github.com/tacshi/go-ethereum@v0.0.0-20230616113857-84a434e20921/internal/ethapi/api.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package ethapi 18 19 import ( 20 "context" 21 "encoding/hex" 22 "errors" 23 "fmt" 24 "math/big" 25 "strings" 26 "time" 27 28 "github.com/davecgh/go-spew/spew" 29 "github.com/tacshi/go-ethereum/accounts" 30 "github.com/tacshi/go-ethereum/accounts/abi" 31 "github.com/tacshi/go-ethereum/accounts/keystore" 32 "github.com/tacshi/go-ethereum/accounts/scwallet" 33 "github.com/tacshi/go-ethereum/common" 34 "github.com/tacshi/go-ethereum/common/hexutil" 35 "github.com/tacshi/go-ethereum/common/math" 36 "github.com/tacshi/go-ethereum/consensus/ethash" 37 "github.com/tacshi/go-ethereum/consensus/misc" 38 "github.com/tacshi/go-ethereum/core" 39 "github.com/tacshi/go-ethereum/core/state" 40 "github.com/tacshi/go-ethereum/core/types" 41 "github.com/tacshi/go-ethereum/core/vm" 42 "github.com/tacshi/go-ethereum/crypto" 43 "github.com/tacshi/go-ethereum/eth/tracers/logger" 44 "github.com/tacshi/go-ethereum/log" 45 "github.com/tacshi/go-ethereum/p2p" 46 "github.com/tacshi/go-ethereum/params" 47 "github.com/tacshi/go-ethereum/rlp" 48 "github.com/tacshi/go-ethereum/rpc" 49 "github.com/tyler-smith/go-bip39" 50 ) 51 52 func fallbackClientFor(b Backend, err error) types.FallbackClient { 53 if !errors.Is(err, types.ErrUseFallback) { 54 return nil 55 } 56 return b.FallbackClient() 57 } 58 59 // EthereumAPI provides an API to access Ethereum related information. 60 type EthereumAPI struct { 61 b Backend 62 } 63 64 // NewEthereumAPI creates a new Ethereum protocol API. 65 func NewEthereumAPI(b Backend) *EthereumAPI { 66 return &EthereumAPI{b} 67 } 68 69 // GasPrice returns a suggestion for a gas price for legacy transactions. 70 func (s *EthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) { 71 tipcap, err := s.b.SuggestGasTipCap(ctx) 72 if err != nil { 73 return nil, err 74 } 75 if head := s.b.CurrentHeader(); head.BaseFee != nil { 76 tipcap.Add(tipcap, head.BaseFee) 77 } 78 return (*hexutil.Big)(tipcap), err 79 } 80 81 // MaxPriorityFeePerGas returns a suggestion for a gas tip cap for dynamic fee transactions. 82 func (s *EthereumAPI) MaxPriorityFeePerGas(ctx context.Context) (*hexutil.Big, error) { 83 tipcap, err := s.b.SuggestGasTipCap(ctx) 84 if err != nil { 85 return nil, err 86 } 87 return (*hexutil.Big)(tipcap), err 88 } 89 90 type feeHistoryResult struct { 91 OldestBlock *hexutil.Big `json:"oldestBlock"` 92 Reward [][]*hexutil.Big `json:"reward,omitempty"` 93 BaseFee []*hexutil.Big `json:"baseFeePerGas,omitempty"` 94 GasUsedRatio []float64 `json:"gasUsedRatio"` 95 } 96 97 // FeeHistory returns the fee market history. 98 func (s *EthereumAPI) FeeHistory(ctx context.Context, blockCount math.HexOrDecimal64, lastBlock rpc.BlockNumber, rewardPercentiles []float64) (*feeHistoryResult, error) { 99 oldest, reward, baseFee, gasUsed, err := s.b.FeeHistory(ctx, int(blockCount), lastBlock, rewardPercentiles) 100 if err != nil { 101 return nil, err 102 } 103 results := &feeHistoryResult{ 104 OldestBlock: (*hexutil.Big)(oldest), 105 GasUsedRatio: gasUsed, 106 } 107 if reward != nil { 108 results.Reward = make([][]*hexutil.Big, len(reward)) 109 for i, w := range reward { 110 results.Reward[i] = make([]*hexutil.Big, len(w)) 111 for j, v := range w { 112 results.Reward[i][j] = (*hexutil.Big)(v) 113 } 114 } 115 } 116 if baseFee != nil { 117 results.BaseFee = make([]*hexutil.Big, len(baseFee)) 118 for i, v := range baseFee { 119 results.BaseFee[i] = (*hexutil.Big)(v) 120 } 121 } 122 return results, nil 123 } 124 125 // Syncing returns false in case the node is currently not syncing with the network. It can be up to date or has not 126 // yet received the latest block headers from its pears. In case it is synchronizing: 127 // - startingBlock: block number this node started to synchronise from 128 // - currentBlock: block number this node is currently importing 129 // - highestBlock: block number of the highest block header this node has received from peers 130 // - pulledStates: number of state entries processed until now 131 // - knownStates: number of known state entries that still need to be pulled 132 func (s *EthereumAPI) Syncing() (interface{}, error) { 133 progress := s.b.SyncProgressMap() 134 135 if len(progress) == 0 { 136 return false, nil 137 } 138 return progress, nil 139 } 140 141 // TxPoolAPI offers and API for the transaction pool. It only operates on data that is non confidential. 142 type TxPoolAPI struct { 143 b Backend 144 } 145 146 // NewTxPoolAPI creates a new tx pool service that gives information about the transaction pool. 147 func NewTxPoolAPI(b Backend) *TxPoolAPI { 148 return &TxPoolAPI{b} 149 } 150 151 // Content returns the transactions contained within the transaction pool. 152 func (s *TxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction { 153 content := map[string]map[string]map[string]*RPCTransaction{ 154 "pending": make(map[string]map[string]*RPCTransaction), 155 "queued": make(map[string]map[string]*RPCTransaction), 156 } 157 pending, queue := s.b.TxPoolContent() 158 curHeader := s.b.CurrentHeader() 159 // Flatten the pending transactions 160 for account, txs := range pending { 161 dump := make(map[string]*RPCTransaction) 162 for _, tx := range txs { 163 dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 164 } 165 content["pending"][account.Hex()] = dump 166 } 167 // Flatten the queued transactions 168 for account, txs := range queue { 169 dump := make(map[string]*RPCTransaction) 170 for _, tx := range txs { 171 dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 172 } 173 content["queued"][account.Hex()] = dump 174 } 175 return content 176 } 177 178 // ContentFrom returns the transactions contained within the transaction pool. 179 func (s *TxPoolAPI) ContentFrom(addr common.Address) map[string]map[string]*RPCTransaction { 180 content := make(map[string]map[string]*RPCTransaction, 2) 181 pending, queue := s.b.TxPoolContentFrom(addr) 182 curHeader := s.b.CurrentHeader() 183 184 // Build the pending transactions 185 dump := make(map[string]*RPCTransaction, len(pending)) 186 for _, tx := range pending { 187 dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 188 } 189 content["pending"] = dump 190 191 // Build the queued transactions 192 dump = make(map[string]*RPCTransaction, len(queue)) 193 for _, tx := range queue { 194 dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 195 } 196 content["queued"] = dump 197 198 return content 199 } 200 201 // Status returns the number of pending and queued transaction in the pool. 202 func (s *TxPoolAPI) Status() map[string]hexutil.Uint { 203 pending, queue := s.b.Stats() 204 return map[string]hexutil.Uint{ 205 "pending": hexutil.Uint(pending), 206 "queued": hexutil.Uint(queue), 207 } 208 } 209 210 // Inspect retrieves the content of the transaction pool and flattens it into an 211 // easily inspectable list. 212 func (s *TxPoolAPI) Inspect() map[string]map[string]map[string]string { 213 content := map[string]map[string]map[string]string{ 214 "pending": make(map[string]map[string]string), 215 "queued": make(map[string]map[string]string), 216 } 217 pending, queue := s.b.TxPoolContent() 218 219 // Define a formatter to flatten a transaction into a string 220 var format = func(tx *types.Transaction) string { 221 if to := tx.To(); to != nil { 222 return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice()) 223 } 224 return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice()) 225 } 226 // Flatten the pending transactions 227 for account, txs := range pending { 228 dump := make(map[string]string) 229 for _, tx := range txs { 230 dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx) 231 } 232 content["pending"][account.Hex()] = dump 233 } 234 // Flatten the queued transactions 235 for account, txs := range queue { 236 dump := make(map[string]string) 237 for _, tx := range txs { 238 dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx) 239 } 240 content["queued"][account.Hex()] = dump 241 } 242 return content 243 } 244 245 // EthereumAccountAPI provides an API to access accounts managed by this node. 246 // It offers only methods that can retrieve accounts. 247 type EthereumAccountAPI struct { 248 am *accounts.Manager 249 } 250 251 // NewEthereumAccountAPI creates a new EthereumAccountAPI. 252 func NewEthereumAccountAPI(am *accounts.Manager) *EthereumAccountAPI { 253 return &EthereumAccountAPI{am: am} 254 } 255 256 // Accounts returns the collection of accounts this node manages. 257 func (s *EthereumAccountAPI) Accounts() []common.Address { 258 return s.am.Accounts() 259 } 260 261 // PersonalAccountAPI provides an API to access accounts managed by this node. 262 // It offers methods to create, (un)lock en list accounts. Some methods accept 263 // passwords and are therefore considered private by default. 264 type PersonalAccountAPI struct { 265 am *accounts.Manager 266 nonceLock *AddrLocker 267 b Backend 268 } 269 270 // NewPersonalAccountAPI create a new PersonalAccountAPI. 271 func NewPersonalAccountAPI(b Backend, nonceLock *AddrLocker) *PersonalAccountAPI { 272 return &PersonalAccountAPI{ 273 am: b.AccountManager(), 274 nonceLock: nonceLock, 275 b: b, 276 } 277 } 278 279 // ListAccounts will return a list of addresses for accounts this node manages. 280 func (s *PersonalAccountAPI) ListAccounts() []common.Address { 281 return s.am.Accounts() 282 } 283 284 // rawWallet is a JSON representation of an accounts.Wallet interface, with its 285 // data contents extracted into plain fields. 286 type rawWallet struct { 287 URL string `json:"url"` 288 Status string `json:"status"` 289 Failure string `json:"failure,omitempty"` 290 Accounts []accounts.Account `json:"accounts,omitempty"` 291 } 292 293 // ListWallets will return a list of wallets this node manages. 294 func (s *PersonalAccountAPI) ListWallets() []rawWallet { 295 wallets := make([]rawWallet, 0) // return [] instead of nil if empty 296 for _, wallet := range s.am.Wallets() { 297 status, failure := wallet.Status() 298 299 raw := rawWallet{ 300 URL: wallet.URL().String(), 301 Status: status, 302 Accounts: wallet.Accounts(), 303 } 304 if failure != nil { 305 raw.Failure = failure.Error() 306 } 307 wallets = append(wallets, raw) 308 } 309 return wallets 310 } 311 312 // OpenWallet initiates a hardware wallet opening procedure, establishing a USB 313 // connection and attempting to authenticate via the provided passphrase. Note, 314 // the method may return an extra challenge requiring a second open (e.g. the 315 // Trezor PIN matrix challenge). 316 func (s *PersonalAccountAPI) OpenWallet(url string, passphrase *string) error { 317 wallet, err := s.am.Wallet(url) 318 if err != nil { 319 return err 320 } 321 pass := "" 322 if passphrase != nil { 323 pass = *passphrase 324 } 325 return wallet.Open(pass) 326 } 327 328 // DeriveAccount requests a HD wallet to derive a new account, optionally pinning 329 // it for later reuse. 330 func (s *PersonalAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) { 331 wallet, err := s.am.Wallet(url) 332 if err != nil { 333 return accounts.Account{}, err 334 } 335 derivPath, err := accounts.ParseDerivationPath(path) 336 if err != nil { 337 return accounts.Account{}, err 338 } 339 if pin == nil { 340 pin = new(bool) 341 } 342 return wallet.Derive(derivPath, *pin) 343 } 344 345 // NewAccount will create a new account and returns the address for the new account. 346 func (s *PersonalAccountAPI) NewAccount(password string) (common.Address, error) { 347 ks, err := fetchKeystore(s.am) 348 if err != nil { 349 return common.Address{}, err 350 } 351 acc, err := ks.NewAccount(password) 352 if err == nil { 353 log.Info("Your new key was generated", "address", acc.Address) 354 log.Warn("Please backup your key file!", "path", acc.URL.Path) 355 log.Warn("Please remember your password!") 356 return acc.Address, nil 357 } 358 return common.Address{}, err 359 } 360 361 // fetchKeystore retrieves the encrypted keystore from the account manager. 362 func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) { 363 if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 { 364 return ks[0].(*keystore.KeyStore), nil 365 } 366 return nil, errors.New("local keystore not used") 367 } 368 369 // ImportRawKey stores the given hex encoded ECDSA key into the key directory, 370 // encrypting it with the passphrase. 371 func (s *PersonalAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) { 372 key, err := crypto.HexToECDSA(privkey) 373 if err != nil { 374 return common.Address{}, err 375 } 376 ks, err := fetchKeystore(s.am) 377 if err != nil { 378 return common.Address{}, err 379 } 380 acc, err := ks.ImportECDSA(key, password) 381 return acc.Address, err 382 } 383 384 // UnlockAccount will unlock the account associated with the given address with 385 // the given password for duration seconds. If duration is nil it will use a 386 // default of 300 seconds. It returns an indication if the account was unlocked. 387 func (s *PersonalAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) { 388 // When the API is exposed by external RPC(http, ws etc), unless the user 389 // explicitly specifies to allow the insecure account unlocking, otherwise 390 // it is disabled. 391 if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed { 392 return false, errors.New("account unlock with HTTP access is forbidden") 393 } 394 395 const max = uint64(time.Duration(math.MaxInt64) / time.Second) 396 var d time.Duration 397 if duration == nil { 398 d = 300 * time.Second 399 } else if *duration > max { 400 return false, errors.New("unlock duration too large") 401 } else { 402 d = time.Duration(*duration) * time.Second 403 } 404 ks, err := fetchKeystore(s.am) 405 if err != nil { 406 return false, err 407 } 408 err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d) 409 if err != nil { 410 log.Warn("Failed account unlock attempt", "address", addr, "err", err) 411 } 412 return err == nil, err 413 } 414 415 // LockAccount will lock the account associated with the given address when it's unlocked. 416 func (s *PersonalAccountAPI) LockAccount(addr common.Address) bool { 417 if ks, err := fetchKeystore(s.am); err == nil { 418 return ks.Lock(addr) == nil 419 } 420 return false 421 } 422 423 // signTransaction sets defaults and signs the given transaction 424 // NOTE: the caller needs to ensure that the nonceLock is held, if applicable, 425 // and release it after the transaction has been submitted to the tx pool 426 func (s *PersonalAccountAPI) signTransaction(ctx context.Context, args *TransactionArgs, passwd string) (*types.Transaction, error) { 427 // Look up the wallet containing the requested signer 428 account := accounts.Account{Address: args.from()} 429 wallet, err := s.am.Find(account) 430 if err != nil { 431 return nil, err 432 } 433 // Set some sanity defaults and terminate on failure 434 if err := args.setDefaults(ctx, s.b); err != nil { 435 return nil, err 436 } 437 // Assemble the transaction and sign with the wallet 438 tx := args.toTransaction() 439 440 return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID) 441 } 442 443 // SendTransaction will create a transaction from the given arguments and 444 // tries to sign it with the key associated with args.From. If the given 445 // passwd isn't able to decrypt the key it fails. 446 func (s *PersonalAccountAPI) SendTransaction(ctx context.Context, args TransactionArgs, passwd string) (common.Hash, error) { 447 if args.Nonce == nil { 448 // Hold the mutex around signing to prevent concurrent assignment of 449 // the same nonce to multiple accounts. 450 s.nonceLock.LockAddr(args.from()) 451 defer s.nonceLock.UnlockAddr(args.from()) 452 } 453 signed, err := s.signTransaction(ctx, &args, passwd) 454 if err != nil { 455 log.Warn("Failed transaction send attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err) 456 return common.Hash{}, err 457 } 458 return SubmitTransaction(ctx, s.b, signed) 459 } 460 461 // SignTransaction will create a transaction from the given arguments and 462 // tries to sign it with the key associated with args.From. If the given passwd isn't 463 // able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast 464 // to other nodes 465 func (s *PersonalAccountAPI) SignTransaction(ctx context.Context, args TransactionArgs, passwd string) (*SignTransactionResult, error) { 466 // No need to obtain the noncelock mutex, since we won't be sending this 467 // tx into the transaction pool, but right back to the user 468 if args.From == nil { 469 return nil, fmt.Errorf("sender not specified") 470 } 471 if args.Gas == nil { 472 return nil, fmt.Errorf("gas not specified") 473 } 474 if args.GasPrice == nil && (args.MaxFeePerGas == nil || args.MaxPriorityFeePerGas == nil) { 475 return nil, fmt.Errorf("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas") 476 } 477 if args.Nonce == nil { 478 return nil, fmt.Errorf("nonce not specified") 479 } 480 // Before actually signing the transaction, ensure the transaction fee is reasonable. 481 tx := args.toTransaction() 482 if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil { 483 return nil, err 484 } 485 signed, err := s.signTransaction(ctx, &args, passwd) 486 if err != nil { 487 log.Warn("Failed transaction sign attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err) 488 return nil, err 489 } 490 data, err := signed.MarshalBinary() 491 if err != nil { 492 return nil, err 493 } 494 return &SignTransactionResult{data, signed}, nil 495 } 496 497 // Sign calculates an Ethereum ECDSA signature for: 498 // keccak256("\x19Ethereum Signed Message:\n" + len(message) + message)) 499 // 500 // Note, the produced signature conforms to the secp256k1 curve R, S and V values, 501 // where the V value will be 27 or 28 for legacy reasons. 502 // 503 // The key used to calculate the signature is decrypted with the given password. 504 // 505 // https://github.com/tacshi/go-ethereum/wiki/Management-APIs#personal_sign 506 func (s *PersonalAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) { 507 // Look up the wallet containing the requested signer 508 account := accounts.Account{Address: addr} 509 510 wallet, err := s.b.AccountManager().Find(account) 511 if err != nil { 512 return nil, err 513 } 514 // Assemble sign the data with the wallet 515 signature, err := wallet.SignTextWithPassphrase(account, passwd, data) 516 if err != nil { 517 log.Warn("Failed data sign attempt", "address", addr, "err", err) 518 return nil, err 519 } 520 signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper 521 return signature, nil 522 } 523 524 // EcRecover returns the address for the account that was used to create the signature. 525 // Note, this function is compatible with eth_sign and personal_sign. As such it recovers 526 // the address of: 527 // hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message}) 528 // addr = ecrecover(hash, signature) 529 // 530 // Note, the signature must conform to the secp256k1 curve R, S and V values, where 531 // the V value must be 27 or 28 for legacy reasons. 532 // 533 // https://github.com/tacshi/go-ethereum/wiki/Management-APIs#personal_ecRecover 534 func (s *PersonalAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) { 535 if len(sig) != crypto.SignatureLength { 536 return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength) 537 } 538 if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 { 539 return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)") 540 } 541 sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1 542 543 rpk, err := crypto.SigToPub(accounts.TextHash(data), sig) 544 if err != nil { 545 return common.Address{}, err 546 } 547 return crypto.PubkeyToAddress(*rpk), nil 548 } 549 550 // InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key. 551 func (s *PersonalAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) { 552 wallet, err := s.am.Wallet(url) 553 if err != nil { 554 return "", err 555 } 556 557 entropy, err := bip39.NewEntropy(256) 558 if err != nil { 559 return "", err 560 } 561 562 mnemonic, err := bip39.NewMnemonic(entropy) 563 if err != nil { 564 return "", err 565 } 566 567 seed := bip39.NewSeed(mnemonic, "") 568 569 switch wallet := wallet.(type) { 570 case *scwallet.Wallet: 571 return mnemonic, wallet.Initialize(seed) 572 default: 573 return "", fmt.Errorf("specified wallet does not support initialization") 574 } 575 } 576 577 // Unpair deletes a pairing between wallet and geth. 578 func (s *PersonalAccountAPI) Unpair(ctx context.Context, url string, pin string) error { 579 wallet, err := s.am.Wallet(url) 580 if err != nil { 581 return err 582 } 583 584 switch wallet := wallet.(type) { 585 case *scwallet.Wallet: 586 return wallet.Unpair([]byte(pin)) 587 default: 588 return fmt.Errorf("specified wallet does not support pairing") 589 } 590 } 591 592 // BlockChainAPI provides an API to access Ethereum blockchain data. 593 type BlockChainAPI struct { 594 b Backend 595 } 596 597 // NewBlockChainAPI creates a new Ethereum blockchain API. 598 func NewBlockChainAPI(b Backend) *BlockChainAPI { 599 return &BlockChainAPI{b} 600 } 601 602 // ChainId is the EIP-155 replay-protection chain id for the current Ethereum chain config. 603 // 604 // Note, this method does not conform to EIP-695 because the configured chain ID is always 605 // returned, regardless of the current head block. We used to return an error when the chain 606 // wasn't synced up to a block where EIP-155 is enabled, but this behavior caused issues 607 // in CL clients. 608 func (api *BlockChainAPI) ChainId() *hexutil.Big { 609 return (*hexutil.Big)(api.b.ChainConfig().ChainID) 610 } 611 612 // BlockNumber returns the block number of the chain head. 613 func (s *BlockChainAPI) BlockNumber() hexutil.Uint64 { 614 header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available 615 return hexutil.Uint64(header.Number.Uint64()) 616 } 617 618 // GetBalance returns the amount of wei for the given address in the state of the 619 // given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta 620 // block numbers are also allowed. 621 func (s *BlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) { 622 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 623 if state == nil || err != nil { 624 if client := fallbackClientFor(s.b, err); client != nil { 625 var res hexutil.Big 626 err := client.CallContext(ctx, &res, "eth_getBalance", address, blockNrOrHash) 627 return &res, err 628 } 629 return nil, err 630 } 631 return (*hexutil.Big)(state.GetBalance(address)), state.Error() 632 } 633 634 // Result structs for GetProof 635 type AccountResult struct { 636 Address common.Address `json:"address"` 637 AccountProof []string `json:"accountProof"` 638 Balance *hexutil.Big `json:"balance"` 639 CodeHash common.Hash `json:"codeHash"` 640 Nonce hexutil.Uint64 `json:"nonce"` 641 StorageHash common.Hash `json:"storageHash"` 642 StorageProof []StorageResult `json:"storageProof"` 643 } 644 645 type StorageResult struct { 646 Key string `json:"key"` 647 Value *hexutil.Big `json:"value"` 648 Proof []string `json:"proof"` 649 } 650 651 // GetProof returns the Merkle-proof for a given account and optionally some storage keys. 652 func (s *BlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNrOrHash rpc.BlockNumberOrHash) (*AccountResult, error) { 653 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 654 if state == nil || err != nil { 655 return nil, err 656 } 657 storageTrie, err := state.StorageTrie(address) 658 if err != nil { 659 return nil, err 660 } 661 storageHash := types.EmptyRootHash 662 codeHash := state.GetCodeHash(address) 663 storageProof := make([]StorageResult, len(storageKeys)) 664 665 // if we have a storageTrie, (which means the account exists), we can update the storagehash 666 if storageTrie != nil { 667 storageHash = storageTrie.Hash() 668 } else { 669 // no storageTrie means the account does not exist, so the codeHash is the hash of an empty bytearray. 670 codeHash = crypto.Keccak256Hash(nil) 671 } 672 673 // create the proof for the storageKeys 674 for i, hexKey := range storageKeys { 675 key, err := decodeHash(hexKey) 676 if err != nil { 677 return nil, err 678 } 679 if storageTrie != nil { 680 proof, storageError := state.GetStorageProof(address, key) 681 if storageError != nil { 682 return nil, storageError 683 } 684 storageProof[i] = StorageResult{hexKey, (*hexutil.Big)(state.GetState(address, key).Big()), toHexSlice(proof)} 685 } else { 686 storageProof[i] = StorageResult{hexKey, &hexutil.Big{}, []string{}} 687 } 688 } 689 690 // create the accountProof 691 accountProof, proofErr := state.GetProof(address) 692 if proofErr != nil { 693 return nil, proofErr 694 } 695 696 return &AccountResult{ 697 Address: address, 698 AccountProof: toHexSlice(accountProof), 699 Balance: (*hexutil.Big)(state.GetBalance(address)), 700 CodeHash: codeHash, 701 Nonce: hexutil.Uint64(state.GetNonce(address)), 702 StorageHash: storageHash, 703 StorageProof: storageProof, 704 }, state.Error() 705 } 706 707 // decodeHash parses a hex-encoded 32-byte hash. The input may optionally 708 // be prefixed by 0x and can have an byte length up to 32. 709 func decodeHash(s string) (common.Hash, error) { 710 if strings.HasPrefix(s, "0x") || strings.HasPrefix(s, "0X") { 711 s = s[2:] 712 } 713 if (len(s) & 1) > 0 { 714 s = "0" + s 715 } 716 b, err := hex.DecodeString(s) 717 if err != nil { 718 return common.Hash{}, fmt.Errorf("hex string invalid") 719 } 720 if len(b) > 32 { 721 return common.Hash{}, fmt.Errorf("hex string too long, want at most 32 bytes") 722 } 723 return common.BytesToHash(b), nil 724 } 725 726 // GetHeaderByNumber returns the requested canonical block header. 727 // * When blockNr is -1 the chain head is returned. 728 // * When blockNr is -2 the pending chain head is returned. 729 func (s *BlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) { 730 header, err := s.b.HeaderByNumber(ctx, number) 731 if header != nil && err == nil { 732 response := s.rpcMarshalHeader(ctx, header) 733 if number == rpc.PendingBlockNumber { 734 // Pending header need to nil out a few fields 735 for _, field := range []string{"hash", "nonce", "miner"} { 736 response[field] = nil 737 } 738 } 739 return response, err 740 } 741 return nil, err 742 } 743 744 // GetHeaderByHash returns the requested header by hash. 745 func (s *BlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} { 746 header, _ := s.b.HeaderByHash(ctx, hash) 747 if header != nil { 748 return s.rpcMarshalHeader(ctx, header) 749 } 750 return nil 751 } 752 753 // GetBlockByNumber returns the requested canonical block. 754 // - When blockNr is -1 the chain head is returned. 755 // - When blockNr is -2 the pending chain head is returned. 756 // - When fullTx is true all transactions in the block are returned, otherwise 757 // only the transaction hash is returned. 758 func (s *BlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) { 759 block, err := s.b.BlockByNumber(ctx, number) 760 if block != nil && err == nil { 761 response, err := s.rpcMarshalBlock(ctx, block, true, fullTx) 762 if err == nil && number == rpc.PendingBlockNumber { 763 // Pending blocks need to nil out a few fields 764 for _, field := range []string{"hash", "nonce", "miner"} { 765 response[field] = nil 766 } 767 } 768 return response, err 769 } 770 return nil, err 771 } 772 773 // GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full 774 // detail, otherwise only the transaction hash is returned. 775 func (s *BlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) { 776 block, err := s.b.BlockByHash(ctx, hash) 777 if block != nil { 778 return s.rpcMarshalBlock(ctx, block, true, fullTx) 779 } 780 return nil, err 781 } 782 783 // GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index. 784 func (s *BlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) { 785 block, err := s.b.BlockByNumber(ctx, blockNr) 786 if block != nil { 787 uncles := block.Uncles() 788 if index >= hexutil.Uint(len(uncles)) { 789 log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index) 790 return nil, nil 791 } 792 block = types.NewBlockWithHeader(uncles[index]) 793 return s.rpcMarshalBlock(ctx, block, false, false) 794 } 795 return nil, err 796 } 797 798 // GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index. 799 func (s *BlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) { 800 block, err := s.b.BlockByHash(ctx, blockHash) 801 if block != nil { 802 uncles := block.Uncles() 803 if index >= hexutil.Uint(len(uncles)) { 804 log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index) 805 return nil, nil 806 } 807 block = types.NewBlockWithHeader(uncles[index]) 808 return s.rpcMarshalBlock(ctx, block, false, false) 809 } 810 return nil, err 811 } 812 813 // GetUncleCountByBlockNumber returns number of uncles in the block for the given block number 814 func (s *BlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint { 815 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 816 n := hexutil.Uint(len(block.Uncles())) 817 return &n 818 } 819 return nil 820 } 821 822 // GetUncleCountByBlockHash returns number of uncles in the block for the given block hash 823 func (s *BlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint { 824 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 825 n := hexutil.Uint(len(block.Uncles())) 826 return &n 827 } 828 return nil 829 } 830 831 // GetCode returns the code stored at the given address in the state for the given block number. 832 func (s *BlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { 833 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 834 if state == nil || err != nil { 835 if client := fallbackClientFor(s.b, err); client != nil { 836 var res hexutil.Bytes 837 err := client.CallContext(ctx, &res, "eth_getCode", address, blockNrOrHash) 838 return res, err 839 } 840 return nil, err 841 } 842 code := state.GetCode(address) 843 return code, state.Error() 844 } 845 846 // GetStorageAt returns the storage from the state at the given address, key and 847 // block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block 848 // numbers are also allowed. 849 func (s *BlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, hexKey string, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { 850 key, err := decodeHash(hexKey) 851 if err != nil { 852 return nil, fmt.Errorf("unable to decode storage key: %s", err) 853 } 854 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 855 if state == nil || err != nil { 856 if client := fallbackClientFor(s.b, err); client != nil { 857 var res hexutil.Bytes 858 err := client.CallContext(ctx, &res, "eth_getStorageAt", address, key, blockNrOrHash) 859 return res, err 860 } 861 return nil, err 862 } 863 res := state.GetState(address, key) 864 return res[:], state.Error() 865 } 866 867 // OverrideAccount indicates the overriding fields of account during the execution 868 // of a message call. 869 // Note, state and stateDiff can't be specified at the same time. If state is 870 // set, message execution will only use the data in the given state. Otherwise 871 // if statDiff is set, all diff will be applied first and then execute the call 872 // message. 873 type OverrideAccount struct { 874 Nonce *hexutil.Uint64 `json:"nonce"` 875 Code *hexutil.Bytes `json:"code"` 876 Balance **hexutil.Big `json:"balance"` 877 State *map[common.Hash]common.Hash `json:"state"` 878 StateDiff *map[common.Hash]common.Hash `json:"stateDiff"` 879 } 880 881 // StateOverride is the collection of overridden accounts. 882 type StateOverride map[common.Address]OverrideAccount 883 884 // Apply overrides the fields of specified accounts into the given state. 885 func (diff *StateOverride) Apply(state *state.StateDB) error { 886 if diff == nil { 887 return nil 888 } 889 for addr, account := range *diff { 890 // Override account nonce. 891 if account.Nonce != nil { 892 state.SetNonce(addr, uint64(*account.Nonce)) 893 } 894 // Override account(contract) code. 895 if account.Code != nil { 896 state.SetCode(addr, *account.Code) 897 } 898 // Override account balance. 899 if account.Balance != nil { 900 state.SetBalance(addr, (*big.Int)(*account.Balance)) 901 } 902 if account.State != nil && account.StateDiff != nil { 903 return fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex()) 904 } 905 // Replace entire state if caller requires. 906 if account.State != nil { 907 state.SetStorage(addr, *account.State) 908 } 909 // Apply state diff into specified accounts. 910 if account.StateDiff != nil { 911 for key, value := range *account.StateDiff { 912 state.SetState(addr, key, value) 913 } 914 } 915 } 916 // Now finalize the changes. Finalize is normally performed between transactions. 917 // By using finalize, the overrides are semantically behaving as 918 // if they were created in a transaction just before the tracing occur. 919 state.Finalise(false) 920 return nil 921 } 922 923 // BlockOverrides is a set of header fields to override. 924 type BlockOverrides struct { 925 Number *hexutil.Big 926 Difficulty *hexutil.Big 927 Time *hexutil.Uint64 928 GasLimit *hexutil.Uint64 929 Coinbase *common.Address 930 Random *common.Hash 931 BaseFee *hexutil.Big 932 } 933 934 // Apply overrides the given header fields into the given block context. 935 func (diff *BlockOverrides) Apply(blockCtx *vm.BlockContext) { 936 if diff == nil { 937 return 938 } 939 if diff.Number != nil { 940 blockCtx.BlockNumber = diff.Number.ToInt() 941 } 942 if diff.Difficulty != nil { 943 blockCtx.Difficulty = diff.Difficulty.ToInt() 944 if blockCtx.ArbOSVersion > 0 { 945 difficultHash := common.BigToHash(diff.Difficulty.ToInt()) 946 blockCtx.Random = &difficultHash 947 } 948 } 949 if diff.Time != nil { 950 blockCtx.Time = uint64(*diff.Time) 951 } 952 if diff.GasLimit != nil { 953 blockCtx.GasLimit = uint64(*diff.GasLimit) 954 } 955 if diff.Coinbase != nil { 956 blockCtx.Coinbase = *diff.Coinbase 957 } 958 if blockCtx.ArbOSVersion == 0 && diff.Random != nil { 959 blockCtx.Random = diff.Random 960 } 961 if diff.BaseFee != nil { 962 blockCtx.BaseFee = diff.BaseFee.ToInt() 963 } 964 } 965 966 func DoCall(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, timeout time.Duration, globalGasCap uint64, runMode core.MessageRunMode) (*core.ExecutionResult, error) { 967 defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now()) 968 969 state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 970 if state == nil || err != nil { 971 return nil, err 972 } 973 if err := overrides.Apply(state); err != nil { 974 return nil, err 975 } 976 // Setup context so it may be cancelled the call has completed 977 // or, in case of unmetered gas, setup a context with a timeout. 978 var cancel context.CancelFunc 979 if timeout > 0 { 980 ctx, cancel = context.WithTimeout(ctx, timeout) 981 } else { 982 ctx, cancel = context.WithCancel(ctx) 983 } 984 // Make sure the context is cancelled when the call has completed 985 // this makes sure resources are cleaned up. 986 defer cancel() 987 988 // Get a new instance of the EVM. 989 msg, err := args.ToMessage(globalGasCap, header, state, runMode) 990 if err != nil { 991 return nil, err 992 } 993 994 // Arbitrum: support NodeInterface.sol by swapping out the message if needed 995 var res *core.ExecutionResult 996 msg, res, err = core.InterceptRPCMessage(msg, ctx, state, header, b) 997 if err != nil || res != nil { 998 return res, err 999 } 1000 1001 evm, vmError, err := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}) 1002 if err != nil { 1003 return nil, err 1004 } 1005 // Wait for the context to be done and cancel the evm. Even if the 1006 // EVM has finished, cancelling may be done (repeatedly) 1007 go func() { 1008 <-ctx.Done() 1009 evm.Cancel() 1010 }() 1011 1012 // Execute the message. 1013 gp := new(core.GasPool).AddGas(math.MaxUint64) 1014 result, err := core.ApplyMessage(evm, msg, gp) 1015 if err := vmError(); err != nil { 1016 return nil, err 1017 } 1018 1019 // If the timer caused an abort, return an appropriate error message 1020 if evm.Cancelled() { 1021 return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout) 1022 } 1023 if err != nil { 1024 return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.GasLimit) 1025 } 1026 1027 // Arbitrum: a tx can schedule another (see retryables) 1028 scheduled := result.ScheduledTxes 1029 for runMode == core.MessageGasEstimationMode && len(scheduled) > 0 { 1030 // make a new EVM for the scheduled Tx (an EVM must never be reused) 1031 evm, vmError, err := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}) 1032 if err != nil { 1033 return nil, err 1034 } 1035 go func() { 1036 <-ctx.Done() 1037 evm.Cancel() 1038 }() 1039 1040 // This will panic if the scheduled tx is signed, but we only schedule unsigned ones 1041 msg, err := core.TransactionToMessage(scheduled[0], types.NewArbitrumSigner(nil), header.BaseFee) 1042 if err != nil { 1043 return nil, err 1044 } 1045 scheduledTxResult, err := core.ApplyMessage(evm, msg, gp) 1046 if err != nil { 1047 return nil, err // Bail out 1048 } 1049 if err := vmError(); err != nil { 1050 return nil, err 1051 } 1052 if scheduledTxResult.Failed() { 1053 return scheduledTxResult, nil 1054 } 1055 scheduled = append(scheduled[1:], scheduledTxResult.ScheduledTxes...) 1056 } 1057 1058 return result, nil 1059 } 1060 1061 func newRevertError(result *core.ExecutionResult) *revertError { 1062 reason, errUnpack := abi.UnpackRevert(result.Revert()) 1063 err := errors.New("execution reverted") 1064 if errUnpack == nil { 1065 err = fmt.Errorf("execution reverted: %v", reason) 1066 } else if core.RenderRPCError != nil { 1067 if arbErr := core.RenderRPCError(result.Revert()); arbErr != nil { 1068 err = fmt.Errorf("execution reverted: %w", arbErr) 1069 } 1070 } 1071 return &revertError{ 1072 error: err, 1073 reason: hexutil.Encode(result.Revert()), 1074 } 1075 } 1076 1077 func NewRevertError(result *core.ExecutionResult) *revertError { 1078 return newRevertError(result) 1079 } 1080 1081 // revertError is an API error that encompasses an EVM revertal with JSON error 1082 // code and a binary data blob. 1083 type revertError struct { 1084 error 1085 reason string // revert reason hex encoded 1086 } 1087 1088 // ErrorCode returns the JSON error code for a revertal. 1089 // See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal 1090 func (e *revertError) ErrorCode() int { 1091 return 3 1092 } 1093 1094 // ErrorData returns the hex encoded revert reason. 1095 func (e *revertError) ErrorData() interface{} { 1096 return e.reason 1097 } 1098 1099 // Call executes the given transaction on the state for the given block number. 1100 // 1101 // Additionally, the caller can specify a batch of contract for fields overriding. 1102 // 1103 // Note, this function doesn't make and changes in the state/blockchain and is 1104 // useful to execute and retrieve values. 1105 func (s *BlockChainAPI) Call(ctx context.Context, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride) (hexutil.Bytes, error) { 1106 result, err := DoCall(ctx, s.b, args, blockNrOrHash, overrides, s.b.RPCEVMTimeout(), s.b.RPCGasCap(), core.MessageEthcallMode) 1107 if err != nil { 1108 if client := fallbackClientFor(s.b, err); client != nil { 1109 var res hexutil.Bytes 1110 err := client.CallContext(ctx, &res, "eth_call", args, blockNrOrHash, overrides) 1111 return res, err 1112 } 1113 return nil, err 1114 } 1115 // If the result contains a revert reason, try to unpack and return it. 1116 if len(result.Revert()) > 0 { 1117 return nil, newRevertError(result) 1118 } 1119 return result.Return(), result.Err 1120 } 1121 1122 func DoEstimateGas(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, gasCap uint64) (hexutil.Uint64, error) { 1123 // Binary search the gas requirement, as it may be higher than the amount used 1124 var ( 1125 lo uint64 = params.TxGas - 1 1126 hi uint64 1127 cap uint64 1128 ) 1129 // Use zero address if sender unspecified. 1130 if args.From == nil { 1131 args.From = new(common.Address) 1132 } 1133 // Determine the highest gas limit can be used during the estimation. 1134 if args.Gas != nil && uint64(*args.Gas) >= params.TxGas { 1135 hi = uint64(*args.Gas) 1136 } else { 1137 // Retrieve the block to act as the gas ceiling 1138 block, err := b.BlockByNumberOrHash(ctx, blockNrOrHash) 1139 if err != nil { 1140 return 0, err 1141 } 1142 if block == nil { 1143 return 0, errors.New("block not found") 1144 } 1145 hi = block.GasLimit() 1146 } 1147 // Normalize the max fee per gas the call is willing to spend. 1148 var feeCap *big.Int 1149 if args.GasPrice != nil && (args.MaxFeePerGas != nil || args.MaxPriorityFeePerGas != nil) { 1150 return 0, errors.New("both gasPrice and (maxFeePerGas or maxPriorityFeePerGas) specified") 1151 } else if args.GasPrice != nil { 1152 feeCap = args.GasPrice.ToInt() 1153 } else if args.MaxFeePerGas != nil { 1154 feeCap = args.MaxFeePerGas.ToInt() 1155 } else { 1156 feeCap = common.Big0 1157 } 1158 // Recap the highest gas limit with account's available balance. 1159 if feeCap.BitLen() != 0 { 1160 state, _, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1161 if err != nil { 1162 return 0, err 1163 } 1164 balance := state.GetBalance(*args.From) // from can't be nil 1165 available := new(big.Int).Set(balance) 1166 if args.Value != nil { 1167 if args.Value.ToInt().Cmp(available) >= 0 { 1168 return 0, core.ErrInsufficientFundsForTransfer 1169 } 1170 available.Sub(available, args.Value.ToInt()) 1171 } 1172 allowance := new(big.Int).Div(available, feeCap) 1173 1174 // If the allowance is larger than maximum uint64, skip checking 1175 if allowance.IsUint64() && hi > allowance.Uint64() { 1176 transfer := args.Value 1177 if transfer == nil { 1178 transfer = new(hexutil.Big) 1179 } 1180 log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance, 1181 "sent", transfer.ToInt(), "maxFeePerGas", feeCap, "fundable", allowance) 1182 hi = allowance.Uint64() 1183 } 1184 } 1185 1186 // Arbitrum: raise the gas cap to ignore L1 costs so that it's compute-only 1187 vanillaGasCap := gasCap 1188 { 1189 state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1190 if state == nil || err != nil { 1191 return 0, err 1192 } 1193 gasCap, err = args.L2OnlyGasCap(gasCap, header, state, core.MessageGasEstimationMode) 1194 if err != nil { 1195 return 0, err 1196 } 1197 } 1198 1199 // Recap the highest gas allowance with specified gascap. 1200 if gasCap != 0 && hi > gasCap { 1201 log.Warn("Caller gas above allowance, capping", "requested", hi, "cap", gasCap) 1202 hi = gasCap 1203 } 1204 cap = hi 1205 1206 // Create a helper to check if a gas allowance results in an executable transaction 1207 executable := func(gas uint64) (bool, *core.ExecutionResult, error) { 1208 args.Gas = (*hexutil.Uint64)(&gas) 1209 1210 result, err := DoCall(ctx, b, args, blockNrOrHash, nil, 0, vanillaGasCap, core.MessageGasEstimationMode) 1211 if err != nil { 1212 if errors.Is(err, core.ErrIntrinsicGas) { 1213 return true, nil, nil // Special case, raise gas limit 1214 } 1215 return true, nil, err // Bail out 1216 } 1217 return result.Failed(), result, nil 1218 } 1219 // Execute the binary search and hone in on an executable gas limit 1220 for lo+1 < hi { 1221 mid := (hi + lo) / 2 1222 failed, _, err := executable(mid) 1223 1224 // If the error is not nil(consensus error), it means the provided message 1225 // call or transaction will never be accepted no matter how much gas it is 1226 // assigned. Return the error directly, don't struggle any more. 1227 if err != nil { 1228 return 0, err 1229 } 1230 if failed { 1231 lo = mid 1232 } else { 1233 hi = mid 1234 } 1235 } 1236 // Reject the transaction as invalid if it still fails at the highest allowance 1237 if hi == cap { 1238 failed, result, err := executable(hi) 1239 if err != nil { 1240 return 0, err 1241 } 1242 if failed { 1243 if result != nil && result.Err != vm.ErrOutOfGas { 1244 if len(result.Revert()) > 0 { 1245 return 0, newRevertError(result) 1246 } 1247 return 0, result.Err 1248 } 1249 // Otherwise, the specified gas cap is too low 1250 return 0, fmt.Errorf("gas required exceeds allowance (%d)", cap) 1251 } 1252 } 1253 return hexutil.Uint64(hi), nil 1254 } 1255 1256 // EstimateGas returns an estimate of the amount of gas needed to execute the 1257 // given transaction against the current pending block. 1258 func (s *BlockChainAPI) EstimateGas(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (hexutil.Uint64, error) { 1259 bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber) 1260 if blockNrOrHash != nil { 1261 bNrOrHash = *blockNrOrHash 1262 } 1263 res, err := DoEstimateGas(ctx, s.b, args, bNrOrHash, s.b.RPCGasCap()) 1264 if client := fallbackClientFor(s.b, err); client != nil { 1265 var res hexutil.Uint64 1266 err := client.CallContext(ctx, &res, "eth_estimateGas", args, blockNrOrHash) 1267 return res, err 1268 } 1269 return res, err 1270 } 1271 1272 // RPCMarshalHeader converts the given header to the RPC output . 1273 func RPCMarshalHeader(head *types.Header) map[string]interface{} { 1274 result := map[string]interface{}{ 1275 "number": (*hexutil.Big)(head.Number), 1276 "hash": head.Hash(), 1277 "parentHash": head.ParentHash, 1278 "nonce": head.Nonce, 1279 "mixHash": head.MixDigest, 1280 "sha3Uncles": head.UncleHash, 1281 "logsBloom": head.Bloom, 1282 "stateRoot": head.Root, 1283 "miner": head.Coinbase, 1284 "difficulty": (*hexutil.Big)(head.Difficulty), 1285 "extraData": hexutil.Bytes(head.Extra), 1286 "size": hexutil.Uint64(head.Size()), 1287 "gasLimit": hexutil.Uint64(head.GasLimit), 1288 "gasUsed": hexutil.Uint64(head.GasUsed), 1289 "timestamp": hexutil.Uint64(head.Time), 1290 "transactionsRoot": head.TxHash, 1291 "receiptsRoot": head.ReceiptHash, 1292 } 1293 1294 if head.BaseFee != nil { 1295 result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee) 1296 } 1297 1298 if head.WithdrawalsHash != nil { 1299 result["withdrawalsRoot"] = head.WithdrawalsHash 1300 } 1301 1302 return result 1303 } 1304 1305 // RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are 1306 // returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain 1307 // transaction hashes. 1308 func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool, config *params.ChainConfig) (map[string]interface{}, error) { 1309 fields := RPCMarshalHeader(block.Header()) 1310 fields["size"] = hexutil.Uint64(block.Size()) 1311 1312 if inclTx { 1313 formatTx := func(tx *types.Transaction) (interface{}, error) { 1314 return tx.Hash(), nil 1315 } 1316 if fullTx { 1317 formatTx = func(tx *types.Transaction) (interface{}, error) { 1318 return newRPCTransactionFromBlockHash(block, tx.Hash(), config), nil 1319 } 1320 } 1321 txs := block.Transactions() 1322 transactions := make([]interface{}, len(txs)) 1323 var err error 1324 for i, tx := range txs { 1325 if transactions[i], err = formatTx(tx); err != nil { 1326 return nil, err 1327 } 1328 } 1329 fields["transactions"] = transactions 1330 } 1331 uncles := block.Uncles() 1332 uncleHashes := make([]common.Hash, len(uncles)) 1333 for i, uncle := range uncles { 1334 uncleHashes[i] = uncle.Hash() 1335 } 1336 fields["uncles"] = uncleHashes 1337 1338 if config.IsArbitrumNitro(block.Header().Number) { 1339 fillArbitrumNitroHeaderInfo(block.Header(), fields) 1340 } 1341 1342 if block.Header().WithdrawalsHash != nil { 1343 fields["withdrawals"] = block.Withdrawals() 1344 } 1345 1346 return fields, nil 1347 } 1348 1349 func fillArbitrumNitroHeaderInfo(header *types.Header, fields map[string]interface{}) { 1350 info := types.DeserializeHeaderExtraInformation(header) 1351 fields["l1BlockNumber"] = hexutil.Uint64(info.L1BlockNumber) 1352 fields["sendRoot"] = info.SendRoot 1353 fields["sendCount"] = hexutil.Uint64(info.SendCount) 1354 } 1355 1356 // rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires 1357 // a `BlockchainAPI`. 1358 func (s *BlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} { 1359 fields := RPCMarshalHeader(header) 1360 fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, header.Hash())) 1361 if s.b.ChainConfig().IsArbitrumNitro(header.Number) { 1362 fillArbitrumNitroHeaderInfo(header, fields) 1363 } 1364 return fields 1365 } 1366 1367 func (s *BlockChainAPI) arbClassicL1BlockNumber(ctx context.Context, block *types.Block) (hexutil.Uint64, error) { 1368 startBlockNum := block.Number().Int64() 1369 blockNum := startBlockNum 1370 i := int64(0) 1371 for { 1372 transactions := block.Transactions() 1373 if len(transactions) > 0 { 1374 legacyTx, ok := transactions[0].GetInner().(*types.ArbitrumLegacyTxData) 1375 if !ok { 1376 return 0, fmt.Errorf("couldn't read legacy transaction from block %d", blockNum) 1377 } 1378 return hexutil.Uint64(legacyTx.L1BlockNumber), nil 1379 } 1380 if blockNum == 0 { 1381 return 0, nil 1382 } 1383 i++ 1384 blockNum = startBlockNum - i 1385 if i > 5 { 1386 return 0, fmt.Errorf("couldn't find block with transactions. Reached %d", blockNum) 1387 } 1388 var err error 1389 block, err = s.b.BlockByNumber(ctx, rpc.BlockNumber(blockNum)) 1390 if err != nil { 1391 return 0, err 1392 } 1393 } 1394 } 1395 1396 // rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires 1397 // a `BlockchainAPI`. 1398 func (s *BlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) { 1399 chainConfig := s.b.ChainConfig() 1400 fields, err := RPCMarshalBlock(b, inclTx, fullTx, chainConfig) 1401 if err != nil { 1402 return nil, err 1403 } 1404 if inclTx { 1405 fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, b.Hash())) 1406 } 1407 if chainConfig.IsArbitrum() && !chainConfig.IsArbitrumNitro(b.Number()) { 1408 l1BlockNumber, err := s.arbClassicL1BlockNumber(ctx, b) 1409 if err != nil { 1410 log.Error("error trying to fill legacy l1BlockNumber", "err", err) 1411 } else { 1412 fields["l1BlockNumber"] = l1BlockNumber 1413 } 1414 } 1415 return fields, err 1416 } 1417 1418 // RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction 1419 type RPCTransaction struct { 1420 BlockHash *common.Hash `json:"blockHash"` 1421 BlockNumber *hexutil.Big `json:"blockNumber"` 1422 From common.Address `json:"from"` 1423 Gas hexutil.Uint64 `json:"gas"` 1424 GasPrice *hexutil.Big `json:"gasPrice"` 1425 GasFeeCap *hexutil.Big `json:"maxFeePerGas,omitempty"` 1426 GasTipCap *hexutil.Big `json:"maxPriorityFeePerGas,omitempty"` 1427 Hash common.Hash `json:"hash"` 1428 Input hexutil.Bytes `json:"input"` 1429 Nonce hexutil.Uint64 `json:"nonce"` 1430 To *common.Address `json:"to"` 1431 TransactionIndex *hexutil.Uint64 `json:"transactionIndex"` 1432 Value *hexutil.Big `json:"value"` 1433 Type hexutil.Uint64 `json:"type"` 1434 Accesses *types.AccessList `json:"accessList,omitempty"` 1435 ChainID *hexutil.Big `json:"chainId,omitempty"` 1436 V *hexutil.Big `json:"v"` 1437 R *hexutil.Big `json:"r"` 1438 S *hexutil.Big `json:"s"` 1439 1440 // Arbitrum fields: 1441 RequestId *common.Hash `json:"requestId,omitempty"` // Contract SubmitRetryable Deposit 1442 TicketId *common.Hash `json:"ticketId,omitempty"` // Retry 1443 MaxRefund *hexutil.Big `json:"maxRefund,omitempty"` // Retry 1444 SubmissionFeeRefund *hexutil.Big `json:"submissionFeeRefund,omitempty"` // Retry 1445 RefundTo *common.Address `json:"refundTo,omitempty"` // SubmitRetryable Retry 1446 L1BaseFee *hexutil.Big `json:"l1BaseFee,omitempty"` // SubmitRetryable 1447 DepositValue *hexutil.Big `json:"depositValue,omitempty"` // SubmitRetryable 1448 RetryTo *common.Address `json:"retryTo,omitempty"` // SubmitRetryable 1449 RetryValue *hexutil.Big `json:"retryValue,omitempty"` // SubmitRetryable 1450 RetryData *hexutil.Bytes `json:"retryData,omitempty"` // SubmitRetryable 1451 Beneficiary *common.Address `json:"beneficiary,omitempty"` // SubmitRetryable 1452 MaxSubmissionFee *hexutil.Big `json:"maxSubmissionFee,omitempty"` // SubmitRetryable 1453 } 1454 1455 // newRPCTransaction returns a transaction that will serialize to the RPC 1456 // representation, with the given location metadata set (if available). 1457 func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, index uint64, baseFee *big.Int, config *params.ChainConfig) *RPCTransaction { 1458 signer := types.MakeSigner(config, new(big.Int).SetUint64(blockNumber)) 1459 from, _ := types.Sender(signer, tx) 1460 v, r, s := tx.RawSignatureValues() 1461 result := &RPCTransaction{ 1462 Type: hexutil.Uint64(tx.Type()), 1463 From: from, 1464 Gas: hexutil.Uint64(tx.Gas()), 1465 GasPrice: (*hexutil.Big)(tx.GasPrice()), 1466 Hash: tx.Hash(), 1467 Input: hexutil.Bytes(tx.Data()), 1468 Nonce: hexutil.Uint64(tx.Nonce()), 1469 To: tx.To(), 1470 Value: (*hexutil.Big)(tx.Value()), 1471 V: (*hexutil.Big)(v), 1472 R: (*hexutil.Big)(r), 1473 S: (*hexutil.Big)(s), 1474 } 1475 if blockHash != (common.Hash{}) { 1476 result.BlockHash = &blockHash 1477 result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber)) 1478 result.TransactionIndex = (*hexutil.Uint64)(&index) 1479 } 1480 switch tx.Type() { 1481 case types.LegacyTxType: 1482 // if a legacy transaction has an EIP-155 chain id, include it explicitly 1483 if id := tx.ChainId(); id.Sign() != 0 { 1484 result.ChainID = (*hexutil.Big)(id) 1485 } 1486 case types.AccessListTxType: 1487 al := tx.AccessList() 1488 result.Accesses = &al 1489 result.ChainID = (*hexutil.Big)(tx.ChainId()) 1490 case types.DynamicFeeTxType: 1491 al := tx.AccessList() 1492 result.Accesses = &al 1493 result.ChainID = (*hexutil.Big)(tx.ChainId()) 1494 result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap()) 1495 result.GasTipCap = (*hexutil.Big)(tx.GasTipCap()) 1496 // if the transaction has been mined, compute the effective gas price 1497 if baseFee != nil && blockHash != (common.Hash{}) { 1498 // price = min(tip, gasFeeCap - baseFee) + baseFee 1499 price := math.BigMin(new(big.Int).Add(tx.GasTipCap(), baseFee), tx.GasFeeCap()) 1500 result.GasPrice = (*hexutil.Big)(price) 1501 } else { 1502 result.GasPrice = (*hexutil.Big)(tx.GasFeeCap()) 1503 } 1504 } 1505 1506 // Arbitrum: support arbitrum-specific transaction types 1507 switch inner := tx.GetInner().(type) { 1508 case *types.ArbitrumInternalTx: 1509 result.ChainID = (*hexutil.Big)(inner.ChainId) 1510 case *types.ArbitrumDepositTx: 1511 result.RequestId = &inner.L1RequestId 1512 result.ChainID = (*hexutil.Big)(inner.ChainId) 1513 case *types.ArbitrumContractTx: 1514 result.RequestId = &inner.RequestId 1515 result.GasFeeCap = (*hexutil.Big)(inner.GasFeeCap) 1516 result.ChainID = (*hexutil.Big)(inner.ChainId) 1517 case *types.ArbitrumRetryTx: 1518 result.TicketId = &inner.TicketId 1519 result.RefundTo = &inner.RefundTo 1520 result.GasFeeCap = (*hexutil.Big)(inner.GasFeeCap) 1521 result.ChainID = (*hexutil.Big)(inner.ChainId) 1522 result.MaxRefund = (*hexutil.Big)(inner.MaxRefund) 1523 result.SubmissionFeeRefund = (*hexutil.Big)(inner.SubmissionFeeRefund) 1524 case *types.ArbitrumSubmitRetryableTx: 1525 result.RequestId = &inner.RequestId 1526 result.L1BaseFee = (*hexutil.Big)(inner.L1BaseFee) 1527 result.DepositValue = (*hexutil.Big)(inner.DepositValue) 1528 result.RetryTo = inner.RetryTo 1529 result.RetryValue = (*hexutil.Big)(inner.RetryValue) 1530 result.RetryData = (*hexutil.Bytes)(&inner.RetryData) 1531 result.Beneficiary = &inner.Beneficiary 1532 result.RefundTo = &inner.FeeRefundAddr 1533 result.MaxSubmissionFee = (*hexutil.Big)(inner.MaxSubmissionFee) 1534 result.GasFeeCap = (*hexutil.Big)(inner.GasFeeCap) 1535 result.ChainID = (*hexutil.Big)(inner.ChainId) 1536 } 1537 return result 1538 } 1539 1540 // NewRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation 1541 func NewRPCPendingTransaction(tx *types.Transaction, current *types.Header, config *params.ChainConfig) *RPCTransaction { 1542 var baseFee *big.Int 1543 blockNumber := uint64(0) 1544 if current != nil { 1545 baseFee = misc.CalcBaseFee(config, current) 1546 blockNumber = current.Number.Uint64() 1547 } 1548 return newRPCTransaction(tx, common.Hash{}, blockNumber, 0, baseFee, config) 1549 } 1550 1551 // newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation. 1552 func newRPCTransactionFromBlockIndex(b *types.Block, index uint64, config *params.ChainConfig) *RPCTransaction { 1553 txs := b.Transactions() 1554 if index >= uint64(len(txs)) { 1555 return nil 1556 } 1557 return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), index, b.BaseFee(), config) 1558 } 1559 1560 // newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index. 1561 func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes { 1562 txs := b.Transactions() 1563 if index >= uint64(len(txs)) { 1564 return nil 1565 } 1566 blob, _ := txs[index].MarshalBinary() 1567 return blob 1568 } 1569 1570 // newRPCTransactionFromBlockHash returns a transaction that will serialize to the RPC representation. 1571 func newRPCTransactionFromBlockHash(b *types.Block, hash common.Hash, config *params.ChainConfig) *RPCTransaction { 1572 for idx, tx := range b.Transactions() { 1573 if tx.Hash() == hash { 1574 return newRPCTransactionFromBlockIndex(b, uint64(idx), config) 1575 } 1576 } 1577 return nil 1578 } 1579 1580 // accessListResult returns an optional accesslist 1581 // Its the result of the `debug_createAccessList` RPC call. 1582 // It contains an error if the transaction itself failed. 1583 type accessListResult struct { 1584 Accesslist *types.AccessList `json:"accessList"` 1585 Error string `json:"error,omitempty"` 1586 GasUsed hexutil.Uint64 `json:"gasUsed"` 1587 } 1588 1589 // CreateAccessList creates a EIP-2930 type AccessList for the given transaction. 1590 // Reexec and BlockNrOrHash can be specified to create the accessList on top of a certain state. 1591 func (s *BlockChainAPI) CreateAccessList(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (*accessListResult, error) { 1592 bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber) 1593 if blockNrOrHash != nil { 1594 bNrOrHash = *blockNrOrHash 1595 } 1596 acl, gasUsed, vmerr, err := AccessList(ctx, s.b, bNrOrHash, args) 1597 if err != nil { 1598 return nil, err 1599 } 1600 result := &accessListResult{Accesslist: &acl, GasUsed: hexutil.Uint64(gasUsed)} 1601 if vmerr != nil { 1602 result.Error = vmerr.Error() 1603 } 1604 return result, nil 1605 } 1606 1607 // AccessList creates an access list for the given transaction. 1608 // If the accesslist creation fails an error is returned. 1609 // If the transaction itself fails, an vmErr is returned. 1610 func AccessList(ctx context.Context, b Backend, blockNrOrHash rpc.BlockNumberOrHash, args TransactionArgs) (acl types.AccessList, gasUsed uint64, vmErr error, err error) { 1611 // Retrieve the execution context 1612 db, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1613 if db == nil || err != nil { 1614 return nil, 0, nil, err 1615 } 1616 // If the gas amount is not set, default to RPC gas cap. 1617 if args.Gas == nil { 1618 tmp := hexutil.Uint64(b.RPCGasCap()) 1619 args.Gas = &tmp 1620 } 1621 1622 // Ensure any missing fields are filled, extract the recipient and input data 1623 if err := args.setDefaults(ctx, b); err != nil { 1624 return nil, 0, nil, err 1625 } 1626 var to common.Address 1627 if args.To != nil { 1628 to = *args.To 1629 } else { 1630 to = crypto.CreateAddress(args.from(), uint64(*args.Nonce)) 1631 } 1632 isPostMerge := header.Difficulty.Cmp(common.Big0) == 0 1633 // Retrieve the precompiles since they don't need to be added to the access list 1634 precompiles := vm.ActivePrecompiles(b.ChainConfig().Rules(header.Number, isPostMerge, header.Time, types.DeserializeHeaderExtraInformation(header).ArbOSFormatVersion)) 1635 1636 // Create an initial tracer 1637 prevTracer := logger.NewAccessListTracer(nil, args.from(), to, precompiles) 1638 if args.AccessList != nil { 1639 prevTracer = logger.NewAccessListTracer(*args.AccessList, args.from(), to, precompiles) 1640 } 1641 for { 1642 // Retrieve the current access list to expand 1643 accessList := prevTracer.AccessList() 1644 log.Trace("Creating access list", "input", accessList) 1645 1646 // Copy the original db so we don't modify it 1647 statedb := db.Copy() 1648 // Set the accesslist to the last al 1649 args.AccessList = &accessList 1650 msg, err := args.ToMessage(b.RPCGasCap(), header, statedb, core.MessageEthcallMode) 1651 if err != nil { 1652 return nil, 0, nil, err 1653 } 1654 1655 // Apply the transaction with the access list tracer 1656 tracer := logger.NewAccessListTracer(accessList, args.from(), to, precompiles) 1657 config := vm.Config{Tracer: tracer, Debug: true, NoBaseFee: true} 1658 vmenv, _, err := b.GetEVM(ctx, msg, statedb, header, &config) 1659 if err != nil { 1660 return nil, 0, nil, err 1661 } 1662 res, err := core.ApplyMessage(vmenv, msg, new(core.GasPool).AddGas(msg.GasLimit)) 1663 if err != nil { 1664 return nil, 0, nil, fmt.Errorf("failed to apply transaction: %v err: %v", args.toTransaction().Hash(), err) 1665 } 1666 if tracer.Equal(prevTracer) { 1667 return accessList, res.UsedGas, res.Err, nil 1668 } 1669 prevTracer = tracer 1670 } 1671 } 1672 1673 // TransactionAPI exposes methods for reading and creating transaction data. 1674 type TransactionAPI struct { 1675 b Backend 1676 nonceLock *AddrLocker 1677 signer types.Signer 1678 } 1679 1680 // NewTransactionAPI creates a new RPC service with methods for interacting with transactions. 1681 func NewTransactionAPI(b Backend, nonceLock *AddrLocker) *TransactionAPI { 1682 // The signer used by the API should always be the 'latest' known one because we expect 1683 // signers to be backwards-compatible with old transactions. 1684 signer := types.LatestSigner(b.ChainConfig()) 1685 return &TransactionAPI{b, nonceLock, signer} 1686 } 1687 1688 // GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number. 1689 func (s *TransactionAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint { 1690 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 1691 n := hexutil.Uint(len(block.Transactions())) 1692 return &n 1693 } 1694 return nil 1695 } 1696 1697 // GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash. 1698 func (s *TransactionAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint { 1699 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 1700 n := hexutil.Uint(len(block.Transactions())) 1701 return &n 1702 } 1703 return nil 1704 } 1705 1706 // GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index. 1707 func (s *TransactionAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction { 1708 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 1709 return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig()) 1710 } 1711 return nil 1712 } 1713 1714 // GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index. 1715 func (s *TransactionAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction { 1716 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 1717 return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig()) 1718 } 1719 return nil 1720 } 1721 1722 // GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index. 1723 func (s *TransactionAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes { 1724 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 1725 return newRPCRawTransactionFromBlockIndex(block, uint64(index)) 1726 } 1727 return nil 1728 } 1729 1730 // GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index. 1731 func (s *TransactionAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes { 1732 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 1733 return newRPCRawTransactionFromBlockIndex(block, uint64(index)) 1734 } 1735 return nil 1736 } 1737 1738 // GetTransactionCount returns the number of transactions the given address has sent for the given block number 1739 func (s *TransactionAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) { 1740 // Ask transaction pool for the nonce which includes pending transactions 1741 if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber { 1742 nonce, err := s.b.GetPoolNonce(ctx, address) 1743 if err != nil { 1744 return nil, err 1745 } 1746 return (*hexutil.Uint64)(&nonce), nil 1747 } 1748 // Resolve block number and use its state to ask for the nonce 1749 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1750 if state == nil || err != nil { 1751 if client := fallbackClientFor(s.b, err); client != nil { 1752 var res hexutil.Uint64 1753 err := client.CallContext(ctx, &res, "eth_getTransactionCount", address, blockNrOrHash) 1754 return &res, err 1755 } 1756 return nil, err 1757 } 1758 nonce := state.GetNonce(address) 1759 return (*hexutil.Uint64)(&nonce), state.Error() 1760 } 1761 1762 // GetTransactionByHash returns the transaction for the given hash 1763 func (s *TransactionAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) { 1764 // Try to return an already finalized transaction 1765 tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash) 1766 if err != nil { 1767 return nil, err 1768 } 1769 if tx != nil { 1770 header, err := s.b.HeaderByHash(ctx, blockHash) 1771 if err != nil { 1772 return nil, err 1773 } 1774 return newRPCTransaction(tx, blockHash, blockNumber, index, header.BaseFee, s.b.ChainConfig()), nil 1775 } 1776 // No finalized transaction, try to retrieve it from the pool 1777 if tx := s.b.GetPoolTransaction(hash); tx != nil { 1778 return NewRPCPendingTransaction(tx, s.b.CurrentHeader(), s.b.ChainConfig()), nil 1779 } 1780 1781 // Transaction unknown, return as such 1782 return nil, nil 1783 } 1784 1785 // GetRawTransactionByHash returns the bytes of the transaction for the given hash. 1786 func (s *TransactionAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) { 1787 // Retrieve a finalized transaction, or a pooled otherwise 1788 tx, _, _, _, err := s.b.GetTransaction(ctx, hash) 1789 if err != nil { 1790 return nil, err 1791 } 1792 if tx == nil { 1793 if tx = s.b.GetPoolTransaction(hash); tx == nil { 1794 // Transaction not found anywhere, abort 1795 return nil, nil 1796 } 1797 } 1798 // Serialize to RLP and return 1799 return tx.MarshalBinary() 1800 } 1801 1802 // GetTransactionReceipt returns the transaction receipt for the given transaction hash. 1803 func (s *TransactionAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) { 1804 tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash) 1805 if err != nil { 1806 // When the transaction doesn't exist, the RPC method should return JSON null 1807 // as per specification. 1808 return nil, nil 1809 } 1810 1811 receipts, err := s.b.GetReceipts(ctx, blockHash) 1812 if err != nil { 1813 return nil, err 1814 } 1815 if len(receipts) <= int(index) { 1816 return nil, nil 1817 } 1818 receipt := receipts[index] 1819 1820 // Derive the sender. 1821 bigblock := new(big.Int).SetUint64(blockNumber) 1822 signer := types.MakeSigner(s.b.ChainConfig(), bigblock) 1823 from, _ := types.Sender(signer, tx) 1824 1825 fields := map[string]interface{}{ 1826 "blockHash": blockHash, 1827 "blockNumber": hexutil.Uint64(blockNumber), 1828 "transactionHash": hash, 1829 "transactionIndex": hexutil.Uint64(index), 1830 "from": from, 1831 "to": tx.To(), 1832 "gasUsed": hexutil.Uint64(receipt.GasUsed), 1833 "cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed), 1834 "contractAddress": nil, 1835 "logs": receipt.Logs, 1836 "logsBloom": receipt.Bloom, 1837 "type": hexutil.Uint(tx.Type()), 1838 "effectiveGasPrice": (*hexutil.Big)(receipt.EffectiveGasPrice), 1839 } 1840 1841 // Assign receipt status or post state. 1842 if len(receipt.PostState) > 0 && tx.Type() != types.ArbitrumLegacyTxType { 1843 fields["root"] = hexutil.Bytes(receipt.PostState) 1844 } else { 1845 fields["status"] = hexutil.Uint(receipt.Status) 1846 } 1847 if receipt.Logs == nil { 1848 fields["logs"] = []*types.Log{} 1849 } 1850 1851 // If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation 1852 if receipt.ContractAddress != (common.Address{}) { 1853 fields["contractAddress"] = receipt.ContractAddress 1854 } 1855 if s.b.ChainConfig().IsArbitrum() { 1856 fields["gasUsedForL1"] = hexutil.Uint64(receipt.GasUsedForL1) 1857 1858 header, err := s.b.HeaderByHash(ctx, blockHash) 1859 if err != nil { 1860 return nil, err 1861 } 1862 if s.b.ChainConfig().IsArbitrumNitro(header.Number) { 1863 fields["effectiveGasPrice"] = hexutil.Uint64(header.BaseFee.Uint64()) 1864 fields["l1BlockNumber"] = hexutil.Uint64(types.DeserializeHeaderExtraInformation(header).L1BlockNumber) 1865 } else { 1866 inner := tx.GetInner() 1867 arbTx, ok := inner.(*types.ArbitrumLegacyTxData) 1868 if !ok { 1869 log.Error("Expected transaction to contain arbitrum data", "txHash", tx.Hash()) 1870 } else { 1871 fields["effectiveGasPrice"] = hexutil.Uint64(arbTx.EffectiveGasPrice) 1872 fields["l1BlockNumber"] = hexutil.Uint64(arbTx.L1BlockNumber) 1873 } 1874 } 1875 } 1876 return fields, nil 1877 } 1878 1879 // sign is a helper function that signs a transaction with the private key of the given address. 1880 func (s *TransactionAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) { 1881 // Look up the wallet containing the requested signer 1882 account := accounts.Account{Address: addr} 1883 1884 wallet, err := s.b.AccountManager().Find(account) 1885 if err != nil { 1886 return nil, err 1887 } 1888 // Request the wallet to sign the transaction 1889 return wallet.SignTx(account, tx, s.b.ChainConfig().ChainID) 1890 } 1891 1892 // SubmitTransaction is a helper function that submits tx to txPool and logs a message. 1893 func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) { 1894 // If the transaction fee cap is already specified, ensure the 1895 // fee of the given transaction is _reasonable_. 1896 if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil { 1897 return common.Hash{}, err 1898 } 1899 if !b.UnprotectedAllowed() && !tx.Protected() { 1900 // Ensure only eip155 signed transactions are submitted if EIP155Required is set. 1901 return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC") 1902 } 1903 if err := b.SendTx(ctx, tx); err != nil { 1904 return common.Hash{}, err 1905 } 1906 // Print a log with full tx details for manual investigations and interventions 1907 signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number) 1908 from, err := types.Sender(signer, tx) 1909 if err != nil { 1910 return common.Hash{}, err 1911 } 1912 1913 if tx.To() == nil { 1914 addr := crypto.CreateAddress(from, tx.Nonce()) 1915 log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "contract", addr.Hex(), "value", tx.Value()) 1916 } else { 1917 log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "recipient", tx.To(), "value", tx.Value()) 1918 } 1919 return tx.Hash(), nil 1920 } 1921 1922 // SendTransaction creates a transaction for the given argument, sign it and submit it to the 1923 // transaction pool. 1924 func (s *TransactionAPI) SendTransaction(ctx context.Context, args TransactionArgs) (common.Hash, error) { 1925 // Look up the wallet containing the requested signer 1926 account := accounts.Account{Address: args.from()} 1927 1928 wallet, err := s.b.AccountManager().Find(account) 1929 if err != nil { 1930 return common.Hash{}, err 1931 } 1932 1933 if args.Nonce == nil { 1934 // Hold the mutex around signing to prevent concurrent assignment of 1935 // the same nonce to multiple accounts. 1936 s.nonceLock.LockAddr(args.from()) 1937 defer s.nonceLock.UnlockAddr(args.from()) 1938 } 1939 1940 // Set some sanity defaults and terminate on failure 1941 if err := args.setDefaults(ctx, s.b); err != nil { 1942 return common.Hash{}, err 1943 } 1944 // Assemble the transaction and sign with the wallet 1945 tx := args.toTransaction() 1946 1947 signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID) 1948 if err != nil { 1949 return common.Hash{}, err 1950 } 1951 return SubmitTransaction(ctx, s.b, signed) 1952 } 1953 1954 // FillTransaction fills the defaults (nonce, gas, gasPrice or 1559 fields) 1955 // on a given unsigned transaction, and returns it to the caller for further 1956 // processing (signing + broadcast). 1957 func (s *TransactionAPI) FillTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) { 1958 // Set some sanity defaults and terminate on failure 1959 if err := args.setDefaults(ctx, s.b); err != nil { 1960 return nil, err 1961 } 1962 // Assemble the transaction and obtain rlp 1963 tx := args.toTransaction() 1964 data, err := tx.MarshalBinary() 1965 if err != nil { 1966 return nil, err 1967 } 1968 return &SignTransactionResult{data, tx}, nil 1969 } 1970 1971 // SendRawTransaction will add the signed transaction to the transaction pool. 1972 // The sender is responsible for signing the transaction and using the correct nonce. 1973 func (s *TransactionAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) { 1974 tx := new(types.Transaction) 1975 if err := tx.UnmarshalBinary(input); err != nil { 1976 return common.Hash{}, err 1977 } 1978 return SubmitTransaction(ctx, s.b, tx) 1979 } 1980 1981 // Sign calculates an ECDSA signature for: 1982 // keccak256("\x19Ethereum Signed Message:\n" + len(message) + message). 1983 // 1984 // Note, the produced signature conforms to the secp256k1 curve R, S and V values, 1985 // where the V value will be 27 or 28 for legacy reasons. 1986 // 1987 // The account associated with addr must be unlocked. 1988 // 1989 // https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign 1990 func (s *TransactionAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) { 1991 // Look up the wallet containing the requested signer 1992 account := accounts.Account{Address: addr} 1993 1994 wallet, err := s.b.AccountManager().Find(account) 1995 if err != nil { 1996 return nil, err 1997 } 1998 // Sign the requested hash with the wallet 1999 signature, err := wallet.SignText(account, data) 2000 if err == nil { 2001 signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper 2002 } 2003 return signature, err 2004 } 2005 2006 // SignTransactionResult represents a RLP encoded signed transaction. 2007 type SignTransactionResult struct { 2008 Raw hexutil.Bytes `json:"raw"` 2009 Tx *types.Transaction `json:"tx"` 2010 } 2011 2012 // SignTransaction will sign the given transaction with the from account. 2013 // The node needs to have the private key of the account corresponding with 2014 // the given from address and it needs to be unlocked. 2015 func (s *TransactionAPI) SignTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) { 2016 if args.Gas == nil { 2017 return nil, fmt.Errorf("gas not specified") 2018 } 2019 if args.GasPrice == nil && (args.MaxPriorityFeePerGas == nil || args.MaxFeePerGas == nil) { 2020 return nil, fmt.Errorf("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas") 2021 } 2022 if args.Nonce == nil { 2023 return nil, fmt.Errorf("nonce not specified") 2024 } 2025 if err := args.setDefaults(ctx, s.b); err != nil { 2026 return nil, err 2027 } 2028 // Before actually sign the transaction, ensure the transaction fee is reasonable. 2029 tx := args.toTransaction() 2030 if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil { 2031 return nil, err 2032 } 2033 signed, err := s.sign(args.from(), tx) 2034 if err != nil { 2035 return nil, err 2036 } 2037 data, err := signed.MarshalBinary() 2038 if err != nil { 2039 return nil, err 2040 } 2041 return &SignTransactionResult{data, signed}, nil 2042 } 2043 2044 // PendingTransactions returns the transactions that are in the transaction pool 2045 // and have a from address that is one of the accounts this node manages. 2046 func (s *TransactionAPI) PendingTransactions() ([]*RPCTransaction, error) { 2047 pending, err := s.b.GetPoolTransactions() 2048 if err != nil { 2049 return nil, err 2050 } 2051 accounts := make(map[common.Address]struct{}) 2052 for _, wallet := range s.b.AccountManager().Wallets() { 2053 for _, account := range wallet.Accounts() { 2054 accounts[account.Address] = struct{}{} 2055 } 2056 } 2057 curHeader := s.b.CurrentHeader() 2058 transactions := make([]*RPCTransaction, 0, len(pending)) 2059 for _, tx := range pending { 2060 from, _ := types.Sender(s.signer, tx) 2061 if _, exists := accounts[from]; exists { 2062 transactions = append(transactions, NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())) 2063 } 2064 } 2065 return transactions, nil 2066 } 2067 2068 // Resend accepts an existing transaction and a new gas price and limit. It will remove 2069 // the given transaction from the pool and reinsert it with the new gas price and limit. 2070 func (s *TransactionAPI) Resend(ctx context.Context, sendArgs TransactionArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) { 2071 if sendArgs.Nonce == nil { 2072 return common.Hash{}, fmt.Errorf("missing transaction nonce in transaction spec") 2073 } 2074 if err := sendArgs.setDefaults(ctx, s.b); err != nil { 2075 return common.Hash{}, err 2076 } 2077 matchTx := sendArgs.toTransaction() 2078 2079 // Before replacing the old transaction, ensure the _new_ transaction fee is reasonable. 2080 var price = matchTx.GasPrice() 2081 if gasPrice != nil { 2082 price = gasPrice.ToInt() 2083 } 2084 var gas = matchTx.Gas() 2085 if gasLimit != nil { 2086 gas = uint64(*gasLimit) 2087 } 2088 if err := checkTxFee(price, gas, s.b.RPCTxFeeCap()); err != nil { 2089 return common.Hash{}, err 2090 } 2091 // Iterate the pending list for replacement 2092 pending, err := s.b.GetPoolTransactions() 2093 if err != nil { 2094 return common.Hash{}, err 2095 } 2096 for _, p := range pending { 2097 wantSigHash := s.signer.Hash(matchTx) 2098 pFrom, err := types.Sender(s.signer, p) 2099 if err == nil && pFrom == sendArgs.from() && s.signer.Hash(p) == wantSigHash { 2100 // Match. Re-sign and send the transaction. 2101 if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 { 2102 sendArgs.GasPrice = gasPrice 2103 } 2104 if gasLimit != nil && *gasLimit != 0 { 2105 sendArgs.Gas = gasLimit 2106 } 2107 signedTx, err := s.sign(sendArgs.from(), sendArgs.toTransaction()) 2108 if err != nil { 2109 return common.Hash{}, err 2110 } 2111 if err = s.b.SendTx(ctx, signedTx); err != nil { 2112 return common.Hash{}, err 2113 } 2114 return signedTx.Hash(), nil 2115 } 2116 } 2117 return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash()) 2118 } 2119 2120 // DebugAPI is the collection of Ethereum APIs exposed over the debugging 2121 // namespace. 2122 type DebugAPI struct { 2123 b Backend 2124 } 2125 2126 // NewDebugAPI creates a new instance of DebugAPI. 2127 func NewDebugAPI(b Backend) *DebugAPI { 2128 return &DebugAPI{b: b} 2129 } 2130 2131 // GetRawHeader retrieves the RLP encoding for a single header. 2132 func (api *DebugAPI) GetRawHeader(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { 2133 var hash common.Hash 2134 if h, ok := blockNrOrHash.Hash(); ok { 2135 hash = h 2136 } else { 2137 block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash) 2138 if err != nil { 2139 return nil, err 2140 } 2141 hash = block.Hash() 2142 } 2143 header, _ := api.b.HeaderByHash(ctx, hash) 2144 if header == nil { 2145 return nil, fmt.Errorf("header #%d not found", hash) 2146 } 2147 return rlp.EncodeToBytes(header) 2148 } 2149 2150 // GetRawBlock retrieves the RLP encoded for a single block. 2151 func (api *DebugAPI) GetRawBlock(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { 2152 var hash common.Hash 2153 if h, ok := blockNrOrHash.Hash(); ok { 2154 hash = h 2155 } else { 2156 block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash) 2157 if err != nil { 2158 return nil, err 2159 } 2160 hash = block.Hash() 2161 } 2162 block, _ := api.b.BlockByHash(ctx, hash) 2163 if block == nil { 2164 return nil, fmt.Errorf("block #%d not found", hash) 2165 } 2166 return rlp.EncodeToBytes(block) 2167 } 2168 2169 // GetRawReceipts retrieves the binary-encoded receipts of a single block. 2170 func (api *DebugAPI) GetRawReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]hexutil.Bytes, error) { 2171 var hash common.Hash 2172 if h, ok := blockNrOrHash.Hash(); ok { 2173 hash = h 2174 } else { 2175 block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash) 2176 if err != nil { 2177 return nil, err 2178 } 2179 hash = block.Hash() 2180 } 2181 receipts, err := api.b.GetReceipts(ctx, hash) 2182 if err != nil { 2183 return nil, err 2184 } 2185 result := make([]hexutil.Bytes, len(receipts)) 2186 for i, receipt := range receipts { 2187 b, err := receipt.MarshalBinary() 2188 if err != nil { 2189 return nil, err 2190 } 2191 result[i] = b 2192 } 2193 return result, nil 2194 } 2195 2196 // GetRawTransaction returns the bytes of the transaction for the given hash. 2197 func (s *DebugAPI) GetRawTransaction(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) { 2198 // Retrieve a finalized transaction, or a pooled otherwise 2199 tx, _, _, _, err := s.b.GetTransaction(ctx, hash) 2200 if err != nil { 2201 return nil, err 2202 } 2203 if tx == nil { 2204 if tx = s.b.GetPoolTransaction(hash); tx == nil { 2205 // Transaction not found anywhere, abort 2206 return nil, nil 2207 } 2208 } 2209 return tx.MarshalBinary() 2210 } 2211 2212 // PrintBlock retrieves a block and returns its pretty printed form. 2213 func (api *DebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) { 2214 block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) 2215 if block == nil { 2216 return "", fmt.Errorf("block #%d not found", number) 2217 } 2218 return spew.Sdump(block), nil 2219 } 2220 2221 // SeedHash retrieves the seed hash of a block. 2222 func (api *DebugAPI) SeedHash(ctx context.Context, number uint64) (string, error) { 2223 block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) 2224 if block == nil { 2225 return "", fmt.Errorf("block #%d not found", number) 2226 } 2227 return fmt.Sprintf("%#x", ethash.SeedHash(number)), nil 2228 } 2229 2230 // ChaindbProperty returns leveldb properties of the key-value database. 2231 func (api *DebugAPI) ChaindbProperty(property string) (string, error) { 2232 if property == "" { 2233 property = "leveldb.stats" 2234 } else if !strings.HasPrefix(property, "leveldb.") { 2235 property = "leveldb." + property 2236 } 2237 return api.b.ChainDb().Stat(property) 2238 } 2239 2240 // ChaindbCompact flattens the entire key-value database into a single level, 2241 // removing all unused slots and merging all keys. 2242 func (api *DebugAPI) ChaindbCompact() error { 2243 for b := byte(0); b < 255; b++ { 2244 log.Info("Compacting chain database", "range", fmt.Sprintf("0x%0.2X-0x%0.2X", b, b+1)) 2245 if err := api.b.ChainDb().Compact([]byte{b}, []byte{b + 1}); err != nil { 2246 log.Error("Database compaction failed", "err", err) 2247 return err 2248 } 2249 } 2250 return nil 2251 } 2252 2253 // SetHead rewinds the head of the blockchain to a previous block. 2254 func (api *DebugAPI) SetHead(number hexutil.Uint64) { 2255 api.b.SetHead(uint64(number)) 2256 } 2257 2258 // NetAPI offers network related RPC methods 2259 type NetAPI struct { 2260 net *p2p.Server 2261 networkVersion uint64 2262 } 2263 2264 // NewNetAPI creates a new net API instance. 2265 func NewNetAPI(net *p2p.Server, networkVersion uint64) *NetAPI { 2266 return &NetAPI{net, networkVersion} 2267 } 2268 2269 // Listening returns an indication if the node is listening for network connections. 2270 func (s *NetAPI) Listening() bool { 2271 return true // always listening 2272 } 2273 2274 // PeerCount returns the number of connected peers 2275 func (s *NetAPI) PeerCount() hexutil.Uint { 2276 return hexutil.Uint(s.net.PeerCount()) 2277 } 2278 2279 // Version returns the current ethereum protocol version. 2280 func (s *NetAPI) Version() string { 2281 return fmt.Sprintf("%d", s.networkVersion) 2282 } 2283 2284 func CheckTxFee(gasPrice *big.Int, gas uint64, cap float64) error { 2285 return checkTxFee(gasPrice, gas, cap) 2286 } 2287 2288 // checkTxFee is an internal function used to check whether the fee of 2289 // the given transaction is _reasonable_(under the cap). 2290 func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error { 2291 // Short circuit if there is no cap for transaction fee at all. 2292 if cap == 0 { 2293 return nil 2294 } 2295 feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether))) 2296 feeFloat, _ := feeEth.Float64() 2297 if feeFloat > cap { 2298 return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap) 2299 } 2300 return nil 2301 } 2302 2303 // toHexSlice creates a slice of hex-strings based on []byte. 2304 func toHexSlice(b [][]byte) []string { 2305 r := make([]string, len(b)) 2306 for i := range b { 2307 r[i] = hexutil.Encode(b[i]) 2308 } 2309 return r 2310 }