github.com/stingnevermore/go@v0.0.0-20180120041312-3810f5bfed72/src/cmd/compile/internal/gc/inl.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 // 5 // The inlining facility makes 2 passes: first caninl determines which 6 // functions are suitable for inlining, and for those that are it 7 // saves a copy of the body. Then inlcalls walks each function body to 8 // expand calls to inlinable functions. 9 // 10 // The debug['l'] flag controls the aggressiveness. Note that main() swaps level 0 and 1, 11 // making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and 12 // are not supported. 13 // 0: disabled 14 // 1: 80-nodes leaf functions, oneliners, lazy typechecking (default) 15 // 2: (unassigned) 16 // 3: allow variadic functions 17 // 4: allow non-leaf functions 18 // 19 // At some point this may get another default and become switch-offable with -N. 20 // 21 // The -d typcheckinl flag enables early typechecking of all imported bodies, 22 // which is useful to flush out bugs. 23 // 24 // The debug['m'] flag enables diagnostic output. a single -m is useful for verifying 25 // which calls get inlined or not, more is for debugging, and may go away at any point. 26 // 27 // TODO: 28 // - inline functions with ... args 29 30 package gc 31 32 import ( 33 "cmd/compile/internal/types" 34 "cmd/internal/obj" 35 "cmd/internal/src" 36 "fmt" 37 "strings" 38 ) 39 40 // Get the function's package. For ordinary functions it's on the ->sym, but for imported methods 41 // the ->sym can be re-used in the local package, so peel it off the receiver's type. 42 func fnpkg(fn *Node) *types.Pkg { 43 if fn.IsMethod() { 44 // method 45 rcvr := fn.Type.Recv().Type 46 47 if rcvr.IsPtr() { 48 rcvr = rcvr.Elem() 49 } 50 if rcvr.Sym == nil { 51 Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym, fn, rcvr) 52 } 53 return rcvr.Sym.Pkg 54 } 55 56 // non-method 57 return fn.Sym.Pkg 58 } 59 60 // Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck 61 // because they're a copy of an already checked body. 62 func typecheckinl(fn *Node) { 63 lno := setlineno(fn) 64 65 // typecheckinl is only for imported functions; 66 // their bodies may refer to unsafe as long as the package 67 // was marked safe during import (which was checked then). 68 // the ->inl of a local function has been typechecked before caninl copied it. 69 pkg := fnpkg(fn) 70 71 if pkg == localpkg || pkg == nil { 72 return // typecheckinl on local function 73 } 74 75 if Debug['m'] > 2 || Debug_export != 0 { 76 fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, fn.Func.Inl) 77 } 78 79 save_safemode := safemode 80 safemode = false 81 82 savefn := Curfn 83 Curfn = fn 84 typecheckslice(fn.Func.Inl.Slice(), Etop) 85 Curfn = savefn 86 87 safemode = save_safemode 88 89 lineno = lno 90 } 91 92 // Caninl determines whether fn is inlineable. 93 // If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy. 94 // fn and ->nbody will already have been typechecked. 95 func caninl(fn *Node) { 96 if fn.Op != ODCLFUNC { 97 Fatalf("caninl %v", fn) 98 } 99 if fn.Func.Nname == nil { 100 Fatalf("caninl no nname %+v", fn) 101 } 102 103 var reason string // reason, if any, that the function was not inlined 104 if Debug['m'] > 1 { 105 defer func() { 106 if reason != "" { 107 fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason) 108 } 109 }() 110 } 111 112 // If marked "go:noinline", don't inline 113 if fn.Func.Pragma&Noinline != 0 { 114 reason = "marked go:noinline" 115 return 116 } 117 118 // If marked "go:cgo_unsafe_args", don't inline, since the 119 // function makes assumptions about its argument frame layout. 120 if fn.Func.Pragma&CgoUnsafeArgs != 0 { 121 reason = "marked go:cgo_unsafe_args" 122 return 123 } 124 125 // The nowritebarrierrec checker currently works at function 126 // granularity, so inlining yeswritebarrierrec functions can 127 // confuse it (#22342). As a workaround, disallow inlining 128 // them for now. 129 if fn.Func.Pragma&Yeswritebarrierrec != 0 { 130 reason = "marked go:yeswritebarrierrec" 131 return 132 } 133 134 // If fn has no body (is defined outside of Go), cannot inline it. 135 if fn.Nbody.Len() == 0 { 136 reason = "no function body" 137 return 138 } 139 140 if fn.Typecheck() == 0 { 141 Fatalf("caninl on non-typechecked function %v", fn) 142 } 143 144 // can't handle ... args yet 145 if Debug['l'] < 3 { 146 f := fn.Type.Params().Fields() 147 if len := f.Len(); len > 0 { 148 if t := f.Index(len - 1); t.Isddd() { 149 reason = "has ... args" 150 return 151 } 152 } 153 } 154 155 // Runtime package must not be instrumented. 156 // Instrument skips runtime package. However, some runtime code can be 157 // inlined into other packages and instrumented there. To avoid this, 158 // we disable inlining of runtime functions when instrumenting. 159 // The example that we observed is inlining of LockOSThread, 160 // which lead to false race reports on m contents. 161 if instrumenting && myimportpath == "runtime" { 162 reason = "instrumenting and is runtime function" 163 return 164 } 165 166 n := fn.Func.Nname 167 if n.Func.InlinabilityChecked() { 168 return 169 } 170 defer n.Func.SetInlinabilityChecked(true) 171 172 const maxBudget = 80 173 visitor := hairyVisitor{budget: maxBudget} 174 if visitor.visitList(fn.Nbody) { 175 reason = visitor.reason 176 return 177 } 178 if visitor.budget < 0 { 179 reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", maxBudget-visitor.budget, maxBudget) 180 return 181 } 182 183 savefn := Curfn 184 Curfn = fn 185 186 n.Func.Inl.Set(fn.Nbody.Slice()) 187 fn.Nbody.Set(inlcopylist(n.Func.Inl.Slice())) 188 inldcl := inlcopylist(n.Name.Defn.Func.Dcl) 189 n.Func.Inldcl.Set(inldcl) 190 n.Func.InlCost = maxBudget - visitor.budget 191 192 // hack, TODO, check for better way to link method nodes back to the thing with the ->inl 193 // this is so export can find the body of a method 194 fn.Type.FuncType().Nname = asTypesNode(n) 195 196 if Debug['m'] > 1 { 197 fmt.Printf("%v: can inline %#v as: %#v { %#v }\n", fn.Line(), n, fn.Type, n.Func.Inl) 198 } else if Debug['m'] != 0 { 199 fmt.Printf("%v: can inline %v\n", fn.Line(), n) 200 } 201 202 Curfn = savefn 203 } 204 205 // inlFlood marks n's inline body for export and recursively ensures 206 // all called functions are marked too. 207 func inlFlood(n *Node) { 208 if n == nil { 209 return 210 } 211 if n.Op != ONAME || n.Class() != PFUNC { 212 Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op, n.Class()) 213 } 214 if n.Func == nil { 215 // TODO(mdempsky): Should init have a Func too? 216 if n.Sym.Name == "init" { 217 return 218 } 219 Fatalf("inlFlood: missing Func on %v", n) 220 } 221 if n.Func.Inl.Len() == 0 { 222 return 223 } 224 225 if n.Func.ExportInline() { 226 return 227 } 228 n.Func.SetExportInline(true) 229 230 typecheckinl(n) 231 232 // Recursively flood any functions called by this one. 233 inspectList(n.Func.Inl, func(n *Node) bool { 234 switch n.Op { 235 case OCALLFUNC, OCALLMETH: 236 inlFlood(asNode(n.Left.Type.Nname())) 237 } 238 return true 239 }) 240 } 241 242 // hairyVisitor visits a function body to determine its inlining 243 // hairiness and whether or not it can be inlined. 244 type hairyVisitor struct { 245 budget int32 246 reason string 247 } 248 249 // Look for anything we want to punt on. 250 func (v *hairyVisitor) visitList(ll Nodes) bool { 251 for _, n := range ll.Slice() { 252 if v.visit(n) { 253 return true 254 } 255 } 256 return false 257 } 258 259 func (v *hairyVisitor) visit(n *Node) bool { 260 if n == nil { 261 return false 262 } 263 264 switch n.Op { 265 // Call is okay if inlinable and we have the budget for the body. 266 case OCALLFUNC: 267 if isIntrinsicCall(n) { 268 v.budget-- 269 break 270 } 271 // Functions that call runtime.getcaller{pc,sp} can not be inlined 272 // because getcaller{pc,sp} expect a pointer to the caller's first argument. 273 if n.Left.Op == ONAME && n.Left.Class() == PFUNC && isRuntimePkg(n.Left.Sym.Pkg) { 274 fn := n.Left.Sym.Name 275 if fn == "getcallerpc" || fn == "getcallersp" { 276 v.reason = "call to " + fn 277 return true 278 } 279 } 280 281 if fn := n.Left.Func; fn != nil && fn.Inl.Len() != 0 { 282 v.budget -= fn.InlCost 283 break 284 } 285 if n.Left.isMethodExpression() { 286 if d := asNode(n.Left.Sym.Def); d != nil && d.Func.Inl.Len() != 0 { 287 v.budget -= d.Func.InlCost 288 break 289 } 290 } 291 // TODO(mdempsky): Budget for OCLOSURE calls if we 292 // ever allow that. See #15561 and #23093. 293 if Debug['l'] < 4 { 294 v.reason = "non-leaf function" 295 return true 296 } 297 298 // Call is okay if inlinable and we have the budget for the body. 299 case OCALLMETH: 300 t := n.Left.Type 301 if t == nil { 302 Fatalf("no function type for [%p] %+v\n", n.Left, n.Left) 303 } 304 if t.Nname() == nil { 305 Fatalf("no function definition for [%p] %+v\n", t, t) 306 } 307 if inlfn := asNode(t.FuncType().Nname).Func; inlfn.Inl.Len() != 0 { 308 v.budget -= inlfn.InlCost 309 break 310 } 311 if Debug['l'] < 4 { 312 v.reason = "non-leaf method" 313 return true 314 } 315 316 // Things that are too hairy, irrespective of the budget 317 case OCALL, OCALLINTER, OPANIC, ORECOVER: 318 if Debug['l'] < 4 { 319 v.reason = "non-leaf op " + n.Op.String() 320 return true 321 } 322 323 case OCLOSURE, 324 OCALLPART, 325 ORANGE, 326 OFOR, 327 OFORUNTIL, 328 OSELECT, 329 OTYPESW, 330 OPROC, 331 ODEFER, 332 ODCLTYPE, // can't print yet 333 OBREAK, 334 ORETJMP: 335 v.reason = "unhandled op " + n.Op.String() 336 return true 337 338 case ODCLCONST, OEMPTY, OFALL, OLABEL: 339 // These nodes don't produce code; omit from inlining budget. 340 return false 341 } 342 343 v.budget-- 344 // TODO(mdempsky/josharian): Hacks to appease toolstash; remove. 345 // See issue 17566 and CL 31674 for discussion. 346 switch n.Op { 347 case OSTRUCTKEY: 348 v.budget-- 349 case OSLICE, OSLICEARR, OSLICESTR: 350 v.budget-- 351 case OSLICE3, OSLICE3ARR: 352 v.budget -= 2 353 } 354 355 // When debugging, don't stop early, to get full cost of inlining this function 356 if v.budget < 0 && Debug['m'] < 2 { 357 return true 358 } 359 360 return v.visit(n.Left) || v.visit(n.Right) || 361 v.visitList(n.List) || v.visitList(n.Rlist) || 362 v.visitList(n.Ninit) || v.visitList(n.Nbody) 363 } 364 365 // Inlcopy and inlcopylist recursively copy the body of a function. 366 // Any name-like node of non-local class is marked for re-export by adding it to 367 // the exportlist. 368 func inlcopylist(ll []*Node) []*Node { 369 s := make([]*Node, 0, len(ll)) 370 for _, n := range ll { 371 s = append(s, inlcopy(n)) 372 } 373 return s 374 } 375 376 func inlcopy(n *Node) *Node { 377 if n == nil { 378 return nil 379 } 380 381 switch n.Op { 382 case ONAME, OTYPE, OLITERAL: 383 return n 384 } 385 386 m := *n 387 if m.Func != nil { 388 m.Func.Inl.Set(nil) 389 } 390 m.Left = inlcopy(n.Left) 391 m.Right = inlcopy(n.Right) 392 m.List.Set(inlcopylist(n.List.Slice())) 393 m.Rlist.Set(inlcopylist(n.Rlist.Slice())) 394 m.Ninit.Set(inlcopylist(n.Ninit.Slice())) 395 m.Nbody.Set(inlcopylist(n.Nbody.Slice())) 396 397 return &m 398 } 399 400 // Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any 401 // calls made to inlineable functions. This is the external entry point. 402 func inlcalls(fn *Node) { 403 savefn := Curfn 404 Curfn = fn 405 fn = inlnode(fn) 406 if fn != Curfn { 407 Fatalf("inlnode replaced curfn") 408 } 409 Curfn = savefn 410 } 411 412 // Turn an OINLCALL into a statement. 413 func inlconv2stmt(n *Node) { 414 n.Op = OBLOCK 415 416 // n->ninit stays 417 n.List.Set(n.Nbody.Slice()) 418 419 n.Nbody.Set(nil) 420 n.Rlist.Set(nil) 421 } 422 423 // Turn an OINLCALL into a single valued expression. 424 // The result of inlconv2expr MUST be assigned back to n, e.g. 425 // n.Left = inlconv2expr(n.Left) 426 func inlconv2expr(n *Node) *Node { 427 r := n.Rlist.First() 428 return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...)) 429 } 430 431 // Turn the rlist (with the return values) of the OINLCALL in 432 // n into an expression list lumping the ninit and body 433 // containing the inlined statements on the first list element so 434 // order will be preserved Used in return, oas2func and call 435 // statements. 436 func inlconv2list(n *Node) []*Node { 437 if n.Op != OINLCALL || n.Rlist.Len() == 0 { 438 Fatalf("inlconv2list %+v\n", n) 439 } 440 441 s := n.Rlist.Slice() 442 s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...)) 443 return s 444 } 445 446 func inlnodelist(l Nodes) { 447 s := l.Slice() 448 for i := range s { 449 s[i] = inlnode(s[i]) 450 } 451 } 452 453 // inlnode recurses over the tree to find inlineable calls, which will 454 // be turned into OINLCALLs by mkinlcall. When the recursion comes 455 // back up will examine left, right, list, rlist, ninit, ntest, nincr, 456 // nbody and nelse and use one of the 4 inlconv/glue functions above 457 // to turn the OINLCALL into an expression, a statement, or patch it 458 // in to this nodes list or rlist as appropriate. 459 // NOTE it makes no sense to pass the glue functions down the 460 // recursion to the level where the OINLCALL gets created because they 461 // have to edit /this/ n, so you'd have to push that one down as well, 462 // but then you may as well do it here. so this is cleaner and 463 // shorter and less complicated. 464 // The result of inlnode MUST be assigned back to n, e.g. 465 // n.Left = inlnode(n.Left) 466 func inlnode(n *Node) *Node { 467 if n == nil { 468 return n 469 } 470 471 switch n.Op { 472 // inhibit inlining of their argument 473 case ODEFER, OPROC: 474 switch n.Left.Op { 475 case OCALLFUNC, OCALLMETH: 476 n.Left.SetNoInline(true) 477 } 478 return n 479 480 // TODO do them here (or earlier), 481 // so escape analysis can avoid more heapmoves. 482 case OCLOSURE: 483 return n 484 } 485 486 lno := setlineno(n) 487 488 inlnodelist(n.Ninit) 489 for _, n1 := range n.Ninit.Slice() { 490 if n1.Op == OINLCALL { 491 inlconv2stmt(n1) 492 } 493 } 494 495 n.Left = inlnode(n.Left) 496 if n.Left != nil && n.Left.Op == OINLCALL { 497 n.Left = inlconv2expr(n.Left) 498 } 499 500 n.Right = inlnode(n.Right) 501 if n.Right != nil && n.Right.Op == OINLCALL { 502 if n.Op == OFOR || n.Op == OFORUNTIL { 503 inlconv2stmt(n.Right) 504 } else { 505 n.Right = inlconv2expr(n.Right) 506 } 507 } 508 509 inlnodelist(n.List) 510 switch n.Op { 511 case OBLOCK: 512 for _, n2 := range n.List.Slice() { 513 if n2.Op == OINLCALL { 514 inlconv2stmt(n2) 515 } 516 } 517 518 case ORETURN, OCALLFUNC, OCALLMETH, OCALLINTER, OAPPEND, OCOMPLEX: 519 // if we just replaced arg in f(arg()) or return arg with an inlined call 520 // and arg returns multiple values, glue as list 521 if n.List.Len() == 1 && n.List.First().Op == OINLCALL && n.List.First().Rlist.Len() > 1 { 522 n.List.Set(inlconv2list(n.List.First())) 523 break 524 } 525 fallthrough 526 527 default: 528 s := n.List.Slice() 529 for i1, n1 := range s { 530 if n1 != nil && n1.Op == OINLCALL { 531 s[i1] = inlconv2expr(s[i1]) 532 } 533 } 534 } 535 536 inlnodelist(n.Rlist) 537 if n.Op == OAS2FUNC && n.Rlist.First().Op == OINLCALL { 538 n.Rlist.Set(inlconv2list(n.Rlist.First())) 539 n.Op = OAS2 540 n.SetTypecheck(0) 541 n = typecheck(n, Etop) 542 } else { 543 s := n.Rlist.Slice() 544 for i1, n1 := range s { 545 if n1.Op == OINLCALL { 546 if n.Op == OIF { 547 inlconv2stmt(n1) 548 } else { 549 s[i1] = inlconv2expr(s[i1]) 550 } 551 } 552 } 553 } 554 555 inlnodelist(n.Nbody) 556 for _, n := range n.Nbody.Slice() { 557 if n.Op == OINLCALL { 558 inlconv2stmt(n) 559 } 560 } 561 562 // with all the branches out of the way, it is now time to 563 // transmogrify this node itself unless inhibited by the 564 // switch at the top of this function. 565 switch n.Op { 566 case OCALLFUNC, OCALLMETH: 567 if n.NoInline() { 568 return n 569 } 570 } 571 572 switch n.Op { 573 case OCALLFUNC: 574 if Debug['m'] > 3 { 575 fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left) 576 } 577 if n.Left.Func != nil && n.Left.Func.Inl.Len() != 0 && !isIntrinsicCall(n) { // normal case 578 n = mkinlcall(n, n.Left, n.Isddd()) 579 } else if n.Left.isMethodExpression() && asNode(n.Left.Sym.Def) != nil { 580 n = mkinlcall(n, asNode(n.Left.Sym.Def), n.Isddd()) 581 } else if n.Left.Op == OCLOSURE { 582 if f := inlinableClosure(n.Left); f != nil { 583 n = mkinlcall(n, f, n.Isddd()) 584 } 585 } else if n.Left.Op == ONAME && n.Left.Name != nil && n.Left.Name.Defn != nil { 586 if d := n.Left.Name.Defn; d.Op == OAS && d.Right.Op == OCLOSURE { 587 if f := inlinableClosure(d.Right); f != nil { 588 // NB: this check is necessary to prevent indirect re-assignment of the variable 589 // having the address taken after the invocation or only used for reads is actually fine 590 // but we have no easy way to distinguish the safe cases 591 if d.Left.Addrtaken() { 592 if Debug['m'] > 1 { 593 fmt.Printf("%v: cannot inline escaping closure variable %v\n", n.Line(), n.Left) 594 } 595 break 596 } 597 598 // ensure the variable is never re-assigned 599 if unsafe, a := reassigned(n.Left); unsafe { 600 if Debug['m'] > 1 { 601 if a != nil { 602 fmt.Printf("%v: cannot inline re-assigned closure variable at %v: %v\n", n.Line(), a.Line(), a) 603 } else { 604 fmt.Printf("%v: cannot inline global closure variable %v\n", n.Line(), n.Left) 605 } 606 } 607 break 608 } 609 n = mkinlcall(n, f, n.Isddd()) 610 } 611 } 612 } 613 614 case OCALLMETH: 615 if Debug['m'] > 3 { 616 fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right) 617 } 618 619 // typecheck should have resolved ODOTMETH->type, whose nname points to the actual function. 620 if n.Left.Type == nil { 621 Fatalf("no function type for [%p] %+v\n", n.Left, n.Left) 622 } 623 624 if n.Left.Type.Nname() == nil { 625 Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type) 626 } 627 628 n = mkinlcall(n, asNode(n.Left.Type.FuncType().Nname), n.Isddd()) 629 } 630 631 lineno = lno 632 return n 633 } 634 635 // inlinableClosure takes an OCLOSURE node and follows linkage to the matching ONAME with 636 // the inlinable body. Returns nil if the function is not inlinable. 637 func inlinableClosure(n *Node) *Node { 638 c := n.Func.Closure 639 caninl(c) 640 f := c.Func.Nname 641 if f == nil || f.Func.Inl.Len() == 0 { 642 return nil 643 } 644 return f 645 } 646 647 // reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean 648 // indicating whether the name has any assignments other than its declaration. 649 // The second return value is the first such assignment encountered in the walk, if any. It is mostly 650 // useful for -m output documenting the reason for inhibited optimizations. 651 // NB: global variables are always considered to be re-assigned. 652 // TODO: handle initial declaration not including an assignment and followed by a single assignment? 653 func reassigned(n *Node) (bool, *Node) { 654 if n.Op != ONAME { 655 Fatalf("reassigned %v", n) 656 } 657 // no way to reliably check for no-reassignment of globals, assume it can be 658 if n.Name.Curfn == nil { 659 return true, nil 660 } 661 f := n.Name.Curfn 662 // There just might be a good reason for this although this can be pretty surprising: 663 // local variables inside a closure have Curfn pointing to the OCLOSURE node instead 664 // of the corresponding ODCLFUNC. 665 // We need to walk the function body to check for reassignments so we follow the 666 // linkage to the ODCLFUNC node as that is where body is held. 667 if f.Op == OCLOSURE { 668 f = f.Func.Closure 669 } 670 v := reassignVisitor{name: n} 671 a := v.visitList(f.Nbody) 672 return a != nil, a 673 } 674 675 type reassignVisitor struct { 676 name *Node 677 } 678 679 func (v *reassignVisitor) visit(n *Node) *Node { 680 if n == nil { 681 return nil 682 } 683 switch n.Op { 684 case OAS: 685 if n.Left == v.name && n != v.name.Name.Defn { 686 return n 687 } 688 return nil 689 case OAS2, OAS2FUNC, OAS2MAPR, OAS2DOTTYPE: 690 for _, p := range n.List.Slice() { 691 if p == v.name && n != v.name.Name.Defn { 692 return n 693 } 694 } 695 return nil 696 } 697 if a := v.visit(n.Left); a != nil { 698 return a 699 } 700 if a := v.visit(n.Right); a != nil { 701 return a 702 } 703 if a := v.visitList(n.List); a != nil { 704 return a 705 } 706 if a := v.visitList(n.Rlist); a != nil { 707 return a 708 } 709 if a := v.visitList(n.Ninit); a != nil { 710 return a 711 } 712 if a := v.visitList(n.Nbody); a != nil { 713 return a 714 } 715 return nil 716 } 717 718 func (v *reassignVisitor) visitList(l Nodes) *Node { 719 for _, n := range l.Slice() { 720 if a := v.visit(n); a != nil { 721 return a 722 } 723 } 724 return nil 725 } 726 727 // The result of mkinlcall MUST be assigned back to n, e.g. 728 // n.Left = mkinlcall(n.Left, fn, isddd) 729 func mkinlcall(n *Node, fn *Node, isddd bool) *Node { 730 save_safemode := safemode 731 732 // imported functions may refer to unsafe as long as the 733 // package was marked safe during import (already checked). 734 pkg := fnpkg(fn) 735 736 if pkg != localpkg && pkg != nil { 737 safemode = false 738 } 739 n = mkinlcall1(n, fn, isddd) 740 safemode = save_safemode 741 return n 742 } 743 744 func tinlvar(t *types.Field, inlvars map[*Node]*Node) *Node { 745 if asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) { 746 inlvar := inlvars[asNode(t.Nname)] 747 if inlvar == nil { 748 Fatalf("missing inlvar for %v\n", asNode(t.Nname)) 749 } 750 return inlvar 751 } 752 753 return typecheck(nblank, Erv|Easgn) 754 } 755 756 var inlgen int 757 758 // If n is a call, and fn is a function with an inlinable body, 759 // return an OINLCALL. 760 // On return ninit has the parameter assignments, the nbody is the 761 // inlined function body and list, rlist contain the input, output 762 // parameters. 763 // The result of mkinlcall1 MUST be assigned back to n, e.g. 764 // n.Left = mkinlcall1(n.Left, fn, isddd) 765 func mkinlcall1(n, fn *Node, isddd bool) *Node { 766 if fn.Func.Inl.Len() == 0 { 767 // No inlinable body. 768 return n 769 } 770 771 if fn == Curfn || fn.Name.Defn == Curfn { 772 // Can't recursively inline a function into itself. 773 return n 774 } 775 776 if Debug_typecheckinl == 0 { 777 typecheckinl(fn) 778 } 779 780 // We have a function node, and it has an inlineable body. 781 if Debug['m'] > 1 { 782 fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, fn.Func.Inl) 783 } else if Debug['m'] != 0 { 784 fmt.Printf("%v: inlining call to %v\n", n.Line(), fn) 785 } 786 if Debug['m'] > 2 { 787 fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n) 788 } 789 790 ninit := n.Ninit 791 792 // Make temp names to use instead of the originals. 793 inlvars := make(map[*Node]*Node) 794 795 // record formals/locals for later post-processing 796 var inlfvars []*Node 797 798 // Find declarations corresponding to inlineable body. 799 var dcl []*Node 800 if fn.Name.Defn != nil { 801 dcl = fn.Func.Inldcl.Slice() // local function 802 803 // handle captured variables when inlining closures 804 if c := fn.Name.Defn.Func.Closure; c != nil { 805 for _, v := range c.Func.Cvars.Slice() { 806 if v.Op == OXXX { 807 continue 808 } 809 810 o := v.Name.Param.Outer 811 // make sure the outer param matches the inlining location 812 // NB: if we enabled inlining of functions containing OCLOSURE or refined 813 // the reassigned check via some sort of copy propagation this would most 814 // likely need to be changed to a loop to walk up to the correct Param 815 if o == nil || (o.Name.Curfn != Curfn && o.Name.Curfn.Func.Closure != Curfn) { 816 Fatalf("%v: unresolvable capture %v %v\n", n.Line(), fn, v) 817 } 818 819 if v.Name.Byval() { 820 iv := typecheck(inlvar(v), Erv) 821 ninit.Append(nod(ODCL, iv, nil)) 822 ninit.Append(typecheck(nod(OAS, iv, o), Etop)) 823 inlvars[v] = iv 824 } else { 825 addr := newname(lookup("&" + v.Sym.Name)) 826 addr.Type = types.NewPtr(v.Type) 827 ia := typecheck(inlvar(addr), Erv) 828 ninit.Append(nod(ODCL, ia, nil)) 829 ninit.Append(typecheck(nod(OAS, ia, nod(OADDR, o, nil)), Etop)) 830 inlvars[addr] = ia 831 832 // When capturing by reference, all occurrence of the captured var 833 // must be substituted with dereference of the temporary address 834 inlvars[v] = typecheck(nod(OIND, ia, nil), Erv) 835 } 836 } 837 } 838 } else { 839 dcl = fn.Func.Dcl // imported function 840 } 841 842 for _, ln := range dcl { 843 if ln.Op != ONAME { 844 continue 845 } 846 if ln.Class() == PPARAMOUT { // return values handled below. 847 continue 848 } 849 if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap 850 continue 851 } 852 inlvars[ln] = typecheck(inlvar(ln), Erv) 853 if ln.Class() == PPARAM || ln.Name.Param.Stackcopy != nil && ln.Name.Param.Stackcopy.Class() == PPARAM { 854 ninit.Append(nod(ODCL, inlvars[ln], nil)) 855 } 856 if genDwarfInline > 0 { 857 inlf := inlvars[ln] 858 if ln.Class() == PPARAM { 859 inlf.SetInlFormal(true) 860 } else { 861 inlf.SetInlLocal(true) 862 } 863 inlf.Pos = ln.Pos 864 inlfvars = append(inlfvars, inlf) 865 } 866 } 867 868 // temporaries for return values. 869 var retvars []*Node 870 for i, t := range fn.Type.Results().Fields().Slice() { 871 var m *Node 872 var mpos src.XPos 873 if t != nil && asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) { 874 mpos = asNode(t.Nname).Pos 875 m = inlvar(asNode(t.Nname)) 876 m = typecheck(m, Erv) 877 inlvars[asNode(t.Nname)] = m 878 } else { 879 // anonymous return values, synthesize names for use in assignment that replaces return 880 m = retvar(t, i) 881 } 882 883 if genDwarfInline > 0 { 884 // Don't update the src.Pos on a return variable if it 885 // was manufactured by the inliner (e.g. "~R2"); such vars 886 // were not part of the original callee. 887 if !strings.HasPrefix(m.Sym.Name, "~R") { 888 m.SetInlFormal(true) 889 m.Pos = mpos 890 inlfvars = append(inlfvars, m) 891 } 892 } 893 894 ninit.Append(nod(ODCL, m, nil)) 895 retvars = append(retvars, m) 896 } 897 898 // Assign arguments to the parameters' temp names. 899 as := nod(OAS2, nil, nil) 900 as.Rlist.Set(n.List.Slice()) 901 902 // For non-dotted calls to variadic functions, we assign the 903 // variadic parameter's temp name separately. 904 var vas *Node 905 906 if fn.IsMethod() { 907 rcv := fn.Type.Recv() 908 909 if n.Left.Op == ODOTMETH { 910 // For x.M(...), assign x directly to the 911 // receiver parameter. 912 if n.Left.Left == nil { 913 Fatalf("method call without receiver: %+v", n) 914 } 915 ras := nod(OAS, tinlvar(rcv, inlvars), n.Left.Left) 916 ras = typecheck(ras, Etop) 917 ninit.Append(ras) 918 } else { 919 // For T.M(...), add the receiver parameter to 920 // as.List, so it's assigned by the normal 921 // arguments. 922 if as.Rlist.Len() == 0 { 923 Fatalf("non-method call to method without first arg: %+v", n) 924 } 925 as.List.Append(tinlvar(rcv, inlvars)) 926 } 927 } 928 929 for _, param := range fn.Type.Params().Fields().Slice() { 930 // For ordinary parameters or variadic parameters in 931 // dotted calls, just add the variable to the 932 // assignment list, and we're done. 933 if !param.Isddd() || isddd { 934 as.List.Append(tinlvar(param, inlvars)) 935 continue 936 } 937 938 // Otherwise, we need to collect the remaining values 939 // to pass as a slice. 940 941 numvals := n.List.Len() 942 if numvals == 1 && n.List.First().Type.IsFuncArgStruct() { 943 numvals = n.List.First().Type.NumFields() 944 } 945 946 x := as.List.Len() 947 for as.List.Len() < numvals { 948 as.List.Append(argvar(param.Type, as.List.Len())) 949 } 950 varargs := as.List.Slice()[x:] 951 952 vas = nod(OAS, tinlvar(param, inlvars), nil) 953 if len(varargs) == 0 { 954 vas.Right = nodnil() 955 vas.Right.Type = param.Type 956 } else { 957 vas.Right = nod(OCOMPLIT, nil, typenod(param.Type)) 958 vas.Right.List.Set(varargs) 959 } 960 } 961 962 if as.Rlist.Len() != 0 { 963 as = typecheck(as, Etop) 964 ninit.Append(as) 965 } 966 967 if vas != nil { 968 vas = typecheck(vas, Etop) 969 ninit.Append(vas) 970 } 971 972 // Zero the return parameters. 973 for _, n := range retvars { 974 ras := nod(OAS, n, nil) 975 ras = typecheck(ras, Etop) 976 ninit.Append(ras) 977 } 978 979 retlabel := autolabel(".i") 980 retlabel.Etype = 1 // flag 'safe' for escape analysis (no backjumps) 981 982 inlgen++ 983 984 parent := -1 985 if b := Ctxt.PosTable.Pos(n.Pos).Base(); b != nil { 986 parent = b.InliningIndex() 987 } 988 newIndex := Ctxt.InlTree.Add(parent, n.Pos, fn.Sym.Linksym()) 989 990 if genDwarfInline > 0 { 991 if !fn.Sym.Linksym().WasInlined() { 992 Ctxt.DwFixups.SetPrecursorFunc(fn.Sym.Linksym(), fn) 993 fn.Sym.Linksym().Set(obj.AttrWasInlined, true) 994 } 995 } 996 997 subst := inlsubst{ 998 retlabel: retlabel, 999 retvars: retvars, 1000 inlvars: inlvars, 1001 bases: make(map[*src.PosBase]*src.PosBase), 1002 newInlIndex: newIndex, 1003 } 1004 1005 body := subst.list(fn.Func.Inl) 1006 1007 lab := nod(OLABEL, retlabel, nil) 1008 body = append(body, lab) 1009 1010 typecheckslice(body, Etop) 1011 1012 if genDwarfInline > 0 { 1013 for _, v := range inlfvars { 1014 v.Pos = subst.updatedPos(v.Pos) 1015 } 1016 } 1017 1018 //dumplist("ninit post", ninit); 1019 1020 call := nod(OINLCALL, nil, nil) 1021 call.Ninit.Set(ninit.Slice()) 1022 call.Nbody.Set(body) 1023 call.Rlist.Set(retvars) 1024 call.Type = n.Type 1025 call.SetTypecheck(1) 1026 1027 // transitive inlining 1028 // might be nice to do this before exporting the body, 1029 // but can't emit the body with inlining expanded. 1030 // instead we emit the things that the body needs 1031 // and each use must redo the inlining. 1032 // luckily these are small. 1033 inlnodelist(call.Nbody) 1034 for _, n := range call.Nbody.Slice() { 1035 if n.Op == OINLCALL { 1036 inlconv2stmt(n) 1037 } 1038 } 1039 1040 if Debug['m'] > 2 { 1041 fmt.Printf("%v: After inlining %+v\n\n", call.Line(), call) 1042 } 1043 1044 return call 1045 } 1046 1047 // Every time we expand a function we generate a new set of tmpnames, 1048 // PAUTO's in the calling functions, and link them off of the 1049 // PPARAM's, PAUTOS and PPARAMOUTs of the called function. 1050 func inlvar(var_ *Node) *Node { 1051 if Debug['m'] > 3 { 1052 fmt.Printf("inlvar %+v\n", var_) 1053 } 1054 1055 n := newname(var_.Sym) 1056 n.Type = var_.Type 1057 n.SetClass(PAUTO) 1058 n.Name.SetUsed(true) 1059 n.Name.Curfn = Curfn // the calling function, not the called one 1060 n.SetAddrtaken(var_.Addrtaken()) 1061 1062 Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) 1063 return n 1064 } 1065 1066 // Synthesize a variable to store the inlined function's results in. 1067 func retvar(t *types.Field, i int) *Node { 1068 n := newname(lookupN("~R", i)) 1069 n.Type = t.Type 1070 n.SetClass(PAUTO) 1071 n.Name.SetUsed(true) 1072 n.Name.Curfn = Curfn // the calling function, not the called one 1073 Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) 1074 return n 1075 } 1076 1077 // Synthesize a variable to store the inlined function's arguments 1078 // when they come from a multiple return call. 1079 func argvar(t *types.Type, i int) *Node { 1080 n := newname(lookupN("~arg", i)) 1081 n.Type = t.Elem() 1082 n.SetClass(PAUTO) 1083 n.Name.SetUsed(true) 1084 n.Name.Curfn = Curfn // the calling function, not the called one 1085 Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) 1086 return n 1087 } 1088 1089 // The inlsubst type implements the actual inlining of a single 1090 // function call. 1091 type inlsubst struct { 1092 // Target of the goto substituted in place of a return. 1093 retlabel *Node 1094 1095 // Temporary result variables. 1096 retvars []*Node 1097 1098 inlvars map[*Node]*Node 1099 1100 // bases maps from original PosBase to PosBase with an extra 1101 // inlined call frame. 1102 bases map[*src.PosBase]*src.PosBase 1103 1104 // newInlIndex is the index of the inlined call frame to 1105 // insert for inlined nodes. 1106 newInlIndex int 1107 } 1108 1109 // list inlines a list of nodes. 1110 func (subst *inlsubst) list(ll Nodes) []*Node { 1111 s := make([]*Node, 0, ll.Len()) 1112 for _, n := range ll.Slice() { 1113 s = append(s, subst.node(n)) 1114 } 1115 return s 1116 } 1117 1118 // node recursively copies a node from the saved pristine body of the 1119 // inlined function, substituting references to input/output 1120 // parameters with ones to the tmpnames, and substituting returns with 1121 // assignments to the output. 1122 func (subst *inlsubst) node(n *Node) *Node { 1123 if n == nil { 1124 return nil 1125 } 1126 1127 switch n.Op { 1128 case ONAME: 1129 if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode 1130 if Debug['m'] > 2 { 1131 fmt.Printf("substituting name %+v -> %+v\n", n, inlvar) 1132 } 1133 return inlvar 1134 } 1135 1136 if Debug['m'] > 2 { 1137 fmt.Printf("not substituting name %+v\n", n) 1138 } 1139 return n 1140 1141 case OLITERAL, OTYPE: 1142 // If n is a named constant or type, we can continue 1143 // using it in the inline copy. Otherwise, make a copy 1144 // so we can update the line number. 1145 if n.Sym != nil { 1146 return n 1147 } 1148 1149 // Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function. 1150 1151 // dump("Return before substitution", n); 1152 case ORETURN: 1153 m := nod(OGOTO, subst.retlabel, nil) 1154 m.Ninit.Set(subst.list(n.Ninit)) 1155 1156 if len(subst.retvars) != 0 && n.List.Len() != 0 { 1157 as := nod(OAS2, nil, nil) 1158 1159 // Make a shallow copy of retvars. 1160 // Otherwise OINLCALL.Rlist will be the same list, 1161 // and later walk and typecheck may clobber it. 1162 for _, n := range subst.retvars { 1163 as.List.Append(n) 1164 } 1165 as.Rlist.Set(subst.list(n.List)) 1166 as = typecheck(as, Etop) 1167 m.Ninit.Append(as) 1168 } 1169 1170 typecheckslice(m.Ninit.Slice(), Etop) 1171 m = typecheck(m, Etop) 1172 1173 // dump("Return after substitution", m); 1174 return m 1175 1176 case OGOTO, OLABEL: 1177 m := nod(OXXX, nil, nil) 1178 *m = *n 1179 m.Pos = subst.updatedPos(m.Pos) 1180 m.Ninit.Set(nil) 1181 p := fmt.Sprintf("%s·%d", n.Left.Sym.Name, inlgen) 1182 m.Left = newname(lookup(p)) 1183 1184 return m 1185 } 1186 1187 m := nod(OXXX, nil, nil) 1188 *m = *n 1189 m.Pos = subst.updatedPos(m.Pos) 1190 m.Ninit.Set(nil) 1191 1192 if n.Op == OCLOSURE { 1193 Fatalf("cannot inline function containing closure: %+v", n) 1194 } 1195 1196 m.Left = subst.node(n.Left) 1197 m.Right = subst.node(n.Right) 1198 m.List.Set(subst.list(n.List)) 1199 m.Rlist.Set(subst.list(n.Rlist)) 1200 m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...)) 1201 m.Nbody.Set(subst.list(n.Nbody)) 1202 1203 return m 1204 } 1205 1206 func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos { 1207 pos := Ctxt.PosTable.Pos(xpos) 1208 oldbase := pos.Base() // can be nil 1209 newbase := subst.bases[oldbase] 1210 if newbase == nil { 1211 newbase = src.NewInliningBase(oldbase, subst.newInlIndex) 1212 subst.bases[oldbase] = newbase 1213 } 1214 pos.SetBase(newbase) 1215 return Ctxt.PosTable.XPos(pos) 1216 }