_gen. */
   159  static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
   160      secp256k1_scalar b;
   161      secp256k1_gej gb;
   162      secp256k1_fe s;
   163      unsigned char nonce32[32];
   164      secp256k1_rfc6979_hmac_sha256_t rng;
   165      int retry;
   166      unsigned char keydata[64] = {0};
   167      if (seed32 == NULL) {
   168          /* When seed is NULL, reset the initial point and blinding value. */
   169          secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
   170          secp256k1_gej_neg(&ctx->initial, &ctx->initial);
   171          secp256k1_scalar_set_int(&ctx->blind, 1);
   172      }
   173      /* The prior blinding value (if not reset) is chained forward by including it in the hash. */
   174      secp256k1_scalar_get_b32(nonce32, &ctx->blind);
   175      /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
   176       *   and guards against weak or adversarial seeds.  This is a simpler and safer interface than
   177       *   asking the caller for blinding values directly and expecting them to retry on failure.
   178       */
   179      memcpy(keydata, nonce32, 32);
   180      if (seed32 != NULL) {
   181          memcpy(keydata + 32, seed32, 32);
   182      }
   183      secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
   184      memset(keydata, 0, sizeof(keydata));
   185      /* Retry for out of range results to achieve uniformity. */
   186      do {
   187          secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
   188          retry = !secp256k1_fe_set_b32(&s, nonce32);
   189          retry |= secp256k1_fe_is_zero(&s);
   190      } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */
   191      /* Randomize the projection to defend against multiplier sidechannels. */
   192      secp256k1_gej_rescale(&ctx->initial, &s);
   193      secp256k1_fe_clear(&s);
   194      do {
   195          secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
   196          secp256k1_scalar_set_b32(&b, nonce32, &retry);
   197          /* A blinding value of 0 works, but would undermine the projection hardening. */
   198          retry |= secp256k1_scalar_is_zero(&b);
   199      } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */
   200      secp256k1_rfc6979_hmac_sha256_finalize(&rng);
   201      memset(nonce32, 0, 32);
   202      secp256k1_ecmult_gen(ctx, &gb, &b);
   203      secp256k1_scalar_negate(&b, &b);
   204      ctx->blind = b;
   205      ctx->initial = gb;
   206      secp256k1_scalar_clear(&b);
   207      secp256k1_gej_clear(&gb);
   208  }
   209  
   210  #endif