github.com/stingnevermore/go@v0.0.0-20180120041312-3810f5bfed72/src/regexp/backtrack.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // backtrack is a regular expression search with submatch
     6  // tracking for small regular expressions and texts. It allocates
     7  // a bit vector with (length of input) * (length of prog) bits,
     8  // to make sure it never explores the same (character position, instruction)
     9  // state multiple times. This limits the search to run in time linear in
    10  // the length of the test.
    11  //
    12  // backtrack is a fast replacement for the NFA code on small
    13  // regexps when onepass cannot be used.
    14  
    15  package regexp
    16  
    17  import "regexp/syntax"
    18  
    19  // A job is an entry on the backtracker's job stack. It holds
    20  // the instruction pc and the position in the input.
    21  type job struct {
    22  	pc  uint32
    23  	arg bool
    24  	pos int
    25  }
    26  
    27  const (
    28  	visitedBits        = 32
    29  	maxBacktrackProg   = 500        // len(prog.Inst) <= max
    30  	maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
    31  )
    32  
    33  // bitState holds state for the backtracker.
    34  type bitState struct {
    35  	prog *syntax.Prog
    36  
    37  	end     int
    38  	cap     []int
    39  	jobs    []job
    40  	visited []uint32
    41  }
    42  
    43  var notBacktrack *bitState = nil
    44  
    45  // maxBitStateLen returns the maximum length of a string to search with
    46  // the backtracker using prog.
    47  func maxBitStateLen(prog *syntax.Prog) int {
    48  	if !shouldBacktrack(prog) {
    49  		return 0
    50  	}
    51  	return maxBacktrackVector / len(prog.Inst)
    52  }
    53  
    54  // newBitState returns a new bitState for the given prog,
    55  // or notBacktrack if the size of the prog exceeds the maximum size that
    56  // the backtracker will be run for.
    57  func newBitState(prog *syntax.Prog) *bitState {
    58  	if !shouldBacktrack(prog) {
    59  		return notBacktrack
    60  	}
    61  	return &bitState{
    62  		prog: prog,
    63  	}
    64  }
    65  
    66  // shouldBacktrack reports whether the program is too
    67  // long for the backtracker to run.
    68  func shouldBacktrack(prog *syntax.Prog) bool {
    69  	return len(prog.Inst) <= maxBacktrackProg
    70  }
    71  
    72  // reset resets the state of the backtracker.
    73  // end is the end position in the input.
    74  // ncap is the number of captures.
    75  func (b *bitState) reset(end int, ncap int) {
    76  	b.end = end
    77  
    78  	if cap(b.jobs) == 0 {
    79  		b.jobs = make([]job, 0, 256)
    80  	} else {
    81  		b.jobs = b.jobs[:0]
    82  	}
    83  
    84  	visitedSize := (len(b.prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
    85  	if cap(b.visited) < visitedSize {
    86  		b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
    87  	} else {
    88  		b.visited = b.visited[:visitedSize]
    89  		for i := range b.visited {
    90  			b.visited[i] = 0
    91  		}
    92  	}
    93  
    94  	if cap(b.cap) < ncap {
    95  		b.cap = make([]int, ncap)
    96  	} else {
    97  		b.cap = b.cap[:ncap]
    98  	}
    99  	for i := range b.cap {
   100  		b.cap[i] = -1
   101  	}
   102  }
   103  
   104  // shouldVisit reports whether the combination of (pc, pos) has not
   105  // been visited yet.
   106  func (b *bitState) shouldVisit(pc uint32, pos int) bool {
   107  	n := uint(int(pc)*(b.end+1) + pos)
   108  	if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
   109  		return false
   110  	}
   111  	b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
   112  	return true
   113  }
   114  
   115  // push pushes (pc, pos, arg) onto the job stack if it should be
   116  // visited.
   117  func (b *bitState) push(pc uint32, pos int, arg bool) {
   118  	// Only check shouldVisit when arg is false.
   119  	// When arg is true, we are continuing a previous visit.
   120  	if b.prog.Inst[pc].Op != syntax.InstFail && (arg || b.shouldVisit(pc, pos)) {
   121  		b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
   122  	}
   123  }
   124  
   125  // tryBacktrack runs a backtracking search starting at pos.
   126  func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
   127  	longest := m.re.longest
   128  	m.matched = false
   129  
   130  	b.push(pc, pos, false)
   131  	for len(b.jobs) > 0 {
   132  		l := len(b.jobs) - 1
   133  		// Pop job off the stack.
   134  		pc := b.jobs[l].pc
   135  		pos := b.jobs[l].pos
   136  		arg := b.jobs[l].arg
   137  		b.jobs = b.jobs[:l]
   138  
   139  		// Optimization: rather than push and pop,
   140  		// code that is going to Push and continue
   141  		// the loop simply updates ip, p, and arg
   142  		// and jumps to CheckAndLoop. We have to
   143  		// do the ShouldVisit check that Push
   144  		// would have, but we avoid the stack
   145  		// manipulation.
   146  		goto Skip
   147  	CheckAndLoop:
   148  		if !b.shouldVisit(pc, pos) {
   149  			continue
   150  		}
   151  	Skip:
   152  
   153  		inst := b.prog.Inst[pc]
   154  
   155  		switch inst.Op {
   156  		default:
   157  			panic("bad inst")
   158  		case syntax.InstFail:
   159  			panic("unexpected InstFail")
   160  		case syntax.InstAlt:
   161  			// Cannot just
   162  			//   b.push(inst.Out, pos, false)
   163  			//   b.push(inst.Arg, pos, false)
   164  			// If during the processing of inst.Out, we encounter
   165  			// inst.Arg via another path, we want to process it then.
   166  			// Pushing it here will inhibit that. Instead, re-push
   167  			// inst with arg==true as a reminder to push inst.Arg out
   168  			// later.
   169  			if arg {
   170  				// Finished inst.Out; try inst.Arg.
   171  				arg = false
   172  				pc = inst.Arg
   173  				goto CheckAndLoop
   174  			} else {
   175  				b.push(pc, pos, true)
   176  				pc = inst.Out
   177  				goto CheckAndLoop
   178  			}
   179  
   180  		case syntax.InstAltMatch:
   181  			// One opcode consumes runes; the other leads to match.
   182  			switch b.prog.Inst[inst.Out].Op {
   183  			case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
   184  				// inst.Arg is the match.
   185  				b.push(inst.Arg, pos, false)
   186  				pc = inst.Arg
   187  				pos = b.end
   188  				goto CheckAndLoop
   189  			}
   190  			// inst.Out is the match - non-greedy
   191  			b.push(inst.Out, b.end, false)
   192  			pc = inst.Out
   193  			goto CheckAndLoop
   194  
   195  		case syntax.InstRune:
   196  			r, width := i.step(pos)
   197  			if !inst.MatchRune(r) {
   198  				continue
   199  			}
   200  			pos += width
   201  			pc = inst.Out
   202  			goto CheckAndLoop
   203  
   204  		case syntax.InstRune1:
   205  			r, width := i.step(pos)
   206  			if r != inst.Rune[0] {
   207  				continue
   208  			}
   209  			pos += width
   210  			pc = inst.Out
   211  			goto CheckAndLoop
   212  
   213  		case syntax.InstRuneAnyNotNL:
   214  			r, width := i.step(pos)
   215  			if r == '\n' || r == endOfText {
   216  				continue
   217  			}
   218  			pos += width
   219  			pc = inst.Out
   220  			goto CheckAndLoop
   221  
   222  		case syntax.InstRuneAny:
   223  			r, width := i.step(pos)
   224  			if r == endOfText {
   225  				continue
   226  			}
   227  			pos += width
   228  			pc = inst.Out
   229  			goto CheckAndLoop
   230  
   231  		case syntax.InstCapture:
   232  			if arg {
   233  				// Finished inst.Out; restore the old value.
   234  				b.cap[inst.Arg] = pos
   235  				continue
   236  			} else {
   237  				if 0 <= inst.Arg && inst.Arg < uint32(len(b.cap)) {
   238  					// Capture pos to register, but save old value.
   239  					b.push(pc, b.cap[inst.Arg], true) // come back when we're done.
   240  					b.cap[inst.Arg] = pos
   241  				}
   242  				pc = inst.Out
   243  				goto CheckAndLoop
   244  			}
   245  
   246  		case syntax.InstEmptyWidth:
   247  			if syntax.EmptyOp(inst.Arg)&^i.context(pos) != 0 {
   248  				continue
   249  			}
   250  			pc = inst.Out
   251  			goto CheckAndLoop
   252  
   253  		case syntax.InstNop:
   254  			pc = inst.Out
   255  			goto CheckAndLoop
   256  
   257  		case syntax.InstMatch:
   258  			// We found a match. If the caller doesn't care
   259  			// where the match is, no point going further.
   260  			if len(b.cap) == 0 {
   261  				m.matched = true
   262  				return m.matched
   263  			}
   264  
   265  			// Record best match so far.
   266  			// Only need to check end point, because this entire
   267  			// call is only considering one start position.
   268  			if len(b.cap) > 1 {
   269  				b.cap[1] = pos
   270  			}
   271  			if !m.matched || (longest && pos > 0 && pos > m.matchcap[1]) {
   272  				copy(m.matchcap, b.cap)
   273  			}
   274  			m.matched = true
   275  
   276  			// If going for first match, we're done.
   277  			if !longest {
   278  				return m.matched
   279  			}
   280  
   281  			// If we used the entire text, no longer match is possible.
   282  			if pos == b.end {
   283  				return m.matched
   284  			}
   285  
   286  			// Otherwise, continue on in hope of a longer match.
   287  			continue
   288  		}
   289  	}
   290  
   291  	return m.matched
   292  }
   293  
   294  // backtrack runs a backtracking search of prog on the input starting at pos.
   295  func (m *machine) backtrack(i input, pos int, end int, ncap int) bool {
   296  	if !i.canCheckPrefix() {
   297  		panic("backtrack called for a RuneReader")
   298  	}
   299  
   300  	startCond := m.re.cond
   301  	if startCond == ^syntax.EmptyOp(0) { // impossible
   302  		return false
   303  	}
   304  	if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
   305  		// Anchored match, past beginning of text.
   306  		return false
   307  	}
   308  
   309  	b := m.b
   310  	b.reset(end, ncap)
   311  
   312  	m.matchcap = m.matchcap[:ncap]
   313  	for i := range m.matchcap {
   314  		m.matchcap[i] = -1
   315  	}
   316  
   317  	// Anchored search must start at the beginning of the input
   318  	if startCond&syntax.EmptyBeginText != 0 {
   319  		if len(b.cap) > 0 {
   320  			b.cap[0] = pos
   321  		}
   322  		return m.tryBacktrack(b, i, uint32(m.p.Start), pos)
   323  	}
   324  
   325  	// Unanchored search, starting from each possible text position.
   326  	// Notice that we have to try the empty string at the end of
   327  	// the text, so the loop condition is pos <= end, not pos < end.
   328  	// This looks like it's quadratic in the size of the text,
   329  	// but we are not clearing visited between calls to TrySearch,
   330  	// so no work is duplicated and it ends up still being linear.
   331  	width := -1
   332  	for ; pos <= end && width != 0; pos += width {
   333  		if len(m.re.prefix) > 0 {
   334  			// Match requires literal prefix; fast search for it.
   335  			advance := i.index(m.re, pos)
   336  			if advance < 0 {
   337  				return false
   338  			}
   339  			pos += advance
   340  		}
   341  
   342  		if len(b.cap) > 0 {
   343  			b.cap[0] = pos
   344  		}
   345  		if m.tryBacktrack(b, i, uint32(m.p.Start), pos) {
   346  			// Match must be leftmost; done.
   347  			return true
   348  		}
   349  		_, width = i.step(pos)
   350  	}
   351  	return false
   352  }