github.com/tacshi/go-ethereum@v0.0.0-20230616113857-84a434e20921/trie/trie.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 // Package trie implements Merkle Patricia Tries. 18 package trie 19 20 import ( 21 "bytes" 22 "errors" 23 "fmt" 24 25 "github.com/tacshi/go-ethereum/common" 26 "github.com/tacshi/go-ethereum/core/types" 27 "github.com/tacshi/go-ethereum/log" 28 ) 29 30 // Trie is a Merkle Patricia Trie. Use New to create a trie that sits on 31 // top of a database. Whenever trie performs a commit operation, the generated 32 // nodes will be gathered and returned in a set. Once the trie is committed, 33 // it's not usable anymore. Callers have to re-create the trie with new root 34 // based on the updated trie database. 35 // 36 // Trie is not safe for concurrent use. 37 type Trie struct { 38 root node 39 owner common.Hash 40 41 // Keep track of the number leaves which have been inserted since the last 42 // hashing operation. This number will not directly map to the number of 43 // actually unhashed nodes. 44 unhashed int 45 46 // reader is the handler trie can retrieve nodes from. 47 reader *trieReader 48 49 // tracer is the tool to track the trie changes. 50 // It will be reset after each commit operation. 51 tracer *tracer 52 } 53 54 // newFlag returns the cache flag value for a newly created node. 55 func (t *Trie) newFlag() nodeFlag { 56 return nodeFlag{dirty: true} 57 } 58 59 // Copy returns a copy of Trie. 60 func (t *Trie) Copy() *Trie { 61 return &Trie{ 62 root: t.root, 63 owner: t.owner, 64 unhashed: t.unhashed, 65 reader: t.reader, 66 tracer: t.tracer.copy(), 67 } 68 } 69 70 // New creates the trie instance with provided trie id and the read-only 71 // database. The state specified by trie id must be available, otherwise 72 // an error will be returned. The trie root specified by trie id can be 73 // zero hash or the sha3 hash of an empty string, then trie is initially 74 // empty, otherwise, the root node must be present in database or returns 75 // a MissingNodeError if not. 76 func New(id *ID, db NodeReader) (*Trie, error) { 77 reader, err := newTrieReader(id.StateRoot, id.Owner, db) 78 if err != nil { 79 return nil, err 80 } 81 trie := &Trie{ 82 owner: id.Owner, 83 reader: reader, 84 //tracer: newTracer(), 85 } 86 if id.Root != (common.Hash{}) && id.Root != types.EmptyRootHash { 87 rootnode, err := trie.resolveAndTrack(id.Root[:], nil) 88 if err != nil { 89 return nil, err 90 } 91 trie.root = rootnode 92 } 93 return trie, nil 94 } 95 96 // NewEmpty is a shortcut to create empty tree. It's mostly used in tests. 97 func NewEmpty(db *Database) *Trie { 98 tr, _ := New(TrieID(common.Hash{}), db) 99 return tr 100 } 101 102 // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at 103 // the key after the given start key. 104 func (t *Trie) NodeIterator(start []byte) NodeIterator { 105 return newNodeIterator(t, start) 106 } 107 108 // Get returns the value for key stored in the trie. 109 // The value bytes must not be modified by the caller. 110 func (t *Trie) Get(key []byte) []byte { 111 res, err := t.TryGet(key) 112 if err != nil { 113 log.Error("Unhandled trie error in Trie.Get", "err", err) 114 } 115 return res 116 } 117 118 // TryGet returns the value for key stored in the trie. 119 // The value bytes must not be modified by the caller. 120 // If a node was not found in the database, a MissingNodeError is returned. 121 func (t *Trie) TryGet(key []byte) ([]byte, error) { 122 value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0) 123 if err == nil && didResolve { 124 t.root = newroot 125 } 126 return value, err 127 } 128 129 func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) { 130 switch n := (origNode).(type) { 131 case nil: 132 return nil, nil, false, nil 133 case valueNode: 134 return n, n, false, nil 135 case *shortNode: 136 if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) { 137 // key not found in trie 138 return nil, n, false, nil 139 } 140 value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key)) 141 if err == nil && didResolve { 142 n = n.copy() 143 n.Val = newnode 144 } 145 return value, n, didResolve, err 146 case *fullNode: 147 value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1) 148 if err == nil && didResolve { 149 n = n.copy() 150 n.Children[key[pos]] = newnode 151 } 152 return value, n, didResolve, err 153 case hashNode: 154 child, err := t.resolveAndTrack(n, key[:pos]) 155 if err != nil { 156 return nil, n, true, err 157 } 158 value, newnode, _, err := t.tryGet(child, key, pos) 159 return value, newnode, true, err 160 default: 161 panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode)) 162 } 163 } 164 165 // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not 166 // possible to use keybyte-encoding as the path might contain odd nibbles. 167 func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) { 168 item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0) 169 if err != nil { 170 return nil, resolved, err 171 } 172 if resolved > 0 { 173 t.root = newroot 174 } 175 if item == nil { 176 return nil, resolved, nil 177 } 178 return item, resolved, err 179 } 180 181 func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) { 182 // If non-existent path requested, abort 183 if origNode == nil { 184 return nil, nil, 0, nil 185 } 186 // If we reached the requested path, return the current node 187 if pos >= len(path) { 188 // Although we most probably have the original node expanded, encoding 189 // that into consensus form can be nasty (needs to cascade down) and 190 // time consuming. Instead, just pull the hash up from disk directly. 191 var hash hashNode 192 if node, ok := origNode.(hashNode); ok { 193 hash = node 194 } else { 195 hash, _ = origNode.cache() 196 } 197 if hash == nil { 198 return nil, origNode, 0, errors.New("non-consensus node") 199 } 200 blob, err := t.reader.nodeBlob(path, common.BytesToHash(hash)) 201 return blob, origNode, 1, err 202 } 203 // Path still needs to be traversed, descend into children 204 switch n := (origNode).(type) { 205 case valueNode: 206 // Path prematurely ended, abort 207 return nil, nil, 0, nil 208 209 case *shortNode: 210 if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) { 211 // Path branches off from short node 212 return nil, n, 0, nil 213 } 214 item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key)) 215 if err == nil && resolved > 0 { 216 n = n.copy() 217 n.Val = newnode 218 } 219 return item, n, resolved, err 220 221 case *fullNode: 222 item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1) 223 if err == nil && resolved > 0 { 224 n = n.copy() 225 n.Children[path[pos]] = newnode 226 } 227 return item, n, resolved, err 228 229 case hashNode: 230 child, err := t.resolveAndTrack(n, path[:pos]) 231 if err != nil { 232 return nil, n, 1, err 233 } 234 item, newnode, resolved, err := t.tryGetNode(child, path, pos) 235 return item, newnode, resolved + 1, err 236 237 default: 238 panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode)) 239 } 240 } 241 242 // Update associates key with value in the trie. Subsequent calls to 243 // Get will return value. If value has length zero, any existing value 244 // is deleted from the trie and calls to Get will return nil. 245 // 246 // The value bytes must not be modified by the caller while they are 247 // stored in the trie. 248 func (t *Trie) Update(key, value []byte) { 249 if err := t.TryUpdate(key, value); err != nil { 250 log.Error("Unhandled trie error in Trie.Update", "err", err) 251 } 252 } 253 254 // TryUpdate associates key with value in the trie. Subsequent calls to 255 // Get will return value. If value has length zero, any existing value 256 // is deleted from the trie and calls to Get will return nil. 257 // 258 // The value bytes must not be modified by the caller while they are 259 // stored in the trie. 260 // 261 // If a node was not found in the database, a MissingNodeError is returned. 262 func (t *Trie) TryUpdate(key, value []byte) error { 263 return t.tryUpdate(key, value) 264 } 265 266 // tryUpdate expects an RLP-encoded value and performs the core function 267 // for TryUpdate and TryUpdateAccount. 268 func (t *Trie) tryUpdate(key, value []byte) error { 269 t.unhashed++ 270 k := keybytesToHex(key) 271 if len(value) != 0 { 272 _, n, err := t.insert(t.root, nil, k, valueNode(value)) 273 if err != nil { 274 return err 275 } 276 t.root = n 277 } else { 278 _, n, err := t.delete(t.root, nil, k) 279 if err != nil { 280 return err 281 } 282 t.root = n 283 } 284 return nil 285 } 286 287 func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) { 288 if len(key) == 0 { 289 if v, ok := n.(valueNode); ok { 290 return !bytes.Equal(v, value.(valueNode)), value, nil 291 } 292 return true, value, nil 293 } 294 switch n := n.(type) { 295 case *shortNode: 296 matchlen := prefixLen(key, n.Key) 297 // If the whole key matches, keep this short node as is 298 // and only update the value. 299 if matchlen == len(n.Key) { 300 dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value) 301 if !dirty || err != nil { 302 return false, n, err 303 } 304 return true, &shortNode{n.Key, nn, t.newFlag()}, nil 305 } 306 // Otherwise branch out at the index where they differ. 307 branch := &fullNode{flags: t.newFlag()} 308 var err error 309 _, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val) 310 if err != nil { 311 return false, nil, err 312 } 313 _, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value) 314 if err != nil { 315 return false, nil, err 316 } 317 // Replace this shortNode with the branch if it occurs at index 0. 318 if matchlen == 0 { 319 return true, branch, nil 320 } 321 // New branch node is created as a child of the original short node. 322 // Track the newly inserted node in the tracer. The node identifier 323 // passed is the path from the root node. 324 t.tracer.onInsert(append(prefix, key[:matchlen]...)) 325 326 // Replace it with a short node leading up to the branch. 327 return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil 328 329 case *fullNode: 330 dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value) 331 if !dirty || err != nil { 332 return false, n, err 333 } 334 n = n.copy() 335 n.flags = t.newFlag() 336 n.Children[key[0]] = nn 337 return true, n, nil 338 339 case nil: 340 // New short node is created and track it in the tracer. The node identifier 341 // passed is the path from the root node. Note the valueNode won't be tracked 342 // since it's always embedded in its parent. 343 t.tracer.onInsert(prefix) 344 345 return true, &shortNode{key, value, t.newFlag()}, nil 346 347 case hashNode: 348 // We've hit a part of the trie that isn't loaded yet. Load 349 // the node and insert into it. This leaves all child nodes on 350 // the path to the value in the trie. 351 rn, err := t.resolveAndTrack(n, prefix) 352 if err != nil { 353 return false, nil, err 354 } 355 dirty, nn, err := t.insert(rn, prefix, key, value) 356 if !dirty || err != nil { 357 return false, rn, err 358 } 359 return true, nn, nil 360 361 default: 362 panic(fmt.Sprintf("%T: invalid node: %v", n, n)) 363 } 364 } 365 366 // Delete removes any existing value for key from the trie. 367 func (t *Trie) Delete(key []byte) { 368 if err := t.TryDelete(key); err != nil { 369 log.Error("Unhandled trie error in Trie.Delete", "err", err) 370 } 371 } 372 373 // TryDelete removes any existing value for key from the trie. 374 // If a node was not found in the database, a MissingNodeError is returned. 375 func (t *Trie) TryDelete(key []byte) error { 376 t.unhashed++ 377 k := keybytesToHex(key) 378 _, n, err := t.delete(t.root, nil, k) 379 if err != nil { 380 return err 381 } 382 t.root = n 383 return nil 384 } 385 386 // delete returns the new root of the trie with key deleted. 387 // It reduces the trie to minimal form by simplifying 388 // nodes on the way up after deleting recursively. 389 func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) { 390 switch n := n.(type) { 391 case *shortNode: 392 matchlen := prefixLen(key, n.Key) 393 if matchlen < len(n.Key) { 394 return false, n, nil // don't replace n on mismatch 395 } 396 if matchlen == len(key) { 397 // The matched short node is deleted entirely and track 398 // it in the deletion set. The same the valueNode doesn't 399 // need to be tracked at all since it's always embedded. 400 t.tracer.onDelete(prefix) 401 402 return true, nil, nil // remove n entirely for whole matches 403 } 404 // The key is longer than n.Key. Remove the remaining suffix 405 // from the subtrie. Child can never be nil here since the 406 // subtrie must contain at least two other values with keys 407 // longer than n.Key. 408 dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):]) 409 if !dirty || err != nil { 410 return false, n, err 411 } 412 switch child := child.(type) { 413 case *shortNode: 414 // The child shortNode is merged into its parent, track 415 // is deleted as well. 416 t.tracer.onDelete(append(prefix, n.Key...)) 417 418 // Deleting from the subtrie reduced it to another 419 // short node. Merge the nodes to avoid creating a 420 // shortNode{..., shortNode{...}}. Use concat (which 421 // always creates a new slice) instead of append to 422 // avoid modifying n.Key since it might be shared with 423 // other nodes. 424 return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil 425 default: 426 return true, &shortNode{n.Key, child, t.newFlag()}, nil 427 } 428 429 case *fullNode: 430 dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:]) 431 if !dirty || err != nil { 432 return false, n, err 433 } 434 n = n.copy() 435 n.flags = t.newFlag() 436 n.Children[key[0]] = nn 437 438 // Because n is a full node, it must've contained at least two children 439 // before the delete operation. If the new child value is non-nil, n still 440 // has at least two children after the deletion, and cannot be reduced to 441 // a short node. 442 if nn != nil { 443 return true, n, nil 444 } 445 // Reduction: 446 // Check how many non-nil entries are left after deleting and 447 // reduce the full node to a short node if only one entry is 448 // left. Since n must've contained at least two children 449 // before deletion (otherwise it would not be a full node) n 450 // can never be reduced to nil. 451 // 452 // When the loop is done, pos contains the index of the single 453 // value that is left in n or -2 if n contains at least two 454 // values. 455 pos := -1 456 for i, cld := range &n.Children { 457 if cld != nil { 458 if pos == -1 { 459 pos = i 460 } else { 461 pos = -2 462 break 463 } 464 } 465 } 466 if pos >= 0 { 467 if pos != 16 { 468 // If the remaining entry is a short node, it replaces 469 // n and its key gets the missing nibble tacked to the 470 // front. This avoids creating an invalid 471 // shortNode{..., shortNode{...}}. Since the entry 472 // might not be loaded yet, resolve it just for this 473 // check. 474 cnode, err := t.resolve(n.Children[pos], append(prefix, byte(pos))) 475 if err != nil { 476 return false, nil, err 477 } 478 if cnode, ok := cnode.(*shortNode); ok { 479 // Replace the entire full node with the short node. 480 // Mark the original short node as deleted since the 481 // value is embedded into the parent now. 482 t.tracer.onDelete(append(prefix, byte(pos))) 483 484 k := append([]byte{byte(pos)}, cnode.Key...) 485 return true, &shortNode{k, cnode.Val, t.newFlag()}, nil 486 } 487 } 488 // Otherwise, n is replaced by a one-nibble short node 489 // containing the child. 490 return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil 491 } 492 // n still contains at least two values and cannot be reduced. 493 return true, n, nil 494 495 case valueNode: 496 return true, nil, nil 497 498 case nil: 499 return false, nil, nil 500 501 case hashNode: 502 // We've hit a part of the trie that isn't loaded yet. Load 503 // the node and delete from it. This leaves all child nodes on 504 // the path to the value in the trie. 505 rn, err := t.resolveAndTrack(n, prefix) 506 if err != nil { 507 return false, nil, err 508 } 509 dirty, nn, err := t.delete(rn, prefix, key) 510 if !dirty || err != nil { 511 return false, rn, err 512 } 513 return true, nn, nil 514 515 default: 516 panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key)) 517 } 518 } 519 520 func concat(s1 []byte, s2 ...byte) []byte { 521 r := make([]byte, len(s1)+len(s2)) 522 copy(r, s1) 523 copy(r[len(s1):], s2) 524 return r 525 } 526 527 func (t *Trie) resolve(n node, prefix []byte) (node, error) { 528 if n, ok := n.(hashNode); ok { 529 return t.resolveAndTrack(n, prefix) 530 } 531 return n, nil 532 } 533 534 // resolveAndTrack loads node from the underlying store with the given node hash 535 // and path prefix and also tracks the loaded node blob in tracer treated as the 536 // node's original value. The rlp-encoded blob is preferred to be loaded from 537 // database because it's easy to decode node while complex to encode node to blob. 538 func (t *Trie) resolveAndTrack(n hashNode, prefix []byte) (node, error) { 539 blob, err := t.reader.nodeBlob(prefix, common.BytesToHash(n)) 540 if err != nil { 541 return nil, err 542 } 543 t.tracer.onRead(prefix, blob) 544 return mustDecodeNode(n, blob), nil 545 } 546 547 // Hash returns the root hash of the trie. It does not write to the 548 // database and can be used even if the trie doesn't have one. 549 func (t *Trie) Hash() common.Hash { 550 hash, cached, _ := t.hashRoot() 551 t.root = cached 552 return common.BytesToHash(hash.(hashNode)) 553 } 554 555 // Commit collects all dirty nodes in the trie and replaces them with the 556 // corresponding node hash. All collected nodes (including dirty leaves if 557 // collectLeaf is true) will be encapsulated into a nodeset for return. 558 // The returned nodeset can be nil if the trie is clean (nothing to commit). 559 // Once the trie is committed, it's not usable anymore. A new trie must 560 // be created with new root and updated trie database for following usage 561 func (t *Trie) Commit(collectLeaf bool) (common.Hash, *NodeSet) { 562 defer t.tracer.reset() 563 564 // Trie is empty and can be classified into two types of situations: 565 // - The trie was empty and no update happens 566 // - The trie was non-empty and all nodes are dropped 567 if t.root == nil { 568 // Wrap tracked deletions as the return 569 set := NewNodeSet(t.owner) 570 t.tracer.markDeletions(set) 571 return types.EmptyRootHash, set 572 } 573 // Derive the hash for all dirty nodes first. We hold the assumption 574 // in the following procedure that all nodes are hashed. 575 rootHash := t.Hash() 576 577 // Do a quick check if we really need to commit. This can happen e.g. 578 // if we load a trie for reading storage values, but don't write to it. 579 if hashedNode, dirty := t.root.cache(); !dirty { 580 // Replace the root node with the origin hash in order to 581 // ensure all resolved nodes are dropped after the commit. 582 t.root = hashedNode 583 return rootHash, nil 584 } 585 h := newCommitter(t.owner, t.tracer, collectLeaf) 586 newRoot, nodes := h.Commit(t.root) 587 t.root = newRoot 588 return rootHash, nodes 589 } 590 591 // hashRoot calculates the root hash of the given trie 592 func (t *Trie) hashRoot() (node, node, error) { 593 if t.root == nil { 594 return hashNode(types.EmptyRootHash.Bytes()), nil, nil 595 } 596 // If the number of changes is below 100, we let one thread handle it 597 h := newHasher(t.unhashed >= 100) 598 defer returnHasherToPool(h) 599 hashed, cached := h.hash(t.root, true) 600 t.unhashed = 0 601 return hashed, cached, nil 602 } 603 604 // Reset drops the referenced root node and cleans all internal state. 605 func (t *Trie) Reset() { 606 t.root = nil 607 t.owner = common.Hash{} 608 t.unhashed = 0 609 t.tracer.reset() 610 }