github.com/stingnevermore/go@v0.0.0-20180120041312-3810f5bfed72/src/runtime/proc.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "runtime/internal/atomic" 9 "runtime/internal/sys" 10 "unsafe" 11 ) 12 13 var buildVersion = sys.TheVersion 14 15 // Goroutine scheduler 16 // The scheduler's job is to distribute ready-to-run goroutines over worker threads. 17 // 18 // The main concepts are: 19 // G - goroutine. 20 // M - worker thread, or machine. 21 // P - processor, a resource that is required to execute Go code. 22 // M must have an associated P to execute Go code, however it can be 23 // blocked or in a syscall w/o an associated P. 24 // 25 // Design doc at https://golang.org/s/go11sched. 26 27 // Worker thread parking/unparking. 28 // We need to balance between keeping enough running worker threads to utilize 29 // available hardware parallelism and parking excessive running worker threads 30 // to conserve CPU resources and power. This is not simple for two reasons: 31 // (1) scheduler state is intentionally distributed (in particular, per-P work 32 // queues), so it is not possible to compute global predicates on fast paths; 33 // (2) for optimal thread management we would need to know the future (don't park 34 // a worker thread when a new goroutine will be readied in near future). 35 // 36 // Three rejected approaches that would work badly: 37 // 1. Centralize all scheduler state (would inhibit scalability). 38 // 2. Direct goroutine handoff. That is, when we ready a new goroutine and there 39 // is a spare P, unpark a thread and handoff it the thread and the goroutine. 40 // This would lead to thread state thrashing, as the thread that readied the 41 // goroutine can be out of work the very next moment, we will need to park it. 42 // Also, it would destroy locality of computation as we want to preserve 43 // dependent goroutines on the same thread; and introduce additional latency. 44 // 3. Unpark an additional thread whenever we ready a goroutine and there is an 45 // idle P, but don't do handoff. This would lead to excessive thread parking/ 46 // unparking as the additional threads will instantly park without discovering 47 // any work to do. 48 // 49 // The current approach: 50 // We unpark an additional thread when we ready a goroutine if (1) there is an 51 // idle P and there are no "spinning" worker threads. A worker thread is considered 52 // spinning if it is out of local work and did not find work in global run queue/ 53 // netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning. 54 // Threads unparked this way are also considered spinning; we don't do goroutine 55 // handoff so such threads are out of work initially. Spinning threads do some 56 // spinning looking for work in per-P run queues before parking. If a spinning 57 // thread finds work it takes itself out of the spinning state and proceeds to 58 // execution. If it does not find work it takes itself out of the spinning state 59 // and then parks. 60 // If there is at least one spinning thread (sched.nmspinning>1), we don't unpark 61 // new threads when readying goroutines. To compensate for that, if the last spinning 62 // thread finds work and stops spinning, it must unpark a new spinning thread. 63 // This approach smooths out unjustified spikes of thread unparking, 64 // but at the same time guarantees eventual maximal CPU parallelism utilization. 65 // 66 // The main implementation complication is that we need to be very careful during 67 // spinning->non-spinning thread transition. This transition can race with submission 68 // of a new goroutine, and either one part or another needs to unpark another worker 69 // thread. If they both fail to do that, we can end up with semi-persistent CPU 70 // underutilization. The general pattern for goroutine readying is: submit a goroutine 71 // to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning. 72 // The general pattern for spinning->non-spinning transition is: decrement nmspinning, 73 // #StoreLoad-style memory barrier, check all per-P work queues for new work. 74 // Note that all this complexity does not apply to global run queue as we are not 75 // sloppy about thread unparking when submitting to global queue. Also see comments 76 // for nmspinning manipulation. 77 78 var ( 79 m0 m 80 g0 g 81 raceprocctx0 uintptr 82 ) 83 84 //go:linkname runtime_init runtime.init 85 func runtime_init() 86 87 //go:linkname main_init main.init 88 func main_init() 89 90 // main_init_done is a signal used by cgocallbackg that initialization 91 // has been completed. It is made before _cgo_notify_runtime_init_done, 92 // so all cgo calls can rely on it existing. When main_init is complete, 93 // it is closed, meaning cgocallbackg can reliably receive from it. 94 var main_init_done chan bool 95 96 //go:linkname main_main main.main 97 func main_main() 98 99 // mainStarted indicates that the main M has started. 100 var mainStarted bool 101 102 // runtimeInitTime is the nanotime() at which the runtime started. 103 var runtimeInitTime int64 104 105 // Value to use for signal mask for newly created M's. 106 var initSigmask sigset 107 108 // The main goroutine. 109 func main() { 110 g := getg() 111 112 // Racectx of m0->g0 is used only as the parent of the main goroutine. 113 // It must not be used for anything else. 114 g.m.g0.racectx = 0 115 116 // Max stack size is 1 GB on 64-bit, 250 MB on 32-bit. 117 // Using decimal instead of binary GB and MB because 118 // they look nicer in the stack overflow failure message. 119 if sys.PtrSize == 8 { 120 maxstacksize = 1000000000 121 } else { 122 maxstacksize = 250000000 123 } 124 125 // Allow newproc to start new Ms. 126 mainStarted = true 127 128 systemstack(func() { 129 newm(sysmon, nil) 130 }) 131 132 // Lock the main goroutine onto this, the main OS thread, 133 // during initialization. Most programs won't care, but a few 134 // do require certain calls to be made by the main thread. 135 // Those can arrange for main.main to run in the main thread 136 // by calling runtime.LockOSThread during initialization 137 // to preserve the lock. 138 lockOSThread() 139 140 if g.m != &m0 { 141 throw("runtime.main not on m0") 142 } 143 144 runtime_init() // must be before defer 145 if nanotime() == 0 { 146 throw("nanotime returning zero") 147 } 148 149 // Defer unlock so that runtime.Goexit during init does the unlock too. 150 needUnlock := true 151 defer func() { 152 if needUnlock { 153 unlockOSThread() 154 } 155 }() 156 157 // Record when the world started. Must be after runtime_init 158 // because nanotime on some platforms depends on startNano. 159 runtimeInitTime = nanotime() 160 161 gcenable() 162 163 main_init_done = make(chan bool) 164 if iscgo { 165 if _cgo_thread_start == nil { 166 throw("_cgo_thread_start missing") 167 } 168 if GOOS != "windows" { 169 if _cgo_setenv == nil { 170 throw("_cgo_setenv missing") 171 } 172 if _cgo_unsetenv == nil { 173 throw("_cgo_unsetenv missing") 174 } 175 } 176 if _cgo_notify_runtime_init_done == nil { 177 throw("_cgo_notify_runtime_init_done missing") 178 } 179 // Start the template thread in case we enter Go from 180 // a C-created thread and need to create a new thread. 181 startTemplateThread() 182 cgocall(_cgo_notify_runtime_init_done, nil) 183 } 184 185 fn := main_init // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime 186 fn() 187 close(main_init_done) 188 189 needUnlock = false 190 unlockOSThread() 191 192 if isarchive || islibrary { 193 // A program compiled with -buildmode=c-archive or c-shared 194 // has a main, but it is not executed. 195 return 196 } 197 fn = main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime 198 fn() 199 if raceenabled { 200 racefini() 201 } 202 203 // Make racy client program work: if panicking on 204 // another goroutine at the same time as main returns, 205 // let the other goroutine finish printing the panic trace. 206 // Once it does, it will exit. See issues 3934 and 20018. 207 if atomic.Load(&runningPanicDefers) != 0 { 208 // Running deferred functions should not take long. 209 for c := 0; c < 1000; c++ { 210 if atomic.Load(&runningPanicDefers) == 0 { 211 break 212 } 213 Gosched() 214 } 215 } 216 if atomic.Load(&panicking) != 0 { 217 gopark(nil, nil, "panicwait", traceEvGoStop, 1) 218 } 219 220 exit(0) 221 for { 222 var x *int32 223 *x = 0 224 } 225 } 226 227 // os_beforeExit is called from os.Exit(0). 228 //go:linkname os_beforeExit os.runtime_beforeExit 229 func os_beforeExit() { 230 if raceenabled { 231 racefini() 232 } 233 } 234 235 // start forcegc helper goroutine 236 func init() { 237 go forcegchelper() 238 } 239 240 func forcegchelper() { 241 forcegc.g = getg() 242 for { 243 lock(&forcegc.lock) 244 if forcegc.idle != 0 { 245 throw("forcegc: phase error") 246 } 247 atomic.Store(&forcegc.idle, 1) 248 goparkunlock(&forcegc.lock, "force gc (idle)", traceEvGoBlock, 1) 249 // this goroutine is explicitly resumed by sysmon 250 if debug.gctrace > 0 { 251 println("GC forced") 252 } 253 // Time-triggered, fully concurrent. 254 gcStart(gcBackgroundMode, gcTrigger{kind: gcTriggerTime, now: nanotime()}) 255 } 256 } 257 258 //go:nosplit 259 260 // Gosched yields the processor, allowing other goroutines to run. It does not 261 // suspend the current goroutine, so execution resumes automatically. 262 func Gosched() { 263 mcall(gosched_m) 264 } 265 266 // goschedguarded yields the processor like gosched, but also checks 267 // for forbidden states and opts out of the yield in those cases. 268 //go:nosplit 269 func goschedguarded() { 270 mcall(goschedguarded_m) 271 } 272 273 // Puts the current goroutine into a waiting state and calls unlockf. 274 // If unlockf returns false, the goroutine is resumed. 275 // unlockf must not access this G's stack, as it may be moved between 276 // the call to gopark and the call to unlockf. 277 func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason string, traceEv byte, traceskip int) { 278 mp := acquirem() 279 gp := mp.curg 280 status := readgstatus(gp) 281 if status != _Grunning && status != _Gscanrunning { 282 throw("gopark: bad g status") 283 } 284 mp.waitlock = lock 285 mp.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf)) 286 gp.waitreason = reason 287 mp.waittraceev = traceEv 288 mp.waittraceskip = traceskip 289 releasem(mp) 290 // can't do anything that might move the G between Ms here. 291 mcall(park_m) 292 } 293 294 // Puts the current goroutine into a waiting state and unlocks the lock. 295 // The goroutine can be made runnable again by calling goready(gp). 296 func goparkunlock(lock *mutex, reason string, traceEv byte, traceskip int) { 297 gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip) 298 } 299 300 func goready(gp *g, traceskip int) { 301 systemstack(func() { 302 ready(gp, traceskip, true) 303 }) 304 } 305 306 //go:nosplit 307 func acquireSudog() *sudog { 308 // Delicate dance: the semaphore implementation calls 309 // acquireSudog, acquireSudog calls new(sudog), 310 // new calls malloc, malloc can call the garbage collector, 311 // and the garbage collector calls the semaphore implementation 312 // in stopTheWorld. 313 // Break the cycle by doing acquirem/releasem around new(sudog). 314 // The acquirem/releasem increments m.locks during new(sudog), 315 // which keeps the garbage collector from being invoked. 316 mp := acquirem() 317 pp := mp.p.ptr() 318 if len(pp.sudogcache) == 0 { 319 lock(&sched.sudoglock) 320 // First, try to grab a batch from central cache. 321 for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil { 322 s := sched.sudogcache 323 sched.sudogcache = s.next 324 s.next = nil 325 pp.sudogcache = append(pp.sudogcache, s) 326 } 327 unlock(&sched.sudoglock) 328 // If the central cache is empty, allocate a new one. 329 if len(pp.sudogcache) == 0 { 330 pp.sudogcache = append(pp.sudogcache, new(sudog)) 331 } 332 } 333 n := len(pp.sudogcache) 334 s := pp.sudogcache[n-1] 335 pp.sudogcache[n-1] = nil 336 pp.sudogcache = pp.sudogcache[:n-1] 337 if s.elem != nil { 338 throw("acquireSudog: found s.elem != nil in cache") 339 } 340 releasem(mp) 341 return s 342 } 343 344 //go:nosplit 345 func releaseSudog(s *sudog) { 346 if s.elem != nil { 347 throw("runtime: sudog with non-nil elem") 348 } 349 if s.isSelect { 350 throw("runtime: sudog with non-false isSelect") 351 } 352 if s.next != nil { 353 throw("runtime: sudog with non-nil next") 354 } 355 if s.prev != nil { 356 throw("runtime: sudog with non-nil prev") 357 } 358 if s.waitlink != nil { 359 throw("runtime: sudog with non-nil waitlink") 360 } 361 if s.c != nil { 362 throw("runtime: sudog with non-nil c") 363 } 364 gp := getg() 365 if gp.param != nil { 366 throw("runtime: releaseSudog with non-nil gp.param") 367 } 368 mp := acquirem() // avoid rescheduling to another P 369 pp := mp.p.ptr() 370 if len(pp.sudogcache) == cap(pp.sudogcache) { 371 // Transfer half of local cache to the central cache. 372 var first, last *sudog 373 for len(pp.sudogcache) > cap(pp.sudogcache)/2 { 374 n := len(pp.sudogcache) 375 p := pp.sudogcache[n-1] 376 pp.sudogcache[n-1] = nil 377 pp.sudogcache = pp.sudogcache[:n-1] 378 if first == nil { 379 first = p 380 } else { 381 last.next = p 382 } 383 last = p 384 } 385 lock(&sched.sudoglock) 386 last.next = sched.sudogcache 387 sched.sudogcache = first 388 unlock(&sched.sudoglock) 389 } 390 pp.sudogcache = append(pp.sudogcache, s) 391 releasem(mp) 392 } 393 394 // funcPC returns the entry PC of the function f. 395 // It assumes that f is a func value. Otherwise the behavior is undefined. 396 //go:nosplit 397 func funcPC(f interface{}) uintptr { 398 return **(**uintptr)(add(unsafe.Pointer(&f), sys.PtrSize)) 399 } 400 401 // called from assembly 402 func badmcall(fn func(*g)) { 403 throw("runtime: mcall called on m->g0 stack") 404 } 405 406 func badmcall2(fn func(*g)) { 407 throw("runtime: mcall function returned") 408 } 409 410 func badreflectcall() { 411 panic(plainError("arg size to reflect.call more than 1GB")) 412 } 413 414 var badmorestackg0Msg = "fatal: morestack on g0\n" 415 416 //go:nosplit 417 //go:nowritebarrierrec 418 func badmorestackg0() { 419 sp := stringStructOf(&badmorestackg0Msg) 420 write(2, sp.str, int32(sp.len)) 421 } 422 423 var badmorestackgsignalMsg = "fatal: morestack on gsignal\n" 424 425 //go:nosplit 426 //go:nowritebarrierrec 427 func badmorestackgsignal() { 428 sp := stringStructOf(&badmorestackgsignalMsg) 429 write(2, sp.str, int32(sp.len)) 430 } 431 432 //go:nosplit 433 func badctxt() { 434 throw("ctxt != 0") 435 } 436 437 func lockedOSThread() bool { 438 gp := getg() 439 return gp.lockedm != 0 && gp.m.lockedg != 0 440 } 441 442 var ( 443 allgs []*g 444 allglock mutex 445 ) 446 447 func allgadd(gp *g) { 448 if readgstatus(gp) == _Gidle { 449 throw("allgadd: bad status Gidle") 450 } 451 452 lock(&allglock) 453 allgs = append(allgs, gp) 454 allglen = uintptr(len(allgs)) 455 unlock(&allglock) 456 } 457 458 const ( 459 // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once. 460 // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number. 461 _GoidCacheBatch = 16 462 ) 463 464 // The bootstrap sequence is: 465 // 466 // call osinit 467 // call schedinit 468 // make & queue new G 469 // call runtime·mstart 470 // 471 // The new G calls runtime·main. 472 func schedinit() { 473 // raceinit must be the first call to race detector. 474 // In particular, it must be done before mallocinit below calls racemapshadow. 475 _g_ := getg() 476 if raceenabled { 477 _g_.racectx, raceprocctx0 = raceinit() 478 } 479 480 sched.maxmcount = 10000 481 482 tracebackinit() 483 moduledataverify() 484 stackinit() 485 mallocinit() 486 mcommoninit(_g_.m) 487 alginit() // maps must not be used before this call 488 modulesinit() // provides activeModules 489 typelinksinit() // uses maps, activeModules 490 itabsinit() // uses activeModules 491 492 msigsave(_g_.m) 493 initSigmask = _g_.m.sigmask 494 495 goargs() 496 goenvs() 497 parsedebugvars() 498 gcinit() 499 500 sched.lastpoll = uint64(nanotime()) 501 procs := ncpu 502 if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 { 503 procs = n 504 } 505 if procresize(procs) != nil { 506 throw("unknown runnable goroutine during bootstrap") 507 } 508 509 // For cgocheck > 1, we turn on the write barrier at all times 510 // and check all pointer writes. We can't do this until after 511 // procresize because the write barrier needs a P. 512 if debug.cgocheck > 1 { 513 writeBarrier.cgo = true 514 writeBarrier.enabled = true 515 for _, p := range allp { 516 p.wbBuf.reset() 517 } 518 } 519 520 if buildVersion == "" { 521 // Condition should never trigger. This code just serves 522 // to ensure runtime·buildVersion is kept in the resulting binary. 523 buildVersion = "unknown" 524 } 525 } 526 527 func dumpgstatus(gp *g) { 528 _g_ := getg() 529 print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 530 print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n") 531 } 532 533 func checkmcount() { 534 // sched lock is held 535 if mcount() > sched.maxmcount { 536 print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n") 537 throw("thread exhaustion") 538 } 539 } 540 541 func mcommoninit(mp *m) { 542 _g_ := getg() 543 544 // g0 stack won't make sense for user (and is not necessary unwindable). 545 if _g_ != _g_.m.g0 { 546 callers(1, mp.createstack[:]) 547 } 548 549 lock(&sched.lock) 550 if sched.mnext+1 < sched.mnext { 551 throw("runtime: thread ID overflow") 552 } 553 mp.id = sched.mnext 554 sched.mnext++ 555 checkmcount() 556 557 mp.fastrand[0] = 1597334677 * uint32(mp.id) 558 mp.fastrand[1] = uint32(cputicks()) 559 if mp.fastrand[0]|mp.fastrand[1] == 0 { 560 mp.fastrand[1] = 1 561 } 562 563 mpreinit(mp) 564 if mp.gsignal != nil { 565 mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard 566 } 567 568 // Add to allm so garbage collector doesn't free g->m 569 // when it is just in a register or thread-local storage. 570 mp.alllink = allm 571 572 // NumCgoCall() iterates over allm w/o schedlock, 573 // so we need to publish it safely. 574 atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp)) 575 unlock(&sched.lock) 576 577 // Allocate memory to hold a cgo traceback if the cgo call crashes. 578 if iscgo || GOOS == "solaris" || GOOS == "windows" { 579 mp.cgoCallers = new(cgoCallers) 580 } 581 } 582 583 // Mark gp ready to run. 584 func ready(gp *g, traceskip int, next bool) { 585 if trace.enabled { 586 traceGoUnpark(gp, traceskip) 587 } 588 589 status := readgstatus(gp) 590 591 // Mark runnable. 592 _g_ := getg() 593 _g_.m.locks++ // disable preemption because it can be holding p in a local var 594 if status&^_Gscan != _Gwaiting { 595 dumpgstatus(gp) 596 throw("bad g->status in ready") 597 } 598 599 // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq 600 casgstatus(gp, _Gwaiting, _Grunnable) 601 runqput(_g_.m.p.ptr(), gp, next) 602 if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 { 603 wakep() 604 } 605 _g_.m.locks-- 606 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in Case we've cleared it in newstack 607 _g_.stackguard0 = stackPreempt 608 } 609 } 610 611 func gcprocs() int32 { 612 // Figure out how many CPUs to use during GC. 613 // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc. 614 lock(&sched.lock) 615 n := gomaxprocs 616 if n > ncpu { 617 n = ncpu 618 } 619 if n > _MaxGcproc { 620 n = _MaxGcproc 621 } 622 if n > sched.nmidle+1 { // one M is currently running 623 n = sched.nmidle + 1 624 } 625 unlock(&sched.lock) 626 return n 627 } 628 629 func needaddgcproc() bool { 630 lock(&sched.lock) 631 n := gomaxprocs 632 if n > ncpu { 633 n = ncpu 634 } 635 if n > _MaxGcproc { 636 n = _MaxGcproc 637 } 638 n -= sched.nmidle + 1 // one M is currently running 639 unlock(&sched.lock) 640 return n > 0 641 } 642 643 func helpgc(nproc int32) { 644 _g_ := getg() 645 lock(&sched.lock) 646 pos := 0 647 for n := int32(1); n < nproc; n++ { // one M is currently running 648 if allp[pos].mcache == _g_.m.mcache { 649 pos++ 650 } 651 mp := mget() 652 if mp == nil { 653 throw("gcprocs inconsistency") 654 } 655 mp.helpgc = n 656 mp.p.set(allp[pos]) 657 mp.mcache = allp[pos].mcache 658 pos++ 659 notewakeup(&mp.park) 660 } 661 unlock(&sched.lock) 662 } 663 664 // freezeStopWait is a large value that freezetheworld sets 665 // sched.stopwait to in order to request that all Gs permanently stop. 666 const freezeStopWait = 0x7fffffff 667 668 // freezing is set to non-zero if the runtime is trying to freeze the 669 // world. 670 var freezing uint32 671 672 // Similar to stopTheWorld but best-effort and can be called several times. 673 // There is no reverse operation, used during crashing. 674 // This function must not lock any mutexes. 675 func freezetheworld() { 676 atomic.Store(&freezing, 1) 677 // stopwait and preemption requests can be lost 678 // due to races with concurrently executing threads, 679 // so try several times 680 for i := 0; i < 5; i++ { 681 // this should tell the scheduler to not start any new goroutines 682 sched.stopwait = freezeStopWait 683 atomic.Store(&sched.gcwaiting, 1) 684 // this should stop running goroutines 685 if !preemptall() { 686 break // no running goroutines 687 } 688 usleep(1000) 689 } 690 // to be sure 691 usleep(1000) 692 preemptall() 693 usleep(1000) 694 } 695 696 func isscanstatus(status uint32) bool { 697 if status == _Gscan { 698 throw("isscanstatus: Bad status Gscan") 699 } 700 return status&_Gscan == _Gscan 701 } 702 703 // All reads and writes of g's status go through readgstatus, casgstatus 704 // castogscanstatus, casfrom_Gscanstatus. 705 //go:nosplit 706 func readgstatus(gp *g) uint32 { 707 return atomic.Load(&gp.atomicstatus) 708 } 709 710 // Ownership of gcscanvalid: 711 // 712 // If gp is running (meaning status == _Grunning or _Grunning|_Gscan), 713 // then gp owns gp.gcscanvalid, and other goroutines must not modify it. 714 // 715 // Otherwise, a second goroutine can lock the scan state by setting _Gscan 716 // in the status bit and then modify gcscanvalid, and then unlock the scan state. 717 // 718 // Note that the first condition implies an exception to the second: 719 // if a second goroutine changes gp's status to _Grunning|_Gscan, 720 // that second goroutine still does not have the right to modify gcscanvalid. 721 722 // The Gscanstatuses are acting like locks and this releases them. 723 // If it proves to be a performance hit we should be able to make these 724 // simple atomic stores but for now we are going to throw if 725 // we see an inconsistent state. 726 func casfrom_Gscanstatus(gp *g, oldval, newval uint32) { 727 success := false 728 729 // Check that transition is valid. 730 switch oldval { 731 default: 732 print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") 733 dumpgstatus(gp) 734 throw("casfrom_Gscanstatus:top gp->status is not in scan state") 735 case _Gscanrunnable, 736 _Gscanwaiting, 737 _Gscanrunning, 738 _Gscansyscall: 739 if newval == oldval&^_Gscan { 740 success = atomic.Cas(&gp.atomicstatus, oldval, newval) 741 } 742 } 743 if !success { 744 print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") 745 dumpgstatus(gp) 746 throw("casfrom_Gscanstatus: gp->status is not in scan state") 747 } 748 } 749 750 // This will return false if the gp is not in the expected status and the cas fails. 751 // This acts like a lock acquire while the casfromgstatus acts like a lock release. 752 func castogscanstatus(gp *g, oldval, newval uint32) bool { 753 switch oldval { 754 case _Grunnable, 755 _Grunning, 756 _Gwaiting, 757 _Gsyscall: 758 if newval == oldval|_Gscan { 759 return atomic.Cas(&gp.atomicstatus, oldval, newval) 760 } 761 } 762 print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n") 763 throw("castogscanstatus") 764 panic("not reached") 765 } 766 767 // If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus 768 // and casfrom_Gscanstatus instead. 769 // casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that 770 // put it in the Gscan state is finished. 771 //go:nosplit 772 func casgstatus(gp *g, oldval, newval uint32) { 773 if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval { 774 systemstack(func() { 775 print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n") 776 throw("casgstatus: bad incoming values") 777 }) 778 } 779 780 if oldval == _Grunning && gp.gcscanvalid { 781 // If oldvall == _Grunning, then the actual status must be 782 // _Grunning or _Grunning|_Gscan; either way, 783 // we own gp.gcscanvalid, so it's safe to read. 784 // gp.gcscanvalid must not be true when we are running. 785 systemstack(func() { 786 print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n") 787 throw("casgstatus") 788 }) 789 } 790 791 // See http://golang.org/cl/21503 for justification of the yield delay. 792 const yieldDelay = 5 * 1000 793 var nextYield int64 794 795 // loop if gp->atomicstatus is in a scan state giving 796 // GC time to finish and change the state to oldval. 797 for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ { 798 if oldval == _Gwaiting && gp.atomicstatus == _Grunnable { 799 systemstack(func() { 800 throw("casgstatus: waiting for Gwaiting but is Grunnable") 801 }) 802 } 803 // Help GC if needed. 804 // if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) { 805 // gp.preemptscan = false 806 // systemstack(func() { 807 // gcphasework(gp) 808 // }) 809 // } 810 // But meanwhile just yield. 811 if i == 0 { 812 nextYield = nanotime() + yieldDelay 813 } 814 if nanotime() < nextYield { 815 for x := 0; x < 10 && gp.atomicstatus != oldval; x++ { 816 procyield(1) 817 } 818 } else { 819 osyield() 820 nextYield = nanotime() + yieldDelay/2 821 } 822 } 823 if newval == _Grunning { 824 gp.gcscanvalid = false 825 } 826 } 827 828 // casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable. 829 // Returns old status. Cannot call casgstatus directly, because we are racing with an 830 // async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus, 831 // it might have become Grunnable by the time we get to the cas. If we called casgstatus, 832 // it would loop waiting for the status to go back to Gwaiting, which it never will. 833 //go:nosplit 834 func casgcopystack(gp *g) uint32 { 835 for { 836 oldstatus := readgstatus(gp) &^ _Gscan 837 if oldstatus != _Gwaiting && oldstatus != _Grunnable { 838 throw("copystack: bad status, not Gwaiting or Grunnable") 839 } 840 if atomic.Cas(&gp.atomicstatus, oldstatus, _Gcopystack) { 841 return oldstatus 842 } 843 } 844 } 845 846 // scang blocks until gp's stack has been scanned. 847 // It might be scanned by scang or it might be scanned by the goroutine itself. 848 // Either way, the stack scan has completed when scang returns. 849 func scang(gp *g, gcw *gcWork) { 850 // Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone. 851 // Nothing is racing with us now, but gcscandone might be set to true left over 852 // from an earlier round of stack scanning (we scan twice per GC). 853 // We use gcscandone to record whether the scan has been done during this round. 854 855 gp.gcscandone = false 856 857 // See http://golang.org/cl/21503 for justification of the yield delay. 858 const yieldDelay = 10 * 1000 859 var nextYield int64 860 861 // Endeavor to get gcscandone set to true, 862 // either by doing the stack scan ourselves or by coercing gp to scan itself. 863 // gp.gcscandone can transition from false to true when we're not looking 864 // (if we asked for preemption), so any time we lock the status using 865 // castogscanstatus we have to double-check that the scan is still not done. 866 loop: 867 for i := 0; !gp.gcscandone; i++ { 868 switch s := readgstatus(gp); s { 869 default: 870 dumpgstatus(gp) 871 throw("stopg: invalid status") 872 873 case _Gdead: 874 // No stack. 875 gp.gcscandone = true 876 break loop 877 878 case _Gcopystack: 879 // Stack being switched. Go around again. 880 881 case _Grunnable, _Gsyscall, _Gwaiting: 882 // Claim goroutine by setting scan bit. 883 // Racing with execution or readying of gp. 884 // The scan bit keeps them from running 885 // the goroutine until we're done. 886 if castogscanstatus(gp, s, s|_Gscan) { 887 if !gp.gcscandone { 888 scanstack(gp, gcw) 889 gp.gcscandone = true 890 } 891 restartg(gp) 892 break loop 893 } 894 895 case _Gscanwaiting: 896 // newstack is doing a scan for us right now. Wait. 897 898 case _Grunning: 899 // Goroutine running. Try to preempt execution so it can scan itself. 900 // The preemption handler (in newstack) does the actual scan. 901 902 // Optimization: if there is already a pending preemption request 903 // (from the previous loop iteration), don't bother with the atomics. 904 if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt { 905 break 906 } 907 908 // Ask for preemption and self scan. 909 if castogscanstatus(gp, _Grunning, _Gscanrunning) { 910 if !gp.gcscandone { 911 gp.preemptscan = true 912 gp.preempt = true 913 gp.stackguard0 = stackPreempt 914 } 915 casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning) 916 } 917 } 918 919 if i == 0 { 920 nextYield = nanotime() + yieldDelay 921 } 922 if nanotime() < nextYield { 923 procyield(10) 924 } else { 925 osyield() 926 nextYield = nanotime() + yieldDelay/2 927 } 928 } 929 930 gp.preemptscan = false // cancel scan request if no longer needed 931 } 932 933 // The GC requests that this routine be moved from a scanmumble state to a mumble state. 934 func restartg(gp *g) { 935 s := readgstatus(gp) 936 switch s { 937 default: 938 dumpgstatus(gp) 939 throw("restartg: unexpected status") 940 941 case _Gdead: 942 // ok 943 944 case _Gscanrunnable, 945 _Gscanwaiting, 946 _Gscansyscall: 947 casfrom_Gscanstatus(gp, s, s&^_Gscan) 948 } 949 } 950 951 // stopTheWorld stops all P's from executing goroutines, interrupting 952 // all goroutines at GC safe points and records reason as the reason 953 // for the stop. On return, only the current goroutine's P is running. 954 // stopTheWorld must not be called from a system stack and the caller 955 // must not hold worldsema. The caller must call startTheWorld when 956 // other P's should resume execution. 957 // 958 // stopTheWorld is safe for multiple goroutines to call at the 959 // same time. Each will execute its own stop, and the stops will 960 // be serialized. 961 // 962 // This is also used by routines that do stack dumps. If the system is 963 // in panic or being exited, this may not reliably stop all 964 // goroutines. 965 func stopTheWorld(reason string) { 966 semacquire(&worldsema) 967 getg().m.preemptoff = reason 968 systemstack(stopTheWorldWithSema) 969 } 970 971 // startTheWorld undoes the effects of stopTheWorld. 972 func startTheWorld() { 973 systemstack(func() { startTheWorldWithSema(false) }) 974 // worldsema must be held over startTheWorldWithSema to ensure 975 // gomaxprocs cannot change while worldsema is held. 976 semrelease(&worldsema) 977 getg().m.preemptoff = "" 978 } 979 980 // Holding worldsema grants an M the right to try to stop the world 981 // and prevents gomaxprocs from changing concurrently. 982 var worldsema uint32 = 1 983 984 // stopTheWorldWithSema is the core implementation of stopTheWorld. 985 // The caller is responsible for acquiring worldsema and disabling 986 // preemption first and then should stopTheWorldWithSema on the system 987 // stack: 988 // 989 // semacquire(&worldsema, 0) 990 // m.preemptoff = "reason" 991 // systemstack(stopTheWorldWithSema) 992 // 993 // When finished, the caller must either call startTheWorld or undo 994 // these three operations separately: 995 // 996 // m.preemptoff = "" 997 // systemstack(startTheWorldWithSema) 998 // semrelease(&worldsema) 999 // 1000 // It is allowed to acquire worldsema once and then execute multiple 1001 // startTheWorldWithSema/stopTheWorldWithSema pairs. 1002 // Other P's are able to execute between successive calls to 1003 // startTheWorldWithSema and stopTheWorldWithSema. 1004 // Holding worldsema causes any other goroutines invoking 1005 // stopTheWorld to block. 1006 func stopTheWorldWithSema() { 1007 _g_ := getg() 1008 1009 // If we hold a lock, then we won't be able to stop another M 1010 // that is blocked trying to acquire the lock. 1011 if _g_.m.locks > 0 { 1012 throw("stopTheWorld: holding locks") 1013 } 1014 1015 lock(&sched.lock) 1016 sched.stopwait = gomaxprocs 1017 atomic.Store(&sched.gcwaiting, 1) 1018 preemptall() 1019 // stop current P 1020 _g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic. 1021 sched.stopwait-- 1022 // try to retake all P's in Psyscall status 1023 for _, p := range allp { 1024 s := p.status 1025 if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) { 1026 if trace.enabled { 1027 traceGoSysBlock(p) 1028 traceProcStop(p) 1029 } 1030 p.syscalltick++ 1031 sched.stopwait-- 1032 } 1033 } 1034 // stop idle P's 1035 for { 1036 p := pidleget() 1037 if p == nil { 1038 break 1039 } 1040 p.status = _Pgcstop 1041 sched.stopwait-- 1042 } 1043 wait := sched.stopwait > 0 1044 unlock(&sched.lock) 1045 1046 // wait for remaining P's to stop voluntarily 1047 if wait { 1048 for { 1049 // wait for 100us, then try to re-preempt in case of any races 1050 if notetsleep(&sched.stopnote, 100*1000) { 1051 noteclear(&sched.stopnote) 1052 break 1053 } 1054 preemptall() 1055 } 1056 } 1057 1058 // sanity checks 1059 bad := "" 1060 if sched.stopwait != 0 { 1061 bad = "stopTheWorld: not stopped (stopwait != 0)" 1062 } else { 1063 for _, p := range allp { 1064 if p.status != _Pgcstop { 1065 bad = "stopTheWorld: not stopped (status != _Pgcstop)" 1066 } 1067 } 1068 } 1069 if atomic.Load(&freezing) != 0 { 1070 // Some other thread is panicking. This can cause the 1071 // sanity checks above to fail if the panic happens in 1072 // the signal handler on a stopped thread. Either way, 1073 // we should halt this thread. 1074 lock(&deadlock) 1075 lock(&deadlock) 1076 } 1077 if bad != "" { 1078 throw(bad) 1079 } 1080 } 1081 1082 func mhelpgc() { 1083 _g_ := getg() 1084 _g_.m.helpgc = -1 1085 } 1086 1087 func startTheWorldWithSema(emitTraceEvent bool) int64 { 1088 _g_ := getg() 1089 1090 _g_.m.locks++ // disable preemption because it can be holding p in a local var 1091 if netpollinited() { 1092 gp := netpoll(false) // non-blocking 1093 injectglist(gp) 1094 } 1095 add := needaddgcproc() 1096 lock(&sched.lock) 1097 1098 procs := gomaxprocs 1099 if newprocs != 0 { 1100 procs = newprocs 1101 newprocs = 0 1102 } 1103 p1 := procresize(procs) 1104 sched.gcwaiting = 0 1105 if sched.sysmonwait != 0 { 1106 sched.sysmonwait = 0 1107 notewakeup(&sched.sysmonnote) 1108 } 1109 unlock(&sched.lock) 1110 1111 for p1 != nil { 1112 p := p1 1113 p1 = p1.link.ptr() 1114 if p.m != 0 { 1115 mp := p.m.ptr() 1116 p.m = 0 1117 if mp.nextp != 0 { 1118 throw("startTheWorld: inconsistent mp->nextp") 1119 } 1120 mp.nextp.set(p) 1121 notewakeup(&mp.park) 1122 } else { 1123 // Start M to run P. Do not start another M below. 1124 newm(nil, p) 1125 add = false 1126 } 1127 } 1128 1129 // Capture start-the-world time before doing clean-up tasks. 1130 startTime := nanotime() 1131 if emitTraceEvent { 1132 traceGCSTWDone() 1133 } 1134 1135 // Wakeup an additional proc in case we have excessive runnable goroutines 1136 // in local queues or in the global queue. If we don't, the proc will park itself. 1137 // If we have lots of excessive work, resetspinning will unpark additional procs as necessary. 1138 if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 { 1139 wakep() 1140 } 1141 1142 if add { 1143 // If GC could have used another helper proc, start one now, 1144 // in the hope that it will be available next time. 1145 // It would have been even better to start it before the collection, 1146 // but doing so requires allocating memory, so it's tricky to 1147 // coordinate. This lazy approach works out in practice: 1148 // we don't mind if the first couple gc rounds don't have quite 1149 // the maximum number of procs. 1150 newm(mhelpgc, nil) 1151 } 1152 _g_.m.locks-- 1153 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack 1154 _g_.stackguard0 = stackPreempt 1155 } 1156 1157 return startTime 1158 } 1159 1160 // Called to start an M. 1161 // 1162 // This must not split the stack because we may not even have stack 1163 // bounds set up yet. 1164 // 1165 // May run during STW (because it doesn't have a P yet), so write 1166 // barriers are not allowed. 1167 // 1168 //go:nosplit 1169 //go:nowritebarrierrec 1170 func mstart() { 1171 _g_ := getg() 1172 1173 osStack := _g_.stack.lo == 0 1174 if osStack { 1175 // Initialize stack bounds from system stack. 1176 // Cgo may have left stack size in stack.hi. 1177 size := _g_.stack.hi 1178 if size == 0 { 1179 size = 8192 * sys.StackGuardMultiplier 1180 } 1181 _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size))) 1182 _g_.stack.lo = _g_.stack.hi - size + 1024 1183 } 1184 // Initialize stack guards so that we can start calling 1185 // both Go and C functions with stack growth prologues. 1186 _g_.stackguard0 = _g_.stack.lo + _StackGuard 1187 _g_.stackguard1 = _g_.stackguard0 1188 mstart1(0) 1189 1190 // Exit this thread. 1191 if GOOS == "windows" || GOOS == "solaris" || GOOS == "plan9" { 1192 // Window, Solaris and Plan 9 always system-allocate 1193 // the stack, but put it in _g_.stack before mstart, 1194 // so the logic above hasn't set osStack yet. 1195 osStack = true 1196 } 1197 mexit(osStack) 1198 } 1199 1200 func mstart1(dummy int32) { 1201 _g_ := getg() 1202 1203 if _g_ != _g_.m.g0 { 1204 throw("bad runtime·mstart") 1205 } 1206 1207 // Record the caller for use as the top of stack in mcall and 1208 // for terminating the thread. 1209 // We're never coming back to mstart1 after we call schedule, 1210 // so other calls can reuse the current frame. 1211 save(getcallerpc(), getcallersp(unsafe.Pointer(&dummy))) 1212 asminit() 1213 minit() 1214 1215 // Install signal handlers; after minit so that minit can 1216 // prepare the thread to be able to handle the signals. 1217 if _g_.m == &m0 { 1218 mstartm0() 1219 } 1220 1221 if fn := _g_.m.mstartfn; fn != nil { 1222 fn() 1223 } 1224 1225 if _g_.m.helpgc != 0 { 1226 _g_.m.helpgc = 0 1227 stopm() 1228 } else if _g_.m != &m0 { 1229 acquirep(_g_.m.nextp.ptr()) 1230 _g_.m.nextp = 0 1231 } 1232 schedule() 1233 } 1234 1235 // mstartm0 implements part of mstart1 that only runs on the m0. 1236 // 1237 // Write barriers are allowed here because we know the GC can't be 1238 // running yet, so they'll be no-ops. 1239 // 1240 //go:yeswritebarrierrec 1241 func mstartm0() { 1242 // Create an extra M for callbacks on threads not created by Go. 1243 if iscgo && !cgoHasExtraM { 1244 cgoHasExtraM = true 1245 newextram() 1246 } 1247 initsig(false) 1248 } 1249 1250 // mexit tears down and exits the current thread. 1251 // 1252 // Don't call this directly to exit the thread, since it must run at 1253 // the top of the thread stack. Instead, use gogo(&_g_.m.g0.sched) to 1254 // unwind the stack to the point that exits the thread. 1255 // 1256 // It is entered with m.p != nil, so write barriers are allowed. It 1257 // will release the P before exiting. 1258 // 1259 //go:yeswritebarrierrec 1260 func mexit(osStack bool) { 1261 g := getg() 1262 m := g.m 1263 1264 if m == &m0 { 1265 // This is the main thread. Just wedge it. 1266 // 1267 // On Linux, exiting the main thread puts the process 1268 // into a non-waitable zombie state. On Plan 9, 1269 // exiting the main thread unblocks wait even though 1270 // other threads are still running. On Solaris we can 1271 // neither exitThread nor return from mstart. Other 1272 // bad things probably happen on other platforms. 1273 // 1274 // We could try to clean up this M more before wedging 1275 // it, but that complicates signal handling. 1276 handoffp(releasep()) 1277 lock(&sched.lock) 1278 sched.nmfreed++ 1279 checkdead() 1280 unlock(&sched.lock) 1281 notesleep(&m.park) 1282 throw("locked m0 woke up") 1283 } 1284 1285 sigblock() 1286 unminit() 1287 1288 // Free the gsignal stack. 1289 if m.gsignal != nil { 1290 stackfree(m.gsignal.stack) 1291 } 1292 1293 // Remove m from allm. 1294 lock(&sched.lock) 1295 for pprev := &allm; *pprev != nil; pprev = &(*pprev).alllink { 1296 if *pprev == m { 1297 *pprev = m.alllink 1298 goto found 1299 } 1300 } 1301 throw("m not found in allm") 1302 found: 1303 if !osStack { 1304 // Delay reaping m until it's done with the stack. 1305 // 1306 // If this is using an OS stack, the OS will free it 1307 // so there's no need for reaping. 1308 atomic.Store(&m.freeWait, 1) 1309 // Put m on the free list, though it will not be reaped until 1310 // freeWait is 0. Note that the free list must not be linked 1311 // through alllink because some functions walk allm without 1312 // locking, so may be using alllink. 1313 m.freelink = sched.freem 1314 sched.freem = m 1315 } 1316 unlock(&sched.lock) 1317 1318 // Release the P. 1319 handoffp(releasep()) 1320 // After this point we must not have write barriers. 1321 1322 // Invoke the deadlock detector. This must happen after 1323 // handoffp because it may have started a new M to take our 1324 // P's work. 1325 lock(&sched.lock) 1326 sched.nmfreed++ 1327 checkdead() 1328 unlock(&sched.lock) 1329 1330 if osStack { 1331 // Return from mstart and let the system thread 1332 // library free the g0 stack and terminate the thread. 1333 return 1334 } 1335 1336 // mstart is the thread's entry point, so there's nothing to 1337 // return to. Exit the thread directly. exitThread will clear 1338 // m.freeWait when it's done with the stack and the m can be 1339 // reaped. 1340 exitThread(&m.freeWait) 1341 } 1342 1343 // forEachP calls fn(p) for every P p when p reaches a GC safe point. 1344 // If a P is currently executing code, this will bring the P to a GC 1345 // safe point and execute fn on that P. If the P is not executing code 1346 // (it is idle or in a syscall), this will call fn(p) directly while 1347 // preventing the P from exiting its state. This does not ensure that 1348 // fn will run on every CPU executing Go code, but it acts as a global 1349 // memory barrier. GC uses this as a "ragged barrier." 1350 // 1351 // The caller must hold worldsema. 1352 // 1353 //go:systemstack 1354 func forEachP(fn func(*p)) { 1355 mp := acquirem() 1356 _p_ := getg().m.p.ptr() 1357 1358 lock(&sched.lock) 1359 if sched.safePointWait != 0 { 1360 throw("forEachP: sched.safePointWait != 0") 1361 } 1362 sched.safePointWait = gomaxprocs - 1 1363 sched.safePointFn = fn 1364 1365 // Ask all Ps to run the safe point function. 1366 for _, p := range allp { 1367 if p != _p_ { 1368 atomic.Store(&p.runSafePointFn, 1) 1369 } 1370 } 1371 preemptall() 1372 1373 // Any P entering _Pidle or _Psyscall from now on will observe 1374 // p.runSafePointFn == 1 and will call runSafePointFn when 1375 // changing its status to _Pidle/_Psyscall. 1376 1377 // Run safe point function for all idle Ps. sched.pidle will 1378 // not change because we hold sched.lock. 1379 for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() { 1380 if atomic.Cas(&p.runSafePointFn, 1, 0) { 1381 fn(p) 1382 sched.safePointWait-- 1383 } 1384 } 1385 1386 wait := sched.safePointWait > 0 1387 unlock(&sched.lock) 1388 1389 // Run fn for the current P. 1390 fn(_p_) 1391 1392 // Force Ps currently in _Psyscall into _Pidle and hand them 1393 // off to induce safe point function execution. 1394 for _, p := range allp { 1395 s := p.status 1396 if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) { 1397 if trace.enabled { 1398 traceGoSysBlock(p) 1399 traceProcStop(p) 1400 } 1401 p.syscalltick++ 1402 handoffp(p) 1403 } 1404 } 1405 1406 // Wait for remaining Ps to run fn. 1407 if wait { 1408 for { 1409 // Wait for 100us, then try to re-preempt in 1410 // case of any races. 1411 // 1412 // Requires system stack. 1413 if notetsleep(&sched.safePointNote, 100*1000) { 1414 noteclear(&sched.safePointNote) 1415 break 1416 } 1417 preemptall() 1418 } 1419 } 1420 if sched.safePointWait != 0 { 1421 throw("forEachP: not done") 1422 } 1423 for _, p := range allp { 1424 if p.runSafePointFn != 0 { 1425 throw("forEachP: P did not run fn") 1426 } 1427 } 1428 1429 lock(&sched.lock) 1430 sched.safePointFn = nil 1431 unlock(&sched.lock) 1432 releasem(mp) 1433 } 1434 1435 // runSafePointFn runs the safe point function, if any, for this P. 1436 // This should be called like 1437 // 1438 // if getg().m.p.runSafePointFn != 0 { 1439 // runSafePointFn() 1440 // } 1441 // 1442 // runSafePointFn must be checked on any transition in to _Pidle or 1443 // _Psyscall to avoid a race where forEachP sees that the P is running 1444 // just before the P goes into _Pidle/_Psyscall and neither forEachP 1445 // nor the P run the safe-point function. 1446 func runSafePointFn() { 1447 p := getg().m.p.ptr() 1448 // Resolve the race between forEachP running the safe-point 1449 // function on this P's behalf and this P running the 1450 // safe-point function directly. 1451 if !atomic.Cas(&p.runSafePointFn, 1, 0) { 1452 return 1453 } 1454 sched.safePointFn(p) 1455 lock(&sched.lock) 1456 sched.safePointWait-- 1457 if sched.safePointWait == 0 { 1458 notewakeup(&sched.safePointNote) 1459 } 1460 unlock(&sched.lock) 1461 } 1462 1463 // When running with cgo, we call _cgo_thread_start 1464 // to start threads for us so that we can play nicely with 1465 // foreign code. 1466 var cgoThreadStart unsafe.Pointer 1467 1468 type cgothreadstart struct { 1469 g guintptr 1470 tls *uint64 1471 fn unsafe.Pointer 1472 } 1473 1474 // Allocate a new m unassociated with any thread. 1475 // Can use p for allocation context if needed. 1476 // fn is recorded as the new m's m.mstartfn. 1477 // 1478 // This function is allowed to have write barriers even if the caller 1479 // isn't because it borrows _p_. 1480 // 1481 //go:yeswritebarrierrec 1482 func allocm(_p_ *p, fn func()) *m { 1483 _g_ := getg() 1484 _g_.m.locks++ // disable GC because it can be called from sysmon 1485 if _g_.m.p == 0 { 1486 acquirep(_p_) // temporarily borrow p for mallocs in this function 1487 } 1488 1489 // Release the free M list. We need to do this somewhere and 1490 // this may free up a stack we can use. 1491 if sched.freem != nil { 1492 lock(&sched.lock) 1493 var newList *m 1494 for freem := sched.freem; freem != nil; { 1495 if freem.freeWait != 0 { 1496 next := freem.freelink 1497 freem.freelink = newList 1498 newList = freem 1499 freem = next 1500 continue 1501 } 1502 stackfree(freem.g0.stack) 1503 freem = freem.freelink 1504 } 1505 sched.freem = newList 1506 unlock(&sched.lock) 1507 } 1508 1509 mp := new(m) 1510 mp.mstartfn = fn 1511 mcommoninit(mp) 1512 1513 // In case of cgo or Solaris, pthread_create will make us a stack. 1514 // Windows and Plan 9 will layout sched stack on OS stack. 1515 if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" { 1516 mp.g0 = malg(-1) 1517 } else { 1518 mp.g0 = malg(8192 * sys.StackGuardMultiplier) 1519 } 1520 mp.g0.m = mp 1521 1522 if _p_ == _g_.m.p.ptr() { 1523 releasep() 1524 } 1525 _g_.m.locks-- 1526 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack 1527 _g_.stackguard0 = stackPreempt 1528 } 1529 1530 return mp 1531 } 1532 1533 // needm is called when a cgo callback happens on a 1534 // thread without an m (a thread not created by Go). 1535 // In this case, needm is expected to find an m to use 1536 // and return with m, g initialized correctly. 1537 // Since m and g are not set now (likely nil, but see below) 1538 // needm is limited in what routines it can call. In particular 1539 // it can only call nosplit functions (textflag 7) and cannot 1540 // do any scheduling that requires an m. 1541 // 1542 // In order to avoid needing heavy lifting here, we adopt 1543 // the following strategy: there is a stack of available m's 1544 // that can be stolen. Using compare-and-swap 1545 // to pop from the stack has ABA races, so we simulate 1546 // a lock by doing an exchange (via casp) to steal the stack 1547 // head and replace the top pointer with MLOCKED (1). 1548 // This serves as a simple spin lock that we can use even 1549 // without an m. The thread that locks the stack in this way 1550 // unlocks the stack by storing a valid stack head pointer. 1551 // 1552 // In order to make sure that there is always an m structure 1553 // available to be stolen, we maintain the invariant that there 1554 // is always one more than needed. At the beginning of the 1555 // program (if cgo is in use) the list is seeded with a single m. 1556 // If needm finds that it has taken the last m off the list, its job 1557 // is - once it has installed its own m so that it can do things like 1558 // allocate memory - to create a spare m and put it on the list. 1559 // 1560 // Each of these extra m's also has a g0 and a curg that are 1561 // pressed into service as the scheduling stack and current 1562 // goroutine for the duration of the cgo callback. 1563 // 1564 // When the callback is done with the m, it calls dropm to 1565 // put the m back on the list. 1566 //go:nosplit 1567 func needm(x byte) { 1568 if iscgo && !cgoHasExtraM { 1569 // Can happen if C/C++ code calls Go from a global ctor. 1570 // Can not throw, because scheduler is not initialized yet. 1571 write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback))) 1572 exit(1) 1573 } 1574 1575 // Lock extra list, take head, unlock popped list. 1576 // nilokay=false is safe here because of the invariant above, 1577 // that the extra list always contains or will soon contain 1578 // at least one m. 1579 mp := lockextra(false) 1580 1581 // Set needextram when we've just emptied the list, 1582 // so that the eventual call into cgocallbackg will 1583 // allocate a new m for the extra list. We delay the 1584 // allocation until then so that it can be done 1585 // after exitsyscall makes sure it is okay to be 1586 // running at all (that is, there's no garbage collection 1587 // running right now). 1588 mp.needextram = mp.schedlink == 0 1589 extraMCount-- 1590 unlockextra(mp.schedlink.ptr()) 1591 1592 // Save and block signals before installing g. 1593 // Once g is installed, any incoming signals will try to execute, 1594 // but we won't have the sigaltstack settings and other data 1595 // set up appropriately until the end of minit, which will 1596 // unblock the signals. This is the same dance as when 1597 // starting a new m to run Go code via newosproc. 1598 msigsave(mp) 1599 sigblock() 1600 1601 // Install g (= m->g0) and set the stack bounds 1602 // to match the current stack. We don't actually know 1603 // how big the stack is, like we don't know how big any 1604 // scheduling stack is, but we assume there's at least 32 kB, 1605 // which is more than enough for us. 1606 setg(mp.g0) 1607 _g_ := getg() 1608 _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024 1609 _g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024 1610 _g_.stackguard0 = _g_.stack.lo + _StackGuard 1611 1612 // Initialize this thread to use the m. 1613 asminit() 1614 minit() 1615 1616 // mp.curg is now a real goroutine. 1617 casgstatus(mp.curg, _Gdead, _Gsyscall) 1618 atomic.Xadd(&sched.ngsys, -1) 1619 } 1620 1621 var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n") 1622 1623 // newextram allocates m's and puts them on the extra list. 1624 // It is called with a working local m, so that it can do things 1625 // like call schedlock and allocate. 1626 func newextram() { 1627 c := atomic.Xchg(&extraMWaiters, 0) 1628 if c > 0 { 1629 for i := uint32(0); i < c; i++ { 1630 oneNewExtraM() 1631 } 1632 } else { 1633 // Make sure there is at least one extra M. 1634 mp := lockextra(true) 1635 unlockextra(mp) 1636 if mp == nil { 1637 oneNewExtraM() 1638 } 1639 } 1640 } 1641 1642 // oneNewExtraM allocates an m and puts it on the extra list. 1643 func oneNewExtraM() { 1644 // Create extra goroutine locked to extra m. 1645 // The goroutine is the context in which the cgo callback will run. 1646 // The sched.pc will never be returned to, but setting it to 1647 // goexit makes clear to the traceback routines where 1648 // the goroutine stack ends. 1649 mp := allocm(nil, nil) 1650 gp := malg(4096) 1651 gp.sched.pc = funcPC(goexit) + sys.PCQuantum 1652 gp.sched.sp = gp.stack.hi 1653 gp.sched.sp -= 4 * sys.RegSize // extra space in case of reads slightly beyond frame 1654 gp.sched.lr = 0 1655 gp.sched.g = guintptr(unsafe.Pointer(gp)) 1656 gp.syscallpc = gp.sched.pc 1657 gp.syscallsp = gp.sched.sp 1658 gp.stktopsp = gp.sched.sp 1659 gp.gcscanvalid = true 1660 gp.gcscandone = true 1661 // malg returns status as _Gidle. Change to _Gdead before 1662 // adding to allg where GC can see it. We use _Gdead to hide 1663 // this from tracebacks and stack scans since it isn't a 1664 // "real" goroutine until needm grabs it. 1665 casgstatus(gp, _Gidle, _Gdead) 1666 gp.m = mp 1667 mp.curg = gp 1668 mp.lockedInt++ 1669 mp.lockedg.set(gp) 1670 gp.lockedm.set(mp) 1671 gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1)) 1672 if raceenabled { 1673 gp.racectx = racegostart(funcPC(newextram) + sys.PCQuantum) 1674 } 1675 // put on allg for garbage collector 1676 allgadd(gp) 1677 1678 // gp is now on the allg list, but we don't want it to be 1679 // counted by gcount. It would be more "proper" to increment 1680 // sched.ngfree, but that requires locking. Incrementing ngsys 1681 // has the same effect. 1682 atomic.Xadd(&sched.ngsys, +1) 1683 1684 // Add m to the extra list. 1685 mnext := lockextra(true) 1686 mp.schedlink.set(mnext) 1687 extraMCount++ 1688 unlockextra(mp) 1689 } 1690 1691 // dropm is called when a cgo callback has called needm but is now 1692 // done with the callback and returning back into the non-Go thread. 1693 // It puts the current m back onto the extra list. 1694 // 1695 // The main expense here is the call to signalstack to release the 1696 // m's signal stack, and then the call to needm on the next callback 1697 // from this thread. It is tempting to try to save the m for next time, 1698 // which would eliminate both these costs, but there might not be 1699 // a next time: the current thread (which Go does not control) might exit. 1700 // If we saved the m for that thread, there would be an m leak each time 1701 // such a thread exited. Instead, we acquire and release an m on each 1702 // call. These should typically not be scheduling operations, just a few 1703 // atomics, so the cost should be small. 1704 // 1705 // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread 1706 // variable using pthread_key_create. Unlike the pthread keys we already use 1707 // on OS X, this dummy key would never be read by Go code. It would exist 1708 // only so that we could register at thread-exit-time destructor. 1709 // That destructor would put the m back onto the extra list. 1710 // This is purely a performance optimization. The current version, 1711 // in which dropm happens on each cgo call, is still correct too. 1712 // We may have to keep the current version on systems with cgo 1713 // but without pthreads, like Windows. 1714 func dropm() { 1715 // Clear m and g, and return m to the extra list. 1716 // After the call to setg we can only call nosplit functions 1717 // with no pointer manipulation. 1718 mp := getg().m 1719 1720 // Return mp.curg to dead state. 1721 casgstatus(mp.curg, _Gsyscall, _Gdead) 1722 atomic.Xadd(&sched.ngsys, +1) 1723 1724 // Block signals before unminit. 1725 // Unminit unregisters the signal handling stack (but needs g on some systems). 1726 // Setg(nil) clears g, which is the signal handler's cue not to run Go handlers. 1727 // It's important not to try to handle a signal between those two steps. 1728 sigmask := mp.sigmask 1729 sigblock() 1730 unminit() 1731 1732 mnext := lockextra(true) 1733 extraMCount++ 1734 mp.schedlink.set(mnext) 1735 1736 setg(nil) 1737 1738 // Commit the release of mp. 1739 unlockextra(mp) 1740 1741 msigrestore(sigmask) 1742 } 1743 1744 // A helper function for EnsureDropM. 1745 func getm() uintptr { 1746 return uintptr(unsafe.Pointer(getg().m)) 1747 } 1748 1749 var extram uintptr 1750 var extraMCount uint32 // Protected by lockextra 1751 var extraMWaiters uint32 1752 1753 // lockextra locks the extra list and returns the list head. 1754 // The caller must unlock the list by storing a new list head 1755 // to extram. If nilokay is true, then lockextra will 1756 // return a nil list head if that's what it finds. If nilokay is false, 1757 // lockextra will keep waiting until the list head is no longer nil. 1758 //go:nosplit 1759 func lockextra(nilokay bool) *m { 1760 const locked = 1 1761 1762 incr := false 1763 for { 1764 old := atomic.Loaduintptr(&extram) 1765 if old == locked { 1766 yield := osyield 1767 yield() 1768 continue 1769 } 1770 if old == 0 && !nilokay { 1771 if !incr { 1772 // Add 1 to the number of threads 1773 // waiting for an M. 1774 // This is cleared by newextram. 1775 atomic.Xadd(&extraMWaiters, 1) 1776 incr = true 1777 } 1778 usleep(1) 1779 continue 1780 } 1781 if atomic.Casuintptr(&extram, old, locked) { 1782 return (*m)(unsafe.Pointer(old)) 1783 } 1784 yield := osyield 1785 yield() 1786 continue 1787 } 1788 } 1789 1790 //go:nosplit 1791 func unlockextra(mp *m) { 1792 atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp))) 1793 } 1794 1795 // execLock serializes exec and clone to avoid bugs or unspecified behaviour 1796 // around exec'ing while creating/destroying threads. See issue #19546. 1797 var execLock rwmutex 1798 1799 // newmHandoff contains a list of m structures that need new OS threads. 1800 // This is used by newm in situations where newm itself can't safely 1801 // start an OS thread. 1802 var newmHandoff struct { 1803 lock mutex 1804 1805 // newm points to a list of M structures that need new OS 1806 // threads. The list is linked through m.schedlink. 1807 newm muintptr 1808 1809 // waiting indicates that wake needs to be notified when an m 1810 // is put on the list. 1811 waiting bool 1812 wake note 1813 1814 // haveTemplateThread indicates that the templateThread has 1815 // been started. This is not protected by lock. Use cas to set 1816 // to 1. 1817 haveTemplateThread uint32 1818 } 1819 1820 // Create a new m. It will start off with a call to fn, or else the scheduler. 1821 // fn needs to be static and not a heap allocated closure. 1822 // May run with m.p==nil, so write barriers are not allowed. 1823 //go:nowritebarrierrec 1824 func newm(fn func(), _p_ *p) { 1825 mp := allocm(_p_, fn) 1826 mp.nextp.set(_p_) 1827 mp.sigmask = initSigmask 1828 if gp := getg(); gp != nil && gp.m != nil && (gp.m.lockedExt != 0 || gp.m.incgo) && GOOS != "plan9" { 1829 // We're on a locked M or a thread that may have been 1830 // started by C. The kernel state of this thread may 1831 // be strange (the user may have locked it for that 1832 // purpose). We don't want to clone that into another 1833 // thread. Instead, ask a known-good thread to create 1834 // the thread for us. 1835 // 1836 // This is disabled on Plan 9. See golang.org/issue/22227. 1837 // 1838 // TODO: This may be unnecessary on Windows, which 1839 // doesn't model thread creation off fork. 1840 lock(&newmHandoff.lock) 1841 if newmHandoff.haveTemplateThread == 0 { 1842 throw("on a locked thread with no template thread") 1843 } 1844 mp.schedlink = newmHandoff.newm 1845 newmHandoff.newm.set(mp) 1846 if newmHandoff.waiting { 1847 newmHandoff.waiting = false 1848 notewakeup(&newmHandoff.wake) 1849 } 1850 unlock(&newmHandoff.lock) 1851 return 1852 } 1853 newm1(mp) 1854 } 1855 1856 func newm1(mp *m) { 1857 if iscgo { 1858 var ts cgothreadstart 1859 if _cgo_thread_start == nil { 1860 throw("_cgo_thread_start missing") 1861 } 1862 ts.g.set(mp.g0) 1863 ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0])) 1864 ts.fn = unsafe.Pointer(funcPC(mstart)) 1865 if msanenabled { 1866 msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts)) 1867 } 1868 execLock.rlock() // Prevent process clone. 1869 asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts)) 1870 execLock.runlock() 1871 return 1872 } 1873 execLock.rlock() // Prevent process clone. 1874 newosproc(mp, unsafe.Pointer(mp.g0.stack.hi)) 1875 execLock.runlock() 1876 } 1877 1878 // startTemplateThread starts the template thread if it is not already 1879 // running. 1880 // 1881 // The calling thread must itself be in a known-good state. 1882 func startTemplateThread() { 1883 if !atomic.Cas(&newmHandoff.haveTemplateThread, 0, 1) { 1884 return 1885 } 1886 newm(templateThread, nil) 1887 } 1888 1889 // tmeplateThread is a thread in a known-good state that exists solely 1890 // to start new threads in known-good states when the calling thread 1891 // may not be a a good state. 1892 // 1893 // Many programs never need this, so templateThread is started lazily 1894 // when we first enter a state that might lead to running on a thread 1895 // in an unknown state. 1896 // 1897 // templateThread runs on an M without a P, so it must not have write 1898 // barriers. 1899 // 1900 //go:nowritebarrierrec 1901 func templateThread() { 1902 lock(&sched.lock) 1903 sched.nmsys++ 1904 checkdead() 1905 unlock(&sched.lock) 1906 1907 for { 1908 lock(&newmHandoff.lock) 1909 for newmHandoff.newm != 0 { 1910 newm := newmHandoff.newm.ptr() 1911 newmHandoff.newm = 0 1912 unlock(&newmHandoff.lock) 1913 for newm != nil { 1914 next := newm.schedlink.ptr() 1915 newm.schedlink = 0 1916 newm1(newm) 1917 newm = next 1918 } 1919 lock(&newmHandoff.lock) 1920 } 1921 newmHandoff.waiting = true 1922 noteclear(&newmHandoff.wake) 1923 unlock(&newmHandoff.lock) 1924 notesleep(&newmHandoff.wake) 1925 } 1926 } 1927 1928 // Stops execution of the current m until new work is available. 1929 // Returns with acquired P. 1930 func stopm() { 1931 _g_ := getg() 1932 1933 if _g_.m.locks != 0 { 1934 throw("stopm holding locks") 1935 } 1936 if _g_.m.p != 0 { 1937 throw("stopm holding p") 1938 } 1939 if _g_.m.spinning { 1940 throw("stopm spinning") 1941 } 1942 1943 retry: 1944 lock(&sched.lock) 1945 mput(_g_.m) 1946 unlock(&sched.lock) 1947 notesleep(&_g_.m.park) 1948 noteclear(&_g_.m.park) 1949 if _g_.m.helpgc != 0 { 1950 // helpgc() set _g_.m.p and _g_.m.mcache, so we have a P. 1951 gchelper() 1952 // Undo the effects of helpgc(). 1953 _g_.m.helpgc = 0 1954 _g_.m.mcache = nil 1955 _g_.m.p = 0 1956 goto retry 1957 } 1958 acquirep(_g_.m.nextp.ptr()) 1959 _g_.m.nextp = 0 1960 } 1961 1962 func mspinning() { 1963 // startm's caller incremented nmspinning. Set the new M's spinning. 1964 getg().m.spinning = true 1965 } 1966 1967 // Schedules some M to run the p (creates an M if necessary). 1968 // If p==nil, tries to get an idle P, if no idle P's does nothing. 1969 // May run with m.p==nil, so write barriers are not allowed. 1970 // If spinning is set, the caller has incremented nmspinning and startm will 1971 // either decrement nmspinning or set m.spinning in the newly started M. 1972 //go:nowritebarrierrec 1973 func startm(_p_ *p, spinning bool) { 1974 lock(&sched.lock) 1975 if _p_ == nil { 1976 _p_ = pidleget() 1977 if _p_ == nil { 1978 unlock(&sched.lock) 1979 if spinning { 1980 // The caller incremented nmspinning, but there are no idle Ps, 1981 // so it's okay to just undo the increment and give up. 1982 if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { 1983 throw("startm: negative nmspinning") 1984 } 1985 } 1986 return 1987 } 1988 } 1989 mp := mget() 1990 unlock(&sched.lock) 1991 if mp == nil { 1992 var fn func() 1993 if spinning { 1994 // The caller incremented nmspinning, so set m.spinning in the new M. 1995 fn = mspinning 1996 } 1997 newm(fn, _p_) 1998 return 1999 } 2000 if mp.spinning { 2001 throw("startm: m is spinning") 2002 } 2003 if mp.nextp != 0 { 2004 throw("startm: m has p") 2005 } 2006 if spinning && !runqempty(_p_) { 2007 throw("startm: p has runnable gs") 2008 } 2009 // The caller incremented nmspinning, so set m.spinning in the new M. 2010 mp.spinning = spinning 2011 mp.nextp.set(_p_) 2012 notewakeup(&mp.park) 2013 } 2014 2015 // Hands off P from syscall or locked M. 2016 // Always runs without a P, so write barriers are not allowed. 2017 //go:nowritebarrierrec 2018 func handoffp(_p_ *p) { 2019 // handoffp must start an M in any situation where 2020 // findrunnable would return a G to run on _p_. 2021 2022 // if it has local work, start it straight away 2023 if !runqempty(_p_) || sched.runqsize != 0 { 2024 startm(_p_, false) 2025 return 2026 } 2027 // if it has GC work, start it straight away 2028 if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) { 2029 startm(_p_, false) 2030 return 2031 } 2032 // no local work, check that there are no spinning/idle M's, 2033 // otherwise our help is not required 2034 if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic 2035 startm(_p_, true) 2036 return 2037 } 2038 lock(&sched.lock) 2039 if sched.gcwaiting != 0 { 2040 _p_.status = _Pgcstop 2041 sched.stopwait-- 2042 if sched.stopwait == 0 { 2043 notewakeup(&sched.stopnote) 2044 } 2045 unlock(&sched.lock) 2046 return 2047 } 2048 if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) { 2049 sched.safePointFn(_p_) 2050 sched.safePointWait-- 2051 if sched.safePointWait == 0 { 2052 notewakeup(&sched.safePointNote) 2053 } 2054 } 2055 if sched.runqsize != 0 { 2056 unlock(&sched.lock) 2057 startm(_p_, false) 2058 return 2059 } 2060 // If this is the last running P and nobody is polling network, 2061 // need to wakeup another M to poll network. 2062 if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 { 2063 unlock(&sched.lock) 2064 startm(_p_, false) 2065 return 2066 } 2067 pidleput(_p_) 2068 unlock(&sched.lock) 2069 } 2070 2071 // Tries to add one more P to execute G's. 2072 // Called when a G is made runnable (newproc, ready). 2073 func wakep() { 2074 // be conservative about spinning threads 2075 if !atomic.Cas(&sched.nmspinning, 0, 1) { 2076 return 2077 } 2078 startm(nil, true) 2079 } 2080 2081 // Stops execution of the current m that is locked to a g until the g is runnable again. 2082 // Returns with acquired P. 2083 func stoplockedm() { 2084 _g_ := getg() 2085 2086 if _g_.m.lockedg == 0 || _g_.m.lockedg.ptr().lockedm.ptr() != _g_.m { 2087 throw("stoplockedm: inconsistent locking") 2088 } 2089 if _g_.m.p != 0 { 2090 // Schedule another M to run this p. 2091 _p_ := releasep() 2092 handoffp(_p_) 2093 } 2094 incidlelocked(1) 2095 // Wait until another thread schedules lockedg again. 2096 notesleep(&_g_.m.park) 2097 noteclear(&_g_.m.park) 2098 status := readgstatus(_g_.m.lockedg.ptr()) 2099 if status&^_Gscan != _Grunnable { 2100 print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n") 2101 dumpgstatus(_g_) 2102 throw("stoplockedm: not runnable") 2103 } 2104 acquirep(_g_.m.nextp.ptr()) 2105 _g_.m.nextp = 0 2106 } 2107 2108 // Schedules the locked m to run the locked gp. 2109 // May run during STW, so write barriers are not allowed. 2110 //go:nowritebarrierrec 2111 func startlockedm(gp *g) { 2112 _g_ := getg() 2113 2114 mp := gp.lockedm.ptr() 2115 if mp == _g_.m { 2116 throw("startlockedm: locked to me") 2117 } 2118 if mp.nextp != 0 { 2119 throw("startlockedm: m has p") 2120 } 2121 // directly handoff current P to the locked m 2122 incidlelocked(-1) 2123 _p_ := releasep() 2124 mp.nextp.set(_p_) 2125 notewakeup(&mp.park) 2126 stopm() 2127 } 2128 2129 // Stops the current m for stopTheWorld. 2130 // Returns when the world is restarted. 2131 func gcstopm() { 2132 _g_ := getg() 2133 2134 if sched.gcwaiting == 0 { 2135 throw("gcstopm: not waiting for gc") 2136 } 2137 if _g_.m.spinning { 2138 _g_.m.spinning = false 2139 // OK to just drop nmspinning here, 2140 // startTheWorld will unpark threads as necessary. 2141 if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { 2142 throw("gcstopm: negative nmspinning") 2143 } 2144 } 2145 _p_ := releasep() 2146 lock(&sched.lock) 2147 _p_.status = _Pgcstop 2148 sched.stopwait-- 2149 if sched.stopwait == 0 { 2150 notewakeup(&sched.stopnote) 2151 } 2152 unlock(&sched.lock) 2153 stopm() 2154 } 2155 2156 // Schedules gp to run on the current M. 2157 // If inheritTime is true, gp inherits the remaining time in the 2158 // current time slice. Otherwise, it starts a new time slice. 2159 // Never returns. 2160 // 2161 // Write barriers are allowed because this is called immediately after 2162 // acquiring a P in several places. 2163 // 2164 //go:yeswritebarrierrec 2165 func execute(gp *g, inheritTime bool) { 2166 _g_ := getg() 2167 2168 casgstatus(gp, _Grunnable, _Grunning) 2169 gp.waitsince = 0 2170 gp.preempt = false 2171 gp.stackguard0 = gp.stack.lo + _StackGuard 2172 if !inheritTime { 2173 _g_.m.p.ptr().schedtick++ 2174 } 2175 _g_.m.curg = gp 2176 gp.m = _g_.m 2177 2178 // Check whether the profiler needs to be turned on or off. 2179 hz := sched.profilehz 2180 if _g_.m.profilehz != hz { 2181 setThreadCPUProfiler(hz) 2182 } 2183 2184 if trace.enabled { 2185 // GoSysExit has to happen when we have a P, but before GoStart. 2186 // So we emit it here. 2187 if gp.syscallsp != 0 && gp.sysblocktraced { 2188 traceGoSysExit(gp.sysexitticks) 2189 } 2190 traceGoStart() 2191 } 2192 2193 gogo(&gp.sched) 2194 } 2195 2196 // Finds a runnable goroutine to execute. 2197 // Tries to steal from other P's, get g from global queue, poll network. 2198 func findrunnable() (gp *g, inheritTime bool) { 2199 _g_ := getg() 2200 2201 // The conditions here and in handoffp must agree: if 2202 // findrunnable would return a G to run, handoffp must start 2203 // an M. 2204 2205 top: 2206 _p_ := _g_.m.p.ptr() 2207 if sched.gcwaiting != 0 { 2208 gcstopm() 2209 goto top 2210 } 2211 if _p_.runSafePointFn != 0 { 2212 runSafePointFn() 2213 } 2214 if fingwait && fingwake { 2215 if gp := wakefing(); gp != nil { 2216 ready(gp, 0, true) 2217 } 2218 } 2219 if *cgo_yield != nil { 2220 asmcgocall(*cgo_yield, nil) 2221 } 2222 2223 // local runq 2224 if gp, inheritTime := runqget(_p_); gp != nil { 2225 return gp, inheritTime 2226 } 2227 2228 // global runq 2229 if sched.runqsize != 0 { 2230 lock(&sched.lock) 2231 gp := globrunqget(_p_, 0) 2232 unlock(&sched.lock) 2233 if gp != nil { 2234 return gp, false 2235 } 2236 } 2237 2238 // Poll network. 2239 // This netpoll is only an optimization before we resort to stealing. 2240 // We can safely skip it if there are no waiters or a thread is blocked 2241 // in netpoll already. If there is any kind of logical race with that 2242 // blocked thread (e.g. it has already returned from netpoll, but does 2243 // not set lastpoll yet), this thread will do blocking netpoll below 2244 // anyway. 2245 if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 { 2246 if gp := netpoll(false); gp != nil { // non-blocking 2247 // netpoll returns list of goroutines linked by schedlink. 2248 injectglist(gp.schedlink.ptr()) 2249 casgstatus(gp, _Gwaiting, _Grunnable) 2250 if trace.enabled { 2251 traceGoUnpark(gp, 0) 2252 } 2253 return gp, false 2254 } 2255 } 2256 2257 // Steal work from other P's. 2258 procs := uint32(gomaxprocs) 2259 if atomic.Load(&sched.npidle) == procs-1 { 2260 // Either GOMAXPROCS=1 or everybody, except for us, is idle already. 2261 // New work can appear from returning syscall/cgocall, network or timers. 2262 // Neither of that submits to local run queues, so no point in stealing. 2263 goto stop 2264 } 2265 // If number of spinning M's >= number of busy P's, block. 2266 // This is necessary to prevent excessive CPU consumption 2267 // when GOMAXPROCS>>1 but the program parallelism is low. 2268 if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) { 2269 goto stop 2270 } 2271 if !_g_.m.spinning { 2272 _g_.m.spinning = true 2273 atomic.Xadd(&sched.nmspinning, 1) 2274 } 2275 for i := 0; i < 4; i++ { 2276 for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() { 2277 if sched.gcwaiting != 0 { 2278 goto top 2279 } 2280 stealRunNextG := i > 2 // first look for ready queues with more than 1 g 2281 if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil { 2282 return gp, false 2283 } 2284 } 2285 } 2286 2287 stop: 2288 2289 // We have nothing to do. If we're in the GC mark phase, can 2290 // safely scan and blacken objects, and have work to do, run 2291 // idle-time marking rather than give up the P. 2292 if gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != 0 && gcMarkWorkAvailable(_p_) { 2293 _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode 2294 gp := _p_.gcBgMarkWorker.ptr() 2295 casgstatus(gp, _Gwaiting, _Grunnable) 2296 if trace.enabled { 2297 traceGoUnpark(gp, 0) 2298 } 2299 return gp, false 2300 } 2301 2302 // Before we drop our P, make a snapshot of the allp slice, 2303 // which can change underfoot once we no longer block 2304 // safe-points. We don't need to snapshot the contents because 2305 // everything up to cap(allp) is immutable. 2306 allpSnapshot := allp 2307 2308 // return P and block 2309 lock(&sched.lock) 2310 if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 { 2311 unlock(&sched.lock) 2312 goto top 2313 } 2314 if sched.runqsize != 0 { 2315 gp := globrunqget(_p_, 0) 2316 unlock(&sched.lock) 2317 return gp, false 2318 } 2319 if releasep() != _p_ { 2320 throw("findrunnable: wrong p") 2321 } 2322 pidleput(_p_) 2323 unlock(&sched.lock) 2324 2325 // Delicate dance: thread transitions from spinning to non-spinning state, 2326 // potentially concurrently with submission of new goroutines. We must 2327 // drop nmspinning first and then check all per-P queues again (with 2328 // #StoreLoad memory barrier in between). If we do it the other way around, 2329 // another thread can submit a goroutine after we've checked all run queues 2330 // but before we drop nmspinning; as the result nobody will unpark a thread 2331 // to run the goroutine. 2332 // If we discover new work below, we need to restore m.spinning as a signal 2333 // for resetspinning to unpark a new worker thread (because there can be more 2334 // than one starving goroutine). However, if after discovering new work 2335 // we also observe no idle Ps, it is OK to just park the current thread: 2336 // the system is fully loaded so no spinning threads are required. 2337 // Also see "Worker thread parking/unparking" comment at the top of the file. 2338 wasSpinning := _g_.m.spinning 2339 if _g_.m.spinning { 2340 _g_.m.spinning = false 2341 if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { 2342 throw("findrunnable: negative nmspinning") 2343 } 2344 } 2345 2346 // check all runqueues once again 2347 for _, _p_ := range allpSnapshot { 2348 if !runqempty(_p_) { 2349 lock(&sched.lock) 2350 _p_ = pidleget() 2351 unlock(&sched.lock) 2352 if _p_ != nil { 2353 acquirep(_p_) 2354 if wasSpinning { 2355 _g_.m.spinning = true 2356 atomic.Xadd(&sched.nmspinning, 1) 2357 } 2358 goto top 2359 } 2360 break 2361 } 2362 } 2363 2364 // Check for idle-priority GC work again. 2365 if gcBlackenEnabled != 0 && gcMarkWorkAvailable(nil) { 2366 lock(&sched.lock) 2367 _p_ = pidleget() 2368 if _p_ != nil && _p_.gcBgMarkWorker == 0 { 2369 pidleput(_p_) 2370 _p_ = nil 2371 } 2372 unlock(&sched.lock) 2373 if _p_ != nil { 2374 acquirep(_p_) 2375 if wasSpinning { 2376 _g_.m.spinning = true 2377 atomic.Xadd(&sched.nmspinning, 1) 2378 } 2379 // Go back to idle GC check. 2380 goto stop 2381 } 2382 } 2383 2384 // poll network 2385 if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Xchg64(&sched.lastpoll, 0) != 0 { 2386 if _g_.m.p != 0 { 2387 throw("findrunnable: netpoll with p") 2388 } 2389 if _g_.m.spinning { 2390 throw("findrunnable: netpoll with spinning") 2391 } 2392 gp := netpoll(true) // block until new work is available 2393 atomic.Store64(&sched.lastpoll, uint64(nanotime())) 2394 if gp != nil { 2395 lock(&sched.lock) 2396 _p_ = pidleget() 2397 unlock(&sched.lock) 2398 if _p_ != nil { 2399 acquirep(_p_) 2400 injectglist(gp.schedlink.ptr()) 2401 casgstatus(gp, _Gwaiting, _Grunnable) 2402 if trace.enabled { 2403 traceGoUnpark(gp, 0) 2404 } 2405 return gp, false 2406 } 2407 injectglist(gp) 2408 } 2409 } 2410 stopm() 2411 goto top 2412 } 2413 2414 // pollWork returns true if there is non-background work this P could 2415 // be doing. This is a fairly lightweight check to be used for 2416 // background work loops, like idle GC. It checks a subset of the 2417 // conditions checked by the actual scheduler. 2418 func pollWork() bool { 2419 if sched.runqsize != 0 { 2420 return true 2421 } 2422 p := getg().m.p.ptr() 2423 if !runqempty(p) { 2424 return true 2425 } 2426 if netpollinited() && atomic.Load(&netpollWaiters) > 0 && sched.lastpoll != 0 { 2427 if gp := netpoll(false); gp != nil { 2428 injectglist(gp) 2429 return true 2430 } 2431 } 2432 return false 2433 } 2434 2435 func resetspinning() { 2436 _g_ := getg() 2437 if !_g_.m.spinning { 2438 throw("resetspinning: not a spinning m") 2439 } 2440 _g_.m.spinning = false 2441 nmspinning := atomic.Xadd(&sched.nmspinning, -1) 2442 if int32(nmspinning) < 0 { 2443 throw("findrunnable: negative nmspinning") 2444 } 2445 // M wakeup policy is deliberately somewhat conservative, so check if we 2446 // need to wakeup another P here. See "Worker thread parking/unparking" 2447 // comment at the top of the file for details. 2448 if nmspinning == 0 && atomic.Load(&sched.npidle) > 0 { 2449 wakep() 2450 } 2451 } 2452 2453 // Injects the list of runnable G's into the scheduler. 2454 // Can run concurrently with GC. 2455 func injectglist(glist *g) { 2456 if glist == nil { 2457 return 2458 } 2459 if trace.enabled { 2460 for gp := glist; gp != nil; gp = gp.schedlink.ptr() { 2461 traceGoUnpark(gp, 0) 2462 } 2463 } 2464 lock(&sched.lock) 2465 var n int 2466 for n = 0; glist != nil; n++ { 2467 gp := glist 2468 glist = gp.schedlink.ptr() 2469 casgstatus(gp, _Gwaiting, _Grunnable) 2470 globrunqput(gp) 2471 } 2472 unlock(&sched.lock) 2473 for ; n != 0 && sched.npidle != 0; n-- { 2474 startm(nil, false) 2475 } 2476 } 2477 2478 // One round of scheduler: find a runnable goroutine and execute it. 2479 // Never returns. 2480 func schedule() { 2481 _g_ := getg() 2482 2483 if _g_.m.locks != 0 { 2484 throw("schedule: holding locks") 2485 } 2486 2487 if _g_.m.lockedg != 0 { 2488 stoplockedm() 2489 execute(_g_.m.lockedg.ptr(), false) // Never returns. 2490 } 2491 2492 // We should not schedule away from a g that is executing a cgo call, 2493 // since the cgo call is using the m's g0 stack. 2494 if _g_.m.incgo { 2495 throw("schedule: in cgo") 2496 } 2497 2498 top: 2499 if sched.gcwaiting != 0 { 2500 gcstopm() 2501 goto top 2502 } 2503 if _g_.m.p.ptr().runSafePointFn != 0 { 2504 runSafePointFn() 2505 } 2506 2507 var gp *g 2508 var inheritTime bool 2509 if trace.enabled || trace.shutdown { 2510 gp = traceReader() 2511 if gp != nil { 2512 casgstatus(gp, _Gwaiting, _Grunnable) 2513 traceGoUnpark(gp, 0) 2514 } 2515 } 2516 if gp == nil && gcBlackenEnabled != 0 { 2517 gp = gcController.findRunnableGCWorker(_g_.m.p.ptr()) 2518 } 2519 if gp == nil { 2520 // Check the global runnable queue once in a while to ensure fairness. 2521 // Otherwise two goroutines can completely occupy the local runqueue 2522 // by constantly respawning each other. 2523 if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 { 2524 lock(&sched.lock) 2525 gp = globrunqget(_g_.m.p.ptr(), 1) 2526 unlock(&sched.lock) 2527 } 2528 } 2529 if gp == nil { 2530 gp, inheritTime = runqget(_g_.m.p.ptr()) 2531 if gp != nil && _g_.m.spinning { 2532 throw("schedule: spinning with local work") 2533 } 2534 } 2535 if gp == nil { 2536 gp, inheritTime = findrunnable() // blocks until work is available 2537 } 2538 2539 // This thread is going to run a goroutine and is not spinning anymore, 2540 // so if it was marked as spinning we need to reset it now and potentially 2541 // start a new spinning M. 2542 if _g_.m.spinning { 2543 resetspinning() 2544 } 2545 2546 if gp.lockedm != 0 { 2547 // Hands off own p to the locked m, 2548 // then blocks waiting for a new p. 2549 startlockedm(gp) 2550 goto top 2551 } 2552 2553 execute(gp, inheritTime) 2554 } 2555 2556 // dropg removes the association between m and the current goroutine m->curg (gp for short). 2557 // Typically a caller sets gp's status away from Grunning and then 2558 // immediately calls dropg to finish the job. The caller is also responsible 2559 // for arranging that gp will be restarted using ready at an 2560 // appropriate time. After calling dropg and arranging for gp to be 2561 // readied later, the caller can do other work but eventually should 2562 // call schedule to restart the scheduling of goroutines on this m. 2563 func dropg() { 2564 _g_ := getg() 2565 2566 setMNoWB(&_g_.m.curg.m, nil) 2567 setGNoWB(&_g_.m.curg, nil) 2568 } 2569 2570 func parkunlock_c(gp *g, lock unsafe.Pointer) bool { 2571 unlock((*mutex)(lock)) 2572 return true 2573 } 2574 2575 // park continuation on g0. 2576 func park_m(gp *g) { 2577 _g_ := getg() 2578 2579 if trace.enabled { 2580 traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip) 2581 } 2582 2583 casgstatus(gp, _Grunning, _Gwaiting) 2584 dropg() 2585 2586 if _g_.m.waitunlockf != nil { 2587 fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf)) 2588 ok := fn(gp, _g_.m.waitlock) 2589 _g_.m.waitunlockf = nil 2590 _g_.m.waitlock = nil 2591 if !ok { 2592 if trace.enabled { 2593 traceGoUnpark(gp, 2) 2594 } 2595 casgstatus(gp, _Gwaiting, _Grunnable) 2596 execute(gp, true) // Schedule it back, never returns. 2597 } 2598 } 2599 schedule() 2600 } 2601 2602 func goschedImpl(gp *g) { 2603 status := readgstatus(gp) 2604 if status&^_Gscan != _Grunning { 2605 dumpgstatus(gp) 2606 throw("bad g status") 2607 } 2608 casgstatus(gp, _Grunning, _Grunnable) 2609 dropg() 2610 lock(&sched.lock) 2611 globrunqput(gp) 2612 unlock(&sched.lock) 2613 2614 schedule() 2615 } 2616 2617 // Gosched continuation on g0. 2618 func gosched_m(gp *g) { 2619 if trace.enabled { 2620 traceGoSched() 2621 } 2622 goschedImpl(gp) 2623 } 2624 2625 // goschedguarded is a forbidden-states-avoided version of gosched_m 2626 func goschedguarded_m(gp *g) { 2627 2628 if gp.m.locks != 0 || gp.m.mallocing != 0 || gp.m.preemptoff != "" || gp.m.p.ptr().status != _Prunning { 2629 gogo(&gp.sched) // never return 2630 } 2631 2632 if trace.enabled { 2633 traceGoSched() 2634 } 2635 goschedImpl(gp) 2636 } 2637 2638 func gopreempt_m(gp *g) { 2639 if trace.enabled { 2640 traceGoPreempt() 2641 } 2642 goschedImpl(gp) 2643 } 2644 2645 // Finishes execution of the current goroutine. 2646 func goexit1() { 2647 if raceenabled { 2648 racegoend() 2649 } 2650 if trace.enabled { 2651 traceGoEnd() 2652 } 2653 mcall(goexit0) 2654 } 2655 2656 // goexit continuation on g0. 2657 func goexit0(gp *g) { 2658 _g_ := getg() 2659 2660 casgstatus(gp, _Grunning, _Gdead) 2661 if isSystemGoroutine(gp) { 2662 atomic.Xadd(&sched.ngsys, -1) 2663 } 2664 gp.m = nil 2665 locked := gp.lockedm != 0 2666 gp.lockedm = 0 2667 _g_.m.lockedg = 0 2668 gp.paniconfault = false 2669 gp._defer = nil // should be true already but just in case. 2670 gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data. 2671 gp.writebuf = nil 2672 gp.waitreason = "" 2673 gp.param = nil 2674 gp.labels = nil 2675 gp.timer = nil 2676 2677 if gcBlackenEnabled != 0 && gp.gcAssistBytes > 0 { 2678 // Flush assist credit to the global pool. This gives 2679 // better information to pacing if the application is 2680 // rapidly creating an exiting goroutines. 2681 scanCredit := int64(gcController.assistWorkPerByte * float64(gp.gcAssistBytes)) 2682 atomic.Xaddint64(&gcController.bgScanCredit, scanCredit) 2683 gp.gcAssistBytes = 0 2684 } 2685 2686 // Note that gp's stack scan is now "valid" because it has no 2687 // stack. 2688 gp.gcscanvalid = true 2689 dropg() 2690 2691 if _g_.m.lockedInt != 0 { 2692 print("invalid m->lockedInt = ", _g_.m.lockedInt, "\n") 2693 throw("internal lockOSThread error") 2694 } 2695 _g_.m.lockedExt = 0 2696 gfput(_g_.m.p.ptr(), gp) 2697 if locked { 2698 // The goroutine may have locked this thread because 2699 // it put it in an unusual kernel state. Kill it 2700 // rather than returning it to the thread pool. 2701 2702 // Return to mstart, which will release the P and exit 2703 // the thread. 2704 if GOOS != "plan9" { // See golang.org/issue/22227. 2705 gogo(&_g_.m.g0.sched) 2706 } 2707 } 2708 schedule() 2709 } 2710 2711 // save updates getg().sched to refer to pc and sp so that a following 2712 // gogo will restore pc and sp. 2713 // 2714 // save must not have write barriers because invoking a write barrier 2715 // can clobber getg().sched. 2716 // 2717 //go:nosplit 2718 //go:nowritebarrierrec 2719 func save(pc, sp uintptr) { 2720 _g_ := getg() 2721 2722 _g_.sched.pc = pc 2723 _g_.sched.sp = sp 2724 _g_.sched.lr = 0 2725 _g_.sched.ret = 0 2726 _g_.sched.g = guintptr(unsafe.Pointer(_g_)) 2727 // We need to ensure ctxt is zero, but can't have a write 2728 // barrier here. However, it should always already be zero. 2729 // Assert that. 2730 if _g_.sched.ctxt != nil { 2731 badctxt() 2732 } 2733 } 2734 2735 // The goroutine g is about to enter a system call. 2736 // Record that it's not using the cpu anymore. 2737 // This is called only from the go syscall library and cgocall, 2738 // not from the low-level system calls used by the runtime. 2739 // 2740 // Entersyscall cannot split the stack: the gosave must 2741 // make g->sched refer to the caller's stack segment, because 2742 // entersyscall is going to return immediately after. 2743 // 2744 // Nothing entersyscall calls can split the stack either. 2745 // We cannot safely move the stack during an active call to syscall, 2746 // because we do not know which of the uintptr arguments are 2747 // really pointers (back into the stack). 2748 // In practice, this means that we make the fast path run through 2749 // entersyscall doing no-split things, and the slow path has to use systemstack 2750 // to run bigger things on the system stack. 2751 // 2752 // reentersyscall is the entry point used by cgo callbacks, where explicitly 2753 // saved SP and PC are restored. This is needed when exitsyscall will be called 2754 // from a function further up in the call stack than the parent, as g->syscallsp 2755 // must always point to a valid stack frame. entersyscall below is the normal 2756 // entry point for syscalls, which obtains the SP and PC from the caller. 2757 // 2758 // Syscall tracing: 2759 // At the start of a syscall we emit traceGoSysCall to capture the stack trace. 2760 // If the syscall does not block, that is it, we do not emit any other events. 2761 // If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock; 2762 // when syscall returns we emit traceGoSysExit and when the goroutine starts running 2763 // (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart. 2764 // To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock, 2765 // we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick), 2766 // whoever emits traceGoSysBlock increments p.syscalltick afterwards; 2767 // and we wait for the increment before emitting traceGoSysExit. 2768 // Note that the increment is done even if tracing is not enabled, 2769 // because tracing can be enabled in the middle of syscall. We don't want the wait to hang. 2770 // 2771 //go:nosplit 2772 func reentersyscall(pc, sp uintptr) { 2773 _g_ := getg() 2774 2775 // Disable preemption because during this function g is in Gsyscall status, 2776 // but can have inconsistent g->sched, do not let GC observe it. 2777 _g_.m.locks++ 2778 2779 // Entersyscall must not call any function that might split/grow the stack. 2780 // (See details in comment above.) 2781 // Catch calls that might, by replacing the stack guard with something that 2782 // will trip any stack check and leaving a flag to tell newstack to die. 2783 _g_.stackguard0 = stackPreempt 2784 _g_.throwsplit = true 2785 2786 // Leave SP around for GC and traceback. 2787 save(pc, sp) 2788 _g_.syscallsp = sp 2789 _g_.syscallpc = pc 2790 casgstatus(_g_, _Grunning, _Gsyscall) 2791 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 2792 systemstack(func() { 2793 print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 2794 throw("entersyscall") 2795 }) 2796 } 2797 2798 if trace.enabled { 2799 systemstack(traceGoSysCall) 2800 // systemstack itself clobbers g.sched.{pc,sp} and we might 2801 // need them later when the G is genuinely blocked in a 2802 // syscall 2803 save(pc, sp) 2804 } 2805 2806 if atomic.Load(&sched.sysmonwait) != 0 { 2807 systemstack(entersyscall_sysmon) 2808 save(pc, sp) 2809 } 2810 2811 if _g_.m.p.ptr().runSafePointFn != 0 { 2812 // runSafePointFn may stack split if run on this stack 2813 systemstack(runSafePointFn) 2814 save(pc, sp) 2815 } 2816 2817 _g_.m.syscalltick = _g_.m.p.ptr().syscalltick 2818 _g_.sysblocktraced = true 2819 _g_.m.mcache = nil 2820 _g_.m.p.ptr().m = 0 2821 atomic.Store(&_g_.m.p.ptr().status, _Psyscall) 2822 if sched.gcwaiting != 0 { 2823 systemstack(entersyscall_gcwait) 2824 save(pc, sp) 2825 } 2826 2827 // Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched). 2828 // We set _StackGuard to StackPreempt so that first split stack check calls morestack. 2829 // Morestack detects this case and throws. 2830 _g_.stackguard0 = stackPreempt 2831 _g_.m.locks-- 2832 } 2833 2834 // Standard syscall entry used by the go syscall library and normal cgo calls. 2835 //go:nosplit 2836 func entersyscall(dummy int32) { 2837 reentersyscall(getcallerpc(), getcallersp(unsafe.Pointer(&dummy))) 2838 } 2839 2840 func entersyscall_sysmon() { 2841 lock(&sched.lock) 2842 if atomic.Load(&sched.sysmonwait) != 0 { 2843 atomic.Store(&sched.sysmonwait, 0) 2844 notewakeup(&sched.sysmonnote) 2845 } 2846 unlock(&sched.lock) 2847 } 2848 2849 func entersyscall_gcwait() { 2850 _g_ := getg() 2851 _p_ := _g_.m.p.ptr() 2852 2853 lock(&sched.lock) 2854 if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) { 2855 if trace.enabled { 2856 traceGoSysBlock(_p_) 2857 traceProcStop(_p_) 2858 } 2859 _p_.syscalltick++ 2860 if sched.stopwait--; sched.stopwait == 0 { 2861 notewakeup(&sched.stopnote) 2862 } 2863 } 2864 unlock(&sched.lock) 2865 } 2866 2867 // The same as entersyscall(), but with a hint that the syscall is blocking. 2868 //go:nosplit 2869 func entersyscallblock(dummy int32) { 2870 _g_ := getg() 2871 2872 _g_.m.locks++ // see comment in entersyscall 2873 _g_.throwsplit = true 2874 _g_.stackguard0 = stackPreempt // see comment in entersyscall 2875 _g_.m.syscalltick = _g_.m.p.ptr().syscalltick 2876 _g_.sysblocktraced = true 2877 _g_.m.p.ptr().syscalltick++ 2878 2879 // Leave SP around for GC and traceback. 2880 pc := getcallerpc() 2881 sp := getcallersp(unsafe.Pointer(&dummy)) 2882 save(pc, sp) 2883 _g_.syscallsp = _g_.sched.sp 2884 _g_.syscallpc = _g_.sched.pc 2885 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 2886 sp1 := sp 2887 sp2 := _g_.sched.sp 2888 sp3 := _g_.syscallsp 2889 systemstack(func() { 2890 print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 2891 throw("entersyscallblock") 2892 }) 2893 } 2894 casgstatus(_g_, _Grunning, _Gsyscall) 2895 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 2896 systemstack(func() { 2897 print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 2898 throw("entersyscallblock") 2899 }) 2900 } 2901 2902 systemstack(entersyscallblock_handoff) 2903 2904 // Resave for traceback during blocked call. 2905 save(getcallerpc(), getcallersp(unsafe.Pointer(&dummy))) 2906 2907 _g_.m.locks-- 2908 } 2909 2910 func entersyscallblock_handoff() { 2911 if trace.enabled { 2912 traceGoSysCall() 2913 traceGoSysBlock(getg().m.p.ptr()) 2914 } 2915 handoffp(releasep()) 2916 } 2917 2918 // The goroutine g exited its system call. 2919 // Arrange for it to run on a cpu again. 2920 // This is called only from the go syscall library, not 2921 // from the low-level system calls used by the runtime. 2922 // 2923 // Write barriers are not allowed because our P may have been stolen. 2924 // 2925 //go:nosplit 2926 //go:nowritebarrierrec 2927 func exitsyscall(dummy int32) { 2928 _g_ := getg() 2929 2930 _g_.m.locks++ // see comment in entersyscall 2931 if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp { 2932 // throw calls print which may try to grow the stack, 2933 // but throwsplit == true so the stack can not be grown; 2934 // use systemstack to avoid that possible problem. 2935 systemstack(func() { 2936 throw("exitsyscall: syscall frame is no longer valid") 2937 }) 2938 } 2939 2940 _g_.waitsince = 0 2941 oldp := _g_.m.p.ptr() 2942 if exitsyscallfast() { 2943 if _g_.m.mcache == nil { 2944 systemstack(func() { 2945 throw("lost mcache") 2946 }) 2947 } 2948 if trace.enabled { 2949 if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { 2950 systemstack(traceGoStart) 2951 } 2952 } 2953 // There's a cpu for us, so we can run. 2954 _g_.m.p.ptr().syscalltick++ 2955 // We need to cas the status and scan before resuming... 2956 casgstatus(_g_, _Gsyscall, _Grunning) 2957 2958 // Garbage collector isn't running (since we are), 2959 // so okay to clear syscallsp. 2960 _g_.syscallsp = 0 2961 _g_.m.locks-- 2962 if _g_.preempt { 2963 // restore the preemption request in case we've cleared it in newstack 2964 _g_.stackguard0 = stackPreempt 2965 } else { 2966 // otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock 2967 _g_.stackguard0 = _g_.stack.lo + _StackGuard 2968 } 2969 _g_.throwsplit = false 2970 return 2971 } 2972 2973 _g_.sysexitticks = 0 2974 if trace.enabled { 2975 // Wait till traceGoSysBlock event is emitted. 2976 // This ensures consistency of the trace (the goroutine is started after it is blocked). 2977 for oldp != nil && oldp.syscalltick == _g_.m.syscalltick { 2978 osyield() 2979 } 2980 // We can't trace syscall exit right now because we don't have a P. 2981 // Tracing code can invoke write barriers that cannot run without a P. 2982 // So instead we remember the syscall exit time and emit the event 2983 // in execute when we have a P. 2984 _g_.sysexitticks = cputicks() 2985 } 2986 2987 _g_.m.locks-- 2988 2989 // Call the scheduler. 2990 mcall(exitsyscall0) 2991 2992 if _g_.m.mcache == nil { 2993 systemstack(func() { 2994 throw("lost mcache") 2995 }) 2996 } 2997 2998 // Scheduler returned, so we're allowed to run now. 2999 // Delete the syscallsp information that we left for 3000 // the garbage collector during the system call. 3001 // Must wait until now because until gosched returns 3002 // we don't know for sure that the garbage collector 3003 // is not running. 3004 _g_.syscallsp = 0 3005 _g_.m.p.ptr().syscalltick++ 3006 _g_.throwsplit = false 3007 } 3008 3009 //go:nosplit 3010 func exitsyscallfast() bool { 3011 _g_ := getg() 3012 3013 // Freezetheworld sets stopwait but does not retake P's. 3014 if sched.stopwait == freezeStopWait { 3015 _g_.m.mcache = nil 3016 _g_.m.p = 0 3017 return false 3018 } 3019 3020 // Try to re-acquire the last P. 3021 if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && atomic.Cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) { 3022 // There's a cpu for us, so we can run. 3023 exitsyscallfast_reacquired() 3024 return true 3025 } 3026 3027 // Try to get any other idle P. 3028 oldp := _g_.m.p.ptr() 3029 _g_.m.mcache = nil 3030 _g_.m.p = 0 3031 if sched.pidle != 0 { 3032 var ok bool 3033 systemstack(func() { 3034 ok = exitsyscallfast_pidle() 3035 if ok && trace.enabled { 3036 if oldp != nil { 3037 // Wait till traceGoSysBlock event is emitted. 3038 // This ensures consistency of the trace (the goroutine is started after it is blocked). 3039 for oldp.syscalltick == _g_.m.syscalltick { 3040 osyield() 3041 } 3042 } 3043 traceGoSysExit(0) 3044 } 3045 }) 3046 if ok { 3047 return true 3048 } 3049 } 3050 return false 3051 } 3052 3053 // exitsyscallfast_reacquired is the exitsyscall path on which this G 3054 // has successfully reacquired the P it was running on before the 3055 // syscall. 3056 // 3057 // This function is allowed to have write barriers because exitsyscall 3058 // has acquired a P at this point. 3059 // 3060 //go:yeswritebarrierrec 3061 //go:nosplit 3062 func exitsyscallfast_reacquired() { 3063 _g_ := getg() 3064 _g_.m.mcache = _g_.m.p.ptr().mcache 3065 _g_.m.p.ptr().m.set(_g_.m) 3066 if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { 3067 if trace.enabled { 3068 // The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed). 3069 // traceGoSysBlock for this syscall was already emitted, 3070 // but here we effectively retake the p from the new syscall running on the same p. 3071 systemstack(func() { 3072 // Denote blocking of the new syscall. 3073 traceGoSysBlock(_g_.m.p.ptr()) 3074 // Denote completion of the current syscall. 3075 traceGoSysExit(0) 3076 }) 3077 } 3078 _g_.m.p.ptr().syscalltick++ 3079 } 3080 } 3081 3082 func exitsyscallfast_pidle() bool { 3083 lock(&sched.lock) 3084 _p_ := pidleget() 3085 if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 { 3086 atomic.Store(&sched.sysmonwait, 0) 3087 notewakeup(&sched.sysmonnote) 3088 } 3089 unlock(&sched.lock) 3090 if _p_ != nil { 3091 acquirep(_p_) 3092 return true 3093 } 3094 return false 3095 } 3096 3097 // exitsyscall slow path on g0. 3098 // Failed to acquire P, enqueue gp as runnable. 3099 // 3100 //go:nowritebarrierrec 3101 func exitsyscall0(gp *g) { 3102 _g_ := getg() 3103 3104 casgstatus(gp, _Gsyscall, _Grunnable) 3105 dropg() 3106 lock(&sched.lock) 3107 _p_ := pidleget() 3108 if _p_ == nil { 3109 globrunqput(gp) 3110 } else if atomic.Load(&sched.sysmonwait) != 0 { 3111 atomic.Store(&sched.sysmonwait, 0) 3112 notewakeup(&sched.sysmonnote) 3113 } 3114 unlock(&sched.lock) 3115 if _p_ != nil { 3116 acquirep(_p_) 3117 execute(gp, false) // Never returns. 3118 } 3119 if _g_.m.lockedg != 0 { 3120 // Wait until another thread schedules gp and so m again. 3121 stoplockedm() 3122 execute(gp, false) // Never returns. 3123 } 3124 stopm() 3125 schedule() // Never returns. 3126 } 3127 3128 func beforefork() { 3129 gp := getg().m.curg 3130 3131 // Block signals during a fork, so that the child does not run 3132 // a signal handler before exec if a signal is sent to the process 3133 // group. See issue #18600. 3134 gp.m.locks++ 3135 msigsave(gp.m) 3136 sigblock() 3137 3138 // This function is called before fork in syscall package. 3139 // Code between fork and exec must not allocate memory nor even try to grow stack. 3140 // Here we spoil g->_StackGuard to reliably detect any attempts to grow stack. 3141 // runtime_AfterFork will undo this in parent process, but not in child. 3142 gp.stackguard0 = stackFork 3143 } 3144 3145 // Called from syscall package before fork. 3146 //go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork 3147 //go:nosplit 3148 func syscall_runtime_BeforeFork() { 3149 systemstack(beforefork) 3150 } 3151 3152 func afterfork() { 3153 gp := getg().m.curg 3154 3155 // See the comments in beforefork. 3156 gp.stackguard0 = gp.stack.lo + _StackGuard 3157 3158 msigrestore(gp.m.sigmask) 3159 3160 gp.m.locks-- 3161 } 3162 3163 // Called from syscall package after fork in parent. 3164 //go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork 3165 //go:nosplit 3166 func syscall_runtime_AfterFork() { 3167 systemstack(afterfork) 3168 } 3169 3170 // inForkedChild is true while manipulating signals in the child process. 3171 // This is used to avoid calling libc functions in case we are using vfork. 3172 var inForkedChild bool 3173 3174 // Called from syscall package after fork in child. 3175 // It resets non-sigignored signals to the default handler, and 3176 // restores the signal mask in preparation for the exec. 3177 // 3178 // Because this might be called during a vfork, and therefore may be 3179 // temporarily sharing address space with the parent process, this must 3180 // not change any global variables or calling into C code that may do so. 3181 // 3182 //go:linkname syscall_runtime_AfterForkInChild syscall.runtime_AfterForkInChild 3183 //go:nosplit 3184 //go:nowritebarrierrec 3185 func syscall_runtime_AfterForkInChild() { 3186 // It's OK to change the global variable inForkedChild here 3187 // because we are going to change it back. There is no race here, 3188 // because if we are sharing address space with the parent process, 3189 // then the parent process can not be running concurrently. 3190 inForkedChild = true 3191 3192 clearSignalHandlers() 3193 3194 // When we are the child we are the only thread running, 3195 // so we know that nothing else has changed gp.m.sigmask. 3196 msigrestore(getg().m.sigmask) 3197 3198 inForkedChild = false 3199 } 3200 3201 // Called from syscall package before Exec. 3202 //go:linkname syscall_runtime_BeforeExec syscall.runtime_BeforeExec 3203 func syscall_runtime_BeforeExec() { 3204 // Prevent thread creation during exec. 3205 execLock.lock() 3206 } 3207 3208 // Called from syscall package after Exec. 3209 //go:linkname syscall_runtime_AfterExec syscall.runtime_AfterExec 3210 func syscall_runtime_AfterExec() { 3211 execLock.unlock() 3212 } 3213 3214 // Allocate a new g, with a stack big enough for stacksize bytes. 3215 func malg(stacksize int32) *g { 3216 newg := new(g) 3217 if stacksize >= 0 { 3218 stacksize = round2(_StackSystem + stacksize) 3219 systemstack(func() { 3220 newg.stack = stackalloc(uint32(stacksize)) 3221 }) 3222 newg.stackguard0 = newg.stack.lo + _StackGuard 3223 newg.stackguard1 = ^uintptr(0) 3224 } 3225 return newg 3226 } 3227 3228 // Create a new g running fn with siz bytes of arguments. 3229 // Put it on the queue of g's waiting to run. 3230 // The compiler turns a go statement into a call to this. 3231 // Cannot split the stack because it assumes that the arguments 3232 // are available sequentially after &fn; they would not be 3233 // copied if a stack split occurred. 3234 //go:nosplit 3235 func newproc(siz int32, fn *funcval) { 3236 argp := add(unsafe.Pointer(&fn), sys.PtrSize) 3237 pc := getcallerpc() 3238 systemstack(func() { 3239 newproc1(fn, (*uint8)(argp), siz, pc) 3240 }) 3241 } 3242 3243 // Create a new g running fn with narg bytes of arguments starting 3244 // at argp. callerpc is the address of the go statement that created 3245 // this. The new g is put on the queue of g's waiting to run. 3246 func newproc1(fn *funcval, argp *uint8, narg int32, callerpc uintptr) { 3247 _g_ := getg() 3248 3249 if fn == nil { 3250 _g_.m.throwing = -1 // do not dump full stacks 3251 throw("go of nil func value") 3252 } 3253 _g_.m.locks++ // disable preemption because it can be holding p in a local var 3254 siz := narg 3255 siz = (siz + 7) &^ 7 3256 3257 // We could allocate a larger initial stack if necessary. 3258 // Not worth it: this is almost always an error. 3259 // 4*sizeof(uintreg): extra space added below 3260 // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall). 3261 if siz >= _StackMin-4*sys.RegSize-sys.RegSize { 3262 throw("newproc: function arguments too large for new goroutine") 3263 } 3264 3265 _p_ := _g_.m.p.ptr() 3266 newg := gfget(_p_) 3267 if newg == nil { 3268 newg = malg(_StackMin) 3269 casgstatus(newg, _Gidle, _Gdead) 3270 allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack. 3271 } 3272 if newg.stack.hi == 0 { 3273 throw("newproc1: newg missing stack") 3274 } 3275 3276 if readgstatus(newg) != _Gdead { 3277 throw("newproc1: new g is not Gdead") 3278 } 3279 3280 totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame 3281 totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign 3282 sp := newg.stack.hi - totalSize 3283 spArg := sp 3284 if usesLR { 3285 // caller's LR 3286 *(*uintptr)(unsafe.Pointer(sp)) = 0 3287 prepGoExitFrame(sp) 3288 spArg += sys.MinFrameSize 3289 } 3290 if narg > 0 { 3291 memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg)) 3292 // This is a stack-to-stack copy. If write barriers 3293 // are enabled and the source stack is grey (the 3294 // destination is always black), then perform a 3295 // barrier copy. We do this *after* the memmove 3296 // because the destination stack may have garbage on 3297 // it. 3298 if writeBarrier.needed && !_g_.m.curg.gcscandone { 3299 f := findfunc(fn.fn) 3300 stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps)) 3301 // We're in the prologue, so it's always stack map index 0. 3302 bv := stackmapdata(stkmap, 0) 3303 bulkBarrierBitmap(spArg, spArg, uintptr(narg), 0, bv.bytedata) 3304 } 3305 } 3306 3307 memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched)) 3308 newg.sched.sp = sp 3309 newg.stktopsp = sp 3310 newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function 3311 newg.sched.g = guintptr(unsafe.Pointer(newg)) 3312 gostartcallfn(&newg.sched, fn) 3313 newg.gopc = callerpc 3314 newg.startpc = fn.fn 3315 if _g_.m.curg != nil { 3316 newg.labels = _g_.m.curg.labels 3317 } 3318 if isSystemGoroutine(newg) { 3319 atomic.Xadd(&sched.ngsys, +1) 3320 } 3321 newg.gcscanvalid = false 3322 casgstatus(newg, _Gdead, _Grunnable) 3323 3324 if _p_.goidcache == _p_.goidcacheend { 3325 // Sched.goidgen is the last allocated id, 3326 // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch]. 3327 // At startup sched.goidgen=0, so main goroutine receives goid=1. 3328 _p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch) 3329 _p_.goidcache -= _GoidCacheBatch - 1 3330 _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch 3331 } 3332 newg.goid = int64(_p_.goidcache) 3333 _p_.goidcache++ 3334 if raceenabled { 3335 newg.racectx = racegostart(callerpc) 3336 } 3337 if trace.enabled { 3338 traceGoCreate(newg, newg.startpc) 3339 } 3340 runqput(_p_, newg, true) 3341 3342 if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && mainStarted { 3343 wakep() 3344 } 3345 _g_.m.locks-- 3346 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack 3347 _g_.stackguard0 = stackPreempt 3348 } 3349 } 3350 3351 // Put on gfree list. 3352 // If local list is too long, transfer a batch to the global list. 3353 func gfput(_p_ *p, gp *g) { 3354 if readgstatus(gp) != _Gdead { 3355 throw("gfput: bad status (not Gdead)") 3356 } 3357 3358 stksize := gp.stack.hi - gp.stack.lo 3359 3360 if stksize != _FixedStack { 3361 // non-standard stack size - free it. 3362 stackfree(gp.stack) 3363 gp.stack.lo = 0 3364 gp.stack.hi = 0 3365 gp.stackguard0 = 0 3366 } 3367 3368 gp.schedlink.set(_p_.gfree) 3369 _p_.gfree = gp 3370 _p_.gfreecnt++ 3371 if _p_.gfreecnt >= 64 { 3372 lock(&sched.gflock) 3373 for _p_.gfreecnt >= 32 { 3374 _p_.gfreecnt-- 3375 gp = _p_.gfree 3376 _p_.gfree = gp.schedlink.ptr() 3377 if gp.stack.lo == 0 { 3378 gp.schedlink.set(sched.gfreeNoStack) 3379 sched.gfreeNoStack = gp 3380 } else { 3381 gp.schedlink.set(sched.gfreeStack) 3382 sched.gfreeStack = gp 3383 } 3384 sched.ngfree++ 3385 } 3386 unlock(&sched.gflock) 3387 } 3388 } 3389 3390 // Get from gfree list. 3391 // If local list is empty, grab a batch from global list. 3392 func gfget(_p_ *p) *g { 3393 retry: 3394 gp := _p_.gfree 3395 if gp == nil && (sched.gfreeStack != nil || sched.gfreeNoStack != nil) { 3396 lock(&sched.gflock) 3397 for _p_.gfreecnt < 32 { 3398 if sched.gfreeStack != nil { 3399 // Prefer Gs with stacks. 3400 gp = sched.gfreeStack 3401 sched.gfreeStack = gp.schedlink.ptr() 3402 } else if sched.gfreeNoStack != nil { 3403 gp = sched.gfreeNoStack 3404 sched.gfreeNoStack = gp.schedlink.ptr() 3405 } else { 3406 break 3407 } 3408 _p_.gfreecnt++ 3409 sched.ngfree-- 3410 gp.schedlink.set(_p_.gfree) 3411 _p_.gfree = gp 3412 } 3413 unlock(&sched.gflock) 3414 goto retry 3415 } 3416 if gp != nil { 3417 _p_.gfree = gp.schedlink.ptr() 3418 _p_.gfreecnt-- 3419 if gp.stack.lo == 0 { 3420 // Stack was deallocated in gfput. Allocate a new one. 3421 systemstack(func() { 3422 gp.stack = stackalloc(_FixedStack) 3423 }) 3424 gp.stackguard0 = gp.stack.lo + _StackGuard 3425 } else { 3426 if raceenabled { 3427 racemalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo) 3428 } 3429 if msanenabled { 3430 msanmalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo) 3431 } 3432 } 3433 } 3434 return gp 3435 } 3436 3437 // Purge all cached G's from gfree list to the global list. 3438 func gfpurge(_p_ *p) { 3439 lock(&sched.gflock) 3440 for _p_.gfreecnt != 0 { 3441 _p_.gfreecnt-- 3442 gp := _p_.gfree 3443 _p_.gfree = gp.schedlink.ptr() 3444 if gp.stack.lo == 0 { 3445 gp.schedlink.set(sched.gfreeNoStack) 3446 sched.gfreeNoStack = gp 3447 } else { 3448 gp.schedlink.set(sched.gfreeStack) 3449 sched.gfreeStack = gp 3450 } 3451 sched.ngfree++ 3452 } 3453 unlock(&sched.gflock) 3454 } 3455 3456 // Breakpoint executes a breakpoint trap. 3457 func Breakpoint() { 3458 breakpoint() 3459 } 3460 3461 // dolockOSThread is called by LockOSThread and lockOSThread below 3462 // after they modify m.locked. Do not allow preemption during this call, 3463 // or else the m might be different in this function than in the caller. 3464 //go:nosplit 3465 func dolockOSThread() { 3466 _g_ := getg() 3467 _g_.m.lockedg.set(_g_) 3468 _g_.lockedm.set(_g_.m) 3469 } 3470 3471 //go:nosplit 3472 3473 // LockOSThread wires the calling goroutine to its current operating system thread. 3474 // The calling goroutine will always execute in that thread, 3475 // and no other goroutine will execute in it, 3476 // until the calling goroutine has made as many calls to 3477 // UnlockOSThread as to LockOSThread. 3478 // If the calling goroutine exits without unlocking the thread, 3479 // the thread will be terminated. 3480 // 3481 // A goroutine should call LockOSThread before calling OS services or 3482 // non-Go library functions that depend on per-thread state. 3483 func LockOSThread() { 3484 if atomic.Load(&newmHandoff.haveTemplateThread) == 0 && GOOS != "plan9" { 3485 // If we need to start a new thread from the locked 3486 // thread, we need the template thread. Start it now 3487 // while we're in a known-good state. 3488 startTemplateThread() 3489 } 3490 _g_ := getg() 3491 _g_.m.lockedExt++ 3492 if _g_.m.lockedExt == 0 { 3493 _g_.m.lockedExt-- 3494 panic("LockOSThread nesting overflow") 3495 } 3496 dolockOSThread() 3497 } 3498 3499 //go:nosplit 3500 func lockOSThread() { 3501 getg().m.lockedInt++ 3502 dolockOSThread() 3503 } 3504 3505 // dounlockOSThread is called by UnlockOSThread and unlockOSThread below 3506 // after they update m->locked. Do not allow preemption during this call, 3507 // or else the m might be in different in this function than in the caller. 3508 //go:nosplit 3509 func dounlockOSThread() { 3510 _g_ := getg() 3511 if _g_.m.lockedInt != 0 || _g_.m.lockedExt != 0 { 3512 return 3513 } 3514 _g_.m.lockedg = 0 3515 _g_.lockedm = 0 3516 } 3517 3518 //go:nosplit 3519 3520 // UnlockOSThread undoes an earlier call to LockOSThread. 3521 // If this drops the number of active LockOSThread calls on the 3522 // calling goroutine to zero, it unwires the calling goroutine from 3523 // its fixed operating system thread. 3524 // If there are no active LockOSThread calls, this is a no-op. 3525 // 3526 // Before calling UnlockOSThread, the caller must ensure that the OS 3527 // thread is suitable for running other goroutines. If the caller made 3528 // any permanent changes to the state of the thread that would affect 3529 // other goroutines, it should not call this function and thus leave 3530 // the goroutine locked to the OS thread until the goroutine (and 3531 // hence the thread) exits. 3532 func UnlockOSThread() { 3533 _g_ := getg() 3534 if _g_.m.lockedExt == 0 { 3535 return 3536 } 3537 _g_.m.lockedExt-- 3538 dounlockOSThread() 3539 } 3540 3541 //go:nosplit 3542 func unlockOSThread() { 3543 _g_ := getg() 3544 if _g_.m.lockedInt == 0 { 3545 systemstack(badunlockosthread) 3546 } 3547 _g_.m.lockedInt-- 3548 dounlockOSThread() 3549 } 3550 3551 func badunlockosthread() { 3552 throw("runtime: internal error: misuse of lockOSThread/unlockOSThread") 3553 } 3554 3555 func gcount() int32 { 3556 n := int32(allglen) - sched.ngfree - int32(atomic.Load(&sched.ngsys)) 3557 for _, _p_ := range allp { 3558 n -= _p_.gfreecnt 3559 } 3560 3561 // All these variables can be changed concurrently, so the result can be inconsistent. 3562 // But at least the current goroutine is running. 3563 if n < 1 { 3564 n = 1 3565 } 3566 return n 3567 } 3568 3569 func mcount() int32 { 3570 return int32(sched.mnext - sched.nmfreed) 3571 } 3572 3573 var prof struct { 3574 signalLock uint32 3575 hz int32 3576 } 3577 3578 func _System() { _System() } 3579 func _ExternalCode() { _ExternalCode() } 3580 func _LostExternalCode() { _LostExternalCode() } 3581 func _GC() { _GC() } 3582 func _LostSIGPROFDuringAtomic64() { _LostSIGPROFDuringAtomic64() } 3583 3584 // Counts SIGPROFs received while in atomic64 critical section, on mips{,le} 3585 var lostAtomic64Count uint64 3586 3587 // Called if we receive a SIGPROF signal. 3588 // Called by the signal handler, may run during STW. 3589 //go:nowritebarrierrec 3590 func sigprof(pc, sp, lr uintptr, gp *g, mp *m) { 3591 if prof.hz == 0 { 3592 return 3593 } 3594 3595 // On mips{,le}, 64bit atomics are emulated with spinlocks, in 3596 // runtime/internal/atomic. If SIGPROF arrives while the program is inside 3597 // the critical section, it creates a deadlock (when writing the sample). 3598 // As a workaround, create a counter of SIGPROFs while in critical section 3599 // to store the count, and pass it to sigprof.add() later when SIGPROF is 3600 // received from somewhere else (with _LostSIGPROFDuringAtomic64 as pc). 3601 if GOARCH == "mips" || GOARCH == "mipsle" { 3602 if f := findfunc(pc); f.valid() { 3603 if hasprefix(funcname(f), "runtime/internal/atomic") { 3604 lostAtomic64Count++ 3605 return 3606 } 3607 } 3608 } 3609 3610 // Profiling runs concurrently with GC, so it must not allocate. 3611 // Set a trap in case the code does allocate. 3612 // Note that on windows, one thread takes profiles of all the 3613 // other threads, so mp is usually not getg().m. 3614 // In fact mp may not even be stopped. 3615 // See golang.org/issue/17165. 3616 getg().m.mallocing++ 3617 3618 // Define that a "user g" is a user-created goroutine, and a "system g" 3619 // is one that is m->g0 or m->gsignal. 3620 // 3621 // We might be interrupted for profiling halfway through a 3622 // goroutine switch. The switch involves updating three (or four) values: 3623 // g, PC, SP, and (on arm) LR. The PC must be the last to be updated, 3624 // because once it gets updated the new g is running. 3625 // 3626 // When switching from a user g to a system g, LR is not considered live, 3627 // so the update only affects g, SP, and PC. Since PC must be last, there 3628 // the possible partial transitions in ordinary execution are (1) g alone is updated, 3629 // (2) both g and SP are updated, and (3) SP alone is updated. 3630 // If SP or g alone is updated, we can detect the partial transition by checking 3631 // whether the SP is within g's stack bounds. (We could also require that SP 3632 // be changed only after g, but the stack bounds check is needed by other 3633 // cases, so there is no need to impose an additional requirement.) 3634 // 3635 // There is one exceptional transition to a system g, not in ordinary execution. 3636 // When a signal arrives, the operating system starts the signal handler running 3637 // with an updated PC and SP. The g is updated last, at the beginning of the 3638 // handler. There are two reasons this is okay. First, until g is updated the 3639 // g and SP do not match, so the stack bounds check detects the partial transition. 3640 // Second, signal handlers currently run with signals disabled, so a profiling 3641 // signal cannot arrive during the handler. 3642 // 3643 // When switching from a system g to a user g, there are three possibilities. 3644 // 3645 // First, it may be that the g switch has no PC update, because the SP 3646 // either corresponds to a user g throughout (as in asmcgocall) 3647 // or because it has been arranged to look like a user g frame 3648 // (as in cgocallback_gofunc). In this case, since the entire 3649 // transition is a g+SP update, a partial transition updating just one of 3650 // those will be detected by the stack bounds check. 3651 // 3652 // Second, when returning from a signal handler, the PC and SP updates 3653 // are performed by the operating system in an atomic update, so the g 3654 // update must be done before them. The stack bounds check detects 3655 // the partial transition here, and (again) signal handlers run with signals 3656 // disabled, so a profiling signal cannot arrive then anyway. 3657 // 3658 // Third, the common case: it may be that the switch updates g, SP, and PC 3659 // separately. If the PC is within any of the functions that does this, 3660 // we don't ask for a traceback. C.F. the function setsSP for more about this. 3661 // 3662 // There is another apparently viable approach, recorded here in case 3663 // the "PC within setsSP function" check turns out not to be usable. 3664 // It would be possible to delay the update of either g or SP until immediately 3665 // before the PC update instruction. Then, because of the stack bounds check, 3666 // the only problematic interrupt point is just before that PC update instruction, 3667 // and the sigprof handler can detect that instruction and simulate stepping past 3668 // it in order to reach a consistent state. On ARM, the update of g must be made 3669 // in two places (in R10 and also in a TLS slot), so the delayed update would 3670 // need to be the SP update. The sigprof handler must read the instruction at 3671 // the current PC and if it was the known instruction (for example, JMP BX or 3672 // MOV R2, PC), use that other register in place of the PC value. 3673 // The biggest drawback to this solution is that it requires that we can tell 3674 // whether it's safe to read from the memory pointed at by PC. 3675 // In a correct program, we can test PC == nil and otherwise read, 3676 // but if a profiling signal happens at the instant that a program executes 3677 // a bad jump (before the program manages to handle the resulting fault) 3678 // the profiling handler could fault trying to read nonexistent memory. 3679 // 3680 // To recap, there are no constraints on the assembly being used for the 3681 // transition. We simply require that g and SP match and that the PC is not 3682 // in gogo. 3683 traceback := true 3684 if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) { 3685 traceback = false 3686 } 3687 var stk [maxCPUProfStack]uintptr 3688 n := 0 3689 if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 { 3690 cgoOff := 0 3691 // Check cgoCallersUse to make sure that we are not 3692 // interrupting other code that is fiddling with 3693 // cgoCallers. We are running in a signal handler 3694 // with all signals blocked, so we don't have to worry 3695 // about any other code interrupting us. 3696 if atomic.Load(&mp.cgoCallersUse) == 0 && mp.cgoCallers != nil && mp.cgoCallers[0] != 0 { 3697 for cgoOff < len(mp.cgoCallers) && mp.cgoCallers[cgoOff] != 0 { 3698 cgoOff++ 3699 } 3700 copy(stk[:], mp.cgoCallers[:cgoOff]) 3701 mp.cgoCallers[0] = 0 3702 } 3703 3704 // Collect Go stack that leads to the cgo call. 3705 n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[cgoOff], len(stk)-cgoOff, nil, nil, 0) 3706 } else if traceback { 3707 n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack) 3708 } 3709 3710 if n <= 0 { 3711 // Normal traceback is impossible or has failed. 3712 // See if it falls into several common cases. 3713 n = 0 3714 if GOOS == "windows" && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 { 3715 // Libcall, i.e. runtime syscall on windows. 3716 // Collect Go stack that leads to the call. 3717 n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0) 3718 } 3719 if n == 0 { 3720 // If all of the above has failed, account it against abstract "System" or "GC". 3721 n = 2 3722 // "ExternalCode" is better than "etext". 3723 if pc > firstmoduledata.etext { 3724 pc = funcPC(_ExternalCode) + sys.PCQuantum 3725 } 3726 stk[0] = pc 3727 if mp.preemptoff != "" || mp.helpgc != 0 { 3728 stk[1] = funcPC(_GC) + sys.PCQuantum 3729 } else { 3730 stk[1] = funcPC(_System) + sys.PCQuantum 3731 } 3732 } 3733 } 3734 3735 if prof.hz != 0 { 3736 if (GOARCH == "mips" || GOARCH == "mipsle") && lostAtomic64Count > 0 { 3737 cpuprof.addLostAtomic64(lostAtomic64Count) 3738 lostAtomic64Count = 0 3739 } 3740 cpuprof.add(gp, stk[:n]) 3741 } 3742 getg().m.mallocing-- 3743 } 3744 3745 // If the signal handler receives a SIGPROF signal on a non-Go thread, 3746 // it tries to collect a traceback into sigprofCallers. 3747 // sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback. 3748 var sigprofCallers cgoCallers 3749 var sigprofCallersUse uint32 3750 3751 // sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread, 3752 // and the signal handler collected a stack trace in sigprofCallers. 3753 // When this is called, sigprofCallersUse will be non-zero. 3754 // g is nil, and what we can do is very limited. 3755 //go:nosplit 3756 //go:nowritebarrierrec 3757 func sigprofNonGo() { 3758 if prof.hz != 0 { 3759 n := 0 3760 for n < len(sigprofCallers) && sigprofCallers[n] != 0 { 3761 n++ 3762 } 3763 cpuprof.addNonGo(sigprofCallers[:n]) 3764 } 3765 3766 atomic.Store(&sigprofCallersUse, 0) 3767 } 3768 3769 // sigprofNonGoPC is called when a profiling signal arrived on a 3770 // non-Go thread and we have a single PC value, not a stack trace. 3771 // g is nil, and what we can do is very limited. 3772 //go:nosplit 3773 //go:nowritebarrierrec 3774 func sigprofNonGoPC(pc uintptr) { 3775 if prof.hz != 0 { 3776 stk := []uintptr{ 3777 pc, 3778 funcPC(_ExternalCode) + sys.PCQuantum, 3779 } 3780 cpuprof.addNonGo(stk) 3781 } 3782 } 3783 3784 // Reports whether a function will set the SP 3785 // to an absolute value. Important that 3786 // we don't traceback when these are at the bottom 3787 // of the stack since we can't be sure that we will 3788 // find the caller. 3789 // 3790 // If the function is not on the bottom of the stack 3791 // we assume that it will have set it up so that traceback will be consistent, 3792 // either by being a traceback terminating function 3793 // or putting one on the stack at the right offset. 3794 func setsSP(pc uintptr) bool { 3795 f := findfunc(pc) 3796 if !f.valid() { 3797 // couldn't find the function for this PC, 3798 // so assume the worst and stop traceback 3799 return true 3800 } 3801 switch f.entry { 3802 case gogoPC, systemstackPC, mcallPC, morestackPC: 3803 return true 3804 } 3805 return false 3806 } 3807 3808 // setcpuprofilerate sets the CPU profiling rate to hz times per second. 3809 // If hz <= 0, setcpuprofilerate turns off CPU profiling. 3810 func setcpuprofilerate(hz int32) { 3811 // Force sane arguments. 3812 if hz < 0 { 3813 hz = 0 3814 } 3815 3816 // Disable preemption, otherwise we can be rescheduled to another thread 3817 // that has profiling enabled. 3818 _g_ := getg() 3819 _g_.m.locks++ 3820 3821 // Stop profiler on this thread so that it is safe to lock prof. 3822 // if a profiling signal came in while we had prof locked, 3823 // it would deadlock. 3824 setThreadCPUProfiler(0) 3825 3826 for !atomic.Cas(&prof.signalLock, 0, 1) { 3827 osyield() 3828 } 3829 if prof.hz != hz { 3830 setProcessCPUProfiler(hz) 3831 prof.hz = hz 3832 } 3833 atomic.Store(&prof.signalLock, 0) 3834 3835 lock(&sched.lock) 3836 sched.profilehz = hz 3837 unlock(&sched.lock) 3838 3839 if hz != 0 { 3840 setThreadCPUProfiler(hz) 3841 } 3842 3843 _g_.m.locks-- 3844 } 3845 3846 // Change number of processors. The world is stopped, sched is locked. 3847 // gcworkbufs are not being modified by either the GC or 3848 // the write barrier code. 3849 // Returns list of Ps with local work, they need to be scheduled by the caller. 3850 func procresize(nprocs int32) *p { 3851 old := gomaxprocs 3852 if old < 0 || nprocs <= 0 { 3853 throw("procresize: invalid arg") 3854 } 3855 if trace.enabled { 3856 traceGomaxprocs(nprocs) 3857 } 3858 3859 // update statistics 3860 now := nanotime() 3861 if sched.procresizetime != 0 { 3862 sched.totaltime += int64(old) * (now - sched.procresizetime) 3863 } 3864 sched.procresizetime = now 3865 3866 // Grow allp if necessary. 3867 if nprocs > int32(len(allp)) { 3868 // Synchronize with retake, which could be running 3869 // concurrently since it doesn't run on a P. 3870 lock(&allpLock) 3871 if nprocs <= int32(cap(allp)) { 3872 allp = allp[:nprocs] 3873 } else { 3874 nallp := make([]*p, nprocs) 3875 // Copy everything up to allp's cap so we 3876 // never lose old allocated Ps. 3877 copy(nallp, allp[:cap(allp)]) 3878 allp = nallp 3879 } 3880 unlock(&allpLock) 3881 } 3882 3883 // initialize new P's 3884 for i := int32(0); i < nprocs; i++ { 3885 pp := allp[i] 3886 if pp == nil { 3887 pp = new(p) 3888 pp.id = i 3889 pp.status = _Pgcstop 3890 pp.sudogcache = pp.sudogbuf[:0] 3891 for i := range pp.deferpool { 3892 pp.deferpool[i] = pp.deferpoolbuf[i][:0] 3893 } 3894 pp.wbBuf.reset() 3895 atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp)) 3896 } 3897 if pp.mcache == nil { 3898 if old == 0 && i == 0 { 3899 if getg().m.mcache == nil { 3900 throw("missing mcache?") 3901 } 3902 pp.mcache = getg().m.mcache // bootstrap 3903 } else { 3904 pp.mcache = allocmcache() 3905 } 3906 } 3907 if raceenabled && pp.racectx == 0 { 3908 if old == 0 && i == 0 { 3909 pp.racectx = raceprocctx0 3910 raceprocctx0 = 0 // bootstrap 3911 } else { 3912 pp.racectx = raceproccreate() 3913 } 3914 } 3915 } 3916 3917 // free unused P's 3918 for i := nprocs; i < old; i++ { 3919 p := allp[i] 3920 if trace.enabled && p == getg().m.p.ptr() { 3921 // moving to p[0], pretend that we were descheduled 3922 // and then scheduled again to keep the trace sane. 3923 traceGoSched() 3924 traceProcStop(p) 3925 } 3926 // move all runnable goroutines to the global queue 3927 for p.runqhead != p.runqtail { 3928 // pop from tail of local queue 3929 p.runqtail-- 3930 gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr() 3931 // push onto head of global queue 3932 globrunqputhead(gp) 3933 } 3934 if p.runnext != 0 { 3935 globrunqputhead(p.runnext.ptr()) 3936 p.runnext = 0 3937 } 3938 // if there's a background worker, make it runnable and put 3939 // it on the global queue so it can clean itself up 3940 if gp := p.gcBgMarkWorker.ptr(); gp != nil { 3941 casgstatus(gp, _Gwaiting, _Grunnable) 3942 if trace.enabled { 3943 traceGoUnpark(gp, 0) 3944 } 3945 globrunqput(gp) 3946 // This assignment doesn't race because the 3947 // world is stopped. 3948 p.gcBgMarkWorker.set(nil) 3949 } 3950 // Flush p's write barrier buffer. 3951 if gcphase != _GCoff { 3952 wbBufFlush1(p) 3953 p.gcw.dispose() 3954 } 3955 for i := range p.sudogbuf { 3956 p.sudogbuf[i] = nil 3957 } 3958 p.sudogcache = p.sudogbuf[:0] 3959 for i := range p.deferpool { 3960 for j := range p.deferpoolbuf[i] { 3961 p.deferpoolbuf[i][j] = nil 3962 } 3963 p.deferpool[i] = p.deferpoolbuf[i][:0] 3964 } 3965 freemcache(p.mcache) 3966 p.mcache = nil 3967 gfpurge(p) 3968 traceProcFree(p) 3969 if raceenabled { 3970 raceprocdestroy(p.racectx) 3971 p.racectx = 0 3972 } 3973 p.gcAssistTime = 0 3974 p.status = _Pdead 3975 // can't free P itself because it can be referenced by an M in syscall 3976 } 3977 3978 // Trim allp. 3979 if int32(len(allp)) != nprocs { 3980 lock(&allpLock) 3981 allp = allp[:nprocs] 3982 unlock(&allpLock) 3983 } 3984 3985 _g_ := getg() 3986 if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs { 3987 // continue to use the current P 3988 _g_.m.p.ptr().status = _Prunning 3989 } else { 3990 // release the current P and acquire allp[0] 3991 if _g_.m.p != 0 { 3992 _g_.m.p.ptr().m = 0 3993 } 3994 _g_.m.p = 0 3995 _g_.m.mcache = nil 3996 p := allp[0] 3997 p.m = 0 3998 p.status = _Pidle 3999 acquirep(p) 4000 if trace.enabled { 4001 traceGoStart() 4002 } 4003 } 4004 var runnablePs *p 4005 for i := nprocs - 1; i >= 0; i-- { 4006 p := allp[i] 4007 if _g_.m.p.ptr() == p { 4008 continue 4009 } 4010 p.status = _Pidle 4011 if runqempty(p) { 4012 pidleput(p) 4013 } else { 4014 p.m.set(mget()) 4015 p.link.set(runnablePs) 4016 runnablePs = p 4017 } 4018 } 4019 stealOrder.reset(uint32(nprocs)) 4020 var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32 4021 atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs)) 4022 return runnablePs 4023 } 4024 4025 // Associate p and the current m. 4026 // 4027 // This function is allowed to have write barriers even if the caller 4028 // isn't because it immediately acquires _p_. 4029 // 4030 //go:yeswritebarrierrec 4031 func acquirep(_p_ *p) { 4032 // Do the part that isn't allowed to have write barriers. 4033 acquirep1(_p_) 4034 4035 // have p; write barriers now allowed 4036 _g_ := getg() 4037 _g_.m.mcache = _p_.mcache 4038 4039 if trace.enabled { 4040 traceProcStart() 4041 } 4042 } 4043 4044 // acquirep1 is the first step of acquirep, which actually acquires 4045 // _p_. This is broken out so we can disallow write barriers for this 4046 // part, since we don't yet have a P. 4047 // 4048 //go:nowritebarrierrec 4049 func acquirep1(_p_ *p) { 4050 _g_ := getg() 4051 4052 if _g_.m.p != 0 || _g_.m.mcache != nil { 4053 throw("acquirep: already in go") 4054 } 4055 if _p_.m != 0 || _p_.status != _Pidle { 4056 id := int64(0) 4057 if _p_.m != 0 { 4058 id = _p_.m.ptr().id 4059 } 4060 print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n") 4061 throw("acquirep: invalid p state") 4062 } 4063 _g_.m.p.set(_p_) 4064 _p_.m.set(_g_.m) 4065 _p_.status = _Prunning 4066 } 4067 4068 // Disassociate p and the current m. 4069 func releasep() *p { 4070 _g_ := getg() 4071 4072 if _g_.m.p == 0 || _g_.m.mcache == nil { 4073 throw("releasep: invalid arg") 4074 } 4075 _p_ := _g_.m.p.ptr() 4076 if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning { 4077 print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n") 4078 throw("releasep: invalid p state") 4079 } 4080 if trace.enabled { 4081 traceProcStop(_g_.m.p.ptr()) 4082 } 4083 _g_.m.p = 0 4084 _g_.m.mcache = nil 4085 _p_.m = 0 4086 _p_.status = _Pidle 4087 return _p_ 4088 } 4089 4090 func incidlelocked(v int32) { 4091 lock(&sched.lock) 4092 sched.nmidlelocked += v 4093 if v > 0 { 4094 checkdead() 4095 } 4096 unlock(&sched.lock) 4097 } 4098 4099 // Check for deadlock situation. 4100 // The check is based on number of running M's, if 0 -> deadlock. 4101 // sched.lock must be held. 4102 func checkdead() { 4103 // For -buildmode=c-shared or -buildmode=c-archive it's OK if 4104 // there are no running goroutines. The calling program is 4105 // assumed to be running. 4106 if islibrary || isarchive { 4107 return 4108 } 4109 4110 // If we are dying because of a signal caught on an already idle thread, 4111 // freezetheworld will cause all running threads to block. 4112 // And runtime will essentially enter into deadlock state, 4113 // except that there is a thread that will call exit soon. 4114 if panicking > 0 { 4115 return 4116 } 4117 4118 run := mcount() - sched.nmidle - sched.nmidlelocked - sched.nmsys 4119 if run > 0 { 4120 return 4121 } 4122 if run < 0 { 4123 print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", mcount(), " nmsys=", sched.nmsys, "\n") 4124 throw("checkdead: inconsistent counts") 4125 } 4126 4127 grunning := 0 4128 lock(&allglock) 4129 for i := 0; i < len(allgs); i++ { 4130 gp := allgs[i] 4131 if isSystemGoroutine(gp) { 4132 continue 4133 } 4134 s := readgstatus(gp) 4135 switch s &^ _Gscan { 4136 case _Gwaiting: 4137 grunning++ 4138 case _Grunnable, 4139 _Grunning, 4140 _Gsyscall: 4141 unlock(&allglock) 4142 print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n") 4143 throw("checkdead: runnable g") 4144 } 4145 } 4146 unlock(&allglock) 4147 if grunning == 0 { // possible if main goroutine calls runtime·Goexit() 4148 throw("no goroutines (main called runtime.Goexit) - deadlock!") 4149 } 4150 4151 // Maybe jump time forward for playground. 4152 gp := timejump() 4153 if gp != nil { 4154 casgstatus(gp, _Gwaiting, _Grunnable) 4155 globrunqput(gp) 4156 _p_ := pidleget() 4157 if _p_ == nil { 4158 throw("checkdead: no p for timer") 4159 } 4160 mp := mget() 4161 if mp == nil { 4162 // There should always be a free M since 4163 // nothing is running. 4164 throw("checkdead: no m for timer") 4165 } 4166 mp.nextp.set(_p_) 4167 notewakeup(&mp.park) 4168 return 4169 } 4170 4171 getg().m.throwing = -1 // do not dump full stacks 4172 throw("all goroutines are asleep - deadlock!") 4173 } 4174 4175 // forcegcperiod is the maximum time in nanoseconds between garbage 4176 // collections. If we go this long without a garbage collection, one 4177 // is forced to run. 4178 // 4179 // This is a variable for testing purposes. It normally doesn't change. 4180 var forcegcperiod int64 = 2 * 60 * 1e9 4181 4182 // Always runs without a P, so write barriers are not allowed. 4183 // 4184 //go:nowritebarrierrec 4185 func sysmon() { 4186 lock(&sched.lock) 4187 sched.nmsys++ 4188 checkdead() 4189 unlock(&sched.lock) 4190 4191 // If a heap span goes unused for 5 minutes after a garbage collection, 4192 // we hand it back to the operating system. 4193 scavengelimit := int64(5 * 60 * 1e9) 4194 4195 if debug.scavenge > 0 { 4196 // Scavenge-a-lot for testing. 4197 forcegcperiod = 10 * 1e6 4198 scavengelimit = 20 * 1e6 4199 } 4200 4201 lastscavenge := nanotime() 4202 nscavenge := 0 4203 4204 lasttrace := int64(0) 4205 idle := 0 // how many cycles in succession we had not wokeup somebody 4206 delay := uint32(0) 4207 for { 4208 if idle == 0 { // start with 20us sleep... 4209 delay = 20 4210 } else if idle > 50 { // start doubling the sleep after 1ms... 4211 delay *= 2 4212 } 4213 if delay > 10*1000 { // up to 10ms 4214 delay = 10 * 1000 4215 } 4216 usleep(delay) 4217 if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) { 4218 lock(&sched.lock) 4219 if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) { 4220 atomic.Store(&sched.sysmonwait, 1) 4221 unlock(&sched.lock) 4222 // Make wake-up period small enough 4223 // for the sampling to be correct. 4224 maxsleep := forcegcperiod / 2 4225 if scavengelimit < forcegcperiod { 4226 maxsleep = scavengelimit / 2 4227 } 4228 shouldRelax := true 4229 if osRelaxMinNS > 0 { 4230 next := timeSleepUntil() 4231 now := nanotime() 4232 if next-now < osRelaxMinNS { 4233 shouldRelax = false 4234 } 4235 } 4236 if shouldRelax { 4237 osRelax(true) 4238 } 4239 notetsleep(&sched.sysmonnote, maxsleep) 4240 if shouldRelax { 4241 osRelax(false) 4242 } 4243 lock(&sched.lock) 4244 atomic.Store(&sched.sysmonwait, 0) 4245 noteclear(&sched.sysmonnote) 4246 idle = 0 4247 delay = 20 4248 } 4249 unlock(&sched.lock) 4250 } 4251 // trigger libc interceptors if needed 4252 if *cgo_yield != nil { 4253 asmcgocall(*cgo_yield, nil) 4254 } 4255 // poll network if not polled for more than 10ms 4256 lastpoll := int64(atomic.Load64(&sched.lastpoll)) 4257 now := nanotime() 4258 if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now { 4259 atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now)) 4260 gp := netpoll(false) // non-blocking - returns list of goroutines 4261 if gp != nil { 4262 // Need to decrement number of idle locked M's 4263 // (pretending that one more is running) before injectglist. 4264 // Otherwise it can lead to the following situation: 4265 // injectglist grabs all P's but before it starts M's to run the P's, 4266 // another M returns from syscall, finishes running its G, 4267 // observes that there is no work to do and no other running M's 4268 // and reports deadlock. 4269 incidlelocked(-1) 4270 injectglist(gp) 4271 incidlelocked(1) 4272 } 4273 } 4274 // retake P's blocked in syscalls 4275 // and preempt long running G's 4276 if retake(now) != 0 { 4277 idle = 0 4278 } else { 4279 idle++ 4280 } 4281 // check if we need to force a GC 4282 if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 { 4283 lock(&forcegc.lock) 4284 forcegc.idle = 0 4285 forcegc.g.schedlink = 0 4286 injectglist(forcegc.g) 4287 unlock(&forcegc.lock) 4288 } 4289 // scavenge heap once in a while 4290 if lastscavenge+scavengelimit/2 < now { 4291 mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit)) 4292 lastscavenge = now 4293 nscavenge++ 4294 } 4295 if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now { 4296 lasttrace = now 4297 schedtrace(debug.scheddetail > 0) 4298 } 4299 } 4300 } 4301 4302 type sysmontick struct { 4303 schedtick uint32 4304 schedwhen int64 4305 syscalltick uint32 4306 syscallwhen int64 4307 } 4308 4309 // forcePreemptNS is the time slice given to a G before it is 4310 // preempted. 4311 const forcePreemptNS = 10 * 1000 * 1000 // 10ms 4312 4313 func retake(now int64) uint32 { 4314 n := 0 4315 // Prevent allp slice changes. This lock will be completely 4316 // uncontended unless we're already stopping the world. 4317 lock(&allpLock) 4318 // We can't use a range loop over allp because we may 4319 // temporarily drop the allpLock. Hence, we need to re-fetch 4320 // allp each time around the loop. 4321 for i := 0; i < len(allp); i++ { 4322 _p_ := allp[i] 4323 if _p_ == nil { 4324 // This can happen if procresize has grown 4325 // allp but not yet created new Ps. 4326 continue 4327 } 4328 pd := &_p_.sysmontick 4329 s := _p_.status 4330 if s == _Psyscall { 4331 // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us). 4332 t := int64(_p_.syscalltick) 4333 if int64(pd.syscalltick) != t { 4334 pd.syscalltick = uint32(t) 4335 pd.syscallwhen = now 4336 continue 4337 } 4338 // On the one hand we don't want to retake Ps if there is no other work to do, 4339 // but on the other hand we want to retake them eventually 4340 // because they can prevent the sysmon thread from deep sleep. 4341 if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now { 4342 continue 4343 } 4344 // Drop allpLock so we can take sched.lock. 4345 unlock(&allpLock) 4346 // Need to decrement number of idle locked M's 4347 // (pretending that one more is running) before the CAS. 4348 // Otherwise the M from which we retake can exit the syscall, 4349 // increment nmidle and report deadlock. 4350 incidlelocked(-1) 4351 if atomic.Cas(&_p_.status, s, _Pidle) { 4352 if trace.enabled { 4353 traceGoSysBlock(_p_) 4354 traceProcStop(_p_) 4355 } 4356 n++ 4357 _p_.syscalltick++ 4358 handoffp(_p_) 4359 } 4360 incidlelocked(1) 4361 lock(&allpLock) 4362 } else if s == _Prunning { 4363 // Preempt G if it's running for too long. 4364 t := int64(_p_.schedtick) 4365 if int64(pd.schedtick) != t { 4366 pd.schedtick = uint32(t) 4367 pd.schedwhen = now 4368 continue 4369 } 4370 if pd.schedwhen+forcePreemptNS > now { 4371 continue 4372 } 4373 preemptone(_p_) 4374 } 4375 } 4376 unlock(&allpLock) 4377 return uint32(n) 4378 } 4379 4380 // Tell all goroutines that they have been preempted and they should stop. 4381 // This function is purely best-effort. It can fail to inform a goroutine if a 4382 // processor just started running it. 4383 // No locks need to be held. 4384 // Returns true if preemption request was issued to at least one goroutine. 4385 func preemptall() bool { 4386 res := false 4387 for _, _p_ := range allp { 4388 if _p_.status != _Prunning { 4389 continue 4390 } 4391 if preemptone(_p_) { 4392 res = true 4393 } 4394 } 4395 return res 4396 } 4397 4398 // Tell the goroutine running on processor P to stop. 4399 // This function is purely best-effort. It can incorrectly fail to inform the 4400 // goroutine. It can send inform the wrong goroutine. Even if it informs the 4401 // correct goroutine, that goroutine might ignore the request if it is 4402 // simultaneously executing newstack. 4403 // No lock needs to be held. 4404 // Returns true if preemption request was issued. 4405 // The actual preemption will happen at some point in the future 4406 // and will be indicated by the gp->status no longer being 4407 // Grunning 4408 func preemptone(_p_ *p) bool { 4409 mp := _p_.m.ptr() 4410 if mp == nil || mp == getg().m { 4411 return false 4412 } 4413 gp := mp.curg 4414 if gp == nil || gp == mp.g0 { 4415 return false 4416 } 4417 4418 gp.preempt = true 4419 4420 // Every call in a go routine checks for stack overflow by 4421 // comparing the current stack pointer to gp->stackguard0. 4422 // Setting gp->stackguard0 to StackPreempt folds 4423 // preemption into the normal stack overflow check. 4424 gp.stackguard0 = stackPreempt 4425 return true 4426 } 4427 4428 var starttime int64 4429 4430 func schedtrace(detailed bool) { 4431 now := nanotime() 4432 if starttime == 0 { 4433 starttime = now 4434 } 4435 4436 lock(&sched.lock) 4437 print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", mcount(), " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize) 4438 if detailed { 4439 print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n") 4440 } 4441 // We must be careful while reading data from P's, M's and G's. 4442 // Even if we hold schedlock, most data can be changed concurrently. 4443 // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil. 4444 for i, _p_ := range allp { 4445 mp := _p_.m.ptr() 4446 h := atomic.Load(&_p_.runqhead) 4447 t := atomic.Load(&_p_.runqtail) 4448 if detailed { 4449 id := int64(-1) 4450 if mp != nil { 4451 id = mp.id 4452 } 4453 print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n") 4454 } else { 4455 // In non-detailed mode format lengths of per-P run queues as: 4456 // [len1 len2 len3 len4] 4457 print(" ") 4458 if i == 0 { 4459 print("[") 4460 } 4461 print(t - h) 4462 if i == len(allp)-1 { 4463 print("]\n") 4464 } 4465 } 4466 } 4467 4468 if !detailed { 4469 unlock(&sched.lock) 4470 return 4471 } 4472 4473 for mp := allm; mp != nil; mp = mp.alllink { 4474 _p_ := mp.p.ptr() 4475 gp := mp.curg 4476 lockedg := mp.lockedg.ptr() 4477 id1 := int32(-1) 4478 if _p_ != nil { 4479 id1 = _p_.id 4480 } 4481 id2 := int64(-1) 4482 if gp != nil { 4483 id2 = gp.goid 4484 } 4485 id3 := int64(-1) 4486 if lockedg != nil { 4487 id3 = lockedg.goid 4488 } 4489 print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n") 4490 } 4491 4492 lock(&allglock) 4493 for gi := 0; gi < len(allgs); gi++ { 4494 gp := allgs[gi] 4495 mp := gp.m 4496 lockedm := gp.lockedm.ptr() 4497 id1 := int64(-1) 4498 if mp != nil { 4499 id1 = mp.id 4500 } 4501 id2 := int64(-1) 4502 if lockedm != nil { 4503 id2 = lockedm.id 4504 } 4505 print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n") 4506 } 4507 unlock(&allglock) 4508 unlock(&sched.lock) 4509 } 4510 4511 // Put mp on midle list. 4512 // Sched must be locked. 4513 // May run during STW, so write barriers are not allowed. 4514 //go:nowritebarrierrec 4515 func mput(mp *m) { 4516 mp.schedlink = sched.midle 4517 sched.midle.set(mp) 4518 sched.nmidle++ 4519 checkdead() 4520 } 4521 4522 // Try to get an m from midle list. 4523 // Sched must be locked. 4524 // May run during STW, so write barriers are not allowed. 4525 //go:nowritebarrierrec 4526 func mget() *m { 4527 mp := sched.midle.ptr() 4528 if mp != nil { 4529 sched.midle = mp.schedlink 4530 sched.nmidle-- 4531 } 4532 return mp 4533 } 4534 4535 // Put gp on the global runnable queue. 4536 // Sched must be locked. 4537 // May run during STW, so write barriers are not allowed. 4538 //go:nowritebarrierrec 4539 func globrunqput(gp *g) { 4540 gp.schedlink = 0 4541 if sched.runqtail != 0 { 4542 sched.runqtail.ptr().schedlink.set(gp) 4543 } else { 4544 sched.runqhead.set(gp) 4545 } 4546 sched.runqtail.set(gp) 4547 sched.runqsize++ 4548 } 4549 4550 // Put gp at the head of the global runnable queue. 4551 // Sched must be locked. 4552 // May run during STW, so write barriers are not allowed. 4553 //go:nowritebarrierrec 4554 func globrunqputhead(gp *g) { 4555 gp.schedlink = sched.runqhead 4556 sched.runqhead.set(gp) 4557 if sched.runqtail == 0 { 4558 sched.runqtail.set(gp) 4559 } 4560 sched.runqsize++ 4561 } 4562 4563 // Put a batch of runnable goroutines on the global runnable queue. 4564 // Sched must be locked. 4565 func globrunqputbatch(ghead *g, gtail *g, n int32) { 4566 gtail.schedlink = 0 4567 if sched.runqtail != 0 { 4568 sched.runqtail.ptr().schedlink.set(ghead) 4569 } else { 4570 sched.runqhead.set(ghead) 4571 } 4572 sched.runqtail.set(gtail) 4573 sched.runqsize += n 4574 } 4575 4576 // Try get a batch of G's from the global runnable queue. 4577 // Sched must be locked. 4578 func globrunqget(_p_ *p, max int32) *g { 4579 if sched.runqsize == 0 { 4580 return nil 4581 } 4582 4583 n := sched.runqsize/gomaxprocs + 1 4584 if n > sched.runqsize { 4585 n = sched.runqsize 4586 } 4587 if max > 0 && n > max { 4588 n = max 4589 } 4590 if n > int32(len(_p_.runq))/2 { 4591 n = int32(len(_p_.runq)) / 2 4592 } 4593 4594 sched.runqsize -= n 4595 if sched.runqsize == 0 { 4596 sched.runqtail = 0 4597 } 4598 4599 gp := sched.runqhead.ptr() 4600 sched.runqhead = gp.schedlink 4601 n-- 4602 for ; n > 0; n-- { 4603 gp1 := sched.runqhead.ptr() 4604 sched.runqhead = gp1.schedlink 4605 runqput(_p_, gp1, false) 4606 } 4607 return gp 4608 } 4609 4610 // Put p to on _Pidle list. 4611 // Sched must be locked. 4612 // May run during STW, so write barriers are not allowed. 4613 //go:nowritebarrierrec 4614 func pidleput(_p_ *p) { 4615 if !runqempty(_p_) { 4616 throw("pidleput: P has non-empty run queue") 4617 } 4618 _p_.link = sched.pidle 4619 sched.pidle.set(_p_) 4620 atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic 4621 } 4622 4623 // Try get a p from _Pidle list. 4624 // Sched must be locked. 4625 // May run during STW, so write barriers are not allowed. 4626 //go:nowritebarrierrec 4627 func pidleget() *p { 4628 _p_ := sched.pidle.ptr() 4629 if _p_ != nil { 4630 sched.pidle = _p_.link 4631 atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic 4632 } 4633 return _p_ 4634 } 4635 4636 // runqempty returns true if _p_ has no Gs on its local run queue. 4637 // It never returns true spuriously. 4638 func runqempty(_p_ *p) bool { 4639 // Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail, 4640 // 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext. 4641 // Simply observing that runqhead == runqtail and then observing that runqnext == nil 4642 // does not mean the queue is empty. 4643 for { 4644 head := atomic.Load(&_p_.runqhead) 4645 tail := atomic.Load(&_p_.runqtail) 4646 runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext))) 4647 if tail == atomic.Load(&_p_.runqtail) { 4648 return head == tail && runnext == 0 4649 } 4650 } 4651 } 4652 4653 // To shake out latent assumptions about scheduling order, 4654 // we introduce some randomness into scheduling decisions 4655 // when running with the race detector. 4656 // The need for this was made obvious by changing the 4657 // (deterministic) scheduling order in Go 1.5 and breaking 4658 // many poorly-written tests. 4659 // With the randomness here, as long as the tests pass 4660 // consistently with -race, they shouldn't have latent scheduling 4661 // assumptions. 4662 const randomizeScheduler = raceenabled 4663 4664 // runqput tries to put g on the local runnable queue. 4665 // If next if false, runqput adds g to the tail of the runnable queue. 4666 // If next is true, runqput puts g in the _p_.runnext slot. 4667 // If the run queue is full, runnext puts g on the global queue. 4668 // Executed only by the owner P. 4669 func runqput(_p_ *p, gp *g, next bool) { 4670 if randomizeScheduler && next && fastrand()%2 == 0 { 4671 next = false 4672 } 4673 4674 if next { 4675 retryNext: 4676 oldnext := _p_.runnext 4677 if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) { 4678 goto retryNext 4679 } 4680 if oldnext == 0 { 4681 return 4682 } 4683 // Kick the old runnext out to the regular run queue. 4684 gp = oldnext.ptr() 4685 } 4686 4687 retry: 4688 h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers 4689 t := _p_.runqtail 4690 if t-h < uint32(len(_p_.runq)) { 4691 _p_.runq[t%uint32(len(_p_.runq))].set(gp) 4692 atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption 4693 return 4694 } 4695 if runqputslow(_p_, gp, h, t) { 4696 return 4697 } 4698 // the queue is not full, now the put above must succeed 4699 goto retry 4700 } 4701 4702 // Put g and a batch of work from local runnable queue on global queue. 4703 // Executed only by the owner P. 4704 func runqputslow(_p_ *p, gp *g, h, t uint32) bool { 4705 var batch [len(_p_.runq)/2 + 1]*g 4706 4707 // First, grab a batch from local queue. 4708 n := t - h 4709 n = n / 2 4710 if n != uint32(len(_p_.runq)/2) { 4711 throw("runqputslow: queue is not full") 4712 } 4713 for i := uint32(0); i < n; i++ { 4714 batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr() 4715 } 4716 if !atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume 4717 return false 4718 } 4719 batch[n] = gp 4720 4721 if randomizeScheduler { 4722 for i := uint32(1); i <= n; i++ { 4723 j := fastrandn(i + 1) 4724 batch[i], batch[j] = batch[j], batch[i] 4725 } 4726 } 4727 4728 // Link the goroutines. 4729 for i := uint32(0); i < n; i++ { 4730 batch[i].schedlink.set(batch[i+1]) 4731 } 4732 4733 // Now put the batch on global queue. 4734 lock(&sched.lock) 4735 globrunqputbatch(batch[0], batch[n], int32(n+1)) 4736 unlock(&sched.lock) 4737 return true 4738 } 4739 4740 // Get g from local runnable queue. 4741 // If inheritTime is true, gp should inherit the remaining time in the 4742 // current time slice. Otherwise, it should start a new time slice. 4743 // Executed only by the owner P. 4744 func runqget(_p_ *p) (gp *g, inheritTime bool) { 4745 // If there's a runnext, it's the next G to run. 4746 for { 4747 next := _p_.runnext 4748 if next == 0 { 4749 break 4750 } 4751 if _p_.runnext.cas(next, 0) { 4752 return next.ptr(), true 4753 } 4754 } 4755 4756 for { 4757 h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers 4758 t := _p_.runqtail 4759 if t == h { 4760 return nil, false 4761 } 4762 gp := _p_.runq[h%uint32(len(_p_.runq))].ptr() 4763 if atomic.Cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume 4764 return gp, false 4765 } 4766 } 4767 } 4768 4769 // Grabs a batch of goroutines from _p_'s runnable queue into batch. 4770 // Batch is a ring buffer starting at batchHead. 4771 // Returns number of grabbed goroutines. 4772 // Can be executed by any P. 4773 func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 { 4774 for { 4775 h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers 4776 t := atomic.Load(&_p_.runqtail) // load-acquire, synchronize with the producer 4777 n := t - h 4778 n = n - n/2 4779 if n == 0 { 4780 if stealRunNextG { 4781 // Try to steal from _p_.runnext. 4782 if next := _p_.runnext; next != 0 { 4783 if _p_.status == _Prunning { 4784 // Sleep to ensure that _p_ isn't about to run the g 4785 // we are about to steal. 4786 // The important use case here is when the g running 4787 // on _p_ ready()s another g and then almost 4788 // immediately blocks. Instead of stealing runnext 4789 // in this window, back off to give _p_ a chance to 4790 // schedule runnext. This will avoid thrashing gs 4791 // between different Ps. 4792 // A sync chan send/recv takes ~50ns as of time of 4793 // writing, so 3us gives ~50x overshoot. 4794 if GOOS != "windows" { 4795 usleep(3) 4796 } else { 4797 // On windows system timer granularity is 4798 // 1-15ms, which is way too much for this 4799 // optimization. So just yield. 4800 osyield() 4801 } 4802 } 4803 if !_p_.runnext.cas(next, 0) { 4804 continue 4805 } 4806 batch[batchHead%uint32(len(batch))] = next 4807 return 1 4808 } 4809 } 4810 return 0 4811 } 4812 if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t 4813 continue 4814 } 4815 for i := uint32(0); i < n; i++ { 4816 g := _p_.runq[(h+i)%uint32(len(_p_.runq))] 4817 batch[(batchHead+i)%uint32(len(batch))] = g 4818 } 4819 if atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume 4820 return n 4821 } 4822 } 4823 } 4824 4825 // Steal half of elements from local runnable queue of p2 4826 // and put onto local runnable queue of p. 4827 // Returns one of the stolen elements (or nil if failed). 4828 func runqsteal(_p_, p2 *p, stealRunNextG bool) *g { 4829 t := _p_.runqtail 4830 n := runqgrab(p2, &_p_.runq, t, stealRunNextG) 4831 if n == 0 { 4832 return nil 4833 } 4834 n-- 4835 gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr() 4836 if n == 0 { 4837 return gp 4838 } 4839 h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers 4840 if t-h+n >= uint32(len(_p_.runq)) { 4841 throw("runqsteal: runq overflow") 4842 } 4843 atomic.Store(&_p_.runqtail, t+n) // store-release, makes the item available for consumption 4844 return gp 4845 } 4846 4847 //go:linkname setMaxThreads runtime/debug.setMaxThreads 4848 func setMaxThreads(in int) (out int) { 4849 lock(&sched.lock) 4850 out = int(sched.maxmcount) 4851 if in > 0x7fffffff { // MaxInt32 4852 sched.maxmcount = 0x7fffffff 4853 } else { 4854 sched.maxmcount = int32(in) 4855 } 4856 checkmcount() 4857 unlock(&sched.lock) 4858 return 4859 } 4860 4861 func haveexperiment(name string) bool { 4862 if name == "framepointer" { 4863 return framepointer_enabled // set by linker 4864 } 4865 x := sys.Goexperiment 4866 for x != "" { 4867 xname := "" 4868 i := index(x, ",") 4869 if i < 0 { 4870 xname, x = x, "" 4871 } else { 4872 xname, x = x[:i], x[i+1:] 4873 } 4874 if xname == name { 4875 return true 4876 } 4877 if len(xname) > 2 && xname[:2] == "no" && xname[2:] == name { 4878 return false 4879 } 4880 } 4881 return false 4882 } 4883 4884 //go:nosplit 4885 func procPin() int { 4886 _g_ := getg() 4887 mp := _g_.m 4888 4889 mp.locks++ 4890 return int(mp.p.ptr().id) 4891 } 4892 4893 //go:nosplit 4894 func procUnpin() { 4895 _g_ := getg() 4896 _g_.m.locks-- 4897 } 4898 4899 //go:linkname sync_runtime_procPin sync.runtime_procPin 4900 //go:nosplit 4901 func sync_runtime_procPin() int { 4902 return procPin() 4903 } 4904 4905 //go:linkname sync_runtime_procUnpin sync.runtime_procUnpin 4906 //go:nosplit 4907 func sync_runtime_procUnpin() { 4908 procUnpin() 4909 } 4910 4911 //go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin 4912 //go:nosplit 4913 func sync_atomic_runtime_procPin() int { 4914 return procPin() 4915 } 4916 4917 //go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin 4918 //go:nosplit 4919 func sync_atomic_runtime_procUnpin() { 4920 procUnpin() 4921 } 4922 4923 // Active spinning for sync.Mutex. 4924 //go:linkname sync_runtime_canSpin sync.runtime_canSpin 4925 //go:nosplit 4926 func sync_runtime_canSpin(i int) bool { 4927 // sync.Mutex is cooperative, so we are conservative with spinning. 4928 // Spin only few times and only if running on a multicore machine and 4929 // GOMAXPROCS>1 and there is at least one other running P and local runq is empty. 4930 // As opposed to runtime mutex we don't do passive spinning here, 4931 // because there can be work on global runq on on other Ps. 4932 if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 { 4933 return false 4934 } 4935 if p := getg().m.p.ptr(); !runqempty(p) { 4936 return false 4937 } 4938 return true 4939 } 4940 4941 //go:linkname sync_runtime_doSpin sync.runtime_doSpin 4942 //go:nosplit 4943 func sync_runtime_doSpin() { 4944 procyield(active_spin_cnt) 4945 } 4946 4947 var stealOrder randomOrder 4948 4949 // randomOrder/randomEnum are helper types for randomized work stealing. 4950 // They allow to enumerate all Ps in different pseudo-random orders without repetitions. 4951 // The algorithm is based on the fact that if we have X such that X and GOMAXPROCS 4952 // are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration. 4953 type randomOrder struct { 4954 count uint32 4955 coprimes []uint32 4956 } 4957 4958 type randomEnum struct { 4959 i uint32 4960 count uint32 4961 pos uint32 4962 inc uint32 4963 } 4964 4965 func (ord *randomOrder) reset(count uint32) { 4966 ord.count = count 4967 ord.coprimes = ord.coprimes[:0] 4968 for i := uint32(1); i <= count; i++ { 4969 if gcd(i, count) == 1 { 4970 ord.coprimes = append(ord.coprimes, i) 4971 } 4972 } 4973 } 4974 4975 func (ord *randomOrder) start(i uint32) randomEnum { 4976 return randomEnum{ 4977 count: ord.count, 4978 pos: i % ord.count, 4979 inc: ord.coprimes[i%uint32(len(ord.coprimes))], 4980 } 4981 } 4982 4983 func (enum *randomEnum) done() bool { 4984 return enum.i == enum.count 4985 } 4986 4987 func (enum *randomEnum) next() { 4988 enum.i++ 4989 enum.pos = (enum.pos + enum.inc) % enum.count 4990 } 4991 4992 func (enum *randomEnum) position() uint32 { 4993 return enum.pos 4994 } 4995 4996 func gcd(a, b uint32) uint32 { 4997 for b != 0 { 4998 a, b = b, a%b 4999 } 5000 return a 5001 }