github.com/tacshi/go-ethereum@v0.0.0-20230616113857-84a434e20921/trie/stacktrie.go (about)

     1  // Copyright 2020 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"bufio"
    21  	"bytes"
    22  	"encoding/gob"
    23  	"errors"
    24  	"io"
    25  	"sync"
    26  
    27  	"github.com/tacshi/go-ethereum/common"
    28  	"github.com/tacshi/go-ethereum/core/types"
    29  	"github.com/tacshi/go-ethereum/log"
    30  )
    31  
    32  var ErrCommitDisabled = errors.New("no database for committing")
    33  
    34  var stPool = sync.Pool{
    35  	New: func() interface{} {
    36  		return NewStackTrie(nil)
    37  	},
    38  }
    39  
    40  // NodeWriteFunc is used to provide all information of a dirty node for committing
    41  // so that callers can flush nodes into database with desired scheme.
    42  type NodeWriteFunc = func(owner common.Hash, path []byte, hash common.Hash, blob []byte)
    43  
    44  func stackTrieFromPool(writeFn NodeWriteFunc, owner common.Hash) *StackTrie {
    45  	st := stPool.Get().(*StackTrie)
    46  	st.owner = owner
    47  	st.writeFn = writeFn
    48  	return st
    49  }
    50  
    51  func returnToPool(st *StackTrie) {
    52  	st.Reset()
    53  	stPool.Put(st)
    54  }
    55  
    56  // StackTrie is a trie implementation that expects keys to be inserted
    57  // in order. Once it determines that a subtree will no longer be inserted
    58  // into, it will hash it and free up the memory it uses.
    59  type StackTrie struct {
    60  	owner    common.Hash    // the owner of the trie
    61  	nodeType uint8          // node type (as in branch, ext, leaf)
    62  	val      []byte         // value contained by this node if it's a leaf
    63  	key      []byte         // key chunk covered by this (leaf|ext) node
    64  	children [16]*StackTrie // list of children (for branch and exts)
    65  	writeFn  NodeWriteFunc  // function for committing nodes, can be nil
    66  }
    67  
    68  // NewStackTrie allocates and initializes an empty trie.
    69  func NewStackTrie(writeFn NodeWriteFunc) *StackTrie {
    70  	return &StackTrie{
    71  		nodeType: emptyNode,
    72  		writeFn:  writeFn,
    73  	}
    74  }
    75  
    76  // NewStackTrieWithOwner allocates and initializes an empty trie, but with
    77  // the additional owner field.
    78  func NewStackTrieWithOwner(writeFn NodeWriteFunc, owner common.Hash) *StackTrie {
    79  	return &StackTrie{
    80  		owner:    owner,
    81  		nodeType: emptyNode,
    82  		writeFn:  writeFn,
    83  	}
    84  }
    85  
    86  // NewFromBinary initialises a serialized stacktrie with the given db.
    87  func NewFromBinary(data []byte, writeFn NodeWriteFunc) (*StackTrie, error) {
    88  	var st StackTrie
    89  	if err := st.UnmarshalBinary(data); err != nil {
    90  		return nil, err
    91  	}
    92  	// If a database is used, we need to recursively add it to every child
    93  	if writeFn != nil {
    94  		st.setWriter(writeFn)
    95  	}
    96  	return &st, nil
    97  }
    98  
    99  // MarshalBinary implements encoding.BinaryMarshaler
   100  func (st *StackTrie) MarshalBinary() (data []byte, err error) {
   101  	var (
   102  		b bytes.Buffer
   103  		w = bufio.NewWriter(&b)
   104  	)
   105  	if err := gob.NewEncoder(w).Encode(struct {
   106  		Owner    common.Hash
   107  		NodeType uint8
   108  		Val      []byte
   109  		Key      []byte
   110  	}{
   111  		st.owner,
   112  		st.nodeType,
   113  		st.val,
   114  		st.key,
   115  	}); err != nil {
   116  		return nil, err
   117  	}
   118  	for _, child := range st.children {
   119  		if child == nil {
   120  			w.WriteByte(0)
   121  			continue
   122  		}
   123  		w.WriteByte(1)
   124  		if childData, err := child.MarshalBinary(); err != nil {
   125  			return nil, err
   126  		} else {
   127  			w.Write(childData)
   128  		}
   129  	}
   130  	w.Flush()
   131  	return b.Bytes(), nil
   132  }
   133  
   134  // UnmarshalBinary implements encoding.BinaryUnmarshaler
   135  func (st *StackTrie) UnmarshalBinary(data []byte) error {
   136  	r := bytes.NewReader(data)
   137  	return st.unmarshalBinary(r)
   138  }
   139  
   140  func (st *StackTrie) unmarshalBinary(r io.Reader) error {
   141  	var dec struct {
   142  		Owner    common.Hash
   143  		NodeType uint8
   144  		Val      []byte
   145  		Key      []byte
   146  	}
   147  	gob.NewDecoder(r).Decode(&dec)
   148  	st.owner = dec.Owner
   149  	st.nodeType = dec.NodeType
   150  	st.val = dec.Val
   151  	st.key = dec.Key
   152  
   153  	var hasChild = make([]byte, 1)
   154  	for i := range st.children {
   155  		if _, err := r.Read(hasChild); err != nil {
   156  			return err
   157  		} else if hasChild[0] == 0 {
   158  			continue
   159  		}
   160  		var child StackTrie
   161  		child.unmarshalBinary(r)
   162  		st.children[i] = &child
   163  	}
   164  	return nil
   165  }
   166  
   167  func (st *StackTrie) setWriter(writeFn NodeWriteFunc) {
   168  	st.writeFn = writeFn
   169  	for _, child := range st.children {
   170  		if child != nil {
   171  			child.setWriter(writeFn)
   172  		}
   173  	}
   174  }
   175  
   176  func newLeaf(owner common.Hash, key, val []byte, writeFn NodeWriteFunc) *StackTrie {
   177  	st := stackTrieFromPool(writeFn, owner)
   178  	st.nodeType = leafNode
   179  	st.key = append(st.key, key...)
   180  	st.val = val
   181  	return st
   182  }
   183  
   184  func newExt(owner common.Hash, key []byte, child *StackTrie, writeFn NodeWriteFunc) *StackTrie {
   185  	st := stackTrieFromPool(writeFn, owner)
   186  	st.nodeType = extNode
   187  	st.key = append(st.key, key...)
   188  	st.children[0] = child
   189  	return st
   190  }
   191  
   192  // List all values that StackTrie#nodeType can hold
   193  const (
   194  	emptyNode = iota
   195  	branchNode
   196  	extNode
   197  	leafNode
   198  	hashedNode
   199  )
   200  
   201  // TryUpdate inserts a (key, value) pair into the stack trie
   202  func (st *StackTrie) TryUpdate(key, value []byte) error {
   203  	k := keybytesToHex(key)
   204  	if len(value) == 0 {
   205  		panic("deletion not supported")
   206  	}
   207  	st.insert(k[:len(k)-1], value, nil)
   208  	return nil
   209  }
   210  
   211  func (st *StackTrie) Update(key, value []byte) {
   212  	if err := st.TryUpdate(key, value); err != nil {
   213  		log.Error("Unhandled trie error in StackTrie.Update", "err", err)
   214  	}
   215  }
   216  
   217  func (st *StackTrie) Reset() {
   218  	st.owner = common.Hash{}
   219  	st.writeFn = nil
   220  	st.key = st.key[:0]
   221  	st.val = nil
   222  	for i := range st.children {
   223  		st.children[i] = nil
   224  	}
   225  	st.nodeType = emptyNode
   226  }
   227  
   228  // Helper function that, given a full key, determines the index
   229  // at which the chunk pointed by st.keyOffset is different from
   230  // the same chunk in the full key.
   231  func (st *StackTrie) getDiffIndex(key []byte) int {
   232  	for idx, nibble := range st.key {
   233  		if nibble != key[idx] {
   234  			return idx
   235  		}
   236  	}
   237  	return len(st.key)
   238  }
   239  
   240  // Helper function to that inserts a (key, value) pair into
   241  // the trie.
   242  func (st *StackTrie) insert(key, value []byte, prefix []byte) {
   243  	switch st.nodeType {
   244  	case branchNode: /* Branch */
   245  		idx := int(key[0])
   246  
   247  		// Unresolve elder siblings
   248  		for i := idx - 1; i >= 0; i-- {
   249  			if st.children[i] != nil {
   250  				if st.children[i].nodeType != hashedNode {
   251  					st.children[i].hash(append(prefix, byte(i)))
   252  				}
   253  				break
   254  			}
   255  		}
   256  
   257  		// Add new child
   258  		if st.children[idx] == nil {
   259  			st.children[idx] = newLeaf(st.owner, key[1:], value, st.writeFn)
   260  		} else {
   261  			st.children[idx].insert(key[1:], value, append(prefix, key[0]))
   262  		}
   263  
   264  	case extNode: /* Ext */
   265  		// Compare both key chunks and see where they differ
   266  		diffidx := st.getDiffIndex(key)
   267  
   268  		// Check if chunks are identical. If so, recurse into
   269  		// the child node. Otherwise, the key has to be split
   270  		// into 1) an optional common prefix, 2) the fullnode
   271  		// representing the two differing path, and 3) a leaf
   272  		// for each of the differentiated subtrees.
   273  		if diffidx == len(st.key) {
   274  			// Ext key and key segment are identical, recurse into
   275  			// the child node.
   276  			st.children[0].insert(key[diffidx:], value, append(prefix, key[:diffidx]...))
   277  			return
   278  		}
   279  		// Save the original part. Depending if the break is
   280  		// at the extension's last byte or not, create an
   281  		// intermediate extension or use the extension's child
   282  		// node directly.
   283  		var n *StackTrie
   284  		if diffidx < len(st.key)-1 {
   285  			// Break on the non-last byte, insert an intermediate
   286  			// extension. The path prefix of the newly-inserted
   287  			// extension should also contain the different byte.
   288  			n = newExt(st.owner, st.key[diffidx+1:], st.children[0], st.writeFn)
   289  			n.hash(append(prefix, st.key[:diffidx+1]...))
   290  		} else {
   291  			// Break on the last byte, no need to insert
   292  			// an extension node: reuse the current node.
   293  			// The path prefix of the original part should
   294  			// still be same.
   295  			n = st.children[0]
   296  			n.hash(append(prefix, st.key...))
   297  		}
   298  		var p *StackTrie
   299  		if diffidx == 0 {
   300  			// the break is on the first byte, so
   301  			// the current node is converted into
   302  			// a branch node.
   303  			st.children[0] = nil
   304  			p = st
   305  			st.nodeType = branchNode
   306  		} else {
   307  			// the common prefix is at least one byte
   308  			// long, insert a new intermediate branch
   309  			// node.
   310  			st.children[0] = stackTrieFromPool(st.writeFn, st.owner)
   311  			st.children[0].nodeType = branchNode
   312  			p = st.children[0]
   313  		}
   314  		// Create a leaf for the inserted part
   315  		o := newLeaf(st.owner, key[diffidx+1:], value, st.writeFn)
   316  
   317  		// Insert both child leaves where they belong:
   318  		origIdx := st.key[diffidx]
   319  		newIdx := key[diffidx]
   320  		p.children[origIdx] = n
   321  		p.children[newIdx] = o
   322  		st.key = st.key[:diffidx]
   323  
   324  	case leafNode: /* Leaf */
   325  		// Compare both key chunks and see where they differ
   326  		diffidx := st.getDiffIndex(key)
   327  
   328  		// Overwriting a key isn't supported, which means that
   329  		// the current leaf is expected to be split into 1) an
   330  		// optional extension for the common prefix of these 2
   331  		// keys, 2) a fullnode selecting the path on which the
   332  		// keys differ, and 3) one leaf for the differentiated
   333  		// component of each key.
   334  		if diffidx >= len(st.key) {
   335  			panic("Trying to insert into existing key")
   336  		}
   337  
   338  		// Check if the split occurs at the first nibble of the
   339  		// chunk. In that case, no prefix extnode is necessary.
   340  		// Otherwise, create that
   341  		var p *StackTrie
   342  		if diffidx == 0 {
   343  			// Convert current leaf into a branch
   344  			st.nodeType = branchNode
   345  			p = st
   346  			st.children[0] = nil
   347  		} else {
   348  			// Convert current node into an ext,
   349  			// and insert a child branch node.
   350  			st.nodeType = extNode
   351  			st.children[0] = NewStackTrieWithOwner(st.writeFn, st.owner)
   352  			st.children[0].nodeType = branchNode
   353  			p = st.children[0]
   354  		}
   355  
   356  		// Create the two child leaves: one containing the original
   357  		// value and another containing the new value. The child leaf
   358  		// is hashed directly in order to free up some memory.
   359  		origIdx := st.key[diffidx]
   360  		p.children[origIdx] = newLeaf(st.owner, st.key[diffidx+1:], st.val, st.writeFn)
   361  		p.children[origIdx].hash(append(prefix, st.key[:diffidx+1]...))
   362  
   363  		newIdx := key[diffidx]
   364  		p.children[newIdx] = newLeaf(st.owner, key[diffidx+1:], value, st.writeFn)
   365  
   366  		// Finally, cut off the key part that has been passed
   367  		// over to the children.
   368  		st.key = st.key[:diffidx]
   369  		st.val = nil
   370  
   371  	case emptyNode: /* Empty */
   372  		st.nodeType = leafNode
   373  		st.key = key
   374  		st.val = value
   375  
   376  	case hashedNode:
   377  		panic("trying to insert into hash")
   378  
   379  	default:
   380  		panic("invalid type")
   381  	}
   382  }
   383  
   384  // hash converts st into a 'hashedNode', if possible. Possible outcomes:
   385  //
   386  // 1. The rlp-encoded value was >= 32 bytes:
   387  //   - Then the 32-byte `hash` will be accessible in `st.val`.
   388  //   - And the 'st.type' will be 'hashedNode'
   389  //
   390  // 2. The rlp-encoded value was < 32 bytes
   391  //   - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
   392  //   - And the 'st.type' will be 'hashedNode' AGAIN
   393  //
   394  // This method also sets 'st.type' to hashedNode, and clears 'st.key'.
   395  func (st *StackTrie) hash(path []byte) {
   396  	h := newHasher(false)
   397  	defer returnHasherToPool(h)
   398  
   399  	st.hashRec(h, path)
   400  }
   401  
   402  func (st *StackTrie) hashRec(hasher *hasher, path []byte) {
   403  	// The switch below sets this to the RLP-encoding of this node.
   404  	var encodedNode []byte
   405  
   406  	switch st.nodeType {
   407  	case hashedNode:
   408  		return
   409  
   410  	case emptyNode:
   411  		st.val = types.EmptyRootHash.Bytes()
   412  		st.key = st.key[:0]
   413  		st.nodeType = hashedNode
   414  		return
   415  
   416  	case branchNode:
   417  		var nodes rawFullNode
   418  		for i, child := range st.children {
   419  			if child == nil {
   420  				nodes[i] = nilValueNode
   421  				continue
   422  			}
   423  			child.hashRec(hasher, append(path, byte(i)))
   424  			if len(child.val) < 32 {
   425  				nodes[i] = rawNode(child.val)
   426  			} else {
   427  				nodes[i] = hashNode(child.val)
   428  			}
   429  
   430  			// Release child back to pool.
   431  			st.children[i] = nil
   432  			returnToPool(child)
   433  		}
   434  
   435  		nodes.encode(hasher.encbuf)
   436  		encodedNode = hasher.encodedBytes()
   437  
   438  	case extNode:
   439  		st.children[0].hashRec(hasher, append(path, st.key...))
   440  
   441  		n := rawShortNode{Key: hexToCompact(st.key)}
   442  		if len(st.children[0].val) < 32 {
   443  			n.Val = rawNode(st.children[0].val)
   444  		} else {
   445  			n.Val = hashNode(st.children[0].val)
   446  		}
   447  
   448  		n.encode(hasher.encbuf)
   449  		encodedNode = hasher.encodedBytes()
   450  
   451  		// Release child back to pool.
   452  		returnToPool(st.children[0])
   453  		st.children[0] = nil
   454  
   455  	case leafNode:
   456  		st.key = append(st.key, byte(16))
   457  		n := rawShortNode{Key: hexToCompact(st.key), Val: valueNode(st.val)}
   458  
   459  		n.encode(hasher.encbuf)
   460  		encodedNode = hasher.encodedBytes()
   461  
   462  	default:
   463  		panic("invalid node type")
   464  	}
   465  
   466  	st.nodeType = hashedNode
   467  	st.key = st.key[:0]
   468  	if len(encodedNode) < 32 {
   469  		st.val = common.CopyBytes(encodedNode)
   470  		return
   471  	}
   472  
   473  	// Write the hash to the 'val'. We allocate a new val here to not mutate
   474  	// input values
   475  	st.val = hasher.hashData(encodedNode)
   476  	if st.writeFn != nil {
   477  		st.writeFn(st.owner, path, common.BytesToHash(st.val), encodedNode)
   478  	}
   479  }
   480  
   481  // Hash returns the hash of the current node.
   482  func (st *StackTrie) Hash() (h common.Hash) {
   483  	hasher := newHasher(false)
   484  	defer returnHasherToPool(hasher)
   485  
   486  	st.hashRec(hasher, nil)
   487  	if len(st.val) == 32 {
   488  		copy(h[:], st.val)
   489  		return h
   490  	}
   491  	// If the node's RLP isn't 32 bytes long, the node will not
   492  	// be hashed, and instead contain the  rlp-encoding of the
   493  	// node. For the top level node, we need to force the hashing.
   494  	hasher.sha.Reset()
   495  	hasher.sha.Write(st.val)
   496  	hasher.sha.Read(h[:])
   497  	return h
   498  }
   499  
   500  // Commit will firstly hash the entire trie if it's still not hashed
   501  // and then commit all nodes to the associated database. Actually most
   502  // of the trie nodes MAY have been committed already. The main purpose
   503  // here is to commit the root node.
   504  //
   505  // The associated database is expected, otherwise the whole commit
   506  // functionality should be disabled.
   507  func (st *StackTrie) Commit() (h common.Hash, err error) {
   508  	if st.writeFn == nil {
   509  		return common.Hash{}, ErrCommitDisabled
   510  	}
   511  	hasher := newHasher(false)
   512  	defer returnHasherToPool(hasher)
   513  
   514  	st.hashRec(hasher, nil)
   515  	if len(st.val) == 32 {
   516  		copy(h[:], st.val)
   517  		return h, nil
   518  	}
   519  	// If the node's RLP isn't 32 bytes long, the node will not
   520  	// be hashed (and committed), and instead contain the rlp-encoding of the
   521  	// node. For the top level node, we need to force the hashing+commit.
   522  	hasher.sha.Reset()
   523  	hasher.sha.Write(st.val)
   524  	hasher.sha.Read(h[:])
   525  
   526  	st.writeFn(st.owner, nil, h, st.val)
   527  	return h, nil
   528  }