github.com/stingnevermore/go@v0.0.0-20180120041312-3810f5bfed72/doc/go_spec.html (about)

     1  <!--{
     2  	"Title": "The Go Programming Language Specification",
     3  	"Subtitle": "Version of January 17, 2018",
     4  	"Path": "/ref/spec"
     5  }-->
     6  
     7  <h2 id="Introduction">Introduction</h2>
     8  
     9  <p>
    10  This is a reference manual for the Go programming language. For
    11  more information and other documents, see <a href="/">golang.org</a>.
    12  </p>
    13  
    14  <p>
    15  Go is a general-purpose language designed with systems programming
    16  in mind. It is strongly typed and garbage-collected and has explicit
    17  support for concurrent programming.  Programs are constructed from
    18  <i>packages</i>, whose properties allow efficient management of
    19  dependencies.
    20  </p>
    21  
    22  <p>
    23  The grammar is compact and regular, allowing for easy analysis by
    24  automatic tools such as integrated development environments.
    25  </p>
    26  
    27  <h2 id="Notation">Notation</h2>
    28  <p>
    29  The syntax is specified using Extended Backus-Naur Form (EBNF):
    30  </p>
    31  
    32  <pre class="grammar">
    33  Production  = production_name "=" [ Expression ] "." .
    34  Expression  = Alternative { "|" Alternative } .
    35  Alternative = Term { Term } .
    36  Term        = production_name | token [ "…" token ] | Group | Option | Repetition .
    37  Group       = "(" Expression ")" .
    38  Option      = "[" Expression "]" .
    39  Repetition  = "{" Expression "}" .
    40  </pre>
    41  
    42  <p>
    43  Productions are expressions constructed from terms and the following
    44  operators, in increasing precedence:
    45  </p>
    46  <pre class="grammar">
    47  |   alternation
    48  ()  grouping
    49  []  option (0 or 1 times)
    50  {}  repetition (0 to n times)
    51  </pre>
    52  
    53  <p>
    54  Lower-case production names are used to identify lexical tokens.
    55  Non-terminals are in CamelCase. Lexical tokens are enclosed in
    56  double quotes <code>""</code> or back quotes <code>``</code>.
    57  </p>
    58  
    59  <p>
    60  The form <code>a … b</code> represents the set of characters from
    61  <code>a</code> through <code>b</code> as alternatives. The horizontal
    62  ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various
    63  enumerations or code snippets that are not further specified. The character <code>…</code>
    64  (as opposed to the three characters <code>...</code>) is not a token of the Go
    65  language.
    66  </p>
    67  
    68  <h2 id="Source_code_representation">Source code representation</h2>
    69  
    70  <p>
    71  Source code is Unicode text encoded in
    72  <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
    73  canonicalized, so a single accented code point is distinct from the
    74  same character constructed from combining an accent and a letter;
    75  those are treated as two code points.  For simplicity, this document
    76  will use the unqualified term <i>character</i> to refer to a Unicode code point
    77  in the source text.
    78  </p>
    79  <p>
    80  Each code point is distinct; for instance, upper and lower case letters
    81  are different characters.
    82  </p>
    83  <p>
    84  Implementation restriction: For compatibility with other tools, a
    85  compiler may disallow the NUL character (U+0000) in the source text.
    86  </p>
    87  <p>
    88  Implementation restriction: For compatibility with other tools, a
    89  compiler may ignore a UTF-8-encoded byte order mark
    90  (U+FEFF) if it is the first Unicode code point in the source text.
    91  A byte order mark may be disallowed anywhere else in the source.
    92  </p>
    93  
    94  <h3 id="Characters">Characters</h3>
    95  
    96  <p>
    97  The following terms are used to denote specific Unicode character classes:
    98  </p>
    99  <pre class="ebnf">
   100  newline        = /* the Unicode code point U+000A */ .
   101  unicode_char   = /* an arbitrary Unicode code point except newline */ .
   102  unicode_letter = /* a Unicode code point classified as "Letter" */ .
   103  unicode_digit  = /* a Unicode code point classified as "Number, decimal digit" */ .
   104  </pre>
   105  
   106  <p>
   107  In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>,
   108  Section 4.5 "General Category" defines a set of character categories.
   109  Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo
   110  as Unicode letters, and those in the Number category Nd as Unicode digits.
   111  </p>
   112  
   113  <h3 id="Letters_and_digits">Letters and digits</h3>
   114  
   115  <p>
   116  The underscore character <code>_</code> (U+005F) is considered a letter.
   117  </p>
   118  <pre class="ebnf">
   119  letter        = unicode_letter | "_" .
   120  decimal_digit = "0" … "9" .
   121  octal_digit   = "0" … "7" .
   122  hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
   123  </pre>
   124  
   125  <h2 id="Lexical_elements">Lexical elements</h2>
   126  
   127  <h3 id="Comments">Comments</h3>
   128  
   129  <p>
   130  Comments serve as program documentation. There are two forms:
   131  </p>
   132  
   133  <ol>
   134  <li>
   135  <i>Line comments</i> start with the character sequence <code>//</code>
   136  and stop at the end of the line.
   137  </li>
   138  <li>
   139  <i>General comments</i> start with the character sequence <code>/*</code>
   140  and stop with the first subsequent character sequence <code>*/</code>.
   141  </li>
   142  </ol>
   143  
   144  <p>
   145  A comment cannot start inside a <a href="#Rune_literals">rune</a> or
   146  <a href="#String_literals">string literal</a>, or inside a comment.
   147  A general comment containing no newlines acts like a space.
   148  Any other comment acts like a newline.
   149  </p>
   150  
   151  <h3 id="Tokens">Tokens</h3>
   152  
   153  <p>
   154  Tokens form the vocabulary of the Go language.
   155  There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
   156  and punctuation</i>, and <i>literals</i>.  <i>White space</i>, formed from
   157  spaces (U+0020), horizontal tabs (U+0009),
   158  carriage returns (U+000D), and newlines (U+000A),
   159  is ignored except as it separates tokens
   160  that would otherwise combine into a single token. Also, a newline or end of file
   161  may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
   162  While breaking the input into tokens,
   163  the next token is the longest sequence of characters that form a
   164  valid token.
   165  </p>
   166  
   167  <h3 id="Semicolons">Semicolons</h3>
   168  
   169  <p>
   170  The formal grammar uses semicolons <code>";"</code> as terminators in
   171  a number of productions. Go programs may omit most of these semicolons
   172  using the following two rules:
   173  </p>
   174  
   175  <ol>
   176  <li>
   177  When the input is broken into tokens, a semicolon is automatically inserted
   178  into the token stream immediately after a line's final token if that token is
   179  <ul>
   180  	<li>an
   181  	    <a href="#Identifiers">identifier</a>
   182  	</li>
   183  
   184  	<li>an
   185  	    <a href="#Integer_literals">integer</a>,
   186  	    <a href="#Floating-point_literals">floating-point</a>,
   187  	    <a href="#Imaginary_literals">imaginary</a>,
   188  	    <a href="#Rune_literals">rune</a>, or
   189  	    <a href="#String_literals">string</a> literal
   190  	</li>
   191  
   192  	<li>one of the <a href="#Keywords">keywords</a>
   193  	    <code>break</code>,
   194  	    <code>continue</code>,
   195  	    <code>fallthrough</code>, or
   196  	    <code>return</code>
   197  	</li>
   198  
   199  	<li>one of the <a href="#Operators_and_punctuation">operators and punctuation</a>
   200  	    <code>++</code>,
   201  	    <code>--</code>,
   202  	    <code>)</code>,
   203  	    <code>]</code>, or
   204  	    <code>}</code>
   205  	</li>
   206  </ul>
   207  </li>
   208  
   209  <li>
   210  To allow complex statements to occupy a single line, a semicolon
   211  may be omitted before a closing <code>")"</code> or <code>"}"</code>.
   212  </li>
   213  </ol>
   214  
   215  <p>
   216  To reflect idiomatic use, code examples in this document elide semicolons
   217  using these rules.
   218  </p>
   219  
   220  
   221  <h3 id="Identifiers">Identifiers</h3>
   222  
   223  <p>
   224  Identifiers name program entities such as variables and types.
   225  An identifier is a sequence of one or more letters and digits.
   226  The first character in an identifier must be a letter.
   227  </p>
   228  <pre class="ebnf">
   229  identifier = letter { letter | unicode_digit } .
   230  </pre>
   231  <pre>
   232  a
   233  _x9
   234  ThisVariableIsExported
   235  αβ
   236  </pre>
   237  
   238  <p>
   239  Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
   240  </p>
   241  
   242  
   243  <h3 id="Keywords">Keywords</h3>
   244  
   245  <p>
   246  The following keywords are reserved and may not be used as identifiers.
   247  </p>
   248  <pre class="grammar">
   249  break        default      func         interface    select
   250  case         defer        go           map          struct
   251  chan         else         goto         package      switch
   252  const        fallthrough  if           range        type
   253  continue     for          import       return       var
   254  </pre>
   255  
   256  <h3 id="Operators_and_punctuation">Operators and punctuation</h3>
   257  
   258  <p>
   259  The following character sequences represent <a href="#Operators">operators</a>
   260  (including <a href="#assign_op">assignment operators</a>) and punctuation:
   261  </p>
   262  <pre class="grammar">
   263  +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
   264  -    |     -=    |=     ||    &lt;     &lt;=    [    ]
   265  *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
   266  /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
   267  %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
   268       &amp;^          &amp;^=
   269  </pre>
   270  
   271  <h3 id="Integer_literals">Integer literals</h3>
   272  
   273  <p>
   274  An integer literal is a sequence of digits representing an
   275  <a href="#Constants">integer constant</a>.
   276  An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
   277  <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
   278  <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
   279  </p>
   280  <pre class="ebnf">
   281  int_lit     = decimal_lit | octal_lit | hex_lit .
   282  decimal_lit = ( "1" … "9" ) { decimal_digit } .
   283  octal_lit   = "0" { octal_digit } .
   284  hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
   285  </pre>
   286  
   287  <pre>
   288  42
   289  0600
   290  0xBadFace
   291  170141183460469231731687303715884105727
   292  </pre>
   293  
   294  <h3 id="Floating-point_literals">Floating-point literals</h3>
   295  <p>
   296  A floating-point literal is a decimal representation of a
   297  <a href="#Constants">floating-point constant</a>.
   298  It has an integer part, a decimal point, a fractional part,
   299  and an exponent part.  The integer and fractional part comprise
   300  decimal digits; the exponent part is an <code>e</code> or <code>E</code>
   301  followed by an optionally signed decimal exponent.  One of the
   302  integer part or the fractional part may be elided; one of the decimal
   303  point or the exponent may be elided.
   304  </p>
   305  <pre class="ebnf">
   306  float_lit = decimals "." [ decimals ] [ exponent ] |
   307              decimals exponent |
   308              "." decimals [ exponent ] .
   309  decimals  = decimal_digit { decimal_digit } .
   310  exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
   311  </pre>
   312  
   313  <pre>
   314  0.
   315  72.40
   316  072.40  // == 72.40
   317  2.71828
   318  1.e+0
   319  6.67428e-11
   320  1E6
   321  .25
   322  .12345E+5
   323  </pre>
   324  
   325  <h3 id="Imaginary_literals">Imaginary literals</h3>
   326  <p>
   327  An imaginary literal is a decimal representation of the imaginary part of a
   328  <a href="#Constants">complex constant</a>.
   329  It consists of a
   330  <a href="#Floating-point_literals">floating-point literal</a>
   331  or decimal integer followed
   332  by the lower-case letter <code>i</code>.
   333  </p>
   334  <pre class="ebnf">
   335  imaginary_lit = (decimals | float_lit) "i" .
   336  </pre>
   337  
   338  <pre>
   339  0i
   340  011i  // == 11i
   341  0.i
   342  2.71828i
   343  1.e+0i
   344  6.67428e-11i
   345  1E6i
   346  .25i
   347  .12345E+5i
   348  </pre>
   349  
   350  
   351  <h3 id="Rune_literals">Rune literals</h3>
   352  
   353  <p>
   354  A rune literal represents a <a href="#Constants">rune constant</a>,
   355  an integer value identifying a Unicode code point.
   356  A rune literal is expressed as one or more characters enclosed in single quotes,
   357  as in <code>'x'</code> or <code>'\n'</code>.
   358  Within the quotes, any character may appear except newline and unescaped single
   359  quote. A single quoted character represents the Unicode value
   360  of the character itself,
   361  while multi-character sequences beginning with a backslash encode
   362  values in various formats.
   363  </p>
   364  <p>
   365  The simplest form represents the single character within the quotes;
   366  since Go source text is Unicode characters encoded in UTF-8, multiple
   367  UTF-8-encoded bytes may represent a single integer value.  For
   368  instance, the literal <code>'a'</code> holds a single byte representing
   369  a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
   370  <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
   371  a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
   372  </p>
   373  <p>
   374  Several backslash escapes allow arbitrary values to be encoded as
   375  ASCII text.  There are four ways to represent the integer value
   376  as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
   377  digits; <code>\u</code> followed by exactly four hexadecimal digits;
   378  <code>\U</code> followed by exactly eight hexadecimal digits, and a
   379  plain backslash <code>\</code> followed by exactly three octal digits.
   380  In each case the value of the literal is the value represented by
   381  the digits in the corresponding base.
   382  </p>
   383  <p>
   384  Although these representations all result in an integer, they have
   385  different valid ranges.  Octal escapes must represent a value between
   386  0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
   387  by construction. The escapes <code>\u</code> and <code>\U</code>
   388  represent Unicode code points so within them some values are illegal,
   389  in particular those above <code>0x10FFFF</code> and surrogate halves.
   390  </p>
   391  <p>
   392  After a backslash, certain single-character escapes represent special values:
   393  </p>
   394  <pre class="grammar">
   395  \a   U+0007 alert or bell
   396  \b   U+0008 backspace
   397  \f   U+000C form feed
   398  \n   U+000A line feed or newline
   399  \r   U+000D carriage return
   400  \t   U+0009 horizontal tab
   401  \v   U+000b vertical tab
   402  \\   U+005c backslash
   403  \'   U+0027 single quote  (valid escape only within rune literals)
   404  \"   U+0022 double quote  (valid escape only within string literals)
   405  </pre>
   406  <p>
   407  All other sequences starting with a backslash are illegal inside rune literals.
   408  </p>
   409  <pre class="ebnf">
   410  rune_lit         = "'" ( unicode_value | byte_value ) "'" .
   411  unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
   412  byte_value       = octal_byte_value | hex_byte_value .
   413  octal_byte_value = `\` octal_digit octal_digit octal_digit .
   414  hex_byte_value   = `\` "x" hex_digit hex_digit .
   415  little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
   416  big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
   417                             hex_digit hex_digit hex_digit hex_digit .
   418  escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
   419  </pre>
   420  
   421  <pre>
   422  'a'
   423  'ä'
   424  '本'
   425  '\t'
   426  '\000'
   427  '\007'
   428  '\377'
   429  '\x07'
   430  '\xff'
   431  '\u12e4'
   432  '\U00101234'
   433  '\''         // rune literal containing single quote character
   434  'aa'         // illegal: too many characters
   435  '\xa'        // illegal: too few hexadecimal digits
   436  '\0'         // illegal: too few octal digits
   437  '\uDFFF'     // illegal: surrogate half
   438  '\U00110000' // illegal: invalid Unicode code point
   439  </pre>
   440  
   441  
   442  <h3 id="String_literals">String literals</h3>
   443  
   444  <p>
   445  A string literal represents a <a href="#Constants">string constant</a>
   446  obtained from concatenating a sequence of characters. There are two forms:
   447  raw string literals and interpreted string literals.
   448  </p>
   449  <p>
   450  Raw string literals are character sequences between back quotes, as in
   451  <code>`foo`</code>.  Within the quotes, any character may appear except
   452  back quote. The value of a raw string literal is the
   453  string composed of the uninterpreted (implicitly UTF-8-encoded) characters
   454  between the quotes;
   455  in particular, backslashes have no special meaning and the string may
   456  contain newlines.
   457  Carriage return characters ('\r') inside raw string literals
   458  are discarded from the raw string value.
   459  </p>
   460  <p>
   461  Interpreted string literals are character sequences between double
   462  quotes, as in <code>&quot;bar&quot;</code>.
   463  Within the quotes, any character may appear except newline and unescaped double quote.
   464  The text between the quotes forms the
   465  value of the literal, with backslash escapes interpreted as they
   466  are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
   467  <code>\"</code> is legal), with the same restrictions.
   468  The three-digit octal (<code>\</code><i>nnn</i>)
   469  and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
   470  <i>bytes</i> of the resulting string; all other escapes represent
   471  the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
   472  Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
   473  a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
   474  <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
   475  the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
   476  U+00FF.
   477  </p>
   478  
   479  <pre class="ebnf">
   480  string_lit             = raw_string_lit | interpreted_string_lit .
   481  raw_string_lit         = "`" { unicode_char | newline } "`" .
   482  interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
   483  </pre>
   484  
   485  <pre>
   486  `abc`                // same as "abc"
   487  `\n
   488  \n`                  // same as "\\n\n\\n"
   489  "\n"
   490  "\""                 // same as `"`
   491  "Hello, world!\n"
   492  "日本語"
   493  "\u65e5本\U00008a9e"
   494  "\xff\u00FF"
   495  "\uD800"             // illegal: surrogate half
   496  "\U00110000"         // illegal: invalid Unicode code point
   497  </pre>
   498  
   499  <p>
   500  These examples all represent the same string:
   501  </p>
   502  
   503  <pre>
   504  "日本語"                                 // UTF-8 input text
   505  `日本語`                                 // UTF-8 input text as a raw literal
   506  "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
   507  "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
   508  "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
   509  </pre>
   510  
   511  <p>
   512  If the source code represents a character as two code points, such as
   513  a combining form involving an accent and a letter, the result will be
   514  an error if placed in a rune literal (it is not a single code
   515  point), and will appear as two code points if placed in a string
   516  literal.
   517  </p>
   518  
   519  
   520  <h2 id="Constants">Constants</h2>
   521  
   522  <p>There are <i>boolean constants</i>,
   523  <i>rune constants</i>,
   524  <i>integer constants</i>,
   525  <i>floating-point constants</i>, <i>complex constants</i>,
   526  and <i>string constants</i>. Rune, integer, floating-point,
   527  and complex constants are
   528  collectively called <i>numeric constants</i>.
   529  </p>
   530  
   531  <p>
   532  A constant value is represented by a
   533  <a href="#Rune_literals">rune</a>,
   534  <a href="#Integer_literals">integer</a>,
   535  <a href="#Floating-point_literals">floating-point</a>,
   536  <a href="#Imaginary_literals">imaginary</a>,
   537  or
   538  <a href="#String_literals">string</a> literal,
   539  an identifier denoting a constant,
   540  a <a href="#Constant_expressions">constant expression</a>,
   541  a <a href="#Conversions">conversion</a> with a result that is a constant, or
   542  the result value of some built-in functions such as
   543  <code>unsafe.Sizeof</code> applied to any value,
   544  <code>cap</code> or <code>len</code> applied to
   545  <a href="#Length_and_capacity">some expressions</a>,
   546  <code>real</code> and <code>imag</code> applied to a complex constant
   547  and <code>complex</code> applied to numeric constants.
   548  The boolean truth values are represented by the predeclared constants
   549  <code>true</code> and <code>false</code>. The predeclared identifier
   550  <a href="#Iota">iota</a> denotes an integer constant.
   551  </p>
   552  
   553  <p>
   554  In general, complex constants are a form of
   555  <a href="#Constant_expressions">constant expression</a>
   556  and are discussed in that section.
   557  </p>
   558  
   559  <p>
   560  Numeric constants represent exact values of arbitrary precision and do not overflow.
   561  Consequently, there are no constants denoting the IEEE-754 negative zero, infinity,
   562  and not-a-number values.
   563  </p>
   564  
   565  <p>
   566  Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
   567  Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
   568  and certain <a href="#Constant_expressions">constant expressions</a>
   569  containing only untyped constant operands are untyped.
   570  </p>
   571  
   572  <p>
   573  A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
   574  or <a href="#Conversions">conversion</a>, or implicitly when used in a
   575  <a href="#Variable_declarations">variable declaration</a> or an
   576  <a href="#Assignments">assignment</a> or as an
   577  operand in an <a href="#Expressions">expression</a>.
   578  It is an error if the constant value
   579  cannot be <a href="#Representability">represented</a> as a value of the respective type.
   580  </p>
   581  
   582  <p>
   583  An untyped constant has a <i>default type</i> which is the type to which the
   584  constant is implicitly converted in contexts where a typed value is required,
   585  for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
   586  such as <code>i := 0</code> where there is no explicit type.
   587  The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
   588  <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
   589  respectively, depending on whether it is a boolean, rune, integer, floating-point,
   590  complex, or string constant.
   591  </p>
   592  
   593  <p>
   594  Implementation restriction: Although numeric constants have arbitrary
   595  precision in the language, a compiler may implement them using an
   596  internal representation with limited precision.  That said, every
   597  implementation must:
   598  </p>
   599  <ul>
   600  	<li>Represent integer constants with at least 256 bits.</li>
   601  
   602  	<li>Represent floating-point constants, including the parts of
   603  	    a complex constant, with a mantissa of at least 256 bits
   604  	    and a signed binary exponent of at least 16 bits.</li>
   605  
   606  	<li>Give an error if unable to represent an integer constant
   607  	    precisely.</li>
   608  
   609  	<li>Give an error if unable to represent a floating-point or
   610  	    complex constant due to overflow.</li>
   611  
   612  	<li>Round to the nearest representable constant if unable to
   613  	    represent a floating-point or complex constant due to limits
   614  	    on precision.</li>
   615  </ul>
   616  <p>
   617  These requirements apply both to literal constants and to the result
   618  of evaluating <a href="#Constant_expressions">constant
   619  expressions</a>.
   620  </p>
   621  
   622  <h2 id="Variables">Variables</h2>
   623  
   624  <p>
   625  A variable is a storage location for holding a <i>value</i>.
   626  The set of permissible values is determined by the
   627  variable's <i><a href="#Types">type</a></i>.
   628  </p>
   629  
   630  <p>
   631  A <a href="#Variable_declarations">variable declaration</a>
   632  or, for function parameters and results, the signature
   633  of a <a href="#Function_declarations">function declaration</a>
   634  or <a href="#Function_literals">function literal</a> reserves
   635  storage for a named variable.
   636  
   637  Calling the built-in function <a href="#Allocation"><code>new</code></a>
   638  or taking the address of a <a href="#Composite_literals">composite literal</a>
   639  allocates storage for a variable at run time.
   640  Such an anonymous variable is referred to via a (possibly implicit)
   641  <a href="#Address_operators">pointer indirection</a>.
   642  </p>
   643  
   644  <p>
   645  <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
   646  and <a href="#Struct_types">struct</a> types have elements and fields that may
   647  be <a href="#Address_operators">addressed</a> individually. Each such element
   648  acts like a variable.
   649  </p>
   650  
   651  <p>
   652  The <i>static type</i> (or just <i>type</i>) of a variable is the
   653  type given in its declaration, the type provided in the
   654  <code>new</code> call or composite literal, or the type of
   655  an element of a structured variable.
   656  Variables of interface type also have a distinct <i>dynamic type</i>,
   657  which is the concrete type of the value assigned to the variable at run time
   658  (unless the value is the predeclared identifier <code>nil</code>,
   659  which has no type).
   660  The dynamic type may vary during execution but values stored in interface
   661  variables are always <a href="#Assignability">assignable</a>
   662  to the static type of the variable.
   663  </p>
   664  
   665  <pre>
   666  var x interface{}  // x is nil and has static type interface{}
   667  var v *T           // v has value nil, static type *T
   668  x = 42             // x has value 42 and dynamic type int
   669  x = v              // x has value (*T)(nil) and dynamic type *T
   670  </pre>
   671  
   672  <p>
   673  A variable's value is retrieved by referring to the variable in an
   674  <a href="#Expressions">expression</a>; it is the most recent value
   675  <a href="#Assignments">assigned</a> to the variable.
   676  If a variable has not yet been assigned a value, its value is the
   677  <a href="#The_zero_value">zero value</a> for its type.
   678  </p>
   679  
   680  
   681  <h2 id="Types">Types</h2>
   682  
   683  <p>
   684  A type determines a set of values together with operations and methods specific
   685  to those values. A type may be denoted by a <i>type name</i>, if it has one,
   686  or specified using a <i>type literal</i>, which composes a type from existing types.
   687  </p>
   688  
   689  <pre class="ebnf">
   690  Type      = TypeName | TypeLit | "(" Type ")" .
   691  TypeName  = identifier | QualifiedIdent .
   692  TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
   693  	    SliceType | MapType | ChannelType .
   694  </pre>
   695  
   696  <p>
   697  Named instances of the boolean, numeric, and string types are
   698  <a href="#Predeclared_identifiers">predeclared</a>.
   699  Other named types are introduced with <a href="#Type_declarations">type declarations</a>.
   700  <i>Composite types</i>&mdash;array, struct, pointer, function,
   701  interface, slice, map, and channel types&mdash;may be constructed using
   702  type literals.
   703  </p>
   704  
   705  <p>
   706  Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
   707  is one of the predeclared boolean, numeric, or string types, or a type literal,
   708  the corresponding underlying
   709  type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
   710  is the underlying type of the type to which <code>T</code> refers in its
   711  <a href="#Type_declarations">type declaration</a>.
   712  </p>
   713  
   714  <pre>
   715  type (
   716  	A1 = string
   717  	A2 = A1
   718  )
   719  
   720  type (
   721  	B1 string
   722  	B2 B1
   723  	B3 []B1
   724  	B4 B3
   725  )
   726  </pre>
   727  
   728  <p>
   729  The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>,
   730  and <code>B2</code> is <code>string</code>.
   731  The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>.
   732  </p>
   733  
   734  <h3 id="Method_sets">Method sets</h3>
   735  <p>
   736  A type may have a <i>method set</i> associated with it.
   737  The method set of an <a href="#Interface_types">interface type</a> is its interface.
   738  The method set of any other type <code>T</code> consists of all
   739  <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
   740  The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
   741  is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
   742  (that is, it also contains the method set of <code>T</code>).
   743  Further rules apply to structs containing embedded fields, as described
   744  in the section on <a href="#Struct_types">struct types</a>.
   745  Any other type has an empty method set.
   746  In a method set, each method must have a
   747  <a href="#Uniqueness_of_identifiers">unique</a>
   748  non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
   749  </p>
   750  
   751  <p>
   752  The method set of a type determines the interfaces that the
   753  type <a href="#Interface_types">implements</a>
   754  and the methods that can be <a href="#Calls">called</a>
   755  using a receiver of that type.
   756  </p>
   757  
   758  <h3 id="Boolean_types">Boolean types</h3>
   759  
   760  <p>
   761  A <i>boolean type</i> represents the set of Boolean truth values
   762  denoted by the predeclared constants <code>true</code>
   763  and <code>false</code>. The predeclared boolean type is <code>bool</code>;
   764  it is a <a href="#Type_definitions">defined type</a>.
   765  </p>
   766  
   767  <h3 id="Numeric_types">Numeric types</h3>
   768  
   769  <p>
   770  A <i>numeric type</i> represents sets of integer or floating-point values.
   771  The predeclared architecture-independent numeric types are:
   772  </p>
   773  
   774  <pre class="grammar">
   775  uint8       the set of all unsigned  8-bit integers (0 to 255)
   776  uint16      the set of all unsigned 16-bit integers (0 to 65535)
   777  uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
   778  uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
   779  
   780  int8        the set of all signed  8-bit integers (-128 to 127)
   781  int16       the set of all signed 16-bit integers (-32768 to 32767)
   782  int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
   783  int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
   784  
   785  float32     the set of all IEEE-754 32-bit floating-point numbers
   786  float64     the set of all IEEE-754 64-bit floating-point numbers
   787  
   788  complex64   the set of all complex numbers with float32 real and imaginary parts
   789  complex128  the set of all complex numbers with float64 real and imaginary parts
   790  
   791  byte        alias for uint8
   792  rune        alias for int32
   793  </pre>
   794  
   795  <p>
   796  The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
   797  <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
   798  </p>
   799  
   800  <p>
   801  There is also a set of predeclared numeric types with implementation-specific sizes:
   802  </p>
   803  
   804  <pre class="grammar">
   805  uint     either 32 or 64 bits
   806  int      same size as uint
   807  uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
   808  </pre>
   809  
   810  <p>
   811  To avoid portability issues all numeric types are <a href="#Type_definitions">defined
   812  types</a> and thus distinct except
   813  <code>byte</code>, which is an <a href="#Alias_declarations">alias</a> for <code>uint8</code>, and
   814  <code>rune</code>, which is an alias for <code>int32</code>.
   815  Conversions
   816  are required when different numeric types are mixed in an expression
   817  or assignment. For instance, <code>int32</code> and <code>int</code>
   818  are not the same type even though they may have the same size on a
   819  particular architecture.
   820  
   821  
   822  <h3 id="String_types">String types</h3>
   823  
   824  <p>
   825  A <i>string type</i> represents the set of string values.
   826  A string value is a (possibly empty) sequence of bytes.
   827  Strings are immutable: once created,
   828  it is impossible to change the contents of a string.
   829  The predeclared string type is <code>string</code>;
   830  it is a <a href="#Type_definitions">defined type</a>.
   831  </p>
   832  
   833  <p>
   834  The length of a string <code>s</code> (its size in bytes) can be discovered using
   835  the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   836  The length is a compile-time constant if the string is a constant.
   837  A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
   838  0 through <code>len(s)-1</code>.
   839  It is illegal to take the address of such an element; if
   840  <code>s[i]</code> is the <code>i</code>'th byte of a
   841  string, <code>&amp;s[i]</code> is invalid.
   842  </p>
   843  
   844  
   845  <h3 id="Array_types">Array types</h3>
   846  
   847  <p>
   848  An array is a numbered sequence of elements of a single
   849  type, called the element type.
   850  The number of elements is called the length and is never
   851  negative.
   852  </p>
   853  
   854  <pre class="ebnf">
   855  ArrayType   = "[" ArrayLength "]" ElementType .
   856  ArrayLength = Expression .
   857  ElementType = Type .
   858  </pre>
   859  
   860  <p>
   861  The length is part of the array's type; it must evaluate to a
   862  non-negative <a href="#Constants">constant</a>
   863  <a href="#Representability">representable</a> by a value
   864  of type <code>int</code>.
   865  The length of array <code>a</code> can be discovered
   866  using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   867  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   868  0 through <code>len(a)-1</code>.
   869  Array types are always one-dimensional but may be composed to form
   870  multi-dimensional types.
   871  </p>
   872  
   873  <pre>
   874  [32]byte
   875  [2*N] struct { x, y int32 }
   876  [1000]*float64
   877  [3][5]int
   878  [2][2][2]float64  // same as [2]([2]([2]float64))
   879  </pre>
   880  
   881  <h3 id="Slice_types">Slice types</h3>
   882  
   883  <p>
   884  A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
   885  provides access to a numbered sequence of elements from that array.
   886  A slice type denotes the set of all slices of arrays of its element type.
   887  The value of an uninitialized slice is <code>nil</code>.
   888  </p>
   889  
   890  <pre class="ebnf">
   891  SliceType = "[" "]" ElementType .
   892  </pre>
   893  
   894  <p>
   895  Like arrays, slices are indexable and have a length.  The length of a
   896  slice <code>s</code> can be discovered by the built-in function
   897  <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
   898  execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   899  0 through <code>len(s)-1</code>.  The slice index of a
   900  given element may be less than the index of the same element in the
   901  underlying array.
   902  </p>
   903  <p>
   904  A slice, once initialized, is always associated with an underlying
   905  array that holds its elements.  A slice therefore shares storage
   906  with its array and with other slices of the same array; by contrast,
   907  distinct arrays always represent distinct storage.
   908  </p>
   909  <p>
   910  The array underlying a slice may extend past the end of the slice.
   911  The <i>capacity</i> is a measure of that extent: it is the sum of
   912  the length of the slice and the length of the array beyond the slice;
   913  a slice of length up to that capacity can be created by
   914  <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
   915  The capacity of a slice <code>a</code> can be discovered using the
   916  built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
   917  </p>
   918  
   919  <p>
   920  A new, initialized slice value for a given element type <code>T</code> is
   921  made using the built-in function
   922  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   923  which takes a slice type
   924  and parameters specifying the length and optionally the capacity.
   925  A slice created with <code>make</code> always allocates a new, hidden array
   926  to which the returned slice value refers. That is, executing
   927  </p>
   928  
   929  <pre>
   930  make([]T, length, capacity)
   931  </pre>
   932  
   933  <p>
   934  produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
   935  it, so these two expressions are equivalent:
   936  </p>
   937  
   938  <pre>
   939  make([]int, 50, 100)
   940  new([100]int)[0:50]
   941  </pre>
   942  
   943  <p>
   944  Like arrays, slices are always one-dimensional but may be composed to construct
   945  higher-dimensional objects.
   946  With arrays of arrays, the inner arrays are, by construction, always the same length;
   947  however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
   948  Moreover, the inner slices must be initialized individually.
   949  </p>
   950  
   951  <h3 id="Struct_types">Struct types</h3>
   952  
   953  <p>
   954  A struct is a sequence of named elements, called fields, each of which has a
   955  name and a type. Field names may be specified explicitly (IdentifierList) or
   956  implicitly (EmbeddedField).
   957  Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
   958  be <a href="#Uniqueness_of_identifiers">unique</a>.
   959  </p>
   960  
   961  <pre class="ebnf">
   962  StructType    = "struct" "{" { FieldDecl ";" } "}" .
   963  FieldDecl     = (IdentifierList Type | EmbeddedField) [ Tag ] .
   964  EmbeddedField = [ "*" ] TypeName .
   965  Tag           = string_lit .
   966  </pre>
   967  
   968  <pre>
   969  // An empty struct.
   970  struct {}
   971  
   972  // A struct with 6 fields.
   973  struct {
   974  	x, y int
   975  	u float32
   976  	_ float32  // padding
   977  	A *[]int
   978  	F func()
   979  }
   980  </pre>
   981  
   982  <p>
   983  A field declared with a type but no explicit field name is called an <i>embedded field</i>.
   984  An embedded field must be specified as
   985  a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
   986  and <code>T</code> itself may not be
   987  a pointer type. The unqualified type name acts as the field name.
   988  </p>
   989  
   990  <pre>
   991  // A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4
   992  struct {
   993  	T1        // field name is T1
   994  	*T2       // field name is T2
   995  	P.T3      // field name is T3
   996  	*P.T4     // field name is T4
   997  	x, y int  // field names are x and y
   998  }
   999  </pre>
  1000  
  1001  <p>
  1002  The following declaration is illegal because field names must be unique
  1003  in a struct type:
  1004  </p>
  1005  
  1006  <pre>
  1007  struct {
  1008  	T     // conflicts with embedded field *T and *P.T
  1009  	*T    // conflicts with embedded field T and *P.T
  1010  	*P.T  // conflicts with embedded field T and *T
  1011  }
  1012  </pre>
  1013  
  1014  <p>
  1015  A field or <a href="#Method_declarations">method</a> <code>f</code> of an
  1016  embedded field in a struct <code>x</code> is called <i>promoted</i> if
  1017  <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
  1018  that field or method <code>f</code>.
  1019  </p>
  1020  
  1021  <p>
  1022  Promoted fields act like ordinary fields
  1023  of a struct except that they cannot be used as field names in
  1024  <a href="#Composite_literals">composite literals</a> of the struct.
  1025  </p>
  1026  
  1027  <p>
  1028  Given a struct type <code>S</code> and a type named <code>T</code>,
  1029  promoted methods are included in the method set of the struct as follows:
  1030  </p>
  1031  <ul>
  1032  	<li>
  1033  	If <code>S</code> contains an embedded field <code>T</code>,
  1034  	the <a href="#Method_sets">method sets</a> of <code>S</code>
  1035  	and <code>*S</code> both include promoted methods with receiver
  1036  	<code>T</code>. The method set of <code>*S</code> also
  1037  	includes promoted methods with receiver <code>*T</code>.
  1038  	</li>
  1039  
  1040  	<li>
  1041  	If <code>S</code> contains an embedded field <code>*T</code>,
  1042  	the method sets of <code>S</code> and <code>*S</code> both
  1043  	include promoted methods with receiver <code>T</code> or
  1044  	<code>*T</code>.
  1045  	</li>
  1046  </ul>
  1047  
  1048  <p>
  1049  A field declaration may be followed by an optional string literal <i>tag</i>,
  1050  which becomes an attribute for all the fields in the corresponding
  1051  field declaration. An empty tag string is equivalent to an absent tag.
  1052  The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
  1053  and take part in <a href="#Type_identity">type identity</a> for structs
  1054  but are otherwise ignored.
  1055  </p>
  1056  
  1057  <pre>
  1058  struct {
  1059  	x, y float64 ""  // an empty tag string is like an absent tag
  1060  	name string  "any string is permitted as a tag"
  1061  	_    [4]byte "ceci n'est pas un champ de structure"
  1062  }
  1063  
  1064  // A struct corresponding to a TimeStamp protocol buffer.
  1065  // The tag strings define the protocol buffer field numbers;
  1066  // they follow the convention outlined by the reflect package.
  1067  struct {
  1068  	microsec  uint64 `protobuf:"1"`
  1069  	serverIP6 uint64 `protobuf:"2"`
  1070  }
  1071  </pre>
  1072  
  1073  <h3 id="Pointer_types">Pointer types</h3>
  1074  
  1075  <p>
  1076  A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
  1077  type, called the <i>base type</i> of the pointer.
  1078  The value of an uninitialized pointer is <code>nil</code>.
  1079  </p>
  1080  
  1081  <pre class="ebnf">
  1082  PointerType = "*" BaseType .
  1083  BaseType    = Type .
  1084  </pre>
  1085  
  1086  <pre>
  1087  *Point
  1088  *[4]int
  1089  </pre>
  1090  
  1091  <h3 id="Function_types">Function types</h3>
  1092  
  1093  <p>
  1094  A function type denotes the set of all functions with the same parameter
  1095  and result types. The value of an uninitialized variable of function type
  1096  is <code>nil</code>.
  1097  </p>
  1098  
  1099  <pre class="ebnf">
  1100  FunctionType   = "func" Signature .
  1101  Signature      = Parameters [ Result ] .
  1102  Result         = Parameters | Type .
  1103  Parameters     = "(" [ ParameterList [ "," ] ] ")" .
  1104  ParameterList  = ParameterDecl { "," ParameterDecl } .
  1105  ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
  1106  </pre>
  1107  
  1108  <p>
  1109  Within a list of parameters or results, the names (IdentifierList)
  1110  must either all be present or all be absent. If present, each name
  1111  stands for one item (parameter or result) of the specified type and
  1112  all non-<a href="#Blank_identifier">blank</a> names in the signature
  1113  must be <a href="#Uniqueness_of_identifiers">unique</a>.
  1114  If absent, each type stands for one item of that type.
  1115  Parameter and result
  1116  lists are always parenthesized except that if there is exactly
  1117  one unnamed result it may be written as an unparenthesized type.
  1118  </p>
  1119  
  1120  <p>
  1121  The final incoming parameter in a function signature may have
  1122  a type prefixed with <code>...</code>.
  1123  A function with such a parameter is called <i>variadic</i> and
  1124  may be invoked with zero or more arguments for that parameter.
  1125  </p>
  1126  
  1127  <pre>
  1128  func()
  1129  func(x int) int
  1130  func(a, _ int, z float32) bool
  1131  func(a, b int, z float32) (bool)
  1132  func(prefix string, values ...int)
  1133  func(a, b int, z float64, opt ...interface{}) (success bool)
  1134  func(int, int, float64) (float64, *[]int)
  1135  func(n int) func(p *T)
  1136  </pre>
  1137  
  1138  
  1139  <h3 id="Interface_types">Interface types</h3>
  1140  
  1141  <p>
  1142  An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
  1143  A variable of interface type can store a value of any type with a method set
  1144  that is any superset of the interface. Such a type is said to
  1145  <i>implement the interface</i>.
  1146  The value of an uninitialized variable of interface type is <code>nil</code>.
  1147  </p>
  1148  
  1149  <pre class="ebnf">
  1150  InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
  1151  MethodSpec         = MethodName Signature | InterfaceTypeName .
  1152  MethodName         = identifier .
  1153  InterfaceTypeName  = TypeName .
  1154  </pre>
  1155  
  1156  <p>
  1157  As with all method sets, in an interface type, each method must have a
  1158  <a href="#Uniqueness_of_identifiers">unique</a>
  1159  non-<a href="#Blank_identifier">blank</a> name.
  1160  </p>
  1161  
  1162  <pre>
  1163  // A simple File interface
  1164  interface {
  1165  	Read(b Buffer) bool
  1166  	Write(b Buffer) bool
  1167  	Close()
  1168  }
  1169  </pre>
  1170  
  1171  <p>
  1172  More than one type may implement an interface.
  1173  For instance, if two types <code>S1</code> and <code>S2</code>
  1174  have the method set
  1175  </p>
  1176  
  1177  <pre>
  1178  func (p T) Read(b Buffer) bool { return … }
  1179  func (p T) Write(b Buffer) bool { return … }
  1180  func (p T) Close() { … }
  1181  </pre>
  1182  
  1183  <p>
  1184  (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
  1185  then the <code>File</code> interface is implemented by both <code>S1</code> and
  1186  <code>S2</code>, regardless of what other methods
  1187  <code>S1</code> and <code>S2</code> may have or share.
  1188  </p>
  1189  
  1190  <p>
  1191  A type implements any interface comprising any subset of its methods
  1192  and may therefore implement several distinct interfaces. For
  1193  instance, all types implement the <i>empty interface</i>:
  1194  </p>
  1195  
  1196  <pre>
  1197  interface{}
  1198  </pre>
  1199  
  1200  <p>
  1201  Similarly, consider this interface specification,
  1202  which appears within a <a href="#Type_declarations">type declaration</a>
  1203  to define an interface called <code>Locker</code>:
  1204  </p>
  1205  
  1206  <pre>
  1207  type Locker interface {
  1208  	Lock()
  1209  	Unlock()
  1210  }
  1211  </pre>
  1212  
  1213  <p>
  1214  If <code>S1</code> and <code>S2</code> also implement
  1215  </p>
  1216  
  1217  <pre>
  1218  func (p T) Lock() { … }
  1219  func (p T) Unlock() { … }
  1220  </pre>
  1221  
  1222  <p>
  1223  they implement the <code>Locker</code> interface as well
  1224  as the <code>File</code> interface.
  1225  </p>
  1226  
  1227  <p>
  1228  An interface <code>T</code> may use a (possibly qualified) interface type
  1229  name <code>E</code> in place of a method specification. This is called
  1230  <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
  1231  all (exported and non-exported) methods of <code>E</code> to the interface
  1232  <code>T</code>.
  1233  </p>
  1234  
  1235  <pre>
  1236  type ReadWriter interface {
  1237  	Read(b Buffer) bool
  1238  	Write(b Buffer) bool
  1239  }
  1240  
  1241  type File interface {
  1242  	ReadWriter  // same as adding the methods of ReadWriter
  1243  	Locker      // same as adding the methods of Locker
  1244  	Close()
  1245  }
  1246  
  1247  type LockedFile interface {
  1248  	Locker
  1249  	File        // illegal: Lock, Unlock not unique
  1250  	Lock()      // illegal: Lock not unique
  1251  }
  1252  </pre>
  1253  
  1254  <p>
  1255  An interface type <code>T</code> may not embed itself
  1256  or any interface type that embeds <code>T</code>, recursively.
  1257  </p>
  1258  
  1259  <pre>
  1260  // illegal: Bad cannot embed itself
  1261  type Bad interface {
  1262  	Bad
  1263  }
  1264  
  1265  // illegal: Bad1 cannot embed itself using Bad2
  1266  type Bad1 interface {
  1267  	Bad2
  1268  }
  1269  type Bad2 interface {
  1270  	Bad1
  1271  }
  1272  </pre>
  1273  
  1274  <h3 id="Map_types">Map types</h3>
  1275  
  1276  <p>
  1277  A map is an unordered group of elements of one type, called the
  1278  element type, indexed by a set of unique <i>keys</i> of another type,
  1279  called the key type.
  1280  The value of an uninitialized map is <code>nil</code>.
  1281  </p>
  1282  
  1283  <pre class="ebnf">
  1284  MapType     = "map" "[" KeyType "]" ElementType .
  1285  KeyType     = Type .
  1286  </pre>
  1287  
  1288  <p>
  1289  The <a href="#Comparison_operators">comparison operators</a>
  1290  <code>==</code> and <code>!=</code> must be fully defined
  1291  for operands of the key type; thus the key type must not be a function, map, or
  1292  slice.
  1293  If the key type is an interface type, these
  1294  comparison operators must be defined for the dynamic key values;
  1295  failure will cause a <a href="#Run_time_panics">run-time panic</a>.
  1296  
  1297  </p>
  1298  
  1299  <pre>
  1300  map[string]int
  1301  map[*T]struct{ x, y float64 }
  1302  map[string]interface{}
  1303  </pre>
  1304  
  1305  <p>
  1306  The number of map elements is called its length.
  1307  For a map <code>m</code>, it can be discovered using the
  1308  built-in function <a href="#Length_and_capacity"><code>len</code></a>
  1309  and may change during execution. Elements may be added during execution
  1310  using <a href="#Assignments">assignments</a> and retrieved with
  1311  <a href="#Index_expressions">index expressions</a>; they may be removed with the
  1312  <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
  1313  </p>
  1314  <p>
  1315  A new, empty map value is made using the built-in
  1316  function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1317  which takes the map type and an optional capacity hint as arguments:
  1318  </p>
  1319  
  1320  <pre>
  1321  make(map[string]int)
  1322  make(map[string]int, 100)
  1323  </pre>
  1324  
  1325  <p>
  1326  The initial capacity does not bound its size:
  1327  maps grow to accommodate the number of items
  1328  stored in them, with the exception of <code>nil</code> maps.
  1329  A <code>nil</code> map is equivalent to an empty map except that no elements
  1330  may be added.
  1331  
  1332  <h3 id="Channel_types">Channel types</h3>
  1333  
  1334  <p>
  1335  A channel provides a mechanism for
  1336  <a href="#Go_statements">concurrently executing functions</a>
  1337  to communicate by
  1338  <a href="#Send_statements">sending</a> and
  1339  <a href="#Receive_operator">receiving</a>
  1340  values of a specified element type.
  1341  The value of an uninitialized channel is <code>nil</code>.
  1342  </p>
  1343  
  1344  <pre class="ebnf">
  1345  ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
  1346  </pre>
  1347  
  1348  <p>
  1349  The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
  1350  <i>send</i> or <i>receive</i>. If no direction is given, the channel is
  1351  <i>bidirectional</i>.
  1352  A channel may be constrained only to send or only to receive by
  1353  <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
  1354  </p>
  1355  
  1356  <pre>
  1357  chan T          // can be used to send and receive values of type T
  1358  chan&lt;- float64  // can only be used to send float64s
  1359  &lt;-chan int      // can only be used to receive ints
  1360  </pre>
  1361  
  1362  <p>
  1363  The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
  1364  possible:
  1365  </p>
  1366  
  1367  <pre>
  1368  chan&lt;- chan int    // same as chan&lt;- (chan int)
  1369  chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
  1370  &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
  1371  chan (&lt;-chan int)
  1372  </pre>
  1373  
  1374  <p>
  1375  A new, initialized channel
  1376  value can be made using the built-in function
  1377  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1378  which takes the channel type and an optional <i>capacity</i> as arguments:
  1379  </p>
  1380  
  1381  <pre>
  1382  make(chan int, 100)
  1383  </pre>
  1384  
  1385  <p>
  1386  The capacity, in number of elements, sets the size of the buffer in the channel.
  1387  If the capacity is zero or absent, the channel is unbuffered and communication
  1388  succeeds only when both a sender and receiver are ready. Otherwise, the channel
  1389  is buffered and communication succeeds without blocking if the buffer
  1390  is not full (sends) or not empty (receives).
  1391  A <code>nil</code> channel is never ready for communication.
  1392  </p>
  1393  
  1394  <p>
  1395  A channel may be closed with the built-in function
  1396  <a href="#Close"><code>close</code></a>.
  1397  The multi-valued assignment form of the
  1398  <a href="#Receive_operator">receive operator</a>
  1399  reports whether a received value was sent before
  1400  the channel was closed.
  1401  </p>
  1402  
  1403  <p>
  1404  A single channel may be used in
  1405  <a href="#Send_statements">send statements</a>,
  1406  <a href="#Receive_operator">receive operations</a>,
  1407  and calls to the built-in functions
  1408  <a href="#Length_and_capacity"><code>cap</code></a> and
  1409  <a href="#Length_and_capacity"><code>len</code></a>
  1410  by any number of goroutines without further synchronization.
  1411  Channels act as first-in-first-out queues.
  1412  For example, if one goroutine sends values on a channel
  1413  and a second goroutine receives them, the values are
  1414  received in the order sent.
  1415  </p>
  1416  
  1417  <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
  1418  
  1419  <h3 id="Type_identity">Type identity</h3>
  1420  
  1421  <p>
  1422  Two types are either <i>identical</i> or <i>different</i>.
  1423  </p>
  1424  
  1425  <p>
  1426  A <a href="#Type_definitions">defined type</a> is always different from any other type.
  1427  Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are
  1428  structurally equivalent; that is, they have the same literal structure and corresponding
  1429  components have identical types. In detail:
  1430  </p>
  1431  
  1432  <ul>
  1433  	<li>Two array types are identical if they have identical element types and
  1434  	    the same array length.</li>
  1435  
  1436  	<li>Two slice types are identical if they have identical element types.</li>
  1437  
  1438  	<li>Two struct types are identical if they have the same sequence of fields,
  1439  	    and if corresponding fields have the same names, and identical types,
  1440  	    and identical tags.
  1441  	    <a href="#Exported_identifiers">Non-exported</a> field names from different
  1442  	    packages are always different.</li>
  1443  
  1444  	<li>Two pointer types are identical if they have identical base types.</li>
  1445  
  1446  	<li>Two function types are identical if they have the same number of parameters
  1447  	    and result values, corresponding parameter and result types are
  1448  	    identical, and either both functions are variadic or neither is.
  1449  	    Parameter and result names are not required to match.</li>
  1450  
  1451  	<li>Two interface types are identical if they have the same set of methods
  1452  	    with the same names and identical function types.
  1453  	    <a href="#Exported_identifiers">Non-exported</a> method names from different
  1454  	    packages are always different. The order of the methods is irrelevant.</li>
  1455  
  1456  	<li>Two map types are identical if they have identical key and element types.</li>
  1457  
  1458  	<li>Two channel types are identical if they have identical element types and
  1459  	    the same direction.</li>
  1460  </ul>
  1461  
  1462  <p>
  1463  Given the declarations
  1464  </p>
  1465  
  1466  <pre>
  1467  type (
  1468  	A0 = []string
  1469  	A1 = A0
  1470  	A2 = struct{ a, b int }
  1471  	A3 = int
  1472  	A4 = func(A3, float64) *A0
  1473  	A5 = func(x int, _ float64) *[]string
  1474  )
  1475  
  1476  type (
  1477  	B0 A0
  1478  	B1 []string
  1479  	B2 struct{ a, b int }
  1480  	B3 struct{ a, c int }
  1481  	B4 func(int, float64) *B0
  1482  	B5 func(x int, y float64) *A1
  1483  )
  1484  
  1485  type	C0 = B0
  1486  </pre>
  1487  
  1488  <p>
  1489  these types are identical:
  1490  </p>
  1491  
  1492  <pre>
  1493  A0, A1, and []string
  1494  A2 and struct{ a, b int }
  1495  A3 and int
  1496  A4, func(int, float64) *[]string, and A5
  1497  
  1498  B0 and C0
  1499  []int and []int
  1500  struct{ a, b *T5 } and struct{ a, b *T5 }
  1501  func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5
  1502  </pre>
  1503  
  1504  <p>
  1505  <code>B0</code> and <code>B1</code> are different because they are new types
  1506  created by distinct <a href="#Type_definitions">type definitions</a>;
  1507  <code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code>
  1508  are different because <code>B0</code> is different from <code>[]string</code>.
  1509  </p>
  1510  
  1511  
  1512  <h3 id="Assignability">Assignability</h3>
  1513  
  1514  <p>
  1515  A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
  1516  ("<code>x</code> is assignable to <code>T</code>") if one of the following conditions applies:
  1517  </p>
  1518  
  1519  <ul>
  1520  <li>
  1521  <code>x</code>'s type is identical to <code>T</code>.
  1522  </li>
  1523  <li>
  1524  <code>x</code>'s type <code>V</code> and <code>T</code> have identical
  1525  <a href="#Types">underlying types</a> and at least one of <code>V</code>
  1526  or <code>T</code> is not a <a href="#Type_definitions">defined</a> type.
  1527  </li>
  1528  <li>
  1529  <code>T</code> is an interface type and
  1530  <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
  1531  </li>
  1532  <li>
  1533  <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
  1534  <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
  1535  and at least one of <code>V</code> or <code>T</code> is not a defined type.
  1536  </li>
  1537  <li>
  1538  <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
  1539  is a pointer, function, slice, map, channel, or interface type.
  1540  </li>
  1541  <li>
  1542  <code>x</code> is an untyped <a href="#Constants">constant</a>
  1543  <a href="#Representability">representable</a>
  1544  by a value of type <code>T</code>.
  1545  </li>
  1546  </ul>
  1547  
  1548  
  1549  <h3 id="Representability">Representability</h3>
  1550  
  1551  <p>
  1552  A <a href="#Constants">constant</a> <code>x</code> is <i>representable</i>
  1553  by a value of type <code>T</code> if one of the following conditions applies:
  1554  </p>
  1555  
  1556  <ul>
  1557  <li>
  1558  <code>x</code> is in the set of values <a href="#Types">determined</a> by <code>T</code>.
  1559  </li>
  1560  
  1561  <li>
  1562  <code>T</code> is a floating-point type and <code>x</code> can be rounded to <code>T</code>'s
  1563  precision without overflow. Rounding uses IEEE 754 round-to-even rules but with an IEEE
  1564  negative zero further simplified to an unsigned zero. Note that constant values never result
  1565  in an IEEE negative zero, NaN, or infinity.
  1566  </li>
  1567  
  1568  <li>
  1569  <code>T</code> is a complex type, and <code>x</code>'s
  1570  <a href="#Complex_numbers">components</a> <code>real(x)</code> and <code>imag(x)</code>
  1571  are representable by values of <code>T</code>'s component type (<code>float32</code> or
  1572  <code>float64</code>).
  1573  </li>
  1574  </ul>
  1575  
  1576  <pre>
  1577  x                   T           x is representable by a value of T because
  1578  
  1579  'a'                 byte        97 is in the set of byte values
  1580  97                  rune        rune is an alias for int32, and 97 is in the set of 32-bit integers
  1581  "foo"               string      "foo" is in the set of string values
  1582  1024                int16       1024 is in the set of 16-bit integers
  1583  42.0                byte        42 is in the set of unsigned 8-bit integers
  1584  1e10                uint64      10000000000 is in the set of unsigned 64-bit integers
  1585  2.718281828459045   float32     2.718281828459045 rounds to 2.7182817 which is in the set of float32 values
  1586  -1e-1000            float64     -1e-1000 rounds to IEEE -0.0 which is further simplified to 0.0
  1587  0i                  int         0 is an integer value
  1588  (42 + 0i)           float32     42.0 (with zero imaginary part) is in the set of float32 values
  1589  </pre>
  1590  
  1591  <pre>
  1592  x                   T           x is not representable by a value of T because
  1593  
  1594  0                   bool        0 is not in the set of boolean values
  1595  'a'                 string      'a' is a rune, it is not in the set of string values
  1596  1024                byte        1024 is not in the set of unsigned 8-bit integers
  1597  -1                  uint16      -1 is not in the set of unsigned 16-bit integers
  1598  1.1                 int         1.1 is not an integer value
  1599  42i                 float32     (0 + 42i) is not in the set of float32 values
  1600  1e1000              float64     1e1000 overflows to IEEE +Inf after rounding
  1601  </pre>
  1602  
  1603  
  1604  <h2 id="Blocks">Blocks</h2>
  1605  
  1606  <p>
  1607  A <i>block</i> is a possibly empty sequence of declarations and statements
  1608  within matching brace brackets.
  1609  </p>
  1610  
  1611  <pre class="ebnf">
  1612  Block = "{" StatementList "}" .
  1613  StatementList = { Statement ";" } .
  1614  </pre>
  1615  
  1616  <p>
  1617  In addition to explicit blocks in the source code, there are implicit blocks:
  1618  </p>
  1619  
  1620  <ol>
  1621  	<li>The <i>universe block</i> encompasses all Go source text.</li>
  1622  
  1623  	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
  1624  	    Go source text for that package.</li>
  1625  
  1626  	<li>Each file has a <i>file block</i> containing all Go source text
  1627  	    in that file.</li>
  1628  
  1629  	<li>Each <a href="#If_statements">"if"</a>,
  1630  	    <a href="#For_statements">"for"</a>, and
  1631  	    <a href="#Switch_statements">"switch"</a>
  1632  	    statement is considered to be in its own implicit block.</li>
  1633  
  1634  	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
  1635  	    or <a href="#Select_statements">"select"</a> statement
  1636  	    acts as an implicit block.</li>
  1637  </ol>
  1638  
  1639  <p>
  1640  Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
  1641  </p>
  1642  
  1643  
  1644  <h2 id="Declarations_and_scope">Declarations and scope</h2>
  1645  
  1646  <p>
  1647  A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
  1648  <a href="#Constant_declarations">constant</a>,
  1649  <a href="#Type_declarations">type</a>,
  1650  <a href="#Variable_declarations">variable</a>,
  1651  <a href="#Function_declarations">function</a>,
  1652  <a href="#Labeled_statements">label</a>, or
  1653  <a href="#Import_declarations">package</a>.
  1654  Every identifier in a program must be declared.
  1655  No identifier may be declared twice in the same block, and
  1656  no identifier may be declared in both the file and package block.
  1657  </p>
  1658  
  1659  <p>
  1660  The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
  1661  in a declaration, but it does not introduce a binding and thus is not declared.
  1662  In the package block, the identifier <code>init</code> may only be used for
  1663  <a href="#Package_initialization"><code>init</code> function</a> declarations,
  1664  and like the blank identifier it does not introduce a new binding.
  1665  </p>
  1666  
  1667  <pre class="ebnf">
  1668  Declaration   = ConstDecl | TypeDecl | VarDecl .
  1669  TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
  1670  </pre>
  1671  
  1672  <p>
  1673  The <i>scope</i> of a declared identifier is the extent of source text in which
  1674  the identifier denotes the specified constant, type, variable, function, label, or package.
  1675  </p>
  1676  
  1677  <p>
  1678  Go is lexically scoped using <a href="#Blocks">blocks</a>:
  1679  </p>
  1680  
  1681  <ol>
  1682  	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
  1683  
  1684  	<li>The scope of an identifier denoting a constant, type, variable,
  1685  	    or function (but not method) declared at top level (outside any
  1686  	    function) is the package block.</li>
  1687  
  1688  	<li>The scope of the package name of an imported package is the file block
  1689  	    of the file containing the import declaration.</li>
  1690  
  1691  	<li>The scope of an identifier denoting a method receiver, function parameter,
  1692  	    or result variable is the function body.</li>
  1693  
  1694  	<li>The scope of a constant or variable identifier declared
  1695  	    inside a function begins at the end of the ConstSpec or VarSpec
  1696  	    (ShortVarDecl for short variable declarations)
  1697  	    and ends at the end of the innermost containing block.</li>
  1698  
  1699  	<li>The scope of a type identifier declared inside a function
  1700  	    begins at the identifier in the TypeSpec
  1701  	    and ends at the end of the innermost containing block.</li>
  1702  </ol>
  1703  
  1704  <p>
  1705  An identifier declared in a block may be redeclared in an inner block.
  1706  While the identifier of the inner declaration is in scope, it denotes
  1707  the entity declared by the inner declaration.
  1708  </p>
  1709  
  1710  <p>
  1711  The <a href="#Package_clause">package clause</a> is not a declaration; the package name
  1712  does not appear in any scope. Its purpose is to identify the files belonging
  1713  to the same <a href="#Packages">package</a> and to specify the default package name for import
  1714  declarations.
  1715  </p>
  1716  
  1717  
  1718  <h3 id="Label_scopes">Label scopes</h3>
  1719  
  1720  <p>
  1721  Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
  1722  used in the <a href="#Break_statements">"break"</a>,
  1723  <a href="#Continue_statements">"continue"</a>, and
  1724  <a href="#Goto_statements">"goto"</a> statements.
  1725  It is illegal to define a label that is never used.
  1726  In contrast to other identifiers, labels are not block scoped and do
  1727  not conflict with identifiers that are not labels. The scope of a label
  1728  is the body of the function in which it is declared and excludes
  1729  the body of any nested function.
  1730  </p>
  1731  
  1732  
  1733  <h3 id="Blank_identifier">Blank identifier</h3>
  1734  
  1735  <p>
  1736  The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
  1737  It serves as an anonymous placeholder instead of a regular (non-blank)
  1738  identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
  1739  as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
  1740  </p>
  1741  
  1742  
  1743  <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
  1744  
  1745  <p>
  1746  The following identifiers are implicitly declared in the
  1747  <a href="#Blocks">universe block</a>:
  1748  </p>
  1749  <pre class="grammar">
  1750  Types:
  1751  	bool byte complex64 complex128 error float32 float64
  1752  	int int8 int16 int32 int64 rune string
  1753  	uint uint8 uint16 uint32 uint64 uintptr
  1754  
  1755  Constants:
  1756  	true false iota
  1757  
  1758  Zero value:
  1759  	nil
  1760  
  1761  Functions:
  1762  	append cap close complex copy delete imag len
  1763  	make new panic print println real recover
  1764  </pre>
  1765  
  1766  
  1767  <h3 id="Exported_identifiers">Exported identifiers</h3>
  1768  
  1769  <p>
  1770  An identifier may be <i>exported</i> to permit access to it from another package.
  1771  An identifier is exported if both:
  1772  </p>
  1773  <ol>
  1774  	<li>the first character of the identifier's name is a Unicode upper case
  1775  	letter (Unicode class "Lu"); and</li>
  1776  	<li>the identifier is declared in the <a href="#Blocks">package block</a>
  1777  	or it is a <a href="#Struct_types">field name</a> or
  1778  	<a href="#MethodName">method name</a>.</li>
  1779  </ol>
  1780  <p>
  1781  All other identifiers are not exported.
  1782  </p>
  1783  
  1784  
  1785  <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
  1786  
  1787  <p>
  1788  Given a set of identifiers, an identifier is called <i>unique</i> if it is
  1789  <i>different</i> from every other in the set.
  1790  Two identifiers are different if they are spelled differently, or if they
  1791  appear in different <a href="#Packages">packages</a> and are not
  1792  <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
  1793  </p>
  1794  
  1795  <h3 id="Constant_declarations">Constant declarations</h3>
  1796  
  1797  <p>
  1798  A constant declaration binds a list of identifiers (the names of
  1799  the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
  1800  The number of identifiers must be equal
  1801  to the number of expressions, and the <i>n</i>th identifier on
  1802  the left is bound to the value of the <i>n</i>th expression on the
  1803  right.
  1804  </p>
  1805  
  1806  <pre class="ebnf">
  1807  ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
  1808  ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
  1809  
  1810  IdentifierList = identifier { "," identifier } .
  1811  ExpressionList = Expression { "," Expression } .
  1812  </pre>
  1813  
  1814  <p>
  1815  If the type is present, all constants take the type specified, and
  1816  the expressions must be <a href="#Assignability">assignable</a> to that type.
  1817  If the type is omitted, the constants take the
  1818  individual types of the corresponding expressions.
  1819  If the expression values are untyped <a href="#Constants">constants</a>,
  1820  the declared constants remain untyped and the constant identifiers
  1821  denote the constant values. For instance, if the expression is a
  1822  floating-point literal, the constant identifier denotes a floating-point
  1823  constant, even if the literal's fractional part is zero.
  1824  </p>
  1825  
  1826  <pre>
  1827  const Pi float64 = 3.14159265358979323846
  1828  const zero = 0.0         // untyped floating-point constant
  1829  const (
  1830  	size int64 = 1024
  1831  	eof        = -1  // untyped integer constant
  1832  )
  1833  const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
  1834  const u, v float32 = 0, 3    // u = 0.0, v = 3.0
  1835  </pre>
  1836  
  1837  <p>
  1838  Within a parenthesized <code>const</code> declaration list the
  1839  expression list may be omitted from any but the first ConstSpec.
  1840  Such an empty list is equivalent to the textual substitution of the
  1841  first preceding non-empty expression list and its type if any.
  1842  Omitting the list of expressions is therefore equivalent to
  1843  repeating the previous list.  The number of identifiers must be equal
  1844  to the number of expressions in the previous list.
  1845  Together with the <a href="#Iota"><code>iota</code> constant generator</a>
  1846  this mechanism permits light-weight declaration of sequential values:
  1847  </p>
  1848  
  1849  <pre>
  1850  const (
  1851  	Sunday = iota
  1852  	Monday
  1853  	Tuesday
  1854  	Wednesday
  1855  	Thursday
  1856  	Friday
  1857  	Partyday
  1858  	numberOfDays  // this constant is not exported
  1859  )
  1860  </pre>
  1861  
  1862  
  1863  <h3 id="Iota">Iota</h3>
  1864  
  1865  <p>
  1866  Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
  1867  <code>iota</code> represents successive untyped integer <a href="#Constants">
  1868  constants</a>. Its value is the index of the respective <a href="#ConstSpec">ConstSpec</a>
  1869  in that constant declaration, starting at zero.
  1870  It can be used to construct a set of related constants:
  1871  </p>
  1872  
  1873  <pre>
  1874  const (
  1875  	c0 = iota  // c0 == 0
  1876  	c1 = iota  // c1 == 1
  1877  	c2 = iota  // c2 == 2
  1878  )
  1879  
  1880  const (
  1881  	a = 1 &lt;&lt; iota  // a == 1  (iota == 0)
  1882  	b = 1 &lt;&lt; iota  // b == 2  (iota == 1)
  1883  	c = 3          // c == 3  (iota == 2, unused)
  1884  	d = 1 &lt;&lt; iota  // d == 8  (iota == 3)
  1885  )
  1886  
  1887  const (
  1888  	u         = iota * 42  // u == 0     (untyped integer constant)
  1889  	v float64 = iota * 42  // v == 42.0  (float64 constant)
  1890  	w         = iota * 42  // w == 84    (untyped integer constant)
  1891  )
  1892  
  1893  const x = iota  // x == 0
  1894  const y = iota  // y == 0
  1895  </pre>
  1896  
  1897  <p>
  1898  By definition, multiple uses of <code>iota</code> in the same ConstSpec all have the same value:
  1899  </p>
  1900  
  1901  <pre>
  1902  const (
  1903  	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0  (iota == 0)
  1904  	bit1, mask1                           // bit1 == 2, mask1 == 1  (iota == 1)
  1905  	_, _                                  //                        (iota == 2, unused)
  1906  	bit3, mask3                           // bit3 == 8, mask3 == 7  (iota == 3)
  1907  )
  1908  </pre>
  1909  
  1910  <p>
  1911  This last example exploits the <a href="#Constant_declarations">implicit repetition</a>
  1912  of the last non-empty expression list.
  1913  </p>
  1914  
  1915  
  1916  <h3 id="Type_declarations">Type declarations</h3>
  1917  
  1918  <p>
  1919  A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>.
  1920  Type declarations come in two forms: alias declarations and type definitions.
  1921  <p>
  1922  
  1923  <pre class="ebnf">
  1924  TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
  1925  TypeSpec = AliasDecl | TypeDef .
  1926  </pre>
  1927  
  1928  <h4 id="Alias_declarations">Alias declarations</h4>
  1929  
  1930  <p>
  1931  An alias declaration binds an identifier to the given type.
  1932  </p>
  1933  
  1934  <pre class="ebnf">
  1935  AliasDecl = identifier "=" Type .
  1936  </pre>
  1937  
  1938  <p>
  1939  Within the <a href="#Declarations_and_scope">scope</a> of
  1940  the identifier, it serves as an <i>alias</i> for the type.
  1941  </p>
  1942  
  1943  <pre>
  1944  type (
  1945  	nodeList = []*Node  // nodeList and []*Node are identical types
  1946  	Polar    = polar    // Polar and polar denote identical types
  1947  )
  1948  </pre>
  1949  
  1950  
  1951  <h4 id="Type_definitions">Type definitions</h4>
  1952  
  1953  <p>
  1954  A type definition creates a new, distinct type with the same
  1955  <a href="#Types">underlying type</a> and operations as the given type,
  1956  and binds an identifier to it.
  1957  </p>
  1958  
  1959  <pre class="ebnf">
  1960  TypeDef = identifier Type .
  1961  </pre>
  1962  
  1963  <p>
  1964  The new type is called a <i>defined type</i>.
  1965  It is <a href="#Type_identity">different</a> from any other type,
  1966  including the type it is created from.
  1967  </p>
  1968  
  1969  <pre>
  1970  type (
  1971  	Point struct{ x, y float64 }  // Point and struct{ x, y float64 } are different types
  1972  	polar Point                   // polar and Point denote different types
  1973  )
  1974  
  1975  type TreeNode struct {
  1976  	left, right *TreeNode
  1977  	value *Comparable
  1978  }
  1979  
  1980  type Block interface {
  1981  	BlockSize() int
  1982  	Encrypt(src, dst []byte)
  1983  	Decrypt(src, dst []byte)
  1984  }
  1985  </pre>
  1986  
  1987  <p>
  1988  A defined type may have <a href="#Method_declarations">methods</a> associated with it.
  1989  It does not inherit any methods bound to the given type,
  1990  but the <a href="#Method_sets">method set</a>
  1991  of an interface type or of elements of a composite type remains unchanged:
  1992  </p>
  1993  
  1994  <pre>
  1995  // A Mutex is a data type with two methods, Lock and Unlock.
  1996  type Mutex struct         { /* Mutex fields */ }
  1997  func (m *Mutex) Lock()    { /* Lock implementation */ }
  1998  func (m *Mutex) Unlock()  { /* Unlock implementation */ }
  1999  
  2000  // NewMutex has the same composition as Mutex but its method set is empty.
  2001  type NewMutex Mutex
  2002  
  2003  // The method set of PtrMutex's underlying type *Mutex remains unchanged,
  2004  // but the method set of PtrMutex is empty.
  2005  type PtrMutex *Mutex
  2006  
  2007  // The method set of *PrintableMutex contains the methods
  2008  // Lock and Unlock bound to its embedded field Mutex.
  2009  type PrintableMutex struct {
  2010  	Mutex
  2011  }
  2012  
  2013  // MyBlock is an interface type that has the same method set as Block.
  2014  type MyBlock Block
  2015  </pre>
  2016  
  2017  <p>
  2018  Type definitions may be used to define different boolean, numeric,
  2019  or string types and associate methods with them:
  2020  </p>
  2021  
  2022  <pre>
  2023  type TimeZone int
  2024  
  2025  const (
  2026  	EST TimeZone = -(5 + iota)
  2027  	CST
  2028  	MST
  2029  	PST
  2030  )
  2031  
  2032  func (tz TimeZone) String() string {
  2033  	return fmt.Sprintf("GMT%+dh", tz)
  2034  }
  2035  </pre>
  2036  
  2037  
  2038  <h3 id="Variable_declarations">Variable declarations</h3>
  2039  
  2040  <p>
  2041  A variable declaration creates one or more <a href="#Variables">variables</a>,
  2042  binds corresponding identifiers to them, and gives each a type and an initial value.
  2043  </p>
  2044  
  2045  <pre class="ebnf">
  2046  VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
  2047  VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
  2048  </pre>
  2049  
  2050  <pre>
  2051  var i int
  2052  var U, V, W float64
  2053  var k = 0
  2054  var x, y float32 = -1, -2
  2055  var (
  2056  	i       int
  2057  	u, v, s = 2.0, 3.0, "bar"
  2058  )
  2059  var re, im = complexSqrt(-1)
  2060  var _, found = entries[name]  // map lookup; only interested in "found"
  2061  </pre>
  2062  
  2063  <p>
  2064  If a list of expressions is given, the variables are initialized
  2065  with the expressions following the rules for <a href="#Assignments">assignments</a>.
  2066  Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
  2067  </p>
  2068  
  2069  <p>
  2070  If a type is present, each variable is given that type.
  2071  Otherwise, each variable is given the type of the corresponding
  2072  initialization value in the assignment.
  2073  If that value is an untyped constant, it is first
  2074  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  2075  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  2076  The predeclared value <code>nil</code> cannot be used to initialize a variable
  2077  with no explicit type.
  2078  </p>
  2079  
  2080  <pre>
  2081  var d = math.Sin(0.5)  // d is float64
  2082  var i = 42             // i is int
  2083  var t, ok = x.(T)      // t is T, ok is bool
  2084  var n = nil            // illegal
  2085  </pre>
  2086  
  2087  <p>
  2088  Implementation restriction: A compiler may make it illegal to declare a variable
  2089  inside a <a href="#Function_declarations">function body</a> if the variable is
  2090  never used.
  2091  </p>
  2092  
  2093  <h3 id="Short_variable_declarations">Short variable declarations</h3>
  2094  
  2095  <p>
  2096  A <i>short variable declaration</i> uses the syntax:
  2097  </p>
  2098  
  2099  <pre class="ebnf">
  2100  ShortVarDecl = IdentifierList ":=" ExpressionList .
  2101  </pre>
  2102  
  2103  <p>
  2104  It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
  2105  with initializer expressions but no types:
  2106  </p>
  2107  
  2108  <pre class="grammar">
  2109  "var" IdentifierList = ExpressionList .
  2110  </pre>
  2111  
  2112  <pre>
  2113  i, j := 0, 10
  2114  f := func() int { return 7 }
  2115  ch := make(chan int)
  2116  r, w := os.Pipe(fd)  // os.Pipe() returns two values
  2117  _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
  2118  </pre>
  2119  
  2120  <p>
  2121  Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
  2122  variables provided they were originally declared earlier in the same block
  2123  (or the parameter lists if the block is the function body) with the same type,
  2124  and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
  2125  As a consequence, redeclaration can only appear in a multi-variable short declaration.
  2126  Redeclaration does not introduce a new variable; it just assigns a new value to the original.
  2127  </p>
  2128  
  2129  <pre>
  2130  field1, offset := nextField(str, 0)
  2131  field2, offset := nextField(str, offset)  // redeclares offset
  2132  a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
  2133  </pre>
  2134  
  2135  <p>
  2136  Short variable declarations may appear only inside functions.
  2137  In some contexts such as the initializers for
  2138  <a href="#If_statements">"if"</a>,
  2139  <a href="#For_statements">"for"</a>, or
  2140  <a href="#Switch_statements">"switch"</a> statements,
  2141  they can be used to declare local temporary variables.
  2142  </p>
  2143  
  2144  <h3 id="Function_declarations">Function declarations</h3>
  2145  
  2146  <p>
  2147  A function declaration binds an identifier, the <i>function name</i>,
  2148  to a function.
  2149  </p>
  2150  
  2151  <pre class="ebnf">
  2152  FunctionDecl = "func" FunctionName ( Function | Signature ) .
  2153  FunctionName = identifier .
  2154  Function     = Signature FunctionBody .
  2155  FunctionBody = Block .
  2156  </pre>
  2157  
  2158  <p>
  2159  If the function's <a href="#Function_types">signature</a> declares
  2160  result parameters, the function body's statement list must end in
  2161  a <a href="#Terminating_statements">terminating statement</a>.
  2162  </p>
  2163  
  2164  <pre>
  2165  func IndexRune(s string, r rune) int {
  2166  	for i, c := range s {
  2167  		if c == r {
  2168  			return i
  2169  		}
  2170  	}
  2171  	// invalid: missing return statement
  2172  }
  2173  </pre>
  2174  
  2175  <p>
  2176  A function declaration may omit the body. Such a declaration provides the
  2177  signature for a function implemented outside Go, such as an assembly routine.
  2178  </p>
  2179  
  2180  <pre>
  2181  func min(x int, y int) int {
  2182  	if x &lt; y {
  2183  		return x
  2184  	}
  2185  	return y
  2186  }
  2187  
  2188  func flushICache(begin, end uintptr)  // implemented externally
  2189  </pre>
  2190  
  2191  <h3 id="Method_declarations">Method declarations</h3>
  2192  
  2193  <p>
  2194  A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
  2195  A method declaration binds an identifier, the <i>method name</i>, to a method,
  2196  and associates the method with the receiver's <i>base type</i>.
  2197  </p>
  2198  
  2199  <pre class="ebnf">
  2200  MethodDecl = "func" Receiver MethodName ( Function | Signature ) .
  2201  Receiver   = Parameters .
  2202  </pre>
  2203  
  2204  <p>
  2205  The receiver is specified via an extra parameter section preceding the method
  2206  name. That parameter section must declare a single non-variadic parameter, the receiver.
  2207  Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
  2208  parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
  2209  the receiver <i>base type</i>; it must not be a pointer or interface type and
  2210  it must be <a href="#Type_definitions">defined</a> in the same package as the method.
  2211  The method is said to be <i>bound</i> to the base type and the method name
  2212  is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
  2213  or <code>*T</code>.
  2214  </p>
  2215  
  2216  <p>
  2217  A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
  2218  <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
  2219  If the receiver's value is not referenced inside the body of the method,
  2220  its identifier may be omitted in the declaration. The same applies in
  2221  general to parameters of functions and methods.
  2222  </p>
  2223  
  2224  <p>
  2225  For a base type, the non-blank names of methods bound to it must be unique.
  2226  If the base type is a <a href="#Struct_types">struct type</a>,
  2227  the non-blank method and field names must be distinct.
  2228  </p>
  2229  
  2230  <p>
  2231  Given type <code>Point</code>, the declarations
  2232  </p>
  2233  
  2234  <pre>
  2235  func (p *Point) Length() float64 {
  2236  	return math.Sqrt(p.x * p.x + p.y * p.y)
  2237  }
  2238  
  2239  func (p *Point) Scale(factor float64) {
  2240  	p.x *= factor
  2241  	p.y *= factor
  2242  }
  2243  </pre>
  2244  
  2245  <p>
  2246  bind the methods <code>Length</code> and <code>Scale</code>,
  2247  with receiver type <code>*Point</code>,
  2248  to the base type <code>Point</code>.
  2249  </p>
  2250  
  2251  <p>
  2252  The type of a method is the type of a function with the receiver as first
  2253  argument.  For instance, the method <code>Scale</code> has type
  2254  </p>
  2255  
  2256  <pre>
  2257  func(p *Point, factor float64)
  2258  </pre>
  2259  
  2260  <p>
  2261  However, a function declared this way is not a method.
  2262  </p>
  2263  
  2264  
  2265  <h2 id="Expressions">Expressions</h2>
  2266  
  2267  <p>
  2268  An expression specifies the computation of a value by applying
  2269  operators and functions to operands.
  2270  </p>
  2271  
  2272  <h3 id="Operands">Operands</h3>
  2273  
  2274  <p>
  2275  Operands denote the elementary values in an expression. An operand may be a
  2276  literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
  2277  non-<a href="#Blank_identifier">blank</a> identifier denoting a
  2278  <a href="#Constant_declarations">constant</a>,
  2279  <a href="#Variable_declarations">variable</a>, or
  2280  <a href="#Function_declarations">function</a>,
  2281  or a parenthesized expression.
  2282  </p>
  2283  
  2284  <p>
  2285  The <a href="#Blank_identifier">blank identifier</a> may appear as an
  2286  operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
  2287  </p>
  2288  
  2289  <pre class="ebnf">
  2290  Operand     = Literal | OperandName | "(" Expression ")" .
  2291  Literal     = BasicLit | CompositeLit | FunctionLit .
  2292  BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
  2293  OperandName = identifier | QualifiedIdent.
  2294  </pre>
  2295  
  2296  <h3 id="Qualified_identifiers">Qualified identifiers</h3>
  2297  
  2298  <p>
  2299  A qualified identifier is an identifier qualified with a package name prefix.
  2300  Both the package name and the identifier must not be
  2301  <a href="#Blank_identifier">blank</a>.
  2302  </p>
  2303  
  2304  <pre class="ebnf">
  2305  QualifiedIdent = PackageName "." identifier .
  2306  </pre>
  2307  
  2308  <p>
  2309  A qualified identifier accesses an identifier in a different package, which
  2310  must be <a href="#Import_declarations">imported</a>.
  2311  The identifier must be <a href="#Exported_identifiers">exported</a> and
  2312  declared in the <a href="#Blocks">package block</a> of that package.
  2313  </p>
  2314  
  2315  <pre>
  2316  math.Sin	// denotes the Sin function in package math
  2317  </pre>
  2318  
  2319  <h3 id="Composite_literals">Composite literals</h3>
  2320  
  2321  <p>
  2322  Composite literals construct values for structs, arrays, slices, and maps
  2323  and create a new value each time they are evaluated.
  2324  They consist of the type of the literal followed by a brace-bound list of elements.
  2325  Each element may optionally be preceded by a corresponding key.
  2326  </p>
  2327  
  2328  <pre class="ebnf">
  2329  CompositeLit  = LiteralType LiteralValue .
  2330  LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
  2331                  SliceType | MapType | TypeName .
  2332  LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
  2333  ElementList   = KeyedElement { "," KeyedElement } .
  2334  KeyedElement  = [ Key ":" ] Element .
  2335  Key           = FieldName | Expression | LiteralValue .
  2336  FieldName     = identifier .
  2337  Element       = Expression | LiteralValue .
  2338  </pre>
  2339  
  2340  <p>
  2341  The LiteralType's underlying type must be a struct, array, slice, or map type
  2342  (the grammar enforces this constraint except when the type is given
  2343  as a TypeName).
  2344  The types of the elements and keys must be <a href="#Assignability">assignable</a>
  2345  to the respective field, element, and key types of the literal type;
  2346  there is no additional conversion.
  2347  The key is interpreted as a field name for struct literals,
  2348  an index for array and slice literals, and a key for map literals.
  2349  For map literals, all elements must have a key. It is an error
  2350  to specify multiple elements with the same field name or
  2351  constant key value. For non-constant map keys, see the section on
  2352  <a href="#Order_of_evaluation">evaluation order</a>.
  2353  </p>
  2354  
  2355  <p>
  2356  For struct literals the following rules apply:
  2357  </p>
  2358  <ul>
  2359  	<li>A key must be a field name declared in the struct type.
  2360  	</li>
  2361  	<li>An element list that does not contain any keys must
  2362  	    list an element for each struct field in the
  2363  	    order in which the fields are declared.
  2364  	</li>
  2365  	<li>If any element has a key, every element must have a key.
  2366  	</li>
  2367  	<li>An element list that contains keys does not need to
  2368  	    have an element for each struct field. Omitted fields
  2369  	    get the zero value for that field.
  2370  	</li>
  2371  	<li>A literal may omit the element list; such a literal evaluates
  2372  	    to the zero value for its type.
  2373  	</li>
  2374  	<li>It is an error to specify an element for a non-exported
  2375  	    field of a struct belonging to a different package.
  2376  	</li>
  2377  </ul>
  2378  
  2379  <p>
  2380  Given the declarations
  2381  </p>
  2382  <pre>
  2383  type Point3D struct { x, y, z float64 }
  2384  type Line struct { p, q Point3D }
  2385  </pre>
  2386  
  2387  <p>
  2388  one may write
  2389  </p>
  2390  
  2391  <pre>
  2392  origin := Point3D{}                            // zero value for Point3D
  2393  line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
  2394  </pre>
  2395  
  2396  <p>
  2397  For array and slice literals the following rules apply:
  2398  </p>
  2399  <ul>
  2400  	<li>Each element has an associated integer index marking
  2401  	    its position in the array.
  2402  	</li>
  2403  	<li>An element with a key uses the key as its index. The
  2404  	    key must be a non-negative constant
  2405  	    <a href="#Representability">representable</a> by
  2406  	    a value of type <code>int</code>; and if it is typed
  2407  	    it must be of integer type.
  2408  	</li>
  2409  	<li>An element without a key uses the previous element's index plus one.
  2410  	    If the first element has no key, its index is zero.
  2411  	</li>
  2412  </ul>
  2413  
  2414  <p>
  2415  <a href="#Address_operators">Taking the address</a> of a composite literal
  2416  generates a pointer to a unique <a href="#Variables">variable</a> initialized
  2417  with the literal's value.
  2418  </p>
  2419  <pre>
  2420  var pointer *Point3D = &amp;Point3D{y: 1000}
  2421  </pre>
  2422  
  2423  <p>
  2424  The length of an array literal is the length specified in the literal type.
  2425  If fewer elements than the length are provided in the literal, the missing
  2426  elements are set to the zero value for the array element type.
  2427  It is an error to provide elements with index values outside the index range
  2428  of the array. The notation <code>...</code> specifies an array length equal
  2429  to the maximum element index plus one.
  2430  </p>
  2431  
  2432  <pre>
  2433  buffer := [10]string{}             // len(buffer) == 10
  2434  intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
  2435  days := [...]string{"Sat", "Sun"}  // len(days) == 2
  2436  </pre>
  2437  
  2438  <p>
  2439  A slice literal describes the entire underlying array literal.
  2440  Thus the length and capacity of a slice literal are the maximum
  2441  element index plus one. A slice literal has the form
  2442  </p>
  2443  
  2444  <pre>
  2445  []T{x1, x2, … xn}
  2446  </pre>
  2447  
  2448  <p>
  2449  and is shorthand for a slice operation applied to an array:
  2450  </p>
  2451  
  2452  <pre>
  2453  tmp := [n]T{x1, x2, … xn}
  2454  tmp[0 : n]
  2455  </pre>
  2456  
  2457  <p>
  2458  Within a composite literal of array, slice, or map type <code>T</code>,
  2459  elements or map keys that are themselves composite literals may elide the respective
  2460  literal type if it is identical to the element or key type of <code>T</code>.
  2461  Similarly, elements or keys that are addresses of composite literals may elide
  2462  the <code>&amp;T</code> when the element or key type is <code>*T</code>.
  2463  </p>
  2464  
  2465  <pre>
  2466  [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
  2467  [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
  2468  [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
  2469  map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
  2470  map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
  2471  
  2472  type PPoint *Point
  2473  [2]*Point{{1.5, -3.5}, {}}          // same as [2]*Point{&amp;Point{1.5, -3.5}, &amp;Point{}}
  2474  [2]PPoint{{1.5, -3.5}, {}}          // same as [2]PPoint{PPoint(&amp;Point{1.5, -3.5}), PPoint(&amp;Point{})}
  2475  </pre>
  2476  
  2477  <p>
  2478  A parsing ambiguity arises when a composite literal using the
  2479  TypeName form of the LiteralType appears as an operand between the
  2480  <a href="#Keywords">keyword</a> and the opening brace of the block
  2481  of an "if", "for", or "switch" statement, and the composite literal
  2482  is not enclosed in parentheses, square brackets, or curly braces.
  2483  In this rare case, the opening brace of the literal is erroneously parsed
  2484  as the one introducing the block of statements. To resolve the ambiguity,
  2485  the composite literal must appear within parentheses.
  2486  </p>
  2487  
  2488  <pre>
  2489  if x == (T{a,b,c}[i]) { … }
  2490  if (x == T{a,b,c}[i]) { … }
  2491  </pre>
  2492  
  2493  <p>
  2494  Examples of valid array, slice, and map literals:
  2495  </p>
  2496  
  2497  <pre>
  2498  // list of prime numbers
  2499  primes := []int{2, 3, 5, 7, 9, 2147483647}
  2500  
  2501  // vowels[ch] is true if ch is a vowel
  2502  vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
  2503  
  2504  // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
  2505  filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
  2506  
  2507  // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
  2508  noteFrequency := map[string]float32{
  2509  	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
  2510  	"G0": 24.50, "A0": 27.50, "B0": 30.87,
  2511  }
  2512  </pre>
  2513  
  2514  
  2515  <h3 id="Function_literals">Function literals</h3>
  2516  
  2517  <p>
  2518  A function literal represents an anonymous <a href="#Function_declarations">function</a>.
  2519  </p>
  2520  
  2521  <pre class="ebnf">
  2522  FunctionLit = "func" Function .
  2523  </pre>
  2524  
  2525  <pre>
  2526  func(a, b int, z float64) bool { return a*b &lt; int(z) }
  2527  </pre>
  2528  
  2529  <p>
  2530  A function literal can be assigned to a variable or invoked directly.
  2531  </p>
  2532  
  2533  <pre>
  2534  f := func(x, y int) int { return x + y }
  2535  func(ch chan int) { ch &lt;- ACK }(replyChan)
  2536  </pre>
  2537  
  2538  <p>
  2539  Function literals are <i>closures</i>: they may refer to variables
  2540  defined in a surrounding function. Those variables are then shared between
  2541  the surrounding function and the function literal, and they survive as long
  2542  as they are accessible.
  2543  </p>
  2544  
  2545  
  2546  <h3 id="Primary_expressions">Primary expressions</h3>
  2547  
  2548  <p>
  2549  Primary expressions are the operands for unary and binary expressions.
  2550  </p>
  2551  
  2552  <pre class="ebnf">
  2553  PrimaryExpr =
  2554  	Operand |
  2555  	Conversion |
  2556  	MethodExpr |
  2557  	PrimaryExpr Selector |
  2558  	PrimaryExpr Index |
  2559  	PrimaryExpr Slice |
  2560  	PrimaryExpr TypeAssertion |
  2561  	PrimaryExpr Arguments .
  2562  
  2563  Selector       = "." identifier .
  2564  Index          = "[" Expression "]" .
  2565  Slice          = "[" [ Expression ] ":" [ Expression ] "]" |
  2566                   "[" [ Expression ] ":" Expression ":" Expression "]" .
  2567  TypeAssertion  = "." "(" Type ")" .
  2568  Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
  2569  </pre>
  2570  
  2571  
  2572  <pre>
  2573  x
  2574  2
  2575  (s + ".txt")
  2576  f(3.1415, true)
  2577  Point{1, 2}
  2578  m["foo"]
  2579  s[i : j + 1]
  2580  obj.color
  2581  f.p[i].x()
  2582  </pre>
  2583  
  2584  
  2585  <h3 id="Selectors">Selectors</h3>
  2586  
  2587  <p>
  2588  For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
  2589  that is not a <a href="#Package_clause">package name</a>, the
  2590  <i>selector expression</i>
  2591  </p>
  2592  
  2593  <pre>
  2594  x.f
  2595  </pre>
  2596  
  2597  <p>
  2598  denotes the field or method <code>f</code> of the value <code>x</code>
  2599  (or sometimes <code>*x</code>; see below).
  2600  The identifier <code>f</code> is called the (field or method) <i>selector</i>;
  2601  it must not be the <a href="#Blank_identifier">blank identifier</a>.
  2602  The type of the selector expression is the type of <code>f</code>.
  2603  If <code>x</code> is a package name, see the section on
  2604  <a href="#Qualified_identifiers">qualified identifiers</a>.
  2605  </p>
  2606  
  2607  <p>
  2608  A selector <code>f</code> may denote a field or method <code>f</code> of
  2609  a type <code>T</code>, or it may refer
  2610  to a field or method <code>f</code> of a nested
  2611  <a href="#Struct_types">embedded field</a> of <code>T</code>.
  2612  The number of embedded fields traversed
  2613  to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
  2614  The depth of a field or method <code>f</code>
  2615  declared in <code>T</code> is zero.
  2616  The depth of a field or method <code>f</code> declared in
  2617  an embedded field <code>A</code> in <code>T</code> is the
  2618  depth of <code>f</code> in <code>A</code> plus one.
  2619  </p>
  2620  
  2621  <p>
  2622  The following rules apply to selectors:
  2623  </p>
  2624  
  2625  <ol>
  2626  <li>
  2627  For a value <code>x</code> of type <code>T</code> or <code>*T</code>
  2628  where <code>T</code> is not a pointer or interface type,
  2629  <code>x.f</code> denotes the field or method at the shallowest depth
  2630  in <code>T</code> where there
  2631  is such an <code>f</code>.
  2632  If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
  2633  with shallowest depth, the selector expression is illegal.
  2634  </li>
  2635  
  2636  <li>
  2637  For a value <code>x</code> of type <code>I</code> where <code>I</code>
  2638  is an interface type, <code>x.f</code> denotes the actual method with name
  2639  <code>f</code> of the dynamic value of <code>x</code>.
  2640  If there is no method with name <code>f</code> in the
  2641  <a href="#Method_sets">method set</a> of <code>I</code>, the selector
  2642  expression is illegal.
  2643  </li>
  2644  
  2645  <li>
  2646  As an exception, if the type of <code>x</code> is a named pointer type
  2647  and <code>(*x).f</code> is a valid selector expression denoting a field
  2648  (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
  2649  </li>
  2650  
  2651  <li>
  2652  In all other cases, <code>x.f</code> is illegal.
  2653  </li>
  2654  
  2655  <li>
  2656  If <code>x</code> is of pointer type and has the value
  2657  <code>nil</code> and <code>x.f</code> denotes a struct field,
  2658  assigning to or evaluating <code>x.f</code>
  2659  causes a <a href="#Run_time_panics">run-time panic</a>.
  2660  </li>
  2661  
  2662  <li>
  2663  If <code>x</code> is of interface type and has the value
  2664  <code>nil</code>, <a href="#Calls">calling</a> or
  2665  <a href="#Method_values">evaluating</a> the method <code>x.f</code>
  2666  causes a <a href="#Run_time_panics">run-time panic</a>.
  2667  </li>
  2668  </ol>
  2669  
  2670  <p>
  2671  For example, given the declarations:
  2672  </p>
  2673  
  2674  <pre>
  2675  type T0 struct {
  2676  	x int
  2677  }
  2678  
  2679  func (*T0) M0()
  2680  
  2681  type T1 struct {
  2682  	y int
  2683  }
  2684  
  2685  func (T1) M1()
  2686  
  2687  type T2 struct {
  2688  	z int
  2689  	T1
  2690  	*T0
  2691  }
  2692  
  2693  func (*T2) M2()
  2694  
  2695  type Q *T2
  2696  
  2697  var t T2     // with t.T0 != nil
  2698  var p *T2    // with p != nil and (*p).T0 != nil
  2699  var q Q = p
  2700  </pre>
  2701  
  2702  <p>
  2703  one may write:
  2704  </p>
  2705  
  2706  <pre>
  2707  t.z          // t.z
  2708  t.y          // t.T1.y
  2709  t.x          // (*t.T0).x
  2710  
  2711  p.z          // (*p).z
  2712  p.y          // (*p).T1.y
  2713  p.x          // (*(*p).T0).x
  2714  
  2715  q.x          // (*(*q).T0).x        (*q).x is a valid field selector
  2716  
  2717  p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
  2718  p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
  2719  p.M2()       // p.M2()              M2 expects *T2 receiver
  2720  t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
  2721  </pre>
  2722  
  2723  <p>
  2724  but the following is invalid:
  2725  </p>
  2726  
  2727  <pre>
  2728  q.M0()       // (*q).M0 is valid but not a field selector
  2729  </pre>
  2730  
  2731  
  2732  <h3 id="Method_expressions">Method expressions</h3>
  2733  
  2734  <p>
  2735  If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2736  <code>T.M</code> is a function that is callable as a regular function
  2737  with the same arguments as <code>M</code> prefixed by an additional
  2738  argument that is the receiver of the method.
  2739  </p>
  2740  
  2741  <pre class="ebnf">
  2742  MethodExpr    = ReceiverType "." MethodName .
  2743  ReceiverType  = Type .
  2744  </pre>
  2745  
  2746  <p>
  2747  Consider a struct type <code>T</code> with two methods,
  2748  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2749  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2750  </p>
  2751  
  2752  <pre>
  2753  type T struct {
  2754  	a int
  2755  }
  2756  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2757  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2758  
  2759  var t T
  2760  </pre>
  2761  
  2762  <p>
  2763  The expression
  2764  </p>
  2765  
  2766  <pre>
  2767  T.Mv
  2768  </pre>
  2769  
  2770  <p>
  2771  yields a function equivalent to <code>Mv</code> but
  2772  with an explicit receiver as its first argument; it has signature
  2773  </p>
  2774  
  2775  <pre>
  2776  func(tv T, a int) int
  2777  </pre>
  2778  
  2779  <p>
  2780  That function may be called normally with an explicit receiver, so
  2781  these five invocations are equivalent:
  2782  </p>
  2783  
  2784  <pre>
  2785  t.Mv(7)
  2786  T.Mv(t, 7)
  2787  (T).Mv(t, 7)
  2788  f1 := T.Mv; f1(t, 7)
  2789  f2 := (T).Mv; f2(t, 7)
  2790  </pre>
  2791  
  2792  <p>
  2793  Similarly, the expression
  2794  </p>
  2795  
  2796  <pre>
  2797  (*T).Mp
  2798  </pre>
  2799  
  2800  <p>
  2801  yields a function value representing <code>Mp</code> with signature
  2802  </p>
  2803  
  2804  <pre>
  2805  func(tp *T, f float32) float32
  2806  </pre>
  2807  
  2808  <p>
  2809  For a method with a value receiver, one can derive a function
  2810  with an explicit pointer receiver, so
  2811  </p>
  2812  
  2813  <pre>
  2814  (*T).Mv
  2815  </pre>
  2816  
  2817  <p>
  2818  yields a function value representing <code>Mv</code> with signature
  2819  </p>
  2820  
  2821  <pre>
  2822  func(tv *T, a int) int
  2823  </pre>
  2824  
  2825  <p>
  2826  Such a function indirects through the receiver to create a value
  2827  to pass as the receiver to the underlying method;
  2828  the method does not overwrite the value whose address is passed in
  2829  the function call.
  2830  </p>
  2831  
  2832  <p>
  2833  The final case, a value-receiver function for a pointer-receiver method,
  2834  is illegal because pointer-receiver methods are not in the method set
  2835  of the value type.
  2836  </p>
  2837  
  2838  <p>
  2839  Function values derived from methods are called with function call syntax;
  2840  the receiver is provided as the first argument to the call.
  2841  That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
  2842  as <code>f(t, 7)</code> not <code>t.f(7)</code>.
  2843  To construct a function that binds the receiver, use a
  2844  <a href="#Function_literals">function literal</a> or
  2845  <a href="#Method_values">method value</a>.
  2846  </p>
  2847  
  2848  <p>
  2849  It is legal to derive a function value from a method of an interface type.
  2850  The resulting function takes an explicit receiver of that interface type.
  2851  </p>
  2852  
  2853  <h3 id="Method_values">Method values</h3>
  2854  
  2855  <p>
  2856  If the expression <code>x</code> has static type <code>T</code> and
  2857  <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2858  <code>x.M</code> is called a <i>method value</i>.
  2859  The method value <code>x.M</code> is a function value that is callable
  2860  with the same arguments as a method call of <code>x.M</code>.
  2861  The expression <code>x</code> is evaluated and saved during the evaluation of the
  2862  method value; the saved copy is then used as the receiver in any calls,
  2863  which may be executed later.
  2864  </p>
  2865  
  2866  <p>
  2867  The type <code>T</code> may be an interface or non-interface type.
  2868  </p>
  2869  
  2870  <p>
  2871  As in the discussion of <a href="#Method_expressions">method expressions</a> above,
  2872  consider a struct type <code>T</code> with two methods,
  2873  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2874  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2875  </p>
  2876  
  2877  <pre>
  2878  type T struct {
  2879  	a int
  2880  }
  2881  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2882  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2883  
  2884  var t T
  2885  var pt *T
  2886  func makeT() T
  2887  </pre>
  2888  
  2889  <p>
  2890  The expression
  2891  </p>
  2892  
  2893  <pre>
  2894  t.Mv
  2895  </pre>
  2896  
  2897  <p>
  2898  yields a function value of type
  2899  </p>
  2900  
  2901  <pre>
  2902  func(int) int
  2903  </pre>
  2904  
  2905  <p>
  2906  These two invocations are equivalent:
  2907  </p>
  2908  
  2909  <pre>
  2910  t.Mv(7)
  2911  f := t.Mv; f(7)
  2912  </pre>
  2913  
  2914  <p>
  2915  Similarly, the expression
  2916  </p>
  2917  
  2918  <pre>
  2919  pt.Mp
  2920  </pre>
  2921  
  2922  <p>
  2923  yields a function value of type
  2924  </p>
  2925  
  2926  <pre>
  2927  func(float32) float32
  2928  </pre>
  2929  
  2930  <p>
  2931  As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
  2932  using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
  2933  </p>
  2934  
  2935  <p>
  2936  As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
  2937  using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
  2938  </p>
  2939  
  2940  <pre>
  2941  f := t.Mv; f(7)   // like t.Mv(7)
  2942  f := pt.Mp; f(7)  // like pt.Mp(7)
  2943  f := pt.Mv; f(7)  // like (*pt).Mv(7)
  2944  f := t.Mp; f(7)   // like (&amp;t).Mp(7)
  2945  f := makeT().Mp   // invalid: result of makeT() is not addressable
  2946  </pre>
  2947  
  2948  <p>
  2949  Although the examples above use non-interface types, it is also legal to create a method value
  2950  from a value of interface type.
  2951  </p>
  2952  
  2953  <pre>
  2954  var i interface { M(int) } = myVal
  2955  f := i.M; f(7)  // like i.M(7)
  2956  </pre>
  2957  
  2958  
  2959  <h3 id="Index_expressions">Index expressions</h3>
  2960  
  2961  <p>
  2962  A primary expression of the form
  2963  </p>
  2964  
  2965  <pre>
  2966  a[x]
  2967  </pre>
  2968  
  2969  <p>
  2970  denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
  2971  The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
  2972  The following rules apply:
  2973  </p>
  2974  
  2975  <p>
  2976  If <code>a</code> is not a map:
  2977  </p>
  2978  <ul>
  2979  	<li>the index <code>x</code> must be of integer type or an untyped constant</li>
  2980  	<li>a constant index must be non-negative and
  2981  	    <a href="#Representability">representable</a> by a value of type <code>int</code></li>
  2982  	<li>a constant index that is untyped is given type <code>int</code></li>
  2983  	<li>the index <code>x</code> is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
  2984  	    otherwise it is <i>out of range</i></li>
  2985  </ul>
  2986  
  2987  <p>
  2988  For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
  2989  </p>
  2990  <ul>
  2991  	<li>a <a href="#Constants">constant</a> index must be in range</li>
  2992  	<li>if <code>x</code> is out of range at run time,
  2993  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2994  	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
  2995  	    <code>a[x]</code> is the element type of <code>A</code></li>
  2996  </ul>
  2997  
  2998  <p>
  2999  For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
  3000  </p>
  3001  <ul>
  3002  	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
  3003  </ul>
  3004  
  3005  <p>
  3006  For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
  3007  </p>
  3008  <ul>
  3009  	<li>if <code>x</code> is out of range at run time,
  3010  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  3011  	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
  3012  	    <code>a[x]</code> is the element type of <code>S</code></li>
  3013  </ul>
  3014  
  3015  <p>
  3016  For <code>a</code> of <a href="#String_types">string type</a>:
  3017  </p>
  3018  <ul>
  3019  	<li>a <a href="#Constants">constant</a> index must be in range
  3020  	    if the string <code>a</code> is also constant</li>
  3021  	<li>if <code>x</code> is out of range at run time,
  3022  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  3023  	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
  3024  	    <code>a[x]</code> is <code>byte</code></li>
  3025  	<li><code>a[x]</code> may not be assigned to</li>
  3026  </ul>
  3027  
  3028  <p>
  3029  For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
  3030  </p>
  3031  <ul>
  3032  	<li><code>x</code>'s type must be
  3033  	    <a href="#Assignability">assignable</a>
  3034  	    to the key type of <code>M</code></li>
  3035  	<li>if the map contains an entry with key <code>x</code>,
  3036  	    <code>a[x]</code> is the map element with key <code>x</code>
  3037  	    and the type of <code>a[x]</code> is the element type of <code>M</code></li>
  3038  	<li>if the map is <code>nil</code> or does not contain such an entry,
  3039  	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
  3040  	    for the element type of <code>M</code></li>
  3041  </ul>
  3042  
  3043  <p>
  3044  Otherwise <code>a[x]</code> is illegal.
  3045  </p>
  3046  
  3047  <p>
  3048  An index expression on a map <code>a</code> of type <code>map[K]V</code>
  3049  used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3050  </p>
  3051  
  3052  <pre>
  3053  v, ok = a[x]
  3054  v, ok := a[x]
  3055  var v, ok = a[x]
  3056  var v, ok T = a[x]
  3057  </pre>
  3058  
  3059  <p>
  3060  yields an additional untyped boolean value. The value of <code>ok</code> is
  3061  <code>true</code> if the key <code>x</code> is present in the map, and
  3062  <code>false</code> otherwise.
  3063  </p>
  3064  
  3065  <p>
  3066  Assigning to an element of a <code>nil</code> map causes a
  3067  <a href="#Run_time_panics">run-time panic</a>.
  3068  </p>
  3069  
  3070  
  3071  <h3 id="Slice_expressions">Slice expressions</h3>
  3072  
  3073  <p>
  3074  Slice expressions construct a substring or slice from a string, array, pointer
  3075  to array, or slice. There are two variants: a simple form that specifies a low
  3076  and high bound, and a full form that also specifies a bound on the capacity.
  3077  </p>
  3078  
  3079  <h4>Simple slice expressions</h4>
  3080  
  3081  <p>
  3082  For a string, array, pointer to array, or slice <code>a</code>, the primary expression
  3083  </p>
  3084  
  3085  <pre>
  3086  a[low : high]
  3087  </pre>
  3088  
  3089  <p>
  3090  constructs a substring or slice. The <i>indices</i> <code>low</code> and
  3091  <code>high</code> select which elements of operand <code>a</code> appear
  3092  in the result. The result has indices starting at 0 and length equal to
  3093  <code>high</code>&nbsp;-&nbsp;<code>low</code>.
  3094  After slicing the array <code>a</code>
  3095  </p>
  3096  
  3097  <pre>
  3098  a := [5]int{1, 2, 3, 4, 5}
  3099  s := a[1:4]
  3100  </pre>
  3101  
  3102  <p>
  3103  the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
  3104  </p>
  3105  
  3106  <pre>
  3107  s[0] == 2
  3108  s[1] == 3
  3109  s[2] == 4
  3110  </pre>
  3111  
  3112  <p>
  3113  For convenience, any of the indices may be omitted. A missing <code>low</code>
  3114  index defaults to zero; a missing <code>high</code> index defaults to the length of the
  3115  sliced operand:
  3116  </p>
  3117  
  3118  <pre>
  3119  a[2:]  // same as a[2 : len(a)]
  3120  a[:3]  // same as a[0 : 3]
  3121  a[:]   // same as a[0 : len(a)]
  3122  </pre>
  3123  
  3124  <p>
  3125  If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
  3126  <code>(*a)[low : high]</code>.
  3127  </p>
  3128  
  3129  <p>
  3130  For arrays or strings, the indices are <i>in range</i> if
  3131  <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
  3132  otherwise they are <i>out of range</i>.
  3133  For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
  3134  A <a href="#Constants">constant</a> index must be non-negative and
  3135  <a href="#Representability">representable</a> by a value of type
  3136  <code>int</code>; for arrays or constant strings, constant indices must also be in range.
  3137  If both indices are constant, they must satisfy <code>low &lt;= high</code>.
  3138  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3139  </p>
  3140  
  3141  <p>
  3142  Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
  3143  the result of the slice operation is a non-constant value of the same type as the operand.
  3144  For untyped string operands the result is a non-constant value of type <code>string</code>.
  3145  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
  3146  and the result of the slice operation is a slice with the same element type as the array.
  3147  </p>
  3148  
  3149  <p>
  3150  If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
  3151  is a <code>nil</code> slice. Otherwise, if the result is a slice, it shares its underlying
  3152  array with the operand.
  3153  </p>
  3154  
  3155  <h4>Full slice expressions</h4>
  3156  
  3157  <p>
  3158  For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
  3159  </p>
  3160  
  3161  <pre>
  3162  a[low : high : max]
  3163  </pre>
  3164  
  3165  <p>
  3166  constructs a slice of the same type, and with the same length and elements as the simple slice
  3167  expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
  3168  by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
  3169  After slicing the array <code>a</code>
  3170  </p>
  3171  
  3172  <pre>
  3173  a := [5]int{1, 2, 3, 4, 5}
  3174  t := a[1:3:5]
  3175  </pre>
  3176  
  3177  <p>
  3178  the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
  3179  </p>
  3180  
  3181  <pre>
  3182  t[0] == 2
  3183  t[1] == 3
  3184  </pre>
  3185  
  3186  <p>
  3187  As for simple slice expressions, if <code>a</code> is a pointer to an array,
  3188  <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
  3189  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
  3190  </p>
  3191  
  3192  <p>
  3193  The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
  3194  otherwise they are <i>out of range</i>.
  3195  A <a href="#Constants">constant</a> index must be non-negative and
  3196  <a href="#Representability">representable</a> by a value of type
  3197  <code>int</code>; for arrays, constant indices must also be in range.
  3198  If multiple indices are constant, the constants that are present must be in range relative to each
  3199  other.
  3200  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3201  </p>
  3202  
  3203  <h3 id="Type_assertions">Type assertions</h3>
  3204  
  3205  <p>
  3206  For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
  3207  and a type <code>T</code>, the primary expression
  3208  </p>
  3209  
  3210  <pre>
  3211  x.(T)
  3212  </pre>
  3213  
  3214  <p>
  3215  asserts that <code>x</code> is not <code>nil</code>
  3216  and that the value stored in <code>x</code> is of type <code>T</code>.
  3217  The notation <code>x.(T)</code> is called a <i>type assertion</i>.
  3218  </p>
  3219  <p>
  3220  More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
  3221  that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
  3222  to the type <code>T</code>.
  3223  In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
  3224  otherwise the type assertion is invalid since it is not possible for <code>x</code>
  3225  to store a value of type <code>T</code>.
  3226  If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
  3227  of <code>x</code> implements the interface <code>T</code>.
  3228  </p>
  3229  <p>
  3230  If the type assertion holds, the value of the expression is the value
  3231  stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
  3232  a <a href="#Run_time_panics">run-time panic</a> occurs.
  3233  In other words, even though the dynamic type of <code>x</code>
  3234  is known only at run time, the type of <code>x.(T)</code> is
  3235  known to be <code>T</code> in a correct program.
  3236  </p>
  3237  
  3238  <pre>
  3239  var x interface{} = 7          // x has dynamic type int and value 7
  3240  i := x.(int)                   // i has type int and value 7
  3241  
  3242  type I interface { m() }
  3243  
  3244  func f(y I) {
  3245  	s := y.(string)        // illegal: string does not implement I (missing method m)
  3246  	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader
  3247  	…
  3248  }
  3249  </pre>
  3250  
  3251  <p>
  3252  A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3253  </p>
  3254  
  3255  <pre>
  3256  v, ok = x.(T)
  3257  v, ok := x.(T)
  3258  var v, ok = x.(T)
  3259  var v, ok T1 = x.(T)
  3260  </pre>
  3261  
  3262  <p>
  3263  yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
  3264  if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
  3265  the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
  3266  No run-time panic occurs in this case.
  3267  </p>
  3268  
  3269  
  3270  <h3 id="Calls">Calls</h3>
  3271  
  3272  <p>
  3273  Given an expression <code>f</code> of function type
  3274  <code>F</code>,
  3275  </p>
  3276  
  3277  <pre>
  3278  f(a1, a2, … an)
  3279  </pre>
  3280  
  3281  <p>
  3282  calls <code>f</code> with arguments <code>a1, a2, … an</code>.
  3283  Except for one special case, arguments must be single-valued expressions
  3284  <a href="#Assignability">assignable</a> to the parameter types of
  3285  <code>F</code> and are evaluated before the function is called.
  3286  The type of the expression is the result type
  3287  of <code>F</code>.
  3288  A method invocation is similar but the method itself
  3289  is specified as a selector upon a value of the receiver type for
  3290  the method.
  3291  </p>
  3292  
  3293  <pre>
  3294  math.Atan2(x, y)  // function call
  3295  var pt *Point
  3296  pt.Scale(3.5)     // method call with receiver pt
  3297  </pre>
  3298  
  3299  <p>
  3300  In a function call, the function value and arguments are evaluated in
  3301  <a href="#Order_of_evaluation">the usual order</a>.
  3302  After they are evaluated, the parameters of the call are passed by value to the function
  3303  and the called function begins execution.
  3304  The return parameters of the function are passed by value
  3305  back to the calling function when the function returns.
  3306  </p>
  3307  
  3308  <p>
  3309  Calling a <code>nil</code> function value
  3310  causes a <a href="#Run_time_panics">run-time panic</a>.
  3311  </p>
  3312  
  3313  <p>
  3314  As a special case, if the return values of a function or method
  3315  <code>g</code> are equal in number and individually
  3316  assignable to the parameters of another function or method
  3317  <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
  3318  will invoke <code>f</code> after binding the return values of
  3319  <code>g</code> to the parameters of <code>f</code> in order.  The call
  3320  of <code>f</code> must contain no parameters other than the call of <code>g</code>,
  3321  and <code>g</code> must have at least one return value.
  3322  If <code>f</code> has a final <code>...</code> parameter, it is
  3323  assigned the return values of <code>g</code> that remain after
  3324  assignment of regular parameters.
  3325  </p>
  3326  
  3327  <pre>
  3328  func Split(s string, pos int) (string, string) {
  3329  	return s[0:pos], s[pos:]
  3330  }
  3331  
  3332  func Join(s, t string) string {
  3333  	return s + t
  3334  }
  3335  
  3336  if Join(Split(value, len(value)/2)) != value {
  3337  	log.Panic("test fails")
  3338  }
  3339  </pre>
  3340  
  3341  <p>
  3342  A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
  3343  of (the type of) <code>x</code> contains <code>m</code> and the
  3344  argument list can be assigned to the parameter list of <code>m</code>.
  3345  If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
  3346  set contains <code>m</code>, <code>x.m()</code> is shorthand
  3347  for <code>(&amp;x).m()</code>:
  3348  </p>
  3349  
  3350  <pre>
  3351  var p Point
  3352  p.Scale(3.5)
  3353  </pre>
  3354  
  3355  <p>
  3356  There is no distinct method type and there are no method literals.
  3357  </p>
  3358  
  3359  <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
  3360  
  3361  <p>
  3362  If <code>f</code> is <a href="#Function_types">variadic</a> with a final
  3363  parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
  3364  the type of <code>p</code> is equivalent to type <code>[]T</code>.
  3365  If <code>f</code> is invoked with no actual arguments for <code>p</code>,
  3366  the value passed to <code>p</code> is <code>nil</code>.
  3367  Otherwise, the value passed is a new slice
  3368  of type <code>[]T</code> with a new underlying array whose successive elements
  3369  are the actual arguments, which all must be <a href="#Assignability">assignable</a>
  3370  to <code>T</code>. The length and capacity of the slice is therefore
  3371  the number of arguments bound to <code>p</code> and may differ for each
  3372  call site.
  3373  </p>
  3374  
  3375  <p>
  3376  Given the function and calls
  3377  </p>
  3378  <pre>
  3379  func Greeting(prefix string, who ...string)
  3380  Greeting("nobody")
  3381  Greeting("hello:", "Joe", "Anna", "Eileen")
  3382  </pre>
  3383  
  3384  <p>
  3385  within <code>Greeting</code>, <code>who</code> will have the value
  3386  <code>nil</code> in the first call, and
  3387  <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
  3388  </p>
  3389  
  3390  <p>
  3391  If the final argument is assignable to a slice type <code>[]T</code>, it may be
  3392  passed unchanged as the value for a <code>...T</code> parameter if the argument
  3393  is followed by <code>...</code>. In this case no new slice is created.
  3394  </p>
  3395  
  3396  <p>
  3397  Given the slice <code>s</code> and call
  3398  </p>
  3399  
  3400  <pre>
  3401  s := []string{"James", "Jasmine"}
  3402  Greeting("goodbye:", s...)
  3403  </pre>
  3404  
  3405  <p>
  3406  within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
  3407  with the same underlying array.
  3408  </p>
  3409  
  3410  
  3411  <h3 id="Operators">Operators</h3>
  3412  
  3413  <p>
  3414  Operators combine operands into expressions.
  3415  </p>
  3416  
  3417  <pre class="ebnf">
  3418  Expression = UnaryExpr | Expression binary_op Expression .
  3419  UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
  3420  
  3421  binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
  3422  rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
  3423  add_op     = "+" | "-" | "|" | "^" .
  3424  mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
  3425  
  3426  unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
  3427  </pre>
  3428  
  3429  <p>
  3430  Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
  3431  For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
  3432  unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
  3433  For operations involving constants only, see the section on
  3434  <a href="#Constant_expressions">constant expressions</a>.
  3435  </p>
  3436  
  3437  <p>
  3438  Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
  3439  and the other operand is not, the constant is <a href="#Conversions">converted</a>
  3440  to the type of the other operand.
  3441  </p>
  3442  
  3443  <p>
  3444  The right operand in a shift expression must have unsigned integer type
  3445  or be an untyped constant <a href="#Representability">representable</a> by a
  3446  value of type <code>uint</code>.
  3447  If the left operand of a non-constant shift expression is an untyped constant,
  3448  it is first converted to the type it would assume if the shift expression were
  3449  replaced by its left operand alone.
  3450  </p>
  3451  
  3452  <pre>
  3453  var s uint = 33
  3454  var i = 1&lt;&lt;s                  // 1 has type int
  3455  var j int32 = 1&lt;&lt;s            // 1 has type int32; j == 0
  3456  var k = uint64(1&lt;&lt;s)          // 1 has type uint64; k == 1&lt;&lt;33
  3457  var m int = 1.0&lt;&lt;s            // 1.0 has type int; m == 0 if ints are 32bits in size
  3458  var n = 1.0&lt;&lt;s == j           // 1.0 has type int32; n == true
  3459  var o = 1&lt;&lt;s == 2&lt;&lt;s          // 1 and 2 have type int; o == true if ints are 32bits in size
  3460  var p = 1&lt;&lt;s == 1&lt;&lt;33         // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
  3461  var u = 1.0&lt;&lt;s                // illegal: 1.0 has type float64, cannot shift
  3462  var u1 = 1.0&lt;&lt;s != 0          // illegal: 1.0 has type float64, cannot shift
  3463  var u2 = 1&lt;&lt;s != 1.0          // illegal: 1 has type float64, cannot shift
  3464  var v float32 = 1&lt;&lt;s          // illegal: 1 has type float32, cannot shift
  3465  var w int64 = 1.0&lt;&lt;33         // 1.0&lt;&lt;33 is a constant shift expression
  3466  var x = a[1.0&lt;&lt;s]             // 1.0 has type int; x == a[0] if ints are 32bits in size
  3467  var a = make([]byte, 1.0&lt;&lt;s)  // 1.0 has type int; len(a) == 0 if ints are 32bits in size
  3468  </pre>
  3469  
  3470  
  3471  <h4 id="Operator_precedence">Operator precedence</h4>
  3472  <p>
  3473  Unary operators have the highest precedence.
  3474  As the  <code>++</code> and <code>--</code> operators form
  3475  statements, not expressions, they fall
  3476  outside the operator hierarchy.
  3477  As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
  3478  <p>
  3479  There are five precedence levels for binary operators.
  3480  Multiplication operators bind strongest, followed by addition
  3481  operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
  3482  and finally <code>||</code> (logical OR):
  3483  </p>
  3484  
  3485  <pre class="grammar">
  3486  Precedence    Operator
  3487      5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
  3488      4             +  -  |  ^
  3489      3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
  3490      2             &amp;&amp;
  3491      1             ||
  3492  </pre>
  3493  
  3494  <p>
  3495  Binary operators of the same precedence associate from left to right.
  3496  For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
  3497  </p>
  3498  
  3499  <pre>
  3500  +x
  3501  23 + 3*x[i]
  3502  x &lt;= f()
  3503  ^a &gt;&gt; b
  3504  f() || g()
  3505  x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
  3506  </pre>
  3507  
  3508  
  3509  <h3 id="Arithmetic_operators">Arithmetic operators</h3>
  3510  <p>
  3511  Arithmetic operators apply to numeric values and yield a result of the same
  3512  type as the first operand. The four standard arithmetic operators (<code>+</code>,
  3513  <code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
  3514  floating-point, and complex types; <code>+</code> also applies to strings.
  3515  The bitwise logical and shift operators apply to integers only.
  3516  </p>
  3517  
  3518  <pre class="grammar">
  3519  +    sum                    integers, floats, complex values, strings
  3520  -    difference             integers, floats, complex values
  3521  *    product                integers, floats, complex values
  3522  /    quotient               integers, floats, complex values
  3523  %    remainder              integers
  3524  
  3525  &amp;    bitwise AND            integers
  3526  |    bitwise OR             integers
  3527  ^    bitwise XOR            integers
  3528  &amp;^   bit clear (AND NOT)    integers
  3529  
  3530  &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
  3531  &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
  3532  </pre>
  3533  
  3534  
  3535  <h4 id="Integer_operators">Integer operators</h4>
  3536  
  3537  <p>
  3538  For two integer values <code>x</code> and <code>y</code>, the integer quotient
  3539  <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
  3540  relationships:
  3541  </p>
  3542  
  3543  <pre>
  3544  x = q*y + r  and  |r| &lt; |y|
  3545  </pre>
  3546  
  3547  <p>
  3548  with <code>x / y</code> truncated towards zero
  3549  (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
  3550  </p>
  3551  
  3552  <pre>
  3553   x     y     x / y     x % y
  3554   5     3       1         2
  3555  -5     3      -1        -2
  3556   5    -3      -1         2
  3557  -5    -3       1        -2
  3558  </pre>
  3559  
  3560  <p>
  3561  The one exception to this rule is that if the dividend <code>x</code> is
  3562  the most negative value for the int type of <code>x</code>, the quotient
  3563  <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>)
  3564  due to two's-complement <a href="#Integer_overflow">integer overflow</a>:
  3565  </p>
  3566  
  3567  <pre>
  3568  			 x, q
  3569  int8                     -128
  3570  int16                  -32768
  3571  int32             -2147483648
  3572  int64    -9223372036854775808
  3573  </pre>
  3574  
  3575  <p>
  3576  If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
  3577  If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3578  If the dividend is non-negative and the divisor is a constant power of 2,
  3579  the division may be replaced by a right shift, and computing the remainder may
  3580  be replaced by a bitwise AND operation:
  3581  </p>
  3582  
  3583  <pre>
  3584   x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
  3585   11      2         3         2          3
  3586  -11     -2        -3        -3          1
  3587  </pre>
  3588  
  3589  <p>
  3590  The shift operators shift the left operand by the shift count specified by the
  3591  right operand. They implement arithmetic shifts if the left operand is a signed
  3592  integer and logical shifts if it is an unsigned integer.
  3593  There is no upper limit on the shift count. Shifts behave
  3594  as if the left operand is shifted <code>n</code> times by 1 for a shift
  3595  count of <code>n</code>.
  3596  As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
  3597  and <code>x &gt;&gt; 1</code> is the same as
  3598  <code>x/2</code> but truncated towards negative infinity.
  3599  </p>
  3600  
  3601  <p>
  3602  For integer operands, the unary operators
  3603  <code>+</code>, <code>-</code>, and <code>^</code> are defined as
  3604  follows:
  3605  </p>
  3606  
  3607  <pre class="grammar">
  3608  +x                          is 0 + x
  3609  -x    negation              is 0 - x
  3610  ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
  3611                                        and  m = -1 for signed x
  3612  </pre>
  3613  
  3614  
  3615  <h4 id="Integer_overflow">Integer overflow</h4>
  3616  
  3617  <p>
  3618  For unsigned integer values, the operations <code>+</code>,
  3619  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
  3620  computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
  3621  the <a href="#Numeric_types">unsigned integer</a>'s type.
  3622  Loosely speaking, these unsigned integer operations
  3623  discard high bits upon overflow, and programs may rely on "wrap around".
  3624  </p>
  3625  <p>
  3626  For signed integers, the operations <code>+</code>,
  3627  <code>-</code>, <code>*</code>, <code>/</code>, and <code>&lt;&lt;</code> may legally
  3628  overflow and the resulting value exists and is deterministically defined
  3629  by the signed integer representation, the operation, and its operands.
  3630  No exception is raised as a result of overflow.
  3631  A compiler may not optimize code under the assumption that overflow does
  3632  not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
  3633  </p>
  3634  
  3635  
  3636  <h4 id="Floating_point_operators">Floating-point operators</h4>
  3637  
  3638  <p>
  3639  For floating-point and complex numbers,
  3640  <code>+x</code> is the same as <code>x</code>,
  3641  while <code>-x</code> is the negation of <code>x</code>.
  3642  The result of a floating-point or complex division by zero is not specified beyond the
  3643  IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
  3644  occurs is implementation-specific.
  3645  </p>
  3646  
  3647  <p>
  3648  An implementation may combine multiple floating-point operations into a single
  3649  fused operation, possibly across statements, and produce a result that differs
  3650  from the value obtained by executing and rounding the instructions individually.
  3651  A floating-point type <a href="#Conversions">conversion</a> explicitly rounds to
  3652  the precision of the target type, preventing fusion that would discard that rounding.
  3653  </p>
  3654  
  3655  <p>
  3656  For instance, some architectures provide a "fused multiply and add" (FMA) instruction
  3657  that computes <code>x*y + z</code> without rounding the intermediate result <code>x*y</code>.
  3658  These examples show when a Go implementation can use that instruction:
  3659  </p>
  3660  
  3661  <pre>
  3662  // FMA allowed for computing r, because x*y is not explicitly rounded:
  3663  r  = x*y + z
  3664  r  = z;   r += x*y
  3665  t  = x*y; r = t + z
  3666  *p = x*y; r = *p + z
  3667  r  = x*y + float64(z)
  3668  
  3669  // FMA disallowed for computing r, because it would omit rounding of x*y:
  3670  r  = float64(x*y) + z
  3671  r  = z; r += float64(x*y)
  3672  t  = float64(x*y); r = t + z
  3673  </pre>
  3674  
  3675  <h4 id="String_concatenation">String concatenation</h4>
  3676  
  3677  <p>
  3678  Strings can be concatenated using the <code>+</code> operator
  3679  or the <code>+=</code> assignment operator:
  3680  </p>
  3681  
  3682  <pre>
  3683  s := "hi" + string(c)
  3684  s += " and good bye"
  3685  </pre>
  3686  
  3687  <p>
  3688  String addition creates a new string by concatenating the operands.
  3689  </p>
  3690  
  3691  
  3692  <h3 id="Comparison_operators">Comparison operators</h3>
  3693  
  3694  <p>
  3695  Comparison operators compare two operands and yield an untyped boolean value.
  3696  </p>
  3697  
  3698  <pre class="grammar">
  3699  ==    equal
  3700  !=    not equal
  3701  &lt;     less
  3702  &lt;=    less or equal
  3703  &gt;     greater
  3704  &gt;=    greater or equal
  3705  </pre>
  3706  
  3707  <p>
  3708  In any comparison, the first operand
  3709  must be <a href="#Assignability">assignable</a>
  3710  to the type of the second operand, or vice versa.
  3711  </p>
  3712  <p>
  3713  The equality operators <code>==</code> and <code>!=</code> apply
  3714  to operands that are <i>comparable</i>.
  3715  The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
  3716  apply to operands that are <i>ordered</i>.
  3717  These terms and the result of the comparisons are defined as follows:
  3718  </p>
  3719  
  3720  <ul>
  3721  	<li>
  3722  	Boolean values are comparable.
  3723  	Two boolean values are equal if they are either both
  3724  	<code>true</code> or both <code>false</code>.
  3725  	</li>
  3726  
  3727  	<li>
  3728  	Integer values are comparable and ordered, in the usual way.
  3729  	</li>
  3730  
  3731  	<li>
  3732  	Floating-point values are comparable and ordered,
  3733  	as defined by the IEEE-754 standard.
  3734  	</li>
  3735  
  3736  	<li>
  3737  	Complex values are comparable.
  3738  	Two complex values <code>u</code> and <code>v</code> are
  3739  	equal if both <code>real(u) == real(v)</code> and
  3740  	<code>imag(u) == imag(v)</code>.
  3741  	</li>
  3742  
  3743  	<li>
  3744  	String values are comparable and ordered, lexically byte-wise.
  3745  	</li>
  3746  
  3747  	<li>
  3748  	Pointer values are comparable.
  3749  	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
  3750  	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
  3751  	</li>
  3752  
  3753  	<li>
  3754  	Channel values are comparable.
  3755  	Two channel values are equal if they were created by the same call to
  3756  	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
  3757  	or if both have value <code>nil</code>.
  3758  	</li>
  3759  
  3760  	<li>
  3761  	Interface values are comparable.
  3762  	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
  3763  	and equal dynamic values or if both have value <code>nil</code>.
  3764  	</li>
  3765  
  3766  	<li>
  3767  	A value <code>x</code> of non-interface type <code>X</code> and
  3768  	a value <code>t</code> of interface type <code>T</code> are comparable when values
  3769  	of type <code>X</code> are comparable and
  3770  	<code>X</code> implements <code>T</code>.
  3771  	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
  3772  	and <code>t</code>'s dynamic value is equal to <code>x</code>.
  3773  	</li>
  3774  
  3775  	<li>
  3776  	Struct values are comparable if all their fields are comparable.
  3777  	Two struct values are equal if their corresponding
  3778  	non-<a href="#Blank_identifier">blank</a> fields are equal.
  3779  	</li>
  3780  
  3781  	<li>
  3782  	Array values are comparable if values of the array element type are comparable.
  3783  	Two array values are equal if their corresponding elements are equal.
  3784  	</li>
  3785  </ul>
  3786  
  3787  <p>
  3788  A comparison of two interface values with identical dynamic types
  3789  causes a <a href="#Run_time_panics">run-time panic</a> if values
  3790  of that type are not comparable.  This behavior applies not only to direct interface
  3791  value comparisons but also when comparing arrays of interface values
  3792  or structs with interface-valued fields.
  3793  </p>
  3794  
  3795  <p>
  3796  Slice, map, and function values are not comparable.
  3797  However, as a special case, a slice, map, or function value may
  3798  be compared to the predeclared identifier <code>nil</code>.
  3799  Comparison of pointer, channel, and interface values to <code>nil</code>
  3800  is also allowed and follows from the general rules above.
  3801  </p>
  3802  
  3803  <pre>
  3804  const c = 3 &lt; 4            // c is the untyped boolean constant true
  3805  
  3806  type MyBool bool
  3807  var x, y int
  3808  var (
  3809  	// The result of a comparison is an untyped boolean.
  3810  	// The usual assignment rules apply.
  3811  	b3        = x == y // b3 has type bool
  3812  	b4 bool   = x == y // b4 has type bool
  3813  	b5 MyBool = x == y // b5 has type MyBool
  3814  )
  3815  </pre>
  3816  
  3817  <h3 id="Logical_operators">Logical operators</h3>
  3818  
  3819  <p>
  3820  Logical operators apply to <a href="#Boolean_types">boolean</a> values
  3821  and yield a result of the same type as the operands.
  3822  The right operand is evaluated conditionally.
  3823  </p>
  3824  
  3825  <pre class="grammar">
  3826  &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
  3827  ||    conditional OR     p || q  is  "if p then true else q"
  3828  !     NOT                !p      is  "not p"
  3829  </pre>
  3830  
  3831  
  3832  <h3 id="Address_operators">Address operators</h3>
  3833  
  3834  <p>
  3835  For an operand <code>x</code> of type <code>T</code>, the address operation
  3836  <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
  3837  The operand must be <i>addressable</i>,
  3838  that is, either a variable, pointer indirection, or slice indexing
  3839  operation; or a field selector of an addressable struct operand;
  3840  or an array indexing operation of an addressable array.
  3841  As an exception to the addressability requirement, <code>x</code> may also be a
  3842  (possibly parenthesized)
  3843  <a href="#Composite_literals">composite literal</a>.
  3844  If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
  3845  then the evaluation of <code>&amp;x</code> does too.
  3846  </p>
  3847  
  3848  <p>
  3849  For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
  3850  indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
  3851  to by <code>x</code>.
  3852  If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
  3853  will cause a <a href="#Run_time_panics">run-time panic</a>.
  3854  </p>
  3855  
  3856  <pre>
  3857  &amp;x
  3858  &amp;a[f(2)]
  3859  &amp;Point{2, 3}
  3860  *p
  3861  *pf(x)
  3862  
  3863  var x *int = nil
  3864  *x   // causes a run-time panic
  3865  &amp;*x  // causes a run-time panic
  3866  </pre>
  3867  
  3868  
  3869  <h3 id="Receive_operator">Receive operator</h3>
  3870  
  3871  <p>
  3872  For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
  3873  the value of the receive operation <code>&lt;-ch</code> is the value received
  3874  from the channel <code>ch</code>. The channel direction must permit receive operations,
  3875  and the type of the receive operation is the element type of the channel.
  3876  The expression blocks until a value is available.
  3877  Receiving from a <code>nil</code> channel blocks forever.
  3878  A receive operation on a <a href="#Close">closed</a> channel can always proceed
  3879  immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
  3880  after any previously sent values have been received.
  3881  </p>
  3882  
  3883  <pre>
  3884  v1 := &lt;-ch
  3885  v2 = &lt;-ch
  3886  f(&lt;-ch)
  3887  &lt;-strobe  // wait until clock pulse and discard received value
  3888  </pre>
  3889  
  3890  <p>
  3891  A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3892  </p>
  3893  
  3894  <pre>
  3895  x, ok = &lt;-ch
  3896  x, ok := &lt;-ch
  3897  var x, ok = &lt;-ch
  3898  var x, ok T = &lt;-ch
  3899  </pre>
  3900  
  3901  <p>
  3902  yields an additional untyped boolean result reporting whether the
  3903  communication succeeded. The value of <code>ok</code> is <code>true</code>
  3904  if the value received was delivered by a successful send operation to the
  3905  channel, or <code>false</code> if it is a zero value generated because the
  3906  channel is closed and empty.
  3907  </p>
  3908  
  3909  
  3910  <h3 id="Conversions">Conversions</h3>
  3911  
  3912  <p>
  3913  Conversions are expressions of the form <code>T(x)</code>
  3914  where <code>T</code> is a type and <code>x</code> is an expression
  3915  that can be converted to type <code>T</code>.
  3916  </p>
  3917  
  3918  <pre class="ebnf">
  3919  Conversion = Type "(" Expression [ "," ] ")" .
  3920  </pre>
  3921  
  3922  <p>
  3923  If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
  3924  or if the type starts with the keyword <code>func</code>
  3925  and has no result list, it must be parenthesized when
  3926  necessary to avoid ambiguity:
  3927  </p>
  3928  
  3929  <pre>
  3930  *Point(p)        // same as *(Point(p))
  3931  (*Point)(p)      // p is converted to *Point
  3932  &lt;-chan int(c)    // same as &lt;-(chan int(c))
  3933  (&lt;-chan int)(c)  // c is converted to &lt;-chan int
  3934  func()(x)        // function signature func() x
  3935  (func())(x)      // x is converted to func()
  3936  (func() int)(x)  // x is converted to func() int
  3937  func() int(x)    // x is converted to func() int (unambiguous)
  3938  </pre>
  3939  
  3940  <p>
  3941  A <a href="#Constants">constant</a> value <code>x</code> can be converted to
  3942  type <code>T</code> if <code>x</code> is <a href="#Representability">representable</a>
  3943  by a value of <code>T</code>.
  3944  As a special case, an integer constant <code>x</code> can be converted to a
  3945  <a href="#String_types">string type</a> using the
  3946  <a href="#Conversions_to_and_from_a_string_type">same rule</a>
  3947  as for non-constant <code>x</code>.
  3948  </p>
  3949  
  3950  <p>
  3951  Converting a constant yields a typed constant as result.
  3952  </p>
  3953  
  3954  <pre>
  3955  uint(iota)               // iota value of type uint
  3956  float32(2.718281828)     // 2.718281828 of type float32
  3957  complex128(1)            // 1.0 + 0.0i of type complex128
  3958  float32(0.49999999)      // 0.5 of type float32
  3959  float64(-1e-1000)        // 0.0 of type float64
  3960  string('x')              // "x" of type string
  3961  string(0x266c)           // "♬" of type string
  3962  MyString("foo" + "bar")  // "foobar" of type MyString
  3963  string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
  3964  (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
  3965  int(1.2)                 // illegal: 1.2 cannot be represented as an int
  3966  string(65.0)             // illegal: 65.0 is not an integer constant
  3967  </pre>
  3968  
  3969  <p>
  3970  A non-constant value <code>x</code> can be converted to type <code>T</code>
  3971  in any of these cases:
  3972  </p>
  3973  
  3974  <ul>
  3975  	<li>
  3976  	<code>x</code> is <a href="#Assignability">assignable</a>
  3977  	to <code>T</code>.
  3978  	</li>
  3979  	<li>
  3980  	ignoring struct tags (see below),
  3981  	<code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a>
  3982  	<a href="#Types">underlying types</a>.
  3983  	</li>
  3984  	<li>
  3985  	ignoring struct tags (see below),
  3986  	<code>x</code>'s type and <code>T</code> are pointer types
  3987  	that are not <a href="#Type_definitions">defined types</a>,
  3988  	and their pointer base types have identical underlying types.
  3989  	</li>
  3990  	<li>
  3991  	<code>x</code>'s type and <code>T</code> are both integer or floating
  3992  	point types.
  3993  	</li>
  3994  	<li>
  3995  	<code>x</code>'s type and <code>T</code> are both complex types.
  3996  	</li>
  3997  	<li>
  3998  	<code>x</code> is an integer or a slice of bytes or runes
  3999  	and <code>T</code> is a string type.
  4000  	</li>
  4001  	<li>
  4002  	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
  4003  	</li>
  4004  </ul>
  4005  
  4006  <p>
  4007  <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types
  4008  for identity for the purpose of conversion:
  4009  </p>
  4010  
  4011  <pre>
  4012  type Person struct {
  4013  	Name    string
  4014  	Address *struct {
  4015  		Street string
  4016  		City   string
  4017  	}
  4018  }
  4019  
  4020  var data *struct {
  4021  	Name    string `json:"name"`
  4022  	Address *struct {
  4023  		Street string `json:"street"`
  4024  		City   string `json:"city"`
  4025  	} `json:"address"`
  4026  }
  4027  
  4028  var person = (*Person)(data)  // ignoring tags, the underlying types are identical
  4029  </pre>
  4030  
  4031  <p>
  4032  Specific rules apply to (non-constant) conversions between numeric types or
  4033  to and from a string type.
  4034  These conversions may change the representation of <code>x</code>
  4035  and incur a run-time cost.
  4036  All other conversions only change the type but not the representation
  4037  of <code>x</code>.
  4038  </p>
  4039  
  4040  <p>
  4041  There is no linguistic mechanism to convert between pointers and integers.
  4042  The package <a href="#Package_unsafe"><code>unsafe</code></a>
  4043  implements this functionality under
  4044  restricted circumstances.
  4045  </p>
  4046  
  4047  <h4>Conversions between numeric types</h4>
  4048  
  4049  <p>
  4050  For the conversion of non-constant numeric values, the following rules apply:
  4051  </p>
  4052  
  4053  <ol>
  4054  <li>
  4055  When converting between integer types, if the value is a signed integer, it is
  4056  sign extended to implicit infinite precision; otherwise it is zero extended.
  4057  It is then truncated to fit in the result type's size.
  4058  For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
  4059  The conversion always yields a valid value; there is no indication of overflow.
  4060  </li>
  4061  <li>
  4062  When converting a floating-point number to an integer, the fraction is discarded
  4063  (truncation towards zero).
  4064  </li>
  4065  <li>
  4066  When converting an integer or floating-point number to a floating-point type,
  4067  or a complex number to another complex type, the result value is rounded
  4068  to the precision specified by the destination type.
  4069  For instance, the value of a variable <code>x</code> of type <code>float32</code>
  4070  may be stored using additional precision beyond that of an IEEE-754 32-bit number,
  4071  but float32(x) represents the result of rounding <code>x</code>'s value to
  4072  32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
  4073  of precision, but <code>float32(x + 0.1)</code> does not.
  4074  </li>
  4075  </ol>
  4076  
  4077  <p>
  4078  In all non-constant conversions involving floating-point or complex values,
  4079  if the result type cannot represent the value the conversion
  4080  succeeds but the result value is implementation-dependent.
  4081  </p>
  4082  
  4083  <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
  4084  
  4085  <ol>
  4086  <li>
  4087  Converting a signed or unsigned integer value to a string type yields a
  4088  string containing the UTF-8 representation of the integer. Values outside
  4089  the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
  4090  
  4091  <pre>
  4092  string('a')       // "a"
  4093  string(-1)        // "\ufffd" == "\xef\xbf\xbd"
  4094  string(0xf8)      // "\u00f8" == "ø" == "\xc3\xb8"
  4095  type MyString string
  4096  MyString(0x65e5)  // "\u65e5" == "日" == "\xe6\x97\xa5"
  4097  </pre>
  4098  </li>
  4099  
  4100  <li>
  4101  Converting a slice of bytes to a string type yields
  4102  a string whose successive bytes are the elements of the slice.
  4103  
  4104  <pre>
  4105  string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
  4106  string([]byte{})                                     // ""
  4107  string([]byte(nil))                                  // ""
  4108  
  4109  type MyBytes []byte
  4110  string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
  4111  </pre>
  4112  </li>
  4113  
  4114  <li>
  4115  Converting a slice of runes to a string type yields
  4116  a string that is the concatenation of the individual rune values
  4117  converted to strings.
  4118  
  4119  <pre>
  4120  string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4121  string([]rune{})                         // ""
  4122  string([]rune(nil))                      // ""
  4123  
  4124  type MyRunes []rune
  4125  string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4126  </pre>
  4127  </li>
  4128  
  4129  <li>
  4130  Converting a value of a string type to a slice of bytes type
  4131  yields a slice whose successive elements are the bytes of the string.
  4132  
  4133  <pre>
  4134  []byte("hellø")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4135  []byte("")        // []byte{}
  4136  
  4137  MyBytes("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4138  </pre>
  4139  </li>
  4140  
  4141  <li>
  4142  Converting a value of a string type to a slice of runes type
  4143  yields a slice containing the individual Unicode code points of the string.
  4144  
  4145  <pre>
  4146  []rune(MyString("白鵬翔"))  // []rune{0x767d, 0x9d6c, 0x7fd4}
  4147  []rune("")                 // []rune{}
  4148  
  4149  MyRunes("白鵬翔")           // []rune{0x767d, 0x9d6c, 0x7fd4}
  4150  </pre>
  4151  </li>
  4152  </ol>
  4153  
  4154  
  4155  <h3 id="Constant_expressions">Constant expressions</h3>
  4156  
  4157  <p>
  4158  Constant expressions may contain only <a href="#Constants">constant</a>
  4159  operands and are evaluated at compile time.
  4160  </p>
  4161  
  4162  <p>
  4163  Untyped boolean, numeric, and string constants may be used as operands
  4164  wherever it is legal to use an operand of boolean, numeric, or string type,
  4165  respectively.
  4166  Except for shift operations, if the operands of a binary operation are
  4167  different kinds of untyped constants, the operation and, for non-boolean operations, the result use
  4168  the kind that appears later in this list: integer, rune, floating-point, complex.
  4169  For example, an untyped integer constant divided by an
  4170  untyped complex constant yields an untyped complex constant.
  4171  </p>
  4172  
  4173  <p>
  4174  A constant <a href="#Comparison_operators">comparison</a> always yields
  4175  an untyped boolean constant.  If the left operand of a constant
  4176  <a href="#Operators">shift expression</a> is an untyped constant, the
  4177  result is an integer constant; otherwise it is a constant of the same
  4178  type as the left operand, which must be of
  4179  <a href="#Numeric_types">integer type</a>.
  4180  Applying all other operators to untyped constants results in an untyped
  4181  constant of the same kind (that is, a boolean, integer, floating-point,
  4182  complex, or string constant).
  4183  </p>
  4184  
  4185  <pre>
  4186  const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
  4187  const b = 15 / 4           // b == 3     (untyped integer constant)
  4188  const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
  4189  const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
  4190  const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
  4191  const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
  4192  const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
  4193  const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
  4194  const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
  4195  const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
  4196  const j = true             // j == true  (untyped boolean constant)
  4197  const k = 'w' + 1          // k == 'x'   (untyped rune constant)
  4198  const l = "hi"             // l == "hi"  (untyped string constant)
  4199  const m = string(k)        // m == "x"   (type string)
  4200  const Σ = 1 - 0.707i       //            (untyped complex constant)
  4201  const Δ = Σ + 2.0e-4       //            (untyped complex constant)
  4202  const Φ = iota*1i - 1/1i   //            (untyped complex constant)
  4203  </pre>
  4204  
  4205  <p>
  4206  Applying the built-in function <code>complex</code> to untyped
  4207  integer, rune, or floating-point constants yields
  4208  an untyped complex constant.
  4209  </p>
  4210  
  4211  <pre>
  4212  const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
  4213  const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
  4214  </pre>
  4215  
  4216  <p>
  4217  Constant expressions are always evaluated exactly; intermediate values and the
  4218  constants themselves may require precision significantly larger than supported
  4219  by any predeclared type in the language. The following are legal declarations:
  4220  </p>
  4221  
  4222  <pre>
  4223  const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
  4224  const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
  4225  </pre>
  4226  
  4227  <p>
  4228  The divisor of a constant division or remainder operation must not be zero:
  4229  </p>
  4230  
  4231  <pre>
  4232  3.14 / 0.0   // illegal: division by zero
  4233  </pre>
  4234  
  4235  <p>
  4236  The values of <i>typed</i> constants must always be accurately
  4237  <a href="#Representability">representable</a> by values
  4238  of the constant type. The following constant expressions are illegal:
  4239  </p>
  4240  
  4241  <pre>
  4242  uint(-1)     // -1 cannot be represented as a uint
  4243  int(3.14)    // 3.14 cannot be represented as an int
  4244  int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
  4245  Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
  4246  Four * 100   // product 400 cannot be represented as an int8 (type of Four)
  4247  </pre>
  4248  
  4249  <p>
  4250  The mask used by the unary bitwise complement operator <code>^</code> matches
  4251  the rule for non-constants: the mask is all 1s for unsigned constants
  4252  and -1 for signed and untyped constants.
  4253  </p>
  4254  
  4255  <pre>
  4256  ^1         // untyped integer constant, equal to -2
  4257  uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
  4258  ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
  4259  int8(^1)   // same as int8(-2)
  4260  ^int8(1)   // same as -1 ^ int8(1) = -2
  4261  </pre>
  4262  
  4263  <p>
  4264  Implementation restriction: A compiler may use rounding while
  4265  computing untyped floating-point or complex constant expressions; see
  4266  the implementation restriction in the section
  4267  on <a href="#Constants">constants</a>.  This rounding may cause a
  4268  floating-point constant expression to be invalid in an integer
  4269  context, even if it would be integral when calculated using infinite
  4270  precision, and vice versa.
  4271  </p>
  4272  
  4273  
  4274  <h3 id="Order_of_evaluation">Order of evaluation</h3>
  4275  
  4276  <p>
  4277  At package level, <a href="#Package_initialization">initialization dependencies</a>
  4278  determine the evaluation order of individual initialization expressions in
  4279  <a href="#Variable_declarations">variable declarations</a>.
  4280  Otherwise, when evaluating the <a href="#Operands">operands</a> of an
  4281  expression, assignment, or
  4282  <a href="#Return_statements">return statement</a>,
  4283  all function calls, method calls, and
  4284  communication operations are evaluated in lexical left-to-right
  4285  order.
  4286  </p>
  4287  
  4288  <p>
  4289  For example, in the (function-local) assignment
  4290  </p>
  4291  <pre>
  4292  y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
  4293  </pre>
  4294  <p>
  4295  the function calls and communication happen in the order
  4296  <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
  4297  <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
  4298  However, the order of those events compared to the evaluation
  4299  and indexing of <code>x</code> and the evaluation
  4300  of <code>y</code> is not specified.
  4301  </p>
  4302  
  4303  <pre>
  4304  a := 1
  4305  f := func() int { a++; return a }
  4306  x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
  4307  m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
  4308  n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
  4309  </pre>
  4310  
  4311  <p>
  4312  At package level, initialization dependencies override the left-to-right rule
  4313  for individual initialization expressions, but not for operands within each
  4314  expression:
  4315  </p>
  4316  
  4317  <pre>
  4318  var a, b, c = f() + v(), g(), sqr(u()) + v()
  4319  
  4320  func f() int        { return c }
  4321  func g() int        { return a }
  4322  func sqr(x int) int { return x*x }
  4323  
  4324  // functions u and v are independent of all other variables and functions
  4325  </pre>
  4326  
  4327  <p>
  4328  The function calls happen in the order
  4329  <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
  4330  <code>f()</code>, <code>v()</code>, and <code>g()</code>.
  4331  </p>
  4332  
  4333  <p>
  4334  Floating-point operations within a single expression are evaluated according to
  4335  the associativity of the operators.  Explicit parentheses affect the evaluation
  4336  by overriding the default associativity.
  4337  In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
  4338  is performed before adding <code>x</code>.
  4339  </p>
  4340  
  4341  <h2 id="Statements">Statements</h2>
  4342  
  4343  <p>
  4344  Statements control execution.
  4345  </p>
  4346  
  4347  <pre class="ebnf">
  4348  Statement =
  4349  	Declaration | LabeledStmt | SimpleStmt |
  4350  	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
  4351  	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
  4352  	DeferStmt .
  4353  
  4354  SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
  4355  </pre>
  4356  
  4357  <h3 id="Terminating_statements">Terminating statements</h3>
  4358  
  4359  <p>
  4360  A <i>terminating statement</i> prevents execution of all statements that lexically
  4361  appear after it in the same <a href="#Blocks">block</a>. The following statements
  4362  are terminating:
  4363  </p>
  4364  
  4365  <ol>
  4366  <li>
  4367  	A <a href="#Return_statements">"return"</a> or
  4368      	<a href="#Goto_statements">"goto"</a> statement.
  4369  	<!-- ul below only for regular layout -->
  4370  	<ul> </ul>
  4371  </li>
  4372  
  4373  <li>
  4374  	A call to the built-in function
  4375  	<a href="#Handling_panics"><code>panic</code></a>.
  4376  	<!-- ul below only for regular layout -->
  4377  	<ul> </ul>
  4378  </li>
  4379  
  4380  <li>
  4381  	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
  4382  	<!-- ul below only for regular layout -->
  4383  	<ul> </ul>
  4384  </li>
  4385  
  4386  <li>
  4387  	An <a href="#If_statements">"if" statement</a> in which:
  4388  	<ul>
  4389  	<li>the "else" branch is present, and</li>
  4390  	<li>both branches are terminating statements.</li>
  4391  	</ul>
  4392  </li>
  4393  
  4394  <li>
  4395  	A <a href="#For_statements">"for" statement</a> in which:
  4396  	<ul>
  4397  	<li>there are no "break" statements referring to the "for" statement, and</li>
  4398  	<li>the loop condition is absent.</li>
  4399  	</ul>
  4400  </li>
  4401  
  4402  <li>
  4403  	A <a href="#Switch_statements">"switch" statement</a> in which:
  4404  	<ul>
  4405  	<li>there are no "break" statements referring to the "switch" statement,</li>
  4406  	<li>there is a default case, and</li>
  4407  	<li>the statement lists in each case, including the default, end in a terminating
  4408  	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
  4409  	    statement</a>.</li>
  4410  	</ul>
  4411  </li>
  4412  
  4413  <li>
  4414  	A <a href="#Select_statements">"select" statement</a> in which:
  4415  	<ul>
  4416  	<li>there are no "break" statements referring to the "select" statement, and</li>
  4417  	<li>the statement lists in each case, including the default if present,
  4418  	    end in a terminating statement.</li>
  4419  	</ul>
  4420  </li>
  4421  
  4422  <li>
  4423  	A <a href="#Labeled_statements">labeled statement</a> labeling
  4424  	a terminating statement.
  4425  </li>
  4426  </ol>
  4427  
  4428  <p>
  4429  All other statements are not terminating.
  4430  </p>
  4431  
  4432  <p>
  4433  A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
  4434  is not empty and its final non-empty statement is terminating.
  4435  </p>
  4436  
  4437  
  4438  <h3 id="Empty_statements">Empty statements</h3>
  4439  
  4440  <p>
  4441  The empty statement does nothing.
  4442  </p>
  4443  
  4444  <pre class="ebnf">
  4445  EmptyStmt = .
  4446  </pre>
  4447  
  4448  
  4449  <h3 id="Labeled_statements">Labeled statements</h3>
  4450  
  4451  <p>
  4452  A labeled statement may be the target of a <code>goto</code>,
  4453  <code>break</code> or <code>continue</code> statement.
  4454  </p>
  4455  
  4456  <pre class="ebnf">
  4457  LabeledStmt = Label ":" Statement .
  4458  Label       = identifier .
  4459  </pre>
  4460  
  4461  <pre>
  4462  Error: log.Panic("error encountered")
  4463  </pre>
  4464  
  4465  
  4466  <h3 id="Expression_statements">Expression statements</h3>
  4467  
  4468  <p>
  4469  With the exception of specific built-in functions,
  4470  function and method <a href="#Calls">calls</a> and
  4471  <a href="#Receive_operator">receive operations</a>
  4472  can appear in statement context. Such statements may be parenthesized.
  4473  </p>
  4474  
  4475  <pre class="ebnf">
  4476  ExpressionStmt = Expression .
  4477  </pre>
  4478  
  4479  <p>
  4480  The following built-in functions are not permitted in statement context:
  4481  </p>
  4482  
  4483  <pre>
  4484  append cap complex imag len make new real
  4485  unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
  4486  </pre>
  4487  
  4488  <pre>
  4489  h(x+y)
  4490  f.Close()
  4491  &lt;-ch
  4492  (&lt;-ch)
  4493  len("foo")  // illegal if len is the built-in function
  4494  </pre>
  4495  
  4496  
  4497  <h3 id="Send_statements">Send statements</h3>
  4498  
  4499  <p>
  4500  A send statement sends a value on a channel.
  4501  The channel expression must be of <a href="#Channel_types">channel type</a>,
  4502  the channel direction must permit send operations,
  4503  and the type of the value to be sent must be <a href="#Assignability">assignable</a>
  4504  to the channel's element type.
  4505  </p>
  4506  
  4507  <pre class="ebnf">
  4508  SendStmt = Channel "&lt;-" Expression .
  4509  Channel  = Expression .
  4510  </pre>
  4511  
  4512  <p>
  4513  Both the channel and the value expression are evaluated before communication
  4514  begins. Communication blocks until the send can proceed.
  4515  A send on an unbuffered channel can proceed if a receiver is ready.
  4516  A send on a buffered channel can proceed if there is room in the buffer.
  4517  A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
  4518  A send on a <code>nil</code> channel blocks forever.
  4519  </p>
  4520  
  4521  <pre>
  4522  ch &lt;- 3  // send value 3 to channel ch
  4523  </pre>
  4524  
  4525  
  4526  <h3 id="IncDec_statements">IncDec statements</h3>
  4527  
  4528  <p>
  4529  The "++" and "--" statements increment or decrement their operands
  4530  by the untyped <a href="#Constants">constant</a> <code>1</code>.
  4531  As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
  4532  or a map index expression.
  4533  </p>
  4534  
  4535  <pre class="ebnf">
  4536  IncDecStmt = Expression ( "++" | "--" ) .
  4537  </pre>
  4538  
  4539  <p>
  4540  The following <a href="#Assignments">assignment statements</a> are semantically
  4541  equivalent:
  4542  </p>
  4543  
  4544  <pre class="grammar">
  4545  IncDec statement    Assignment
  4546  x++                 x += 1
  4547  x--                 x -= 1
  4548  </pre>
  4549  
  4550  
  4551  <h3 id="Assignments">Assignments</h3>
  4552  
  4553  <pre class="ebnf">
  4554  Assignment = ExpressionList assign_op ExpressionList .
  4555  
  4556  assign_op = [ add_op | mul_op ] "=" .
  4557  </pre>
  4558  
  4559  <p>
  4560  Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
  4561  a map index expression, or (for <code>=</code> assignments only) the
  4562  <a href="#Blank_identifier">blank identifier</a>.
  4563  Operands may be parenthesized.
  4564  </p>
  4565  
  4566  <pre>
  4567  x = 1
  4568  *p = f()
  4569  a[i] = 23
  4570  (k) = &lt;-ch  // same as: k = &lt;-ch
  4571  </pre>
  4572  
  4573  <p>
  4574  An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
  4575  <code>y</code> where <i>op</i> is a binary <a href="#Arithmetic_operators">arithmetic operator</a>
  4576  is equivalent to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
  4577  <code>(y)</code> but evaluates <code>x</code>
  4578  only once.  The <i>op</i><code>=</code> construct is a single token.
  4579  In assignment operations, both the left- and right-hand expression lists
  4580  must contain exactly one single-valued expression, and the left-hand
  4581  expression must not be the blank identifier.
  4582  </p>
  4583  
  4584  <pre>
  4585  a[i] &lt;&lt;= 2
  4586  i &amp;^= 1&lt;&lt;n
  4587  </pre>
  4588  
  4589  <p>
  4590  A tuple assignment assigns the individual elements of a multi-valued
  4591  operation to a list of variables.  There are two forms.  In the
  4592  first, the right hand operand is a single multi-valued expression
  4593  such as a function call, a <a href="#Channel_types">channel</a> or
  4594  <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
  4595  The number of operands on the left
  4596  hand side must match the number of values.  For instance, if
  4597  <code>f</code> is a function returning two values,
  4598  </p>
  4599  
  4600  <pre>
  4601  x, y = f()
  4602  </pre>
  4603  
  4604  <p>
  4605  assigns the first value to <code>x</code> and the second to <code>y</code>.
  4606  In the second form, the number of operands on the left must equal the number
  4607  of expressions on the right, each of which must be single-valued, and the
  4608  <i>n</i>th expression on the right is assigned to the <i>n</i>th
  4609  operand on the left:
  4610  </p>
  4611  
  4612  <pre>
  4613  one, two, three = '一', '二', '三'
  4614  </pre>
  4615  
  4616  <p>
  4617  The <a href="#Blank_identifier">blank identifier</a> provides a way to
  4618  ignore right-hand side values in an assignment:
  4619  </p>
  4620  
  4621  <pre>
  4622  _ = x       // evaluate x but ignore it
  4623  x, _ = f()  // evaluate f() but ignore second result value
  4624  </pre>
  4625  
  4626  <p>
  4627  The assignment proceeds in two phases.
  4628  First, the operands of <a href="#Index_expressions">index expressions</a>
  4629  and <a href="#Address_operators">pointer indirections</a>
  4630  (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
  4631  on the left and the expressions on the right are all
  4632  <a href="#Order_of_evaluation">evaluated in the usual order</a>.
  4633  Second, the assignments are carried out in left-to-right order.
  4634  </p>
  4635  
  4636  <pre>
  4637  a, b = b, a  // exchange a and b
  4638  
  4639  x := []int{1, 2, 3}
  4640  i := 0
  4641  i, x[i] = 1, 2  // set i = 1, x[0] = 2
  4642  
  4643  i = 0
  4644  x[i], i = 2, 1  // set x[0] = 2, i = 1
  4645  
  4646  x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
  4647  
  4648  x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
  4649  
  4650  type Point struct { x, y int }
  4651  var p *Point
  4652  x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
  4653  
  4654  i = 2
  4655  x = []int{3, 5, 7}
  4656  for i, x[i] = range x {  // set i, x[2] = 0, x[0]
  4657  	break
  4658  }
  4659  // after this loop, i == 0 and x == []int{3, 5, 3}
  4660  </pre>
  4661  
  4662  <p>
  4663  In assignments, each value must be <a href="#Assignability">assignable</a>
  4664  to the type of the operand to which it is assigned, with the following special cases:
  4665  </p>
  4666  
  4667  <ol>
  4668  <li>
  4669  	Any typed value may be assigned to the blank identifier.
  4670  </li>
  4671  
  4672  <li>
  4673  	If an untyped constant
  4674  	is assigned to a variable of interface type or the blank identifier,
  4675  	the constant is first <a href="#Conversions">converted</a> to its
  4676  	 <a href="#Constants">default type</a>.
  4677  </li>
  4678  
  4679  <li>
  4680  	If an untyped boolean value is assigned to a variable of interface type or
  4681  	the blank identifier, it is first converted to type <code>bool</code>.
  4682  </li>
  4683  </ol>
  4684  
  4685  <h3 id="If_statements">If statements</h3>
  4686  
  4687  <p>
  4688  "If" statements specify the conditional execution of two branches
  4689  according to the value of a boolean expression.  If the expression
  4690  evaluates to true, the "if" branch is executed, otherwise, if
  4691  present, the "else" branch is executed.
  4692  </p>
  4693  
  4694  <pre class="ebnf">
  4695  IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
  4696  </pre>
  4697  
  4698  <pre>
  4699  if x &gt; max {
  4700  	x = max
  4701  }
  4702  </pre>
  4703  
  4704  <p>
  4705  The expression may be preceded by a simple statement, which
  4706  executes before the expression is evaluated.
  4707  </p>
  4708  
  4709  <pre>
  4710  if x := f(); x &lt; y {
  4711  	return x
  4712  } else if x &gt; z {
  4713  	return z
  4714  } else {
  4715  	return y
  4716  }
  4717  </pre>
  4718  
  4719  
  4720  <h3 id="Switch_statements">Switch statements</h3>
  4721  
  4722  <p>
  4723  "Switch" statements provide multi-way execution.
  4724  An expression or type specifier is compared to the "cases"
  4725  inside the "switch" to determine which branch
  4726  to execute.
  4727  </p>
  4728  
  4729  <pre class="ebnf">
  4730  SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
  4731  </pre>
  4732  
  4733  <p>
  4734  There are two forms: expression switches and type switches.
  4735  In an expression switch, the cases contain expressions that are compared
  4736  against the value of the switch expression.
  4737  In a type switch, the cases contain types that are compared against the
  4738  type of a specially annotated switch expression.
  4739  The switch expression is evaluated exactly once in a switch statement.
  4740  </p>
  4741  
  4742  <h4 id="Expression_switches">Expression switches</h4>
  4743  
  4744  <p>
  4745  In an expression switch,
  4746  the switch expression is evaluated and
  4747  the case expressions, which need not be constants,
  4748  are evaluated left-to-right and top-to-bottom; the first one that equals the
  4749  switch expression
  4750  triggers execution of the statements of the associated case;
  4751  the other cases are skipped.
  4752  If no case matches and there is a "default" case,
  4753  its statements are executed.
  4754  There can be at most one default case and it may appear anywhere in the
  4755  "switch" statement.
  4756  A missing switch expression is equivalent to the boolean value
  4757  <code>true</code>.
  4758  </p>
  4759  
  4760  <pre class="ebnf">
  4761  ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
  4762  ExprCaseClause = ExprSwitchCase ":" StatementList .
  4763  ExprSwitchCase = "case" ExpressionList | "default" .
  4764  </pre>
  4765  
  4766  <p>
  4767  If the switch expression evaluates to an untyped constant, it is first
  4768  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  4769  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  4770  The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
  4771  </p>
  4772  
  4773  <p>
  4774  If a case expression is untyped, it is first <a href="#Conversions">converted</a>
  4775  to the type of the switch expression.
  4776  For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
  4777  of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
  4778  </p>
  4779  
  4780  <p>
  4781  In other words, the switch expression is treated as if it were used to declare and
  4782  initialize a temporary variable <code>t</code> without explicit type; it is that
  4783  value of <code>t</code> against which each case expression <code>x</code> is tested
  4784  for equality.
  4785  </p>
  4786  
  4787  <p>
  4788  In a case or default clause, the last non-empty statement
  4789  may be a (possibly <a href="#Labeled_statements">labeled</a>)
  4790  <a href="#Fallthrough_statements">"fallthrough" statement</a> to
  4791  indicate that control should flow from the end of this clause to
  4792  the first statement of the next clause.
  4793  Otherwise control flows to the end of the "switch" statement.
  4794  A "fallthrough" statement may appear as the last statement of all
  4795  but the last clause of an expression switch.
  4796  </p>
  4797  
  4798  <p>
  4799  The switch expression may be preceded by a simple statement, which
  4800  executes before the expression is evaluated.
  4801  </p>
  4802  
  4803  <pre>
  4804  switch tag {
  4805  default: s3()
  4806  case 0, 1, 2, 3: s1()
  4807  case 4, 5, 6, 7: s2()
  4808  }
  4809  
  4810  switch x := f(); {  // missing switch expression means "true"
  4811  case x &lt; 0: return -x
  4812  default: return x
  4813  }
  4814  
  4815  switch {
  4816  case x &lt; y: f1()
  4817  case x &lt; z: f2()
  4818  case x == 4: f3()
  4819  }
  4820  </pre>
  4821  
  4822  <p>
  4823  Implementation restriction: A compiler may disallow multiple case
  4824  expressions evaluating to the same constant.
  4825  For instance, the current compilers disallow duplicate integer,
  4826  floating point, or string constants in case expressions.
  4827  </p>
  4828  
  4829  <h4 id="Type_switches">Type switches</h4>
  4830  
  4831  <p>
  4832  A type switch compares types rather than values. It is otherwise similar
  4833  to an expression switch. It is marked by a special switch expression that
  4834  has the form of a <a href="#Type_assertions">type assertion</a>
  4835  using the reserved word <code>type</code> rather than an actual type:
  4836  </p>
  4837  
  4838  <pre>
  4839  switch x.(type) {
  4840  // cases
  4841  }
  4842  </pre>
  4843  
  4844  <p>
  4845  Cases then match actual types <code>T</code> against the dynamic type of the
  4846  expression <code>x</code>. As with type assertions, <code>x</code> must be of
  4847  <a href="#Interface_types">interface type</a>, and each non-interface type
  4848  <code>T</code> listed in a case must implement the type of <code>x</code>.
  4849  The types listed in the cases of a type switch must all be
  4850  <a href="#Type_identity">different</a>.
  4851  </p>
  4852  
  4853  <pre class="ebnf">
  4854  TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
  4855  TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
  4856  TypeCaseClause  = TypeSwitchCase ":" StatementList .
  4857  TypeSwitchCase  = "case" TypeList | "default" .
  4858  TypeList        = Type { "," Type } .
  4859  </pre>
  4860  
  4861  <p>
  4862  The TypeSwitchGuard may include a
  4863  <a href="#Short_variable_declarations">short variable declaration</a>.
  4864  When that form is used, the variable is declared at the end of the
  4865  TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause.
  4866  In clauses with a case listing exactly one type, the variable
  4867  has that type; otherwise, the variable has the type of the expression
  4868  in the TypeSwitchGuard.
  4869  </p>
  4870  
  4871  <p>
  4872  Instead of a type, a case may use the predeclared identifier
  4873  <a href="#Predeclared_identifiers"><code>nil</code></a>;
  4874  that case is selected when the expression in the TypeSwitchGuard
  4875  is a <code>nil</code> interface value.
  4876  There may be at most one <code>nil</code> case.
  4877  </p>
  4878  
  4879  <p>
  4880  Given an expression <code>x</code> of type <code>interface{}</code>,
  4881  the following type switch:
  4882  </p>
  4883  
  4884  <pre>
  4885  switch i := x.(type) {
  4886  case nil:
  4887  	printString("x is nil")                // type of i is type of x (interface{})
  4888  case int:
  4889  	printInt(i)                            // type of i is int
  4890  case float64:
  4891  	printFloat64(i)                        // type of i is float64
  4892  case func(int) float64:
  4893  	printFunction(i)                       // type of i is func(int) float64
  4894  case bool, string:
  4895  	printString("type is bool or string")  // type of i is type of x (interface{})
  4896  default:
  4897  	printString("don't know the type")     // type of i is type of x (interface{})
  4898  }
  4899  </pre>
  4900  
  4901  <p>
  4902  could be rewritten:
  4903  </p>
  4904  
  4905  <pre>
  4906  v := x  // x is evaluated exactly once
  4907  if v == nil {
  4908  	i := v                                 // type of i is type of x (interface{})
  4909  	printString("x is nil")
  4910  } else if i, isInt := v.(int); isInt {
  4911  	printInt(i)                            // type of i is int
  4912  } else if i, isFloat64 := v.(float64); isFloat64 {
  4913  	printFloat64(i)                        // type of i is float64
  4914  } else if i, isFunc := v.(func(int) float64); isFunc {
  4915  	printFunction(i)                       // type of i is func(int) float64
  4916  } else {
  4917  	_, isBool := v.(bool)
  4918  	_, isString := v.(string)
  4919  	if isBool || isString {
  4920  		i := v                         // type of i is type of x (interface{})
  4921  		printString("type is bool or string")
  4922  	} else {
  4923  		i := v                         // type of i is type of x (interface{})
  4924  		printString("don't know the type")
  4925  	}
  4926  }
  4927  </pre>
  4928  
  4929  <p>
  4930  The type switch guard may be preceded by a simple statement, which
  4931  executes before the guard is evaluated.
  4932  </p>
  4933  
  4934  <p>
  4935  The "fallthrough" statement is not permitted in a type switch.
  4936  </p>
  4937  
  4938  <h3 id="For_statements">For statements</h3>
  4939  
  4940  <p>
  4941  A "for" statement specifies repeated execution of a block. There are three forms:
  4942  The iteration may be controlled by a single condition, a "for" clause, or a "range" clause.
  4943  </p>
  4944  
  4945  <pre class="ebnf">
  4946  ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
  4947  Condition = Expression .
  4948  </pre>
  4949  
  4950  <h4 id="For_condition">For statements with single condition</h4>
  4951  
  4952  <p>
  4953  In its simplest form, a "for" statement specifies the repeated execution of
  4954  a block as long as a boolean condition evaluates to true.
  4955  The condition is evaluated before each iteration.
  4956  If the condition is absent, it is equivalent to the boolean value
  4957  <code>true</code>.
  4958  </p>
  4959  
  4960  <pre>
  4961  for a &lt; b {
  4962  	a *= 2
  4963  }
  4964  </pre>
  4965  
  4966  <h4 id="For_clause">For statements with <code>for</code> clause</h4>
  4967  
  4968  <p>
  4969  A "for" statement with a ForClause is also controlled by its condition, but
  4970  additionally it may specify an <i>init</i>
  4971  and a <i>post</i> statement, such as an assignment,
  4972  an increment or decrement statement. The init statement may be a
  4973  <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
  4974  Variables declared by the init statement are re-used in each iteration.
  4975  </p>
  4976  
  4977  <pre class="ebnf">
  4978  ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
  4979  InitStmt = SimpleStmt .
  4980  PostStmt = SimpleStmt .
  4981  </pre>
  4982  
  4983  <pre>
  4984  for i := 0; i &lt; 10; i++ {
  4985  	f(i)
  4986  }
  4987  </pre>
  4988  
  4989  <p>
  4990  If non-empty, the init statement is executed once before evaluating the
  4991  condition for the first iteration;
  4992  the post statement is executed after each execution of the block (and
  4993  only if the block was executed).
  4994  Any element of the ForClause may be empty but the
  4995  <a href="#Semicolons">semicolons</a> are
  4996  required unless there is only a condition.
  4997  If the condition is absent, it is equivalent to the boolean value
  4998  <code>true</code>.
  4999  </p>
  5000  
  5001  <pre>
  5002  for cond { S() }    is the same as    for ; cond ; { S() }
  5003  for      { S() }    is the same as    for true     { S() }
  5004  </pre>
  5005  
  5006  <h4 id="For_range">For statements with <code>range</code> clause</h4>
  5007  
  5008  <p>
  5009  A "for" statement with a "range" clause
  5010  iterates through all entries of an array, slice, string or map,
  5011  or values received on a channel. For each entry it assigns <i>iteration values</i>
  5012  to corresponding <i>iteration variables</i> if present and then executes the block.
  5013  </p>
  5014  
  5015  <pre class="ebnf">
  5016  RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
  5017  </pre>
  5018  
  5019  <p>
  5020  The expression on the right in the "range" clause is called the <i>range expression</i>,
  5021  which may be an array, pointer to an array, slice, string, map, or channel permitting
  5022  <a href="#Receive_operator">receive operations</a>.
  5023  As with an assignment, if present the operands on the left must be
  5024  <a href="#Address_operators">addressable</a> or map index expressions; they
  5025  denote the iteration variables. If the range expression is a channel, at most
  5026  one iteration variable is permitted, otherwise there may be up to two.
  5027  If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
  5028  the range clause is equivalent to the same clause without that identifier.
  5029  </p>
  5030  
  5031  <p>
  5032  The range expression <code>x</code> is evaluated once before beginning the loop,
  5033  with one exception: if at most one iteration variable is present and
  5034  <code>len(x)</code> is <a href="#Length_and_capacity">constant</a>,
  5035  the range expression is not evaluated.
  5036  </p>
  5037  
  5038  <p>
  5039  Function calls on the left are evaluated once per iteration.
  5040  For each iteration, iteration values are produced as follows
  5041  if the respective iteration variables are present:
  5042  </p>
  5043  
  5044  <pre class="grammar">
  5045  Range expression                          1st value          2nd value
  5046  
  5047  array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
  5048  string          s  string type            index    i  int    see below  rune
  5049  map             m  map[K]V                key      k  K      m[k]       V
  5050  channel         c  chan E, &lt;-chan E       element  e  E
  5051  </pre>
  5052  
  5053  <ol>
  5054  <li>
  5055  For an array, pointer to array, or slice value <code>a</code>, the index iteration
  5056  values are produced in increasing order, starting at element index 0.
  5057  If at most one iteration variable is present, the range loop produces
  5058  iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
  5059  or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
  5060  </li>
  5061  
  5062  <li>
  5063  For a string value, the "range" clause iterates over the Unicode code points
  5064  in the string starting at byte index 0.  On successive iterations, the index value will be the
  5065  index of the first byte of successive UTF-8-encoded code points in the string,
  5066  and the second value, of type <code>rune</code>, will be the value of
  5067  the corresponding code point.  If the iteration encounters an invalid
  5068  UTF-8 sequence, the second value will be <code>0xFFFD</code>,
  5069  the Unicode replacement character, and the next iteration will advance
  5070  a single byte in the string.
  5071  </li>
  5072  
  5073  <li>
  5074  The iteration order over maps is not specified
  5075  and is not guaranteed to be the same from one iteration to the next.
  5076  If a map entry that has not yet been reached is removed during iteration,
  5077  the corresponding iteration value will not be produced. If a map entry is
  5078  created during iteration, that entry may be produced during the iteration or
  5079  may be skipped. The choice may vary for each entry created and from one
  5080  iteration to the next.
  5081  If the map is <code>nil</code>, the number of iterations is 0.
  5082  </li>
  5083  
  5084  <li>
  5085  For channels, the iteration values produced are the successive values sent on
  5086  the channel until the channel is <a href="#Close">closed</a>. If the channel
  5087  is <code>nil</code>, the range expression blocks forever.
  5088  </li>
  5089  </ol>
  5090  
  5091  <p>
  5092  The iteration values are assigned to the respective
  5093  iteration variables as in an <a href="#Assignments">assignment statement</a>.
  5094  </p>
  5095  
  5096  <p>
  5097  The iteration variables may be declared by the "range" clause using a form of
  5098  <a href="#Short_variable_declarations">short variable declaration</a>
  5099  (<code>:=</code>).
  5100  In this case their types are set to the types of the respective iteration values
  5101  and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
  5102  statement; they are re-used in each iteration.
  5103  If the iteration variables are declared outside the "for" statement,
  5104  after execution their values will be those of the last iteration.
  5105  </p>
  5106  
  5107  <pre>
  5108  var testdata *struct {
  5109  	a *[7]int
  5110  }
  5111  for i, _ := range testdata.a {
  5112  	// testdata.a is never evaluated; len(testdata.a) is constant
  5113  	// i ranges from 0 to 6
  5114  	f(i)
  5115  }
  5116  
  5117  var a [10]string
  5118  for i, s := range a {
  5119  	// type of i is int
  5120  	// type of s is string
  5121  	// s == a[i]
  5122  	g(i, s)
  5123  }
  5124  
  5125  var key string
  5126  var val interface {}  // element type of m is assignable to val
  5127  m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
  5128  for key, val = range m {
  5129  	h(key, val)
  5130  }
  5131  // key == last map key encountered in iteration
  5132  // val == map[key]
  5133  
  5134  var ch chan Work = producer()
  5135  for w := range ch {
  5136  	doWork(w)
  5137  }
  5138  
  5139  // empty a channel
  5140  for range ch {}
  5141  </pre>
  5142  
  5143  
  5144  <h3 id="Go_statements">Go statements</h3>
  5145  
  5146  <p>
  5147  A "go" statement starts the execution of a function call
  5148  as an independent concurrent thread of control, or <i>goroutine</i>,
  5149  within the same address space.
  5150  </p>
  5151  
  5152  <pre class="ebnf">
  5153  GoStmt = "go" Expression .
  5154  </pre>
  5155  
  5156  <p>
  5157  The expression must be a function or method call; it cannot be parenthesized.
  5158  Calls of built-in functions are restricted as for
  5159  <a href="#Expression_statements">expression statements</a>.
  5160  </p>
  5161  
  5162  <p>
  5163  The function value and parameters are
  5164  <a href="#Calls">evaluated as usual</a>
  5165  in the calling goroutine, but
  5166  unlike with a regular call, program execution does not wait
  5167  for the invoked function to complete.
  5168  Instead, the function begins executing independently
  5169  in a new goroutine.
  5170  When the function terminates, its goroutine also terminates.
  5171  If the function has any return values, they are discarded when the
  5172  function completes.
  5173  </p>
  5174  
  5175  <pre>
  5176  go Server()
  5177  go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true }} (c)
  5178  </pre>
  5179  
  5180  
  5181  <h3 id="Select_statements">Select statements</h3>
  5182  
  5183  <p>
  5184  A "select" statement chooses which of a set of possible
  5185  <a href="#Send_statements">send</a> or
  5186  <a href="#Receive_operator">receive</a>
  5187  operations will proceed.
  5188  It looks similar to a
  5189  <a href="#Switch_statements">"switch"</a> statement but with the
  5190  cases all referring to communication operations.
  5191  </p>
  5192  
  5193  <pre class="ebnf">
  5194  SelectStmt = "select" "{" { CommClause } "}" .
  5195  CommClause = CommCase ":" StatementList .
  5196  CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
  5197  RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
  5198  RecvExpr   = Expression .
  5199  </pre>
  5200  
  5201  <p>
  5202  A case with a RecvStmt may assign the result of a RecvExpr to one or
  5203  two variables, which may be declared using a
  5204  <a href="#Short_variable_declarations">short variable declaration</a>.
  5205  The RecvExpr must be a (possibly parenthesized) receive operation.
  5206  There can be at most one default case and it may appear anywhere
  5207  in the list of cases.
  5208  </p>
  5209  
  5210  <p>
  5211  Execution of a "select" statement proceeds in several steps:
  5212  </p>
  5213  
  5214  <ol>
  5215  <li>
  5216  For all the cases in the statement, the channel operands of receive operations
  5217  and the channel and right-hand-side expressions of send statements are
  5218  evaluated exactly once, in source order, upon entering the "select" statement.
  5219  The result is a set of channels to receive from or send to,
  5220  and the corresponding values to send.
  5221  Any side effects in that evaluation will occur irrespective of which (if any)
  5222  communication operation is selected to proceed.
  5223  Expressions on the left-hand side of a RecvStmt with a short variable declaration
  5224  or assignment are not yet evaluated.
  5225  </li>
  5226  
  5227  <li>
  5228  If one or more of the communications can proceed,
  5229  a single one that can proceed is chosen via a uniform pseudo-random selection.
  5230  Otherwise, if there is a default case, that case is chosen.
  5231  If there is no default case, the "select" statement blocks until
  5232  at least one of the communications can proceed.
  5233  </li>
  5234  
  5235  <li>
  5236  Unless the selected case is the default case, the respective communication
  5237  operation is executed.
  5238  </li>
  5239  
  5240  <li>
  5241  If the selected case is a RecvStmt with a short variable declaration or
  5242  an assignment, the left-hand side expressions are evaluated and the
  5243  received value (or values) are assigned.
  5244  </li>
  5245  
  5246  <li>
  5247  The statement list of the selected case is executed.
  5248  </li>
  5249  </ol>
  5250  
  5251  <p>
  5252  Since communication on <code>nil</code> channels can never proceed,
  5253  a select with only <code>nil</code> channels and no default case blocks forever.
  5254  </p>
  5255  
  5256  <pre>
  5257  var a []int
  5258  var c, c1, c2, c3, c4 chan int
  5259  var i1, i2 int
  5260  select {
  5261  case i1 = &lt;-c1:
  5262  	print("received ", i1, " from c1\n")
  5263  case c2 &lt;- i2:
  5264  	print("sent ", i2, " to c2\n")
  5265  case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
  5266  	if ok {
  5267  		print("received ", i3, " from c3\n")
  5268  	} else {
  5269  		print("c3 is closed\n")
  5270  	}
  5271  case a[f()] = &lt;-c4:
  5272  	// same as:
  5273  	// case t := &lt;-c4
  5274  	//	a[f()] = t
  5275  default:
  5276  	print("no communication\n")
  5277  }
  5278  
  5279  for {  // send random sequence of bits to c
  5280  	select {
  5281  	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
  5282  	case c &lt;- 1:
  5283  	}
  5284  }
  5285  
  5286  select {}  // block forever
  5287  </pre>
  5288  
  5289  
  5290  <h3 id="Return_statements">Return statements</h3>
  5291  
  5292  <p>
  5293  A "return" statement in a function <code>F</code> terminates the execution
  5294  of <code>F</code>, and optionally provides one or more result values.
  5295  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5296  are executed before <code>F</code> returns to its caller.
  5297  </p>
  5298  
  5299  <pre class="ebnf">
  5300  ReturnStmt = "return" [ ExpressionList ] .
  5301  </pre>
  5302  
  5303  <p>
  5304  In a function without a result type, a "return" statement must not
  5305  specify any result values.
  5306  </p>
  5307  <pre>
  5308  func noResult() {
  5309  	return
  5310  }
  5311  </pre>
  5312  
  5313  <p>
  5314  There are three ways to return values from a function with a result
  5315  type:
  5316  </p>
  5317  
  5318  <ol>
  5319  	<li>The return value or values may be explicitly listed
  5320  		in the "return" statement. Each expression must be single-valued
  5321  		and <a href="#Assignability">assignable</a>
  5322  		to the corresponding element of the function's result type.
  5323  <pre>
  5324  func simpleF() int {
  5325  	return 2
  5326  }
  5327  
  5328  func complexF1() (re float64, im float64) {
  5329  	return -7.0, -4.0
  5330  }
  5331  </pre>
  5332  	</li>
  5333  	<li>The expression list in the "return" statement may be a single
  5334  		call to a multi-valued function. The effect is as if each value
  5335  		returned from that function were assigned to a temporary
  5336  		variable with the type of the respective value, followed by a
  5337  		"return" statement listing these variables, at which point the
  5338  		rules of the previous case apply.
  5339  <pre>
  5340  func complexF2() (re float64, im float64) {
  5341  	return complexF1()
  5342  }
  5343  </pre>
  5344  	</li>
  5345  	<li>The expression list may be empty if the function's result
  5346  		type specifies names for its <a href="#Function_types">result parameters</a>.
  5347  		The result parameters act as ordinary local variables
  5348  		and the function may assign values to them as necessary.
  5349  		The "return" statement returns the values of these variables.
  5350  <pre>
  5351  func complexF3() (re float64, im float64) {
  5352  	re = 7.0
  5353  	im = 4.0
  5354  	return
  5355  }
  5356  
  5357  func (devnull) Write(p []byte) (n int, _ error) {
  5358  	n = len(p)
  5359  	return
  5360  }
  5361  </pre>
  5362  	</li>
  5363  </ol>
  5364  
  5365  <p>
  5366  Regardless of how they are declared, all the result values are initialized to
  5367  the <a href="#The_zero_value">zero values</a> for their type upon entry to the
  5368  function. A "return" statement that specifies results sets the result parameters before
  5369  any deferred functions are executed.
  5370  </p>
  5371  
  5372  <p>
  5373  Implementation restriction: A compiler may disallow an empty expression list
  5374  in a "return" statement if a different entity (constant, type, or variable)
  5375  with the same name as a result parameter is in
  5376  <a href="#Declarations_and_scope">scope</a> at the place of the return.
  5377  </p>
  5378  
  5379  <pre>
  5380  func f(n int) (res int, err error) {
  5381  	if _, err := f(n-1); err != nil {
  5382  		return  // invalid return statement: err is shadowed
  5383  	}
  5384  	return
  5385  }
  5386  </pre>
  5387  
  5388  <h3 id="Break_statements">Break statements</h3>
  5389  
  5390  <p>
  5391  A "break" statement terminates execution of the innermost
  5392  <a href="#For_statements">"for"</a>,
  5393  <a href="#Switch_statements">"switch"</a>, or
  5394  <a href="#Select_statements">"select"</a> statement
  5395  within the same function.
  5396  </p>
  5397  
  5398  <pre class="ebnf">
  5399  BreakStmt = "break" [ Label ] .
  5400  </pre>
  5401  
  5402  <p>
  5403  If there is a label, it must be that of an enclosing
  5404  "for", "switch", or "select" statement,
  5405  and that is the one whose execution terminates.
  5406  </p>
  5407  
  5408  <pre>
  5409  OuterLoop:
  5410  	for i = 0; i &lt; n; i++ {
  5411  		for j = 0; j &lt; m; j++ {
  5412  			switch a[i][j] {
  5413  			case nil:
  5414  				state = Error
  5415  				break OuterLoop
  5416  			case item:
  5417  				state = Found
  5418  				break OuterLoop
  5419  			}
  5420  		}
  5421  	}
  5422  </pre>
  5423  
  5424  <h3 id="Continue_statements">Continue statements</h3>
  5425  
  5426  <p>
  5427  A "continue" statement begins the next iteration of the
  5428  innermost <a href="#For_statements">"for" loop</a> at its post statement.
  5429  The "for" loop must be within the same function.
  5430  </p>
  5431  
  5432  <pre class="ebnf">
  5433  ContinueStmt = "continue" [ Label ] .
  5434  </pre>
  5435  
  5436  <p>
  5437  If there is a label, it must be that of an enclosing
  5438  "for" statement, and that is the one whose execution
  5439  advances.
  5440  </p>
  5441  
  5442  <pre>
  5443  RowLoop:
  5444  	for y, row := range rows {
  5445  		for x, data := range row {
  5446  			if data == endOfRow {
  5447  				continue RowLoop
  5448  			}
  5449  			row[x] = data + bias(x, y)
  5450  		}
  5451  	}
  5452  </pre>
  5453  
  5454  <h3 id="Goto_statements">Goto statements</h3>
  5455  
  5456  <p>
  5457  A "goto" statement transfers control to the statement with the corresponding label
  5458  within the same function.
  5459  </p>
  5460  
  5461  <pre class="ebnf">
  5462  GotoStmt = "goto" Label .
  5463  </pre>
  5464  
  5465  <pre>
  5466  goto Error
  5467  </pre>
  5468  
  5469  <p>
  5470  Executing the "goto" statement must not cause any variables to come into
  5471  <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
  5472  For instance, this example:
  5473  </p>
  5474  
  5475  <pre>
  5476  	goto L  // BAD
  5477  	v := 3
  5478  L:
  5479  </pre>
  5480  
  5481  <p>
  5482  is erroneous because the jump to label <code>L</code> skips
  5483  the creation of <code>v</code>.
  5484  </p>
  5485  
  5486  <p>
  5487  A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
  5488  For instance, this example:
  5489  </p>
  5490  
  5491  <pre>
  5492  if n%2 == 1 {
  5493  	goto L1
  5494  }
  5495  for n &gt; 0 {
  5496  	f()
  5497  	n--
  5498  L1:
  5499  	f()
  5500  	n--
  5501  }
  5502  </pre>
  5503  
  5504  <p>
  5505  is erroneous because the label <code>L1</code> is inside
  5506  the "for" statement's block but the <code>goto</code> is not.
  5507  </p>
  5508  
  5509  <h3 id="Fallthrough_statements">Fallthrough statements</h3>
  5510  
  5511  <p>
  5512  A "fallthrough" statement transfers control to the first statement of the
  5513  next case clause in an <a href="#Expression_switches">expression "switch" statement</a>.
  5514  It may be used only as the final non-empty statement in such a clause.
  5515  </p>
  5516  
  5517  <pre class="ebnf">
  5518  FallthroughStmt = "fallthrough" .
  5519  </pre>
  5520  
  5521  
  5522  <h3 id="Defer_statements">Defer statements</h3>
  5523  
  5524  <p>
  5525  A "defer" statement invokes a function whose execution is deferred
  5526  to the moment the surrounding function returns, either because the
  5527  surrounding function executed a <a href="#Return_statements">return statement</a>,
  5528  reached the end of its <a href="#Function_declarations">function body</a>,
  5529  or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
  5530  </p>
  5531  
  5532  <pre class="ebnf">
  5533  DeferStmt = "defer" Expression .
  5534  </pre>
  5535  
  5536  <p>
  5537  The expression must be a function or method call; it cannot be parenthesized.
  5538  Calls of built-in functions are restricted as for
  5539  <a href="#Expression_statements">expression statements</a>.
  5540  </p>
  5541  
  5542  <p>
  5543  Each time a "defer" statement
  5544  executes, the function value and parameters to the call are
  5545  <a href="#Calls">evaluated as usual</a>
  5546  and saved anew but the actual function is not invoked.
  5547  Instead, deferred functions are invoked immediately before
  5548  the surrounding function returns, in the reverse order
  5549  they were deferred.
  5550  If a deferred function value evaluates
  5551  to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
  5552  when the function is invoked, not when the "defer" statement is executed.
  5553  </p>
  5554  
  5555  <p>
  5556  For instance, if the deferred function is
  5557  a <a href="#Function_literals">function literal</a> and the surrounding
  5558  function has <a href="#Function_types">named result parameters</a> that
  5559  are in scope within the literal, the deferred function may access and modify
  5560  the result parameters before they are returned.
  5561  If the deferred function has any return values, they are discarded when
  5562  the function completes.
  5563  (See also the section on <a href="#Handling_panics">handling panics</a>.)
  5564  </p>
  5565  
  5566  <pre>
  5567  lock(l)
  5568  defer unlock(l)  // unlocking happens before surrounding function returns
  5569  
  5570  // prints 3 2 1 0 before surrounding function returns
  5571  for i := 0; i &lt;= 3; i++ {
  5572  	defer fmt.Print(i)
  5573  }
  5574  
  5575  // f returns 1
  5576  func f() (result int) {
  5577  	defer func() {
  5578  		result++
  5579  	}()
  5580  	return 0
  5581  }
  5582  </pre>
  5583  
  5584  <h2 id="Built-in_functions">Built-in functions</h2>
  5585  
  5586  <p>
  5587  Built-in functions are
  5588  <a href="#Predeclared_identifiers">predeclared</a>.
  5589  They are called like any other function but some of them
  5590  accept a type instead of an expression as the first argument.
  5591  </p>
  5592  
  5593  <p>
  5594  The built-in functions do not have standard Go types,
  5595  so they can only appear in <a href="#Calls">call expressions</a>;
  5596  they cannot be used as function values.
  5597  </p>
  5598  
  5599  <h3 id="Close">Close</h3>
  5600  
  5601  <p>
  5602  For a channel <code>c</code>, the built-in function <code>close(c)</code>
  5603  records that no more values will be sent on the channel.
  5604  It is an error if <code>c</code> is a receive-only channel.
  5605  Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
  5606  Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
  5607  After calling <code>close</code>, and after any previously
  5608  sent values have been received, receive operations will return
  5609  the zero value for the channel's type without blocking.
  5610  The multi-valued <a href="#Receive_operator">receive operation</a>
  5611  returns a received value along with an indication of whether the channel is closed.
  5612  </p>
  5613  
  5614  
  5615  <h3 id="Length_and_capacity">Length and capacity</h3>
  5616  
  5617  <p>
  5618  The built-in functions <code>len</code> and <code>cap</code> take arguments
  5619  of various types and return a result of type <code>int</code>.
  5620  The implementation guarantees that the result always fits into an <code>int</code>.
  5621  </p>
  5622  
  5623  <pre class="grammar">
  5624  Call      Argument type    Result
  5625  
  5626  len(s)    string type      string length in bytes
  5627            [n]T, *[n]T      array length (== n)
  5628            []T              slice length
  5629            map[K]T          map length (number of defined keys)
  5630            chan T           number of elements queued in channel buffer
  5631  
  5632  cap(s)    [n]T, *[n]T      array length (== n)
  5633            []T              slice capacity
  5634            chan T           channel buffer capacity
  5635  </pre>
  5636  
  5637  <p>
  5638  The capacity of a slice is the number of elements for which there is
  5639  space allocated in the underlying array.
  5640  At any time the following relationship holds:
  5641  </p>
  5642  
  5643  <pre>
  5644  0 &lt;= len(s) &lt;= cap(s)
  5645  </pre>
  5646  
  5647  <p>
  5648  The length of a <code>nil</code> slice, map or channel is 0.
  5649  The capacity of a <code>nil</code> slice or channel is 0.
  5650  </p>
  5651  
  5652  <p>
  5653  The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
  5654  <code>s</code> is a string constant. The expressions <code>len(s)</code> and
  5655  <code>cap(s)</code> are constants if the type of <code>s</code> is an array
  5656  or pointer to an array and the expression <code>s</code> does not contain
  5657  <a href="#Receive_operator">channel receives</a> or (non-constant)
  5658  <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
  5659  Otherwise, invocations of <code>len</code> and <code>cap</code> are not
  5660  constant and <code>s</code> is evaluated.
  5661  </p>
  5662  
  5663  <pre>
  5664  const (
  5665  	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
  5666  	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
  5667  	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
  5668  	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
  5669  	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
  5670  )
  5671  var z complex128
  5672  </pre>
  5673  
  5674  <h3 id="Allocation">Allocation</h3>
  5675  
  5676  <p>
  5677  The built-in function <code>new</code> takes a type <code>T</code>,
  5678  allocates storage for a <a href="#Variables">variable</a> of that type
  5679  at run time, and returns a value of type <code>*T</code>
  5680  <a href="#Pointer_types">pointing</a> to it.
  5681  The variable is initialized as described in the section on
  5682  <a href="#The_zero_value">initial values</a>.
  5683  </p>
  5684  
  5685  <pre class="grammar">
  5686  new(T)
  5687  </pre>
  5688  
  5689  <p>
  5690  For instance
  5691  </p>
  5692  
  5693  <pre>
  5694  type S struct { a int; b float64 }
  5695  new(S)
  5696  </pre>
  5697  
  5698  <p>
  5699  allocates storage for a variable of type <code>S</code>,
  5700  initializes it (<code>a=0</code>, <code>b=0.0</code>),
  5701  and returns a value of type <code>*S</code> containing the address
  5702  of the location.
  5703  </p>
  5704  
  5705  <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
  5706  
  5707  <p>
  5708  The built-in function <code>make</code> takes a type <code>T</code>,
  5709  which must be a slice, map or channel type,
  5710  optionally followed by a type-specific list of expressions.
  5711  It returns a value of type <code>T</code> (not <code>*T</code>).
  5712  The memory is initialized as described in the section on
  5713  <a href="#The_zero_value">initial values</a>.
  5714  </p>
  5715  
  5716  <pre class="grammar">
  5717  Call             Type T     Result
  5718  
  5719  make(T, n)       slice      slice of type T with length n and capacity n
  5720  make(T, n, m)    slice      slice of type T with length n and capacity m
  5721  
  5722  make(T)          map        map of type T
  5723  make(T, n)       map        map of type T with initial space for approximately n elements
  5724  
  5725  make(T)          channel    unbuffered channel of type T
  5726  make(T, n)       channel    buffered channel of type T, buffer size n
  5727  </pre>
  5728  
  5729  
  5730  <p>
  5731  Each of the size arguments <code>n</code> and <code>m</code> must be of integer type
  5732  or an untyped <a href="#Constants">constant</a>.
  5733  A constant size argument must be non-negative and <a href="#Representability">representable</a>
  5734  by a value of type <code>int</code>; if it is an untyped constant it is given type <code>int</code>.
  5735  If both <code>n</code> and <code>m</code> are provided and are constant, then
  5736  <code>n</code> must be no larger than <code>m</code>.
  5737  If <code>n</code> is negative or larger than <code>m</code> at run time,
  5738  a <a href="#Run_time_panics">run-time panic</a> occurs.
  5739  </p>
  5740  
  5741  <pre>
  5742  s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
  5743  s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
  5744  s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
  5745  s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
  5746  c := make(chan int, 10)         // channel with a buffer size of 10
  5747  m := make(map[string]int, 100)  // map with initial space for approximately 100 elements
  5748  </pre>
  5749  
  5750  <p>
  5751  Calling <code>make</code> with a map type and size hint <code>n</code> will
  5752  create a map with initial space to hold <code>n</code> map elements.
  5753  The precise behavior is implementation-dependent.
  5754  </p>
  5755  
  5756  
  5757  <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
  5758  
  5759  <p>
  5760  The built-in functions <code>append</code> and <code>copy</code> assist in
  5761  common slice operations.
  5762  For both functions, the result is independent of whether the memory referenced
  5763  by the arguments overlaps.
  5764  </p>
  5765  
  5766  <p>
  5767  The <a href="#Function_types">variadic</a> function <code>append</code>
  5768  appends zero or more values <code>x</code>
  5769  to <code>s</code> of type <code>S</code>, which must be a slice type, and
  5770  returns the resulting slice, also of type <code>S</code>.
  5771  The values <code>x</code> are passed to a parameter of type <code>...T</code>
  5772  where <code>T</code> is the <a href="#Slice_types">element type</a> of
  5773  <code>S</code> and the respective
  5774  <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
  5775  As a special case, <code>append</code> also accepts a first argument
  5776  assignable to type <code>[]byte</code> with a second argument of
  5777  string type followed by <code>...</code>. This form appends the
  5778  bytes of the string.
  5779  </p>
  5780  
  5781  <pre class="grammar">
  5782  append(s S, x ...T) S  // T is the element type of S
  5783  </pre>
  5784  
  5785  <p>
  5786  If the capacity of <code>s</code> is not large enough to fit the additional
  5787  values, <code>append</code> allocates a new, sufficiently large underlying
  5788  array that fits both the existing slice elements and the additional values.
  5789  Otherwise, <code>append</code> re-uses the underlying array.
  5790  </p>
  5791  
  5792  <pre>
  5793  s0 := []int{0, 0}
  5794  s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
  5795  s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
  5796  s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
  5797  s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
  5798  
  5799  var t []interface{}
  5800  t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
  5801  
  5802  var b []byte
  5803  b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
  5804  </pre>
  5805  
  5806  <p>
  5807  The function <code>copy</code> copies slice elements from
  5808  a source <code>src</code> to a destination <code>dst</code> and returns the
  5809  number of elements copied.
  5810  Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
  5811  <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
  5812  The number of elements copied is the minimum of
  5813  <code>len(src)</code> and <code>len(dst)</code>.
  5814  As a special case, <code>copy</code> also accepts a destination argument assignable
  5815  to type <code>[]byte</code> with a source argument of a string type.
  5816  This form copies the bytes from the string into the byte slice.
  5817  </p>
  5818  
  5819  <pre class="grammar">
  5820  copy(dst, src []T) int
  5821  copy(dst []byte, src string) int
  5822  </pre>
  5823  
  5824  <p>
  5825  Examples:
  5826  </p>
  5827  
  5828  <pre>
  5829  var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
  5830  var s = make([]int, 6)
  5831  var b = make([]byte, 5)
  5832  n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
  5833  n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
  5834  n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
  5835  </pre>
  5836  
  5837  
  5838  <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
  5839  
  5840  <p>
  5841  The built-in function <code>delete</code> removes the element with key
  5842  <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
  5843  type of <code>k</code> must be <a href="#Assignability">assignable</a>
  5844  to the key type of <code>m</code>.
  5845  </p>
  5846  
  5847  <pre class="grammar">
  5848  delete(m, k)  // remove element m[k] from map m
  5849  </pre>
  5850  
  5851  <p>
  5852  If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
  5853  does not exist, <code>delete</code> is a no-op.
  5854  </p>
  5855  
  5856  
  5857  <h3 id="Complex_numbers">Manipulating complex numbers</h3>
  5858  
  5859  <p>
  5860  Three functions assemble and disassemble complex numbers.
  5861  The built-in function <code>complex</code> constructs a complex
  5862  value from a floating-point real and imaginary part, while
  5863  <code>real</code> and <code>imag</code>
  5864  extract the real and imaginary parts of a complex value.
  5865  </p>
  5866  
  5867  <pre class="grammar">
  5868  complex(realPart, imaginaryPart floatT) complexT
  5869  real(complexT) floatT
  5870  imag(complexT) floatT
  5871  </pre>
  5872  
  5873  <p>
  5874  The type of the arguments and return value correspond.
  5875  For <code>complex</code>, the two arguments must be of the same
  5876  floating-point type and the return type is the complex type
  5877  with the corresponding floating-point constituents:
  5878  <code>complex64</code> for <code>float32</code> arguments, and
  5879  <code>complex128</code> for <code>float64</code> arguments.
  5880  If one of the arguments evaluates to an untyped constant, it is first
  5881  <a href="#Conversions">converted</a> to the type of the other argument.
  5882  If both arguments evaluate to untyped constants, they must be non-complex
  5883  numbers or their imaginary parts must be zero, and the return value of
  5884  the function is an untyped complex constant.
  5885  </p>
  5886  
  5887  <p>
  5888  For <code>real</code> and <code>imag</code>, the argument must be
  5889  of complex type, and the return type is the corresponding floating-point
  5890  type: <code>float32</code> for a <code>complex64</code> argument, and
  5891  <code>float64</code> for a <code>complex128</code> argument.
  5892  If the argument evaluates to an untyped constant, it must be a number,
  5893  and the return value of the function is an untyped floating-point constant.
  5894  </p>
  5895  
  5896  <p>
  5897  The <code>real</code> and <code>imag</code> functions together form the inverse of
  5898  <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
  5899  <code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
  5900  </p>
  5901  
  5902  <p>
  5903  If the operands of these functions are all constants, the return
  5904  value is a constant.
  5905  </p>
  5906  
  5907  <pre>
  5908  var a = complex(2, -2)             // complex128
  5909  const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
  5910  x := float32(math.Cos(math.Pi/2))  // float32
  5911  var c64 = complex(5, -x)           // complex64
  5912  var s uint = complex(1, 0)         // untyped complex constant 1 + 0i can be converted to uint
  5913  _ = complex(1, 2&lt;&lt;s)               // illegal: 2 assumes floating-point type, cannot shift
  5914  var rl = real(c64)                 // float32
  5915  var im = imag(a)                   // float64
  5916  const c = imag(b)                  // untyped constant -1.4
  5917  _ = imag(3 &lt;&lt; s)                   // illegal: 3 assumes complex type, cannot shift
  5918  </pre>
  5919  
  5920  <h3 id="Handling_panics">Handling panics</h3>
  5921  
  5922  <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
  5923  assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
  5924  and program-defined error conditions.
  5925  </p>
  5926  
  5927  <pre class="grammar">
  5928  func panic(interface{})
  5929  func recover() interface{}
  5930  </pre>
  5931  
  5932  <p>
  5933  While executing a function <code>F</code>,
  5934  an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
  5935  terminates the execution of <code>F</code>.
  5936  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5937  are then executed as usual.
  5938  Next, any deferred functions run by <code>F's</code> caller are run,
  5939  and so on up to any deferred by the top-level function in the executing goroutine.
  5940  At that point, the program is terminated and the error
  5941  condition is reported, including the value of the argument to <code>panic</code>.
  5942  This termination sequence is called <i>panicking</i>.
  5943  </p>
  5944  
  5945  <pre>
  5946  panic(42)
  5947  panic("unreachable")
  5948  panic(Error("cannot parse"))
  5949  </pre>
  5950  
  5951  <p>
  5952  The <code>recover</code> function allows a program to manage behavior
  5953  of a panicking goroutine.
  5954  Suppose a function <code>G</code> defers a function <code>D</code> that calls
  5955  <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
  5956  is executing.
  5957  When the running of deferred functions reaches <code>D</code>,
  5958  the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
  5959  If <code>D</code> returns normally, without starting a new
  5960  <code>panic</code>, the panicking sequence stops. In that case,
  5961  the state of functions called between <code>G</code> and the call to <code>panic</code>
  5962  is discarded, and normal execution resumes.
  5963  Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
  5964  execution terminates by returning to its caller.
  5965  </p>
  5966  
  5967  <p>
  5968  The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
  5969  </p>
  5970  <ul>
  5971  <li>
  5972  <code>panic</code>'s argument was <code>nil</code>;
  5973  </li>
  5974  <li>
  5975  the goroutine is not panicking;
  5976  </li>
  5977  <li>
  5978  <code>recover</code> was not called directly by a deferred function.
  5979  </li>
  5980  </ul>
  5981  
  5982  <p>
  5983  The <code>protect</code> function in the example below invokes
  5984  the function argument <code>g</code> and protects callers from
  5985  run-time panics raised by <code>g</code>.
  5986  </p>
  5987  
  5988  <pre>
  5989  func protect(g func()) {
  5990  	defer func() {
  5991  		log.Println("done")  // Println executes normally even if there is a panic
  5992  		if x := recover(); x != nil {
  5993  			log.Printf("run time panic: %v", x)
  5994  		}
  5995  	}()
  5996  	log.Println("start")
  5997  	g()
  5998  }
  5999  </pre>
  6000  
  6001  
  6002  <h3 id="Bootstrapping">Bootstrapping</h3>
  6003  
  6004  <p>
  6005  Current implementations provide several built-in functions useful during
  6006  bootstrapping. These functions are documented for completeness but are not
  6007  guaranteed to stay in the language. They do not return a result.
  6008  </p>
  6009  
  6010  <pre class="grammar">
  6011  Function   Behavior
  6012  
  6013  print      prints all arguments; formatting of arguments is implementation-specific
  6014  println    like print but prints spaces between arguments and a newline at the end
  6015  </pre>
  6016  
  6017  <p>
  6018  Implementation restriction: <code>print</code> and <code>println</code> need not
  6019  accept arbitrary argument types, but printing of boolean, numeric, and string
  6020  <a href="#Types">types</a> must be supported.
  6021  </p>
  6022  
  6023  <h2 id="Packages">Packages</h2>
  6024  
  6025  <p>
  6026  Go programs are constructed by linking together <i>packages</i>.
  6027  A package in turn is constructed from one or more source files
  6028  that together declare constants, types, variables and functions
  6029  belonging to the package and which are accessible in all files
  6030  of the same package. Those elements may be
  6031  <a href="#Exported_identifiers">exported</a> and used in another package.
  6032  </p>
  6033  
  6034  <h3 id="Source_file_organization">Source file organization</h3>
  6035  
  6036  <p>
  6037  Each source file consists of a package clause defining the package
  6038  to which it belongs, followed by a possibly empty set of import
  6039  declarations that declare packages whose contents it wishes to use,
  6040  followed by a possibly empty set of declarations of functions,
  6041  types, variables, and constants.
  6042  </p>
  6043  
  6044  <pre class="ebnf">
  6045  SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
  6046  </pre>
  6047  
  6048  <h3 id="Package_clause">Package clause</h3>
  6049  
  6050  <p>
  6051  A package clause begins each source file and defines the package
  6052  to which the file belongs.
  6053  </p>
  6054  
  6055  <pre class="ebnf">
  6056  PackageClause  = "package" PackageName .
  6057  PackageName    = identifier .
  6058  </pre>
  6059  
  6060  <p>
  6061  The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
  6062  </p>
  6063  
  6064  <pre>
  6065  package math
  6066  </pre>
  6067  
  6068  <p>
  6069  A set of files sharing the same PackageName form the implementation of a package.
  6070  An implementation may require that all source files for a package inhabit the same directory.
  6071  </p>
  6072  
  6073  <h3 id="Import_declarations">Import declarations</h3>
  6074  
  6075  <p>
  6076  An import declaration states that the source file containing the declaration
  6077  depends on functionality of the <i>imported</i> package
  6078  (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
  6079  and enables access to <a href="#Exported_identifiers">exported</a> identifiers
  6080  of that package.
  6081  The import names an identifier (PackageName) to be used for access and an ImportPath
  6082  that specifies the package to be imported.
  6083  </p>
  6084  
  6085  <pre class="ebnf">
  6086  ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
  6087  ImportSpec       = [ "." | PackageName ] ImportPath .
  6088  ImportPath       = string_lit .
  6089  </pre>
  6090  
  6091  <p>
  6092  The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
  6093  to access exported identifiers of the package within the importing source file.
  6094  It is declared in the <a href="#Blocks">file block</a>.
  6095  If the PackageName is omitted, it defaults to the identifier specified in the
  6096  <a href="#Package_clause">package clause</a> of the imported package.
  6097  If an explicit period (<code>.</code>) appears instead of a name, all the
  6098  package's exported identifiers declared in that package's
  6099  <a href="#Blocks">package block</a> will be declared in the importing source
  6100  file's file block and must be accessed without a qualifier.
  6101  </p>
  6102  
  6103  <p>
  6104  The interpretation of the ImportPath is implementation-dependent but
  6105  it is typically a substring of the full file name of the compiled
  6106  package and may be relative to a repository of installed packages.
  6107  </p>
  6108  
  6109  <p>
  6110  Implementation restriction: A compiler may restrict ImportPaths to
  6111  non-empty strings using only characters belonging to
  6112  <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
  6113  L, M, N, P, and S general categories (the Graphic characters without
  6114  spaces) and may also exclude the characters
  6115  <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
  6116  and the Unicode replacement character U+FFFD.
  6117  </p>
  6118  
  6119  <p>
  6120  Assume we have compiled a package containing the package clause
  6121  <code>package math</code>, which exports function <code>Sin</code>, and
  6122  installed the compiled package in the file identified by
  6123  <code>"lib/math"</code>.
  6124  This table illustrates how <code>Sin</code> is accessed in files
  6125  that import the package after the
  6126  various types of import declaration.
  6127  </p>
  6128  
  6129  <pre class="grammar">
  6130  Import declaration          Local name of Sin
  6131  
  6132  import   "lib/math"         math.Sin
  6133  import m "lib/math"         m.Sin
  6134  import . "lib/math"         Sin
  6135  </pre>
  6136  
  6137  <p>
  6138  An import declaration declares a dependency relation between
  6139  the importing and imported package.
  6140  It is illegal for a package to import itself, directly or indirectly,
  6141  or to directly import a package without
  6142  referring to any of its exported identifiers. To import a package solely for
  6143  its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
  6144  identifier as explicit package name:
  6145  </p>
  6146  
  6147  <pre>
  6148  import _ "lib/math"
  6149  </pre>
  6150  
  6151  
  6152  <h3 id="An_example_package">An example package</h3>
  6153  
  6154  <p>
  6155  Here is a complete Go package that implements a concurrent prime sieve.
  6156  </p>
  6157  
  6158  <pre>
  6159  package main
  6160  
  6161  import "fmt"
  6162  
  6163  // Send the sequence 2, 3, 4, … to channel 'ch'.
  6164  func generate(ch chan&lt;- int) {
  6165  	for i := 2; ; i++ {
  6166  		ch &lt;- i  // Send 'i' to channel 'ch'.
  6167  	}
  6168  }
  6169  
  6170  // Copy the values from channel 'src' to channel 'dst',
  6171  // removing those divisible by 'prime'.
  6172  func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
  6173  	for i := range src {  // Loop over values received from 'src'.
  6174  		if i%prime != 0 {
  6175  			dst &lt;- i  // Send 'i' to channel 'dst'.
  6176  		}
  6177  	}
  6178  }
  6179  
  6180  // The prime sieve: Daisy-chain filter processes together.
  6181  func sieve() {
  6182  	ch := make(chan int)  // Create a new channel.
  6183  	go generate(ch)       // Start generate() as a subprocess.
  6184  	for {
  6185  		prime := &lt;-ch
  6186  		fmt.Print(prime, "\n")
  6187  		ch1 := make(chan int)
  6188  		go filter(ch, ch1, prime)
  6189  		ch = ch1
  6190  	}
  6191  }
  6192  
  6193  func main() {
  6194  	sieve()
  6195  }
  6196  </pre>
  6197  
  6198  <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
  6199  
  6200  <h3 id="The_zero_value">The zero value</h3>
  6201  <p>
  6202  When storage is allocated for a <a href="#Variables">variable</a>,
  6203  either through a declaration or a call of <code>new</code>, or when
  6204  a new value is created, either through a composite literal or a call
  6205  of <code>make</code>,
  6206  and no explicit initialization is provided, the variable or value is
  6207  given a default value.  Each element of such a variable or value is
  6208  set to the <i>zero value</i> for its type: <code>false</code> for booleans,
  6209  <code>0</code> for numeric types, <code>""</code>
  6210  for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
  6211  This initialization is done recursively, so for instance each element of an
  6212  array of structs will have its fields zeroed if no value is specified.
  6213  </p>
  6214  <p>
  6215  These two simple declarations are equivalent:
  6216  </p>
  6217  
  6218  <pre>
  6219  var i int
  6220  var i int = 0
  6221  </pre>
  6222  
  6223  <p>
  6224  After
  6225  </p>
  6226  
  6227  <pre>
  6228  type T struct { i int; f float64; next *T }
  6229  t := new(T)
  6230  </pre>
  6231  
  6232  <p>
  6233  the following holds:
  6234  </p>
  6235  
  6236  <pre>
  6237  t.i == 0
  6238  t.f == 0.0
  6239  t.next == nil
  6240  </pre>
  6241  
  6242  <p>
  6243  The same would also be true after
  6244  </p>
  6245  
  6246  <pre>
  6247  var t T
  6248  </pre>
  6249  
  6250  <h3 id="Package_initialization">Package initialization</h3>
  6251  
  6252  <p>
  6253  Within a package, package-level variables are initialized in
  6254  <i>declaration order</i> but after any of the variables
  6255  they <i>depend</i> on.
  6256  </p>
  6257  
  6258  <p>
  6259  More precisely, a package-level variable is considered <i>ready for
  6260  initialization</i> if it is not yet initialized and either has
  6261  no <a href="#Variable_declarations">initialization expression</a> or
  6262  its initialization expression has no dependencies on uninitialized variables.
  6263  Initialization proceeds by repeatedly initializing the next package-level
  6264  variable that is earliest in declaration order and ready for initialization,
  6265  until there are no variables ready for initialization.
  6266  </p>
  6267  
  6268  <p>
  6269  If any variables are still uninitialized when this
  6270  process ends, those variables are part of one or more initialization cycles,
  6271  and the program is not valid.
  6272  </p>
  6273  
  6274  <p>
  6275  The declaration order of variables declared in multiple files is determined
  6276  by the order in which the files are presented to the compiler: Variables
  6277  declared in the first file are declared before any of the variables declared
  6278  in the second file, and so on.
  6279  </p>
  6280  
  6281  <p>
  6282  Dependency analysis does not rely on the actual values of the
  6283  variables, only on lexical <i>references</i> to them in the source,
  6284  analyzed transitively. For instance, if a variable <code>x</code>'s
  6285  initialization expression refers to a function whose body refers to
  6286  variable <code>y</code> then <code>x</code> depends on <code>y</code>.
  6287  Specifically:
  6288  </p>
  6289  
  6290  <ul>
  6291  <li>
  6292  A reference to a variable or function is an identifier denoting that
  6293  variable or function.
  6294  </li>
  6295  
  6296  <li>
  6297  A reference to a method <code>m</code> is a
  6298  <a href="#Method_values">method value</a> or
  6299  <a href="#Method_expressions">method expression</a> of the form
  6300  <code>t.m</code>, where the (static) type of <code>t</code> is
  6301  not an interface type, and the method <code>m</code> is in the
  6302  <a href="#Method_sets">method set</a> of <code>t</code>.
  6303  It is immaterial whether the resulting function value
  6304  <code>t.m</code> is invoked.
  6305  </li>
  6306  
  6307  <li>
  6308  A variable, function, or method <code>x</code> depends on a variable
  6309  <code>y</code> if <code>x</code>'s initialization expression or body
  6310  (for functions and methods) contains a reference to <code>y</code>
  6311  or to a function or method that depends on <code>y</code>.
  6312  </li>
  6313  </ul>
  6314  
  6315  <p>
  6316  Dependency analysis is performed per package; only references referring
  6317  to variables, functions, and methods declared in the current package
  6318  are considered.
  6319  </p>
  6320  
  6321  <p>
  6322  For example, given the declarations
  6323  </p>
  6324  
  6325  <pre>
  6326  var (
  6327  	a = c + b
  6328  	b = f()
  6329  	c = f()
  6330  	d = 3
  6331  )
  6332  
  6333  func f() int {
  6334  	d++
  6335  	return d
  6336  }
  6337  </pre>
  6338  
  6339  <p>
  6340  the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
  6341  </p>
  6342  
  6343  <p>
  6344  Variables may also be initialized using functions named <code>init</code>
  6345  declared in the package block, with no arguments and no result parameters.
  6346  </p>
  6347  
  6348  <pre>
  6349  func init() { … }
  6350  </pre>
  6351  
  6352  <p>
  6353  Multiple such functions may be defined per package, even within a single
  6354  source file. In the package block, the <code>init</code> identifier can
  6355  be used only to declare <code>init</code> functions, yet the identifier
  6356  itself is not <a href="#Declarations_and_scope">declared</a>. Thus
  6357  <code>init</code> functions cannot be referred to from anywhere
  6358  in a program.
  6359  </p>
  6360  
  6361  <p>
  6362  A package with no imports is initialized by assigning initial values
  6363  to all its package-level variables followed by calling all <code>init</code>
  6364  functions in the order they appear in the source, possibly in multiple files,
  6365  as presented to the compiler.
  6366  If a package has imports, the imported packages are initialized
  6367  before initializing the package itself. If multiple packages import
  6368  a package, the imported package will be initialized only once.
  6369  The importing of packages, by construction, guarantees that there
  6370  can be no cyclic initialization dependencies.
  6371  </p>
  6372  
  6373  <p>
  6374  Package initialization&mdash;variable initialization and the invocation of
  6375  <code>init</code> functions&mdash;happens in a single goroutine,
  6376  sequentially, one package at a time.
  6377  An <code>init</code> function may launch other goroutines, which can run
  6378  concurrently with the initialization code. However, initialization
  6379  always sequences
  6380  the <code>init</code> functions: it will not invoke the next one
  6381  until the previous one has returned.
  6382  </p>
  6383  
  6384  <p>
  6385  To ensure reproducible initialization behavior, build systems are encouraged
  6386  to present multiple files belonging to the same package in lexical file name
  6387  order to a compiler.
  6388  </p>
  6389  
  6390  
  6391  <h3 id="Program_execution">Program execution</h3>
  6392  <p>
  6393  A complete program is created by linking a single, unimported package
  6394  called the <i>main package</i> with all the packages it imports, transitively.
  6395  The main package must
  6396  have package name <code>main</code> and
  6397  declare a function <code>main</code> that takes no
  6398  arguments and returns no value.
  6399  </p>
  6400  
  6401  <pre>
  6402  func main() { … }
  6403  </pre>
  6404  
  6405  <p>
  6406  Program execution begins by initializing the main package and then
  6407  invoking the function <code>main</code>.
  6408  When that function invocation returns, the program exits.
  6409  It does not wait for other (non-<code>main</code>) goroutines to complete.
  6410  </p>
  6411  
  6412  <h2 id="Errors">Errors</h2>
  6413  
  6414  <p>
  6415  The predeclared type <code>error</code> is defined as
  6416  </p>
  6417  
  6418  <pre>
  6419  type error interface {
  6420  	Error() string
  6421  }
  6422  </pre>
  6423  
  6424  <p>
  6425  It is the conventional interface for representing an error condition,
  6426  with the nil value representing no error.
  6427  For instance, a function to read data from a file might be defined:
  6428  </p>
  6429  
  6430  <pre>
  6431  func Read(f *File, b []byte) (n int, err error)
  6432  </pre>
  6433  
  6434  <h2 id="Run_time_panics">Run-time panics</h2>
  6435  
  6436  <p>
  6437  Execution errors such as attempting to index an array out
  6438  of bounds trigger a <i>run-time panic</i> equivalent to a call of
  6439  the built-in function <a href="#Handling_panics"><code>panic</code></a>
  6440  with a value of the implementation-defined interface type <code>runtime.Error</code>.
  6441  That type satisfies the predeclared interface type
  6442  <a href="#Errors"><code>error</code></a>.
  6443  The exact error values that
  6444  represent distinct run-time error conditions are unspecified.
  6445  </p>
  6446  
  6447  <pre>
  6448  package runtime
  6449  
  6450  type Error interface {
  6451  	error
  6452  	// and perhaps other methods
  6453  }
  6454  </pre>
  6455  
  6456  <h2 id="System_considerations">System considerations</h2>
  6457  
  6458  <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
  6459  
  6460  <p>
  6461  The built-in package <code>unsafe</code>, known to the compiler
  6462  and accessible through the <a href="#Import_declarations">import path</a> <code>"unsafe"</code>,
  6463  provides facilities for low-level programming including operations
  6464  that violate the type system. A package using <code>unsafe</code>
  6465  must be vetted manually for type safety and may not be portable.
  6466  The package provides the following interface:
  6467  </p>
  6468  
  6469  <pre class="grammar">
  6470  package unsafe
  6471  
  6472  type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
  6473  type Pointer *ArbitraryType
  6474  
  6475  func Alignof(variable ArbitraryType) uintptr
  6476  func Offsetof(selector ArbitraryType) uintptr
  6477  func Sizeof(variable ArbitraryType) uintptr
  6478  </pre>
  6479  
  6480  <p>
  6481  A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
  6482  value may not be <a href="#Address_operators">dereferenced</a>.
  6483  Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
  6484  a type of underlying type <code>Pointer</code> and vice versa.
  6485  The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
  6486  </p>
  6487  
  6488  <pre>
  6489  var f float64
  6490  bits = *(*uint64)(unsafe.Pointer(&amp;f))
  6491  
  6492  type ptr unsafe.Pointer
  6493  bits = *(*uint64)(ptr(&amp;f))
  6494  
  6495  var p ptr = nil
  6496  </pre>
  6497  
  6498  <p>
  6499  The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
  6500  of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
  6501  as if <code>v</code> was declared via <code>var v = x</code>.
  6502  </p>
  6503  <p>
  6504  The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
  6505  <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
  6506  or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
  6507  If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
  6508  without pointer indirections through fields of the struct.
  6509  For a struct <code>s</code> with field <code>f</code>:
  6510  </p>
  6511  
  6512  <pre>
  6513  uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
  6514  </pre>
  6515  
  6516  <p>
  6517  Computer architectures may require memory addresses to be <i>aligned</i>;
  6518  that is, for addresses of a variable to be a multiple of a factor,
  6519  the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
  6520  takes an expression denoting a variable of any type and returns the
  6521  alignment of the (type of the) variable in bytes.  For a variable
  6522  <code>x</code>:
  6523  </p>
  6524  
  6525  <pre>
  6526  uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
  6527  </pre>
  6528  
  6529  <p>
  6530  Calls to <code>Alignof</code>, <code>Offsetof</code>, and
  6531  <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
  6532  </p>
  6533  
  6534  <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
  6535  
  6536  <p>
  6537  For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
  6538  </p>
  6539  
  6540  <pre class="grammar">
  6541  type                                 size in bytes
  6542  
  6543  byte, uint8, int8                     1
  6544  uint16, int16                         2
  6545  uint32, int32, float32                4
  6546  uint64, int64, float64, complex64     8
  6547  complex128                           16
  6548  </pre>
  6549  
  6550  <p>
  6551  The following minimal alignment properties are guaranteed:
  6552  </p>
  6553  <ol>
  6554  <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
  6555  </li>
  6556  
  6557  <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
  6558     all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
  6559  </li>
  6560  
  6561  <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
  6562  	the alignment of a variable of the array's element type.
  6563  </li>
  6564  </ol>
  6565  
  6566  <p>
  6567  A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
  6568  </p>