github.com/stingnevermore/go@v0.0.0-20180120041312-3810f5bfed72/src/text/template/exec.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package template
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"io"
    11  	"reflect"
    12  	"runtime"
    13  	"sort"
    14  	"strings"
    15  	"text/template/parse"
    16  )
    17  
    18  // maxExecDepth specifies the maximum stack depth of templates within
    19  // templates. This limit is only practically reached by accidentally
    20  // recursive template invocations. This limit allows us to return
    21  // an error instead of triggering a stack overflow.
    22  const maxExecDepth = 100000
    23  
    24  // state represents the state of an execution. It's not part of the
    25  // template so that multiple executions of the same template
    26  // can execute in parallel.
    27  type state struct {
    28  	tmpl       *Template
    29  	wr         io.Writer
    30  	node       parse.Node // current node, for errors.
    31  	vars       []variable // push-down stack of variable values.
    32  	depth      int        // the height of the stack of executing templates.
    33  	rangeDepth int        // nesting level of range loops.
    34  }
    35  
    36  // variable holds the dynamic value of a variable such as $, $x etc.
    37  type variable struct {
    38  	name  string
    39  	value reflect.Value
    40  }
    41  
    42  // push pushes a new variable on the stack.
    43  func (s *state) push(name string, value reflect.Value) {
    44  	s.vars = append(s.vars, variable{name, value})
    45  }
    46  
    47  // mark returns the length of the variable stack.
    48  func (s *state) mark() int {
    49  	return len(s.vars)
    50  }
    51  
    52  // pop pops the variable stack up to the mark.
    53  func (s *state) pop(mark int) {
    54  	s.vars = s.vars[0:mark]
    55  }
    56  
    57  // setVar overwrites the top-nth variable on the stack. Used by range iterations.
    58  func (s *state) setVar(n int, value reflect.Value) {
    59  	s.vars[len(s.vars)-n].value = value
    60  }
    61  
    62  // varValue returns the value of the named variable.
    63  func (s *state) varValue(name string) reflect.Value {
    64  	for i := s.mark() - 1; i >= 0; i-- {
    65  		if s.vars[i].name == name {
    66  			return s.vars[i].value
    67  		}
    68  	}
    69  	s.errorf("undefined variable: %s", name)
    70  	return zero
    71  }
    72  
    73  var zero reflect.Value
    74  
    75  // at marks the state to be on node n, for error reporting.
    76  func (s *state) at(node parse.Node) {
    77  	s.node = node
    78  }
    79  
    80  // doublePercent returns the string with %'s replaced by %%, if necessary,
    81  // so it can be used safely inside a Printf format string.
    82  func doublePercent(str string) string {
    83  	return strings.Replace(str, "%", "%%", -1)
    84  }
    85  
    86  // TODO: It would be nice if ExecError was more broken down, but
    87  // the way ErrorContext embeds the template name makes the
    88  // processing too clumsy.
    89  
    90  // ExecError is the custom error type returned when Execute has an
    91  // error evaluating its template. (If a write error occurs, the actual
    92  // error is returned; it will not be of type ExecError.)
    93  type ExecError struct {
    94  	Name string // Name of template.
    95  	Err  error  // Pre-formatted error.
    96  }
    97  
    98  func (e ExecError) Error() string {
    99  	return e.Err.Error()
   100  }
   101  
   102  // errorf records an ExecError and terminates processing.
   103  func (s *state) errorf(format string, args ...interface{}) {
   104  	name := doublePercent(s.tmpl.Name())
   105  	if s.node == nil {
   106  		format = fmt.Sprintf("template: %s: %s", name, format)
   107  	} else {
   108  		location, context := s.tmpl.ErrorContext(s.node)
   109  		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
   110  	}
   111  	panic(ExecError{
   112  		Name: s.tmpl.Name(),
   113  		Err:  fmt.Errorf(format, args...),
   114  	})
   115  }
   116  
   117  // writeError is the wrapper type used internally when Execute has an
   118  // error writing to its output. We strip the wrapper in errRecover.
   119  // Note that this is not an implementation of error, so it cannot escape
   120  // from the package as an error value.
   121  type writeError struct {
   122  	Err error // Original error.
   123  }
   124  
   125  func (s *state) writeError(err error) {
   126  	panic(writeError{
   127  		Err: err,
   128  	})
   129  }
   130  
   131  // errRecover is the handler that turns panics into returns from the top
   132  // level of Parse.
   133  func errRecover(errp *error) {
   134  	e := recover()
   135  	if e != nil {
   136  		switch err := e.(type) {
   137  		case runtime.Error:
   138  			panic(e)
   139  		case writeError:
   140  			*errp = err.Err // Strip the wrapper.
   141  		case ExecError:
   142  			*errp = err // Keep the wrapper.
   143  		default:
   144  			panic(e)
   145  		}
   146  	}
   147  }
   148  
   149  // ExecuteTemplate applies the template associated with t that has the given name
   150  // to the specified data object and writes the output to wr.
   151  // If an error occurs executing the template or writing its output,
   152  // execution stops, but partial results may already have been written to
   153  // the output writer.
   154  // A template may be executed safely in parallel, although if parallel
   155  // executions share a Writer the output may be interleaved.
   156  func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
   157  	var tmpl *Template
   158  	if t.common != nil {
   159  		tmpl = t.tmpl[name]
   160  	}
   161  	if tmpl == nil {
   162  		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
   163  	}
   164  	return tmpl.Execute(wr, data)
   165  }
   166  
   167  // Execute applies a parsed template to the specified data object,
   168  // and writes the output to wr.
   169  // If an error occurs executing the template or writing its output,
   170  // execution stops, but partial results may already have been written to
   171  // the output writer.
   172  // A template may be executed safely in parallel, although if parallel
   173  // executions share a Writer the output may be interleaved.
   174  //
   175  // If data is a reflect.Value, the template applies to the concrete
   176  // value that the reflect.Value holds, as in fmt.Print.
   177  func (t *Template) Execute(wr io.Writer, data interface{}) error {
   178  	return t.execute(wr, data)
   179  }
   180  
   181  func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
   182  	defer errRecover(&err)
   183  	value, ok := data.(reflect.Value)
   184  	if !ok {
   185  		value = reflect.ValueOf(data)
   186  	}
   187  	state := &state{
   188  		tmpl: t,
   189  		wr:   wr,
   190  		vars: []variable{{"$", value}},
   191  	}
   192  	if t.Tree == nil || t.Root == nil {
   193  		state.errorf("%q is an incomplete or empty template", t.Name())
   194  	}
   195  	state.walk(value, t.Root)
   196  	return
   197  }
   198  
   199  // DefinedTemplates returns a string listing the defined templates,
   200  // prefixed by the string "; defined templates are: ". If there are none,
   201  // it returns the empty string. For generating an error message here
   202  // and in html/template.
   203  func (t *Template) DefinedTemplates() string {
   204  	if t.common == nil {
   205  		return ""
   206  	}
   207  	var b bytes.Buffer
   208  	for name, tmpl := range t.tmpl {
   209  		if tmpl.Tree == nil || tmpl.Root == nil {
   210  			continue
   211  		}
   212  		if b.Len() > 0 {
   213  			b.WriteString(", ")
   214  		}
   215  		fmt.Fprintf(&b, "%q", name)
   216  	}
   217  	var s string
   218  	if b.Len() > 0 {
   219  		s = "; defined templates are: " + b.String()
   220  	}
   221  	return s
   222  }
   223  
   224  type rangeControl int8
   225  
   226  const (
   227  	rangeNone     rangeControl = iota // no action.
   228  	rangeBreak                        // break out of range.
   229  	rangeContinue                     // continues next range iteration.
   230  )
   231  
   232  // Walk functions step through the major pieces of the template structure,
   233  // generating output as they go.
   234  func (s *state) walk(dot reflect.Value, node parse.Node) rangeControl {
   235  	s.at(node)
   236  	switch node := node.(type) {
   237  	case *parse.ActionNode:
   238  		// Do not pop variables so they persist until next end.
   239  		// Also, if the action declares variables, don't print the result.
   240  		val := s.evalPipeline(dot, node.Pipe)
   241  		if len(node.Pipe.Decl) == 0 {
   242  			s.printValue(node, val)
   243  		}
   244  	case *parse.IfNode:
   245  		return s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
   246  	case *parse.ListNode:
   247  		for _, node := range node.Nodes {
   248  			if c := s.walk(dot, node); c != rangeNone {
   249  				return c
   250  			}
   251  		}
   252  	case *parse.RangeNode:
   253  		return s.walkRange(dot, node)
   254  	case *parse.TemplateNode:
   255  		s.walkTemplate(dot, node)
   256  	case *parse.TextNode:
   257  		if _, err := s.wr.Write(node.Text); err != nil {
   258  			s.writeError(err)
   259  		}
   260  	case *parse.WithNode:
   261  		return s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
   262  	case *parse.BreakNode:
   263  		if s.rangeDepth == 0 {
   264  			s.errorf("invalid break outside of range")
   265  		}
   266  		return rangeBreak
   267  	case *parse.ContinueNode:
   268  		if s.rangeDepth == 0 {
   269  			s.errorf("invalid continue outside of range")
   270  		}
   271  		return rangeContinue
   272  	default:
   273  		s.errorf("unknown node: %s", node)
   274  	}
   275  	return rangeNone
   276  }
   277  
   278  // walkIfOrWith walks an 'if' or 'with' node. The two control structures
   279  // are identical in behavior except that 'with' sets dot.
   280  func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) rangeControl {
   281  	defer s.pop(s.mark())
   282  	val := s.evalPipeline(dot, pipe)
   283  	truth, ok := isTrue(val)
   284  	if !ok {
   285  		s.errorf("if/with can't use %v", val)
   286  	}
   287  	if truth {
   288  		if typ == parse.NodeWith {
   289  			return s.walk(val, list)
   290  		} else {
   291  			return s.walk(dot, list)
   292  		}
   293  	} else if elseList != nil {
   294  		return s.walk(dot, elseList)
   295  	}
   296  	return rangeNone
   297  }
   298  
   299  // IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
   300  // and whether the value has a meaningful truth value. This is the definition of
   301  // truth used by if and other such actions.
   302  func IsTrue(val interface{}) (truth, ok bool) {
   303  	return isTrue(reflect.ValueOf(val))
   304  }
   305  
   306  func isTrue(val reflect.Value) (truth, ok bool) {
   307  	if !val.IsValid() {
   308  		// Something like var x interface{}, never set. It's a form of nil.
   309  		return false, true
   310  	}
   311  	switch val.Kind() {
   312  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   313  		truth = val.Len() > 0
   314  	case reflect.Bool:
   315  		truth = val.Bool()
   316  	case reflect.Complex64, reflect.Complex128:
   317  		truth = val.Complex() != 0
   318  	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
   319  		truth = !val.IsNil()
   320  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   321  		truth = val.Int() != 0
   322  	case reflect.Float32, reflect.Float64:
   323  		truth = val.Float() != 0
   324  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   325  		truth = val.Uint() != 0
   326  	case reflect.Struct:
   327  		truth = true // Struct values are always true.
   328  	default:
   329  		return
   330  	}
   331  	return truth, true
   332  }
   333  
   334  func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) rangeControl {
   335  	s.at(r)
   336  	defer s.pop(s.mark())
   337  	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
   338  	// mark top of stack before any variables in the body are pushed.
   339  	mark := s.mark()
   340  	s.rangeDepth++
   341  	oneIteration := func(index, elem reflect.Value) rangeControl {
   342  		// Set top var (lexically the second if there are two) to the element.
   343  		if len(r.Pipe.Decl) > 0 {
   344  			s.setVar(1, elem)
   345  		}
   346  		// Set next var (lexically the first if there are two) to the index.
   347  		if len(r.Pipe.Decl) > 1 {
   348  			s.setVar(2, index)
   349  		}
   350  		ctrl := s.walk(elem, r.List)
   351  		s.pop(mark)
   352  		return ctrl
   353  	}
   354  	switch val.Kind() {
   355  	case reflect.Array, reflect.Slice:
   356  		if val.Len() == 0 {
   357  			break
   358  		}
   359  		for i := 0; i < val.Len(); i++ {
   360  			if ctrl := oneIteration(reflect.ValueOf(i), val.Index(i)); ctrl == rangeBreak {
   361  				break
   362  			}
   363  		}
   364  		s.rangeDepth--
   365  		return rangeNone
   366  	case reflect.Map:
   367  		if val.Len() == 0 {
   368  			break
   369  		}
   370  		for _, key := range sortKeys(val.MapKeys()) {
   371  			if ctrl := oneIteration(key, val.MapIndex(key)); ctrl == rangeBreak {
   372  				break
   373  			}
   374  		}
   375  		s.rangeDepth--
   376  		return rangeNone
   377  	case reflect.Chan:
   378  		if val.IsNil() {
   379  			break
   380  		}
   381  		i := 0
   382  		for ; ; i++ {
   383  			elem, ok := val.Recv()
   384  			if !ok {
   385  				break
   386  			}
   387  			if ctrl := oneIteration(reflect.ValueOf(i), elem); ctrl == rangeBreak {
   388  				break
   389  			}
   390  		}
   391  		if i == 0 {
   392  			break
   393  		}
   394  		s.rangeDepth--
   395  		return rangeNone
   396  	case reflect.Invalid:
   397  		break // An invalid value is likely a nil map, etc. and acts like an empty map.
   398  	default:
   399  		s.errorf("range can't iterate over %v", val)
   400  	}
   401  	s.rangeDepth--
   402  	if r.ElseList != nil {
   403  		return s.walk(dot, r.ElseList)
   404  	}
   405  	return rangeNone
   406  }
   407  
   408  func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
   409  	s.at(t)
   410  	tmpl := s.tmpl.tmpl[t.Name]
   411  	if tmpl == nil {
   412  		s.errorf("template %q not defined", t.Name)
   413  	}
   414  	if s.depth == maxExecDepth {
   415  		s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
   416  	}
   417  	// Variables declared by the pipeline persist.
   418  	dot = s.evalPipeline(dot, t.Pipe)
   419  	newState := *s
   420  	newState.depth++
   421  	newState.tmpl = tmpl
   422  	// No dynamic scoping: template invocations inherit no variables.
   423  	newState.vars = []variable{{"$", dot}}
   424  	newState.walk(dot, tmpl.Root)
   425  }
   426  
   427  // Eval functions evaluate pipelines, commands, and their elements and extract
   428  // values from the data structure by examining fields, calling methods, and so on.
   429  // The printing of those values happens only through walk functions.
   430  
   431  // evalPipeline returns the value acquired by evaluating a pipeline. If the
   432  // pipeline has a variable declaration, the variable will be pushed on the
   433  // stack. Callers should therefore pop the stack after they are finished
   434  // executing commands depending on the pipeline value.
   435  func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
   436  	if pipe == nil {
   437  		return
   438  	}
   439  	s.at(pipe)
   440  	for _, cmd := range pipe.Cmds {
   441  		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
   442  		// If the object has type interface{}, dig down one level to the thing inside.
   443  		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
   444  			value = reflect.ValueOf(value.Interface()) // lovely!
   445  		}
   446  	}
   447  	for _, variable := range pipe.Decl {
   448  		s.push(variable.Ident[0], value)
   449  	}
   450  	return value
   451  }
   452  
   453  func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
   454  	if len(args) > 1 || final.IsValid() {
   455  		s.errorf("can't give argument to non-function %s", args[0])
   456  	}
   457  }
   458  
   459  func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
   460  	firstWord := cmd.Args[0]
   461  	switch n := firstWord.(type) {
   462  	case *parse.FieldNode:
   463  		return s.evalFieldNode(dot, n, cmd.Args, final)
   464  	case *parse.ChainNode:
   465  		return s.evalChainNode(dot, n, cmd.Args, final)
   466  	case *parse.IdentifierNode:
   467  		// Must be a function.
   468  		return s.evalFunction(dot, n, cmd, cmd.Args, final)
   469  	case *parse.PipeNode:
   470  		// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
   471  		return s.evalPipeline(dot, n)
   472  	case *parse.VariableNode:
   473  		return s.evalVariableNode(dot, n, cmd.Args, final)
   474  	}
   475  	s.at(firstWord)
   476  	s.notAFunction(cmd.Args, final)
   477  	switch word := firstWord.(type) {
   478  	case *parse.BoolNode:
   479  		return reflect.ValueOf(word.True)
   480  	case *parse.DotNode:
   481  		return dot
   482  	case *parse.NilNode:
   483  		s.errorf("nil is not a command")
   484  	case *parse.NumberNode:
   485  		return s.idealConstant(word)
   486  	case *parse.StringNode:
   487  		return reflect.ValueOf(word.Text)
   488  	}
   489  	s.errorf("can't evaluate command %q", firstWord)
   490  	panic("not reached")
   491  }
   492  
   493  // idealConstant is called to return the value of a number in a context where
   494  // we don't know the type. In that case, the syntax of the number tells us
   495  // its type, and we use Go rules to resolve. Note there is no such thing as
   496  // a uint ideal constant in this situation - the value must be of int type.
   497  func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
   498  	// These are ideal constants but we don't know the type
   499  	// and we have no context.  (If it was a method argument,
   500  	// we'd know what we need.) The syntax guides us to some extent.
   501  	s.at(constant)
   502  	switch {
   503  	case constant.IsComplex:
   504  		return reflect.ValueOf(constant.Complex128) // incontrovertible.
   505  	case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"):
   506  		return reflect.ValueOf(constant.Float64)
   507  	case constant.IsInt:
   508  		n := int(constant.Int64)
   509  		if int64(n) != constant.Int64 {
   510  			s.errorf("%s overflows int", constant.Text)
   511  		}
   512  		return reflect.ValueOf(n)
   513  	case constant.IsUint:
   514  		s.errorf("%s overflows int", constant.Text)
   515  	}
   516  	return zero
   517  }
   518  
   519  func isHexConstant(s string) bool {
   520  	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
   521  }
   522  
   523  func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
   524  	s.at(field)
   525  	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
   526  }
   527  
   528  func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
   529  	s.at(chain)
   530  	if len(chain.Field) == 0 {
   531  		s.errorf("internal error: no fields in evalChainNode")
   532  	}
   533  	if chain.Node.Type() == parse.NodeNil {
   534  		s.errorf("indirection through explicit nil in %s", chain)
   535  	}
   536  	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
   537  	pipe := s.evalArg(dot, nil, chain.Node)
   538  	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
   539  }
   540  
   541  func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
   542  	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
   543  	s.at(variable)
   544  	value := s.varValue(variable.Ident[0])
   545  	if len(variable.Ident) == 1 {
   546  		s.notAFunction(args, final)
   547  		return value
   548  	}
   549  	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
   550  }
   551  
   552  // evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
   553  // dot is the environment in which to evaluate arguments, while
   554  // receiver is the value being walked along the chain.
   555  func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
   556  	n := len(ident)
   557  	for i := 0; i < n-1; i++ {
   558  		receiver = s.evalField(dot, ident[i], node, nil, zero, receiver)
   559  	}
   560  	// Now if it's a method, it gets the arguments.
   561  	return s.evalField(dot, ident[n-1], node, args, final, receiver)
   562  }
   563  
   564  func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
   565  	s.at(node)
   566  	name := node.Ident
   567  	function, ok := findFunction(name, s.tmpl)
   568  	if !ok {
   569  		s.errorf("%q is not a defined function", name)
   570  	}
   571  	return s.evalCall(dot, function, cmd, name, args, final)
   572  }
   573  
   574  // evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
   575  // The 'final' argument represents the return value from the preceding
   576  // value of the pipeline, if any.
   577  func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
   578  	if !receiver.IsValid() {
   579  		if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
   580  			s.errorf("nil data; no entry for key %q", fieldName)
   581  		}
   582  		return zero
   583  	}
   584  	typ := receiver.Type()
   585  	receiver, isNil := indirect(receiver)
   586  	// Unless it's an interface, need to get to a value of type *T to guarantee
   587  	// we see all methods of T and *T.
   588  	ptr := receiver
   589  	if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() {
   590  		ptr = ptr.Addr()
   591  	}
   592  	if method := ptr.MethodByName(fieldName); method.IsValid() {
   593  		return s.evalCall(dot, method, node, fieldName, args, final)
   594  	}
   595  	hasArgs := len(args) > 1 || final.IsValid()
   596  	// It's not a method; must be a field of a struct or an element of a map.
   597  	switch receiver.Kind() {
   598  	case reflect.Struct:
   599  		tField, ok := receiver.Type().FieldByName(fieldName)
   600  		if ok {
   601  			if isNil {
   602  				s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   603  			}
   604  			field := receiver.FieldByIndex(tField.Index)
   605  			if tField.PkgPath != "" { // field is unexported
   606  				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
   607  			}
   608  			// If it's a function, we must call it.
   609  			if hasArgs {
   610  				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
   611  			}
   612  			return field
   613  		}
   614  	case reflect.Map:
   615  		if isNil {
   616  			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   617  		}
   618  		// If it's a map, attempt to use the field name as a key.
   619  		nameVal := reflect.ValueOf(fieldName)
   620  		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
   621  			if hasArgs {
   622  				s.errorf("%s is not a method but has arguments", fieldName)
   623  			}
   624  			result := receiver.MapIndex(nameVal)
   625  			if !result.IsValid() {
   626  				switch s.tmpl.option.missingKey {
   627  				case mapInvalid:
   628  					// Just use the invalid value.
   629  				case mapZeroValue:
   630  					result = reflect.Zero(receiver.Type().Elem())
   631  				case mapError:
   632  					s.errorf("map has no entry for key %q", fieldName)
   633  				}
   634  			}
   635  			return result
   636  		}
   637  	}
   638  	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
   639  	panic("not reached")
   640  }
   641  
   642  var (
   643  	errorType        = reflect.TypeOf((*error)(nil)).Elem()
   644  	fmtStringerType  = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
   645  	reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
   646  )
   647  
   648  // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
   649  // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
   650  // as the function itself.
   651  func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
   652  	if args != nil {
   653  		args = args[1:] // Zeroth arg is function name/node; not passed to function.
   654  	}
   655  	typ := fun.Type()
   656  	numIn := len(args)
   657  	if final.IsValid() {
   658  		numIn++
   659  	}
   660  	numFixed := len(args)
   661  	if typ.IsVariadic() {
   662  		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
   663  		if numIn < numFixed {
   664  			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
   665  		}
   666  	} else if numIn != typ.NumIn() {
   667  		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
   668  	}
   669  	if !goodFunc(typ) {
   670  		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
   671  		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
   672  	}
   673  	// Build the arg list.
   674  	argv := make([]reflect.Value, numIn)
   675  	// Args must be evaluated. Fixed args first.
   676  	i := 0
   677  	for ; i < numFixed && i < len(args); i++ {
   678  		argv[i] = s.evalArg(dot, typ.In(i), args[i])
   679  	}
   680  	// Now the ... args.
   681  	if typ.IsVariadic() {
   682  		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
   683  		for ; i < len(args); i++ {
   684  			argv[i] = s.evalArg(dot, argType, args[i])
   685  		}
   686  	}
   687  	// Add final value if necessary.
   688  	if final.IsValid() {
   689  		t := typ.In(typ.NumIn() - 1)
   690  		if typ.IsVariadic() {
   691  			if numIn-1 < numFixed {
   692  				// The added final argument corresponds to a fixed parameter of the function.
   693  				// Validate against the type of the actual parameter.
   694  				t = typ.In(numIn - 1)
   695  			} else {
   696  				// The added final argument corresponds to the variadic part.
   697  				// Validate against the type of the elements of the variadic slice.
   698  				t = t.Elem()
   699  			}
   700  		}
   701  		argv[i] = s.validateType(final, t)
   702  	}
   703  	result := fun.Call(argv)
   704  	// If we have an error that is not nil, stop execution and return that error to the caller.
   705  	if len(result) == 2 && !result[1].IsNil() {
   706  		s.at(node)
   707  		s.errorf("error calling %s: %s", name, result[1].Interface().(error))
   708  	}
   709  	v := result[0]
   710  	if v.Type() == reflectValueType {
   711  		v = v.Interface().(reflect.Value)
   712  	}
   713  	return v
   714  }
   715  
   716  // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
   717  func canBeNil(typ reflect.Type) bool {
   718  	switch typ.Kind() {
   719  	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
   720  		return true
   721  	case reflect.Struct:
   722  		return typ == reflectValueType
   723  	}
   724  	return false
   725  }
   726  
   727  // validateType guarantees that the value is valid and assignable to the type.
   728  func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
   729  	if !value.IsValid() {
   730  		if typ == nil || canBeNil(typ) {
   731  			// An untyped nil interface{}. Accept as a proper nil value.
   732  			return reflect.Zero(typ)
   733  		}
   734  		s.errorf("invalid value; expected %s", typ)
   735  	}
   736  	if typ == reflectValueType && value.Type() != typ {
   737  		return reflect.ValueOf(value)
   738  	}
   739  	if typ != nil && !value.Type().AssignableTo(typ) {
   740  		if value.Kind() == reflect.Interface && !value.IsNil() {
   741  			value = value.Elem()
   742  			if value.Type().AssignableTo(typ) {
   743  				return value
   744  			}
   745  			// fallthrough
   746  		}
   747  		// Does one dereference or indirection work? We could do more, as we
   748  		// do with method receivers, but that gets messy and method receivers
   749  		// are much more constrained, so it makes more sense there than here.
   750  		// Besides, one is almost always all you need.
   751  		switch {
   752  		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
   753  			value = value.Elem()
   754  			if !value.IsValid() {
   755  				s.errorf("dereference of nil pointer of type %s", typ)
   756  			}
   757  		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
   758  			value = value.Addr()
   759  		default:
   760  			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
   761  		}
   762  	}
   763  	return value
   764  }
   765  
   766  func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
   767  	s.at(n)
   768  	switch arg := n.(type) {
   769  	case *parse.DotNode:
   770  		return s.validateType(dot, typ)
   771  	case *parse.NilNode:
   772  		if canBeNil(typ) {
   773  			return reflect.Zero(typ)
   774  		}
   775  		s.errorf("cannot assign nil to %s", typ)
   776  	case *parse.FieldNode:
   777  		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ)
   778  	case *parse.VariableNode:
   779  		return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ)
   780  	case *parse.PipeNode:
   781  		return s.validateType(s.evalPipeline(dot, arg), typ)
   782  	case *parse.IdentifierNode:
   783  		return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ)
   784  	case *parse.ChainNode:
   785  		return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ)
   786  	}
   787  	switch typ.Kind() {
   788  	case reflect.Bool:
   789  		return s.evalBool(typ, n)
   790  	case reflect.Complex64, reflect.Complex128:
   791  		return s.evalComplex(typ, n)
   792  	case reflect.Float32, reflect.Float64:
   793  		return s.evalFloat(typ, n)
   794  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   795  		return s.evalInteger(typ, n)
   796  	case reflect.Interface:
   797  		if typ.NumMethod() == 0 {
   798  			return s.evalEmptyInterface(dot, n)
   799  		}
   800  	case reflect.Struct:
   801  		if typ == reflectValueType {
   802  			return reflect.ValueOf(s.evalEmptyInterface(dot, n))
   803  		}
   804  	case reflect.String:
   805  		return s.evalString(typ, n)
   806  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   807  		return s.evalUnsignedInteger(typ, n)
   808  	}
   809  	s.errorf("can't handle %s for arg of type %s", n, typ)
   810  	panic("not reached")
   811  }
   812  
   813  func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
   814  	s.at(n)
   815  	if n, ok := n.(*parse.BoolNode); ok {
   816  		value := reflect.New(typ).Elem()
   817  		value.SetBool(n.True)
   818  		return value
   819  	}
   820  	s.errorf("expected bool; found %s", n)
   821  	panic("not reached")
   822  }
   823  
   824  func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
   825  	s.at(n)
   826  	if n, ok := n.(*parse.StringNode); ok {
   827  		value := reflect.New(typ).Elem()
   828  		value.SetString(n.Text)
   829  		return value
   830  	}
   831  	s.errorf("expected string; found %s", n)
   832  	panic("not reached")
   833  }
   834  
   835  func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
   836  	s.at(n)
   837  	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
   838  		value := reflect.New(typ).Elem()
   839  		value.SetInt(n.Int64)
   840  		return value
   841  	}
   842  	s.errorf("expected integer; found %s", n)
   843  	panic("not reached")
   844  }
   845  
   846  func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
   847  	s.at(n)
   848  	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
   849  		value := reflect.New(typ).Elem()
   850  		value.SetUint(n.Uint64)
   851  		return value
   852  	}
   853  	s.errorf("expected unsigned integer; found %s", n)
   854  	panic("not reached")
   855  }
   856  
   857  func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
   858  	s.at(n)
   859  	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
   860  		value := reflect.New(typ).Elem()
   861  		value.SetFloat(n.Float64)
   862  		return value
   863  	}
   864  	s.errorf("expected float; found %s", n)
   865  	panic("not reached")
   866  }
   867  
   868  func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
   869  	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
   870  		value := reflect.New(typ).Elem()
   871  		value.SetComplex(n.Complex128)
   872  		return value
   873  	}
   874  	s.errorf("expected complex; found %s", n)
   875  	panic("not reached")
   876  }
   877  
   878  func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
   879  	s.at(n)
   880  	switch n := n.(type) {
   881  	case *parse.BoolNode:
   882  		return reflect.ValueOf(n.True)
   883  	case *parse.DotNode:
   884  		return dot
   885  	case *parse.FieldNode:
   886  		return s.evalFieldNode(dot, n, nil, zero)
   887  	case *parse.IdentifierNode:
   888  		return s.evalFunction(dot, n, n, nil, zero)
   889  	case *parse.NilNode:
   890  		// NilNode is handled in evalArg, the only place that calls here.
   891  		s.errorf("evalEmptyInterface: nil (can't happen)")
   892  	case *parse.NumberNode:
   893  		return s.idealConstant(n)
   894  	case *parse.StringNode:
   895  		return reflect.ValueOf(n.Text)
   896  	case *parse.VariableNode:
   897  		return s.evalVariableNode(dot, n, nil, zero)
   898  	case *parse.PipeNode:
   899  		return s.evalPipeline(dot, n)
   900  	}
   901  	s.errorf("can't handle assignment of %s to empty interface argument", n)
   902  	panic("not reached")
   903  }
   904  
   905  // indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
   906  func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
   907  	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
   908  		if v.IsNil() {
   909  			return v, true
   910  		}
   911  	}
   912  	return v, false
   913  }
   914  
   915  // indirectInterface returns the concrete value in an interface value,
   916  // or else the zero reflect.Value.
   917  // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
   918  // the fact that x was an interface value is forgotten.
   919  func indirectInterface(v reflect.Value) reflect.Value {
   920  	if v.Kind() != reflect.Interface {
   921  		return v
   922  	}
   923  	if v.IsNil() {
   924  		return reflect.Value{}
   925  	}
   926  	return v.Elem()
   927  }
   928  
   929  // printValue writes the textual representation of the value to the output of
   930  // the template.
   931  func (s *state) printValue(n parse.Node, v reflect.Value) {
   932  	s.at(n)
   933  	iface, ok := printableValue(v)
   934  	if !ok {
   935  		s.errorf("can't print %s of type %s", n, v.Type())
   936  	}
   937  	_, err := fmt.Fprint(s.wr, iface)
   938  	if err != nil {
   939  		s.writeError(err)
   940  	}
   941  }
   942  
   943  // printableValue returns the, possibly indirected, interface value inside v that
   944  // is best for a call to formatted printer.
   945  func printableValue(v reflect.Value) (interface{}, bool) {
   946  	if v.Kind() == reflect.Ptr {
   947  		v, _ = indirect(v) // fmt.Fprint handles nil.
   948  	}
   949  	if !v.IsValid() {
   950  		return "<no value>", true
   951  	}
   952  
   953  	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
   954  		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
   955  			v = v.Addr()
   956  		} else {
   957  			switch v.Kind() {
   958  			case reflect.Chan, reflect.Func:
   959  				return nil, false
   960  			}
   961  		}
   962  	}
   963  	return v.Interface(), true
   964  }
   965  
   966  // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
   967  func sortKeys(v []reflect.Value) []reflect.Value {
   968  	if len(v) <= 1 {
   969  		return v
   970  	}
   971  	switch v[0].Kind() {
   972  	case reflect.Float32, reflect.Float64:
   973  		sort.Slice(v, func(i, j int) bool {
   974  			return v[i].Float() < v[j].Float()
   975  		})
   976  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   977  		sort.Slice(v, func(i, j int) bool {
   978  			return v[i].Int() < v[j].Int()
   979  		})
   980  	case reflect.String:
   981  		sort.Slice(v, func(i, j int) bool {
   982  			return v[i].String() < v[j].String()
   983  		})
   984  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   985  		sort.Slice(v, func(i, j int) bool {
   986  			return v[i].Uint() < v[j].Uint()
   987  		})
   988  	}
   989  	return v
   990  }