github.com/tardisgo/tardisgo@v0.0.0-20161119180838-e0dd9a7e46b5/goroot/haxe/go1.4/src/encoding/json/encode.go (about)

     1  // Copyright 2010 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON objects as defined in
     6  // RFC 4627. The mapping between JSON objects and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // http://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"math"
    18  	"reflect"
    19  	"runtime"
    20  	"sort"
    21  	"strconv"
    22  	"strings"
    23  	"sync"
    24  	"unicode"
    25  	"unicode/utf8"
    26  )
    27  
    28  // Marshal returns the JSON encoding of v.
    29  //
    30  // Marshal traverses the value v recursively.
    31  // If an encountered value implements the Marshaler interface
    32  // and is not a nil pointer, Marshal calls its MarshalJSON method
    33  // to produce JSON.  The nil pointer exception is not strictly necessary
    34  // but mimics a similar, necessary exception in the behavior of
    35  // UnmarshalJSON.
    36  //
    37  // Otherwise, Marshal uses the following type-dependent default encodings:
    38  //
    39  // Boolean values encode as JSON booleans.
    40  //
    41  // Floating point, integer, and Number values encode as JSON numbers.
    42  //
    43  // String values encode as JSON strings coerced to valid UTF-8,
    44  // replacing invalid bytes with the Unicode replacement rune.
    45  // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
    46  // to keep some browsers from misinterpreting JSON output as HTML.
    47  // Ampersand "&" is also escaped to "\u0026" for the same reason.
    48  //
    49  // Array and slice values encode as JSON arrays, except that
    50  // []byte encodes as a base64-encoded string, and a nil slice
    51  // encodes as the null JSON object.
    52  //
    53  // Struct values encode as JSON objects. Each exported struct field
    54  // becomes a member of the object unless
    55  //   - the field's tag is "-", or
    56  //   - the field is empty and its tag specifies the "omitempty" option.
    57  // The empty values are false, 0, any
    58  // nil pointer or interface value, and any array, slice, map, or string of
    59  // length zero. The object's default key string is the struct field name
    60  // but can be specified in the struct field's tag value. The "json" key in
    61  // the struct field's tag value is the key name, followed by an optional comma
    62  // and options. Examples:
    63  //
    64  //   // Field is ignored by this package.
    65  //   Field int `json:"-"`
    66  //
    67  //   // Field appears in JSON as key "myName".
    68  //   Field int `json:"myName"`
    69  //
    70  //   // Field appears in JSON as key "myName" and
    71  //   // the field is omitted from the object if its value is empty,
    72  //   // as defined above.
    73  //   Field int `json:"myName,omitempty"`
    74  //
    75  //   // Field appears in JSON as key "Field" (the default), but
    76  //   // the field is skipped if empty.
    77  //   // Note the leading comma.
    78  //   Field int `json:",omitempty"`
    79  //
    80  // The "string" option signals that a field is stored as JSON inside a
    81  // JSON-encoded string. It applies only to fields of string, floating point,
    82  // or integer types. This extra level of encoding is sometimes used when
    83  // communicating with JavaScript programs:
    84  //
    85  //    Int64String int64 `json:",string"`
    86  //
    87  // The key name will be used if it's a non-empty string consisting of
    88  // only Unicode letters, digits, dollar signs, percent signs, hyphens,
    89  // underscores and slashes.
    90  //
    91  // Anonymous struct fields are usually marshaled as if their inner exported fields
    92  // were fields in the outer struct, subject to the usual Go visibility rules amended
    93  // as described in the next paragraph.
    94  // An anonymous struct field with a name given in its JSON tag is treated as
    95  // having that name, rather than being anonymous.
    96  // An anonymous struct field of interface type is treated the same as having
    97  // that type as its name, rather than being anonymous.
    98  //
    99  // The Go visibility rules for struct fields are amended for JSON when
   100  // deciding which field to marshal or unmarshal. If there are
   101  // multiple fields at the same level, and that level is the least
   102  // nested (and would therefore be the nesting level selected by the
   103  // usual Go rules), the following extra rules apply:
   104  //
   105  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   106  // even if there are multiple untagged fields that would otherwise conflict.
   107  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   108  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   109  //
   110  // Handling of anonymous struct fields is new in Go 1.1.
   111  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   112  // an anonymous struct field in both current and earlier versions, give the field
   113  // a JSON tag of "-".
   114  //
   115  // Map values encode as JSON objects.
   116  // The map's key type must be string; the object keys are used directly
   117  // as map keys.
   118  //
   119  // Pointer values encode as the value pointed to.
   120  // A nil pointer encodes as the null JSON object.
   121  //
   122  // Interface values encode as the value contained in the interface.
   123  // A nil interface value encodes as the null JSON object.
   124  //
   125  // Channel, complex, and function values cannot be encoded in JSON.
   126  // Attempting to encode such a value causes Marshal to return
   127  // an UnsupportedTypeError.
   128  //
   129  // JSON cannot represent cyclic data structures and Marshal does not
   130  // handle them.  Passing cyclic structures to Marshal will result in
   131  // an infinite recursion.
   132  //
   133  func Marshal(v interface{}) ([]byte, error) {
   134  	e := &encodeState{}
   135  	err := e.marshal(v)
   136  	if err != nil {
   137  		return nil, err
   138  	}
   139  	return e.Bytes(), nil
   140  }
   141  
   142  // MarshalIndent is like Marshal but applies Indent to format the output.
   143  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   144  	b, err := Marshal(v)
   145  	if err != nil {
   146  		return nil, err
   147  	}
   148  	var buf bytes.Buffer
   149  	err = Indent(&buf, b, prefix, indent)
   150  	if err != nil {
   151  		return nil, err
   152  	}
   153  	return buf.Bytes(), nil
   154  }
   155  
   156  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   157  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   158  // so that the JSON will be safe to embed inside HTML <script> tags.
   159  // For historical reasons, web browsers don't honor standard HTML
   160  // escaping within <script> tags, so an alternative JSON encoding must
   161  // be used.
   162  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   163  	// The characters can only appear in string literals,
   164  	// so just scan the string one byte at a time.
   165  	start := 0
   166  	for i, c := range src {
   167  		if c == '<' || c == '>' || c == '&' {
   168  			if start < i {
   169  				dst.Write(src[start:i])
   170  			}
   171  			dst.WriteString(`\u00`)
   172  			dst.WriteByte(hex[c>>4])
   173  			dst.WriteByte(hex[c&0xF])
   174  			start = i + 1
   175  		}
   176  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   177  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   178  			if start < i {
   179  				dst.Write(src[start:i])
   180  			}
   181  			dst.WriteString(`\u202`)
   182  			dst.WriteByte(hex[src[i+2]&0xF])
   183  			start = i + 3
   184  		}
   185  	}
   186  	if start < len(src) {
   187  		dst.Write(src[start:])
   188  	}
   189  }
   190  
   191  // Marshaler is the interface implemented by objects that
   192  // can marshal themselves into valid JSON.
   193  type Marshaler interface {
   194  	MarshalJSON() ([]byte, error)
   195  }
   196  
   197  // An UnsupportedTypeError is returned by Marshal when attempting
   198  // to encode an unsupported value type.
   199  type UnsupportedTypeError struct {
   200  	Type reflect.Type
   201  }
   202  
   203  func (e *UnsupportedTypeError) Error() string {
   204  	return "json: unsupported type: " + e.Type.String()
   205  }
   206  
   207  type UnsupportedValueError struct {
   208  	Value reflect.Value
   209  	Str   string
   210  }
   211  
   212  func (e *UnsupportedValueError) Error() string {
   213  	return "json: unsupported value: " + e.Str
   214  }
   215  
   216  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   217  // attempting to encode a string value with invalid UTF-8 sequences.
   218  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   219  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   220  // This error is no longer generated but is kept for backwards compatibility
   221  // with programs that might mention it.
   222  type InvalidUTF8Error struct {
   223  	S string // the whole string value that caused the error
   224  }
   225  
   226  func (e *InvalidUTF8Error) Error() string {
   227  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   228  }
   229  
   230  type MarshalerError struct {
   231  	Type reflect.Type
   232  	Err  error
   233  }
   234  
   235  func (e *MarshalerError) Error() string {
   236  	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
   237  }
   238  
   239  var hex = "0123456789abcdef"
   240  
   241  // An encodeState encodes JSON into a bytes.Buffer.
   242  type encodeState struct {
   243  	bytes.Buffer // accumulated output
   244  	scratch      [64]byte
   245  }
   246  
   247  var encodeStatePool sync.Pool
   248  
   249  func newEncodeState() *encodeState {
   250  	if v := encodeStatePool.Get(); v != nil {
   251  		e := v.(*encodeState)
   252  		e.Reset()
   253  		return e
   254  	}
   255  	return new(encodeState)
   256  }
   257  
   258  func (e *encodeState) marshal(v interface{}) (err error) {
   259  	defer func() {
   260  		if r := recover(); r != nil {
   261  			if _, ok := r.(runtime.Error); ok {
   262  				panic(r)
   263  			}
   264  			if s, ok := r.(string); ok {
   265  				panic(s)
   266  			}
   267  			err = r.(error)
   268  		}
   269  	}()
   270  	e.reflectValue(reflect.ValueOf(v))
   271  	return nil
   272  }
   273  
   274  func (e *encodeState) error(err error) {
   275  	panic(err)
   276  }
   277  
   278  var byteSliceType = reflect.TypeOf([]byte(nil))
   279  
   280  func isEmptyValue(v reflect.Value) bool {
   281  	switch v.Kind() {
   282  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   283  		return v.Len() == 0
   284  	case reflect.Bool:
   285  		return !v.Bool()
   286  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   287  		return v.Int() == 0
   288  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   289  		return v.Uint() == 0
   290  	case reflect.Float32, reflect.Float64:
   291  		return v.Float() == 0
   292  	case reflect.Interface, reflect.Ptr:
   293  		return v.IsNil()
   294  	}
   295  	return false
   296  }
   297  
   298  func (e *encodeState) reflectValue(v reflect.Value) {
   299  	valueEncoder(v)(e, v, false)
   300  }
   301  
   302  type encoderFunc func(e *encodeState, v reflect.Value, quoted bool)
   303  
   304  var encoderCache struct {
   305  	sync.RWMutex
   306  	m map[reflect.Type]encoderFunc
   307  }
   308  
   309  func valueEncoder(v reflect.Value) encoderFunc {
   310  	if !v.IsValid() {
   311  		return invalidValueEncoder
   312  	}
   313  	return typeEncoder(v.Type())
   314  }
   315  
   316  func typeEncoder(t reflect.Type) encoderFunc {
   317  	encoderCache.RLock()
   318  	f := encoderCache.m[t]
   319  	encoderCache.RUnlock()
   320  	if f != nil {
   321  		return f
   322  	}
   323  
   324  	// To deal with recursive types, populate the map with an
   325  	// indirect func before we build it. This type waits on the
   326  	// real func (f) to be ready and then calls it.  This indirect
   327  	// func is only used for recursive types.
   328  	encoderCache.Lock()
   329  	if encoderCache.m == nil {
   330  		encoderCache.m = make(map[reflect.Type]encoderFunc)
   331  	}
   332  	var wg sync.WaitGroup
   333  	wg.Add(1)
   334  	encoderCache.m[t] = func(e *encodeState, v reflect.Value, quoted bool) {
   335  		wg.Wait()
   336  		f(e, v, quoted)
   337  	}
   338  	encoderCache.Unlock()
   339  
   340  	// Compute fields without lock.
   341  	// Might duplicate effort but won't hold other computations back.
   342  	f = newTypeEncoder(t, true)
   343  	wg.Done()
   344  	encoderCache.Lock()
   345  	encoderCache.m[t] = f
   346  	encoderCache.Unlock()
   347  	return f
   348  }
   349  
   350  var (
   351  	marshalerType     = reflect.TypeOf(new(Marshaler)).Elem()
   352  	textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
   353  )
   354  
   355  // newTypeEncoder constructs an encoderFunc for a type.
   356  // The returned encoder only checks CanAddr when allowAddr is true.
   357  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   358  	if t.Implements(marshalerType) {
   359  		return marshalerEncoder
   360  	}
   361  	if t.Kind() != reflect.Ptr && allowAddr {
   362  		if reflect.PtrTo(t).Implements(marshalerType) {
   363  			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   364  		}
   365  	}
   366  
   367  	if t.Implements(textMarshalerType) {
   368  		return textMarshalerEncoder
   369  	}
   370  	if t.Kind() != reflect.Ptr && allowAddr {
   371  		if reflect.PtrTo(t).Implements(textMarshalerType) {
   372  			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   373  		}
   374  	}
   375  
   376  	switch t.Kind() {
   377  	case reflect.Bool:
   378  		return boolEncoder
   379  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   380  		return intEncoder
   381  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   382  		return uintEncoder
   383  	case reflect.Float32:
   384  		return float32Encoder
   385  	case reflect.Float64:
   386  		return float64Encoder
   387  	case reflect.String:
   388  		return stringEncoder
   389  	case reflect.Interface:
   390  		return interfaceEncoder
   391  	case reflect.Struct:
   392  		return newStructEncoder(t)
   393  	case reflect.Map:
   394  		return newMapEncoder(t)
   395  	case reflect.Slice:
   396  		return newSliceEncoder(t)
   397  	case reflect.Array:
   398  		return newArrayEncoder(t)
   399  	case reflect.Ptr:
   400  		return newPtrEncoder(t)
   401  	default:
   402  		return unsupportedTypeEncoder
   403  	}
   404  }
   405  
   406  func invalidValueEncoder(e *encodeState, v reflect.Value, quoted bool) {
   407  	e.WriteString("null")
   408  }
   409  
   410  func marshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   411  	if v.Kind() == reflect.Ptr && v.IsNil() {
   412  		e.WriteString("null")
   413  		return
   414  	}
   415  	m := v.Interface().(Marshaler)
   416  	b, err := m.MarshalJSON()
   417  	if err == nil {
   418  		// copy JSON into buffer, checking validity.
   419  		err = compact(&e.Buffer, b, true)
   420  	}
   421  	if err != nil {
   422  		e.error(&MarshalerError{v.Type(), err})
   423  	}
   424  }
   425  
   426  func addrMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   427  	va := v.Addr()
   428  	if va.IsNil() {
   429  		e.WriteString("null")
   430  		return
   431  	}
   432  	m := va.Interface().(Marshaler)
   433  	b, err := m.MarshalJSON()
   434  	if err == nil {
   435  		// copy JSON into buffer, checking validity.
   436  		err = compact(&e.Buffer, b, true)
   437  	}
   438  	if err != nil {
   439  		e.error(&MarshalerError{v.Type(), err})
   440  	}
   441  }
   442  
   443  func textMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   444  	if v.Kind() == reflect.Ptr && v.IsNil() {
   445  		e.WriteString("null")
   446  		return
   447  	}
   448  	m := v.Interface().(encoding.TextMarshaler)
   449  	b, err := m.MarshalText()
   450  	if err == nil {
   451  		_, err = e.stringBytes(b)
   452  	}
   453  	if err != nil {
   454  		e.error(&MarshalerError{v.Type(), err})
   455  	}
   456  }
   457  
   458  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   459  	va := v.Addr()
   460  	if va.IsNil() {
   461  		e.WriteString("null")
   462  		return
   463  	}
   464  	m := va.Interface().(encoding.TextMarshaler)
   465  	b, err := m.MarshalText()
   466  	if err == nil {
   467  		_, err = e.stringBytes(b)
   468  	}
   469  	if err != nil {
   470  		e.error(&MarshalerError{v.Type(), err})
   471  	}
   472  }
   473  
   474  func boolEncoder(e *encodeState, v reflect.Value, quoted bool) {
   475  	if quoted {
   476  		e.WriteByte('"')
   477  	}
   478  	if v.Bool() {
   479  		e.WriteString("true")
   480  	} else {
   481  		e.WriteString("false")
   482  	}
   483  	if quoted {
   484  		e.WriteByte('"')
   485  	}
   486  }
   487  
   488  func intEncoder(e *encodeState, v reflect.Value, quoted bool) {
   489  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   490  	if quoted {
   491  		e.WriteByte('"')
   492  	}
   493  	e.Write(b)
   494  	if quoted {
   495  		e.WriteByte('"')
   496  	}
   497  }
   498  
   499  func uintEncoder(e *encodeState, v reflect.Value, quoted bool) {
   500  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   501  	if quoted {
   502  		e.WriteByte('"')
   503  	}
   504  	e.Write(b)
   505  	if quoted {
   506  		e.WriteByte('"')
   507  	}
   508  }
   509  
   510  type floatEncoder int // number of bits
   511  
   512  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   513  	f := v.Float()
   514  	if math.IsInf(f, 0) || math.IsNaN(f) {
   515  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   516  	}
   517  	b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
   518  	if quoted {
   519  		e.WriteByte('"')
   520  	}
   521  	e.Write(b)
   522  	if quoted {
   523  		e.WriteByte('"')
   524  	}
   525  }
   526  
   527  var (
   528  	float32Encoder = (floatEncoder(32)).encode
   529  	float64Encoder = (floatEncoder(64)).encode
   530  )
   531  
   532  func stringEncoder(e *encodeState, v reflect.Value, quoted bool) {
   533  	if v.Type() == numberType {
   534  		numStr := v.String()
   535  		if numStr == "" {
   536  			numStr = "0" // Number's zero-val
   537  		}
   538  		e.WriteString(numStr)
   539  		return
   540  	}
   541  	if quoted {
   542  		sb, err := Marshal(v.String())
   543  		if err != nil {
   544  			e.error(err)
   545  		}
   546  		e.string(string(sb))
   547  	} else {
   548  		e.string(v.String())
   549  	}
   550  }
   551  
   552  func interfaceEncoder(e *encodeState, v reflect.Value, quoted bool) {
   553  	if v.IsNil() {
   554  		e.WriteString("null")
   555  		return
   556  	}
   557  	e.reflectValue(v.Elem())
   558  }
   559  
   560  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, quoted bool) {
   561  	e.error(&UnsupportedTypeError{v.Type()})
   562  }
   563  
   564  type structEncoder struct {
   565  	fields    []field
   566  	fieldEncs []encoderFunc
   567  }
   568  
   569  func (se *structEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   570  	e.WriteByte('{')
   571  	first := true
   572  	for i, f := range se.fields {
   573  		fv := fieldByIndex(v, f.index)
   574  		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
   575  			continue
   576  		}
   577  		if first {
   578  			first = false
   579  		} else {
   580  			e.WriteByte(',')
   581  		}
   582  		e.string(f.name)
   583  		e.WriteByte(':')
   584  		se.fieldEncs[i](e, fv, f.quoted)
   585  	}
   586  	e.WriteByte('}')
   587  }
   588  
   589  func newStructEncoder(t reflect.Type) encoderFunc {
   590  	fields := cachedTypeFields(t)
   591  	se := &structEncoder{
   592  		fields:    fields,
   593  		fieldEncs: make([]encoderFunc, len(fields)),
   594  	}
   595  	for i, f := range fields {
   596  		se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
   597  	}
   598  	return se.encode
   599  }
   600  
   601  type mapEncoder struct {
   602  	elemEnc encoderFunc
   603  }
   604  
   605  func (me *mapEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   606  	if v.IsNil() {
   607  		e.WriteString("null")
   608  		return
   609  	}
   610  	e.WriteByte('{')
   611  	var sv stringValues = v.MapKeys()
   612  	sort.Sort(sv)
   613  	for i, k := range sv {
   614  		if i > 0 {
   615  			e.WriteByte(',')
   616  		}
   617  		e.string(k.String())
   618  		e.WriteByte(':')
   619  		me.elemEnc(e, v.MapIndex(k), false)
   620  	}
   621  	e.WriteByte('}')
   622  }
   623  
   624  func newMapEncoder(t reflect.Type) encoderFunc {
   625  	if t.Key().Kind() != reflect.String {
   626  		return unsupportedTypeEncoder
   627  	}
   628  	me := &mapEncoder{typeEncoder(t.Elem())}
   629  	return me.encode
   630  }
   631  
   632  func encodeByteSlice(e *encodeState, v reflect.Value, _ bool) {
   633  	if v.IsNil() {
   634  		e.WriteString("null")
   635  		return
   636  	}
   637  	s := v.Bytes()
   638  	e.WriteByte('"')
   639  	if len(s) < 1024 {
   640  		// for small buffers, using Encode directly is much faster.
   641  		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
   642  		base64.StdEncoding.Encode(dst, s)
   643  		e.Write(dst)
   644  	} else {
   645  		// for large buffers, avoid unnecessary extra temporary
   646  		// buffer space.
   647  		enc := base64.NewEncoder(base64.StdEncoding, e)
   648  		enc.Write(s)
   649  		enc.Close()
   650  	}
   651  	e.WriteByte('"')
   652  }
   653  
   654  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   655  type sliceEncoder struct {
   656  	arrayEnc encoderFunc
   657  }
   658  
   659  func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   660  	if v.IsNil() {
   661  		e.WriteString("null")
   662  		return
   663  	}
   664  	se.arrayEnc(e, v, false)
   665  }
   666  
   667  func newSliceEncoder(t reflect.Type) encoderFunc {
   668  	// Byte slices get special treatment; arrays don't.
   669  	if t.Elem().Kind() == reflect.Uint8 {
   670  		return encodeByteSlice
   671  	}
   672  	enc := &sliceEncoder{newArrayEncoder(t)}
   673  	return enc.encode
   674  }
   675  
   676  type arrayEncoder struct {
   677  	elemEnc encoderFunc
   678  }
   679  
   680  func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   681  	e.WriteByte('[')
   682  	n := v.Len()
   683  	for i := 0; i < n; i++ {
   684  		if i > 0 {
   685  			e.WriteByte(',')
   686  		}
   687  		ae.elemEnc(e, v.Index(i), false)
   688  	}
   689  	e.WriteByte(']')
   690  }
   691  
   692  func newArrayEncoder(t reflect.Type) encoderFunc {
   693  	enc := &arrayEncoder{typeEncoder(t.Elem())}
   694  	return enc.encode
   695  }
   696  
   697  type ptrEncoder struct {
   698  	elemEnc encoderFunc
   699  }
   700  
   701  func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   702  	if v.IsNil() {
   703  		e.WriteString("null")
   704  		return
   705  	}
   706  	pe.elemEnc(e, v.Elem(), quoted)
   707  }
   708  
   709  func newPtrEncoder(t reflect.Type) encoderFunc {
   710  	enc := &ptrEncoder{typeEncoder(t.Elem())}
   711  	return enc.encode
   712  }
   713  
   714  type condAddrEncoder struct {
   715  	canAddrEnc, elseEnc encoderFunc
   716  }
   717  
   718  func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   719  	if v.CanAddr() {
   720  		ce.canAddrEnc(e, v, quoted)
   721  	} else {
   722  		ce.elseEnc(e, v, quoted)
   723  	}
   724  }
   725  
   726  // newCondAddrEncoder returns an encoder that checks whether its value
   727  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   728  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   729  	enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   730  	return enc.encode
   731  }
   732  
   733  func isValidTag(s string) bool {
   734  	if s == "" {
   735  		return false
   736  	}
   737  	for _, c := range s {
   738  		switch {
   739  		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
   740  			// Backslash and quote chars are reserved, but
   741  			// otherwise any punctuation chars are allowed
   742  			// in a tag name.
   743  		default:
   744  			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
   745  				return false
   746  			}
   747  		}
   748  	}
   749  	return true
   750  }
   751  
   752  func fieldByIndex(v reflect.Value, index []int) reflect.Value {
   753  	for _, i := range index {
   754  		if v.Kind() == reflect.Ptr {
   755  			if v.IsNil() {
   756  				return reflect.Value{}
   757  			}
   758  			v = v.Elem()
   759  		}
   760  		v = v.Field(i)
   761  	}
   762  	return v
   763  }
   764  
   765  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   766  	for _, i := range index {
   767  		if t.Kind() == reflect.Ptr {
   768  			t = t.Elem()
   769  		}
   770  		t = t.Field(i).Type
   771  	}
   772  	return t
   773  }
   774  
   775  // stringValues is a slice of reflect.Value holding *reflect.StringValue.
   776  // It implements the methods to sort by string.
   777  type stringValues []reflect.Value
   778  
   779  func (sv stringValues) Len() int           { return len(sv) }
   780  func (sv stringValues) Swap(i, j int)      { sv[i], sv[j] = sv[j], sv[i] }
   781  func (sv stringValues) Less(i, j int) bool { return sv.get(i) < sv.get(j) }
   782  func (sv stringValues) get(i int) string   { return sv[i].String() }
   783  
   784  // NOTE: keep in sync with stringBytes below.
   785  func (e *encodeState) string(s string) (int, error) {
   786  	len0 := e.Len()
   787  	e.WriteByte('"')
   788  	start := 0
   789  	for i := 0; i < len(s); {
   790  		if b := s[i]; b < utf8.RuneSelf {
   791  			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
   792  				i++
   793  				continue
   794  			}
   795  			if start < i {
   796  				e.WriteString(s[start:i])
   797  			}
   798  			switch b {
   799  			case '\\', '"':
   800  				e.WriteByte('\\')
   801  				e.WriteByte(b)
   802  			case '\n':
   803  				e.WriteByte('\\')
   804  				e.WriteByte('n')
   805  			case '\r':
   806  				e.WriteByte('\\')
   807  				e.WriteByte('r')
   808  			case '\t':
   809  				e.WriteByte('\\')
   810  				e.WriteByte('t')
   811  			default:
   812  				// This encodes bytes < 0x20 except for \n and \r,
   813  				// as well as <, > and &. The latter are escaped because they
   814  				// can lead to security holes when user-controlled strings
   815  				// are rendered into JSON and served to some browsers.
   816  				e.WriteString(`\u00`)
   817  				e.WriteByte(hex[b>>4])
   818  				e.WriteByte(hex[b&0xF])
   819  			}
   820  			i++
   821  			start = i
   822  			continue
   823  		}
   824  		c, size := utf8.DecodeRuneInString(s[i:])
   825  		if c == utf8.RuneError && size == 1 {
   826  			if start < i {
   827  				e.WriteString(s[start:i])
   828  			}
   829  			e.WriteString(`\ufffd`)
   830  			i += size
   831  			start = i
   832  			continue
   833  		}
   834  		// U+2028 is LINE SEPARATOR.
   835  		// U+2029 is PARAGRAPH SEPARATOR.
   836  		// They are both technically valid characters in JSON strings,
   837  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   838  		// and can lead to security holes there. It is valid JSON to
   839  		// escape them, so we do so unconditionally.
   840  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   841  		if c == '\u2028' || c == '\u2029' {
   842  			if start < i {
   843  				e.WriteString(s[start:i])
   844  			}
   845  			e.WriteString(`\u202`)
   846  			e.WriteByte(hex[c&0xF])
   847  			i += size
   848  			start = i
   849  			continue
   850  		}
   851  		i += size
   852  	}
   853  	if start < len(s) {
   854  		e.WriteString(s[start:])
   855  	}
   856  	e.WriteByte('"')
   857  	return e.Len() - len0, nil
   858  }
   859  
   860  // NOTE: keep in sync with string above.
   861  func (e *encodeState) stringBytes(s []byte) (int, error) {
   862  	len0 := e.Len()
   863  	e.WriteByte('"')
   864  	start := 0
   865  	for i := 0; i < len(s); {
   866  		if b := s[i]; b < utf8.RuneSelf {
   867  			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
   868  				i++
   869  				continue
   870  			}
   871  			if start < i {
   872  				e.Write(s[start:i])
   873  			}
   874  			switch b {
   875  			case '\\', '"':
   876  				e.WriteByte('\\')
   877  				e.WriteByte(b)
   878  			case '\n':
   879  				e.WriteByte('\\')
   880  				e.WriteByte('n')
   881  			case '\r':
   882  				e.WriteByte('\\')
   883  				e.WriteByte('r')
   884  			case '\t':
   885  				e.WriteByte('\\')
   886  				e.WriteByte('t')
   887  			default:
   888  				// This encodes bytes < 0x20 except for \n and \r,
   889  				// as well as <, >, and &. The latter are escaped because they
   890  				// can lead to security holes when user-controlled strings
   891  				// are rendered into JSON and served to some browsers.
   892  				e.WriteString(`\u00`)
   893  				e.WriteByte(hex[b>>4])
   894  				e.WriteByte(hex[b&0xF])
   895  			}
   896  			i++
   897  			start = i
   898  			continue
   899  		}
   900  		c, size := utf8.DecodeRune(s[i:])
   901  		if c == utf8.RuneError && size == 1 {
   902  			if start < i {
   903  				e.Write(s[start:i])
   904  			}
   905  			e.WriteString(`\ufffd`)
   906  			i += size
   907  			start = i
   908  			continue
   909  		}
   910  		// U+2028 is LINE SEPARATOR.
   911  		// U+2029 is PARAGRAPH SEPARATOR.
   912  		// They are both technically valid characters in JSON strings,
   913  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   914  		// and can lead to security holes there. It is valid JSON to
   915  		// escape them, so we do so unconditionally.
   916  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   917  		if c == '\u2028' || c == '\u2029' {
   918  			if start < i {
   919  				e.Write(s[start:i])
   920  			}
   921  			e.WriteString(`\u202`)
   922  			e.WriteByte(hex[c&0xF])
   923  			i += size
   924  			start = i
   925  			continue
   926  		}
   927  		i += size
   928  	}
   929  	if start < len(s) {
   930  		e.Write(s[start:])
   931  	}
   932  	e.WriteByte('"')
   933  	return e.Len() - len0, nil
   934  }
   935  
   936  // A field represents a single field found in a struct.
   937  type field struct {
   938  	name      string
   939  	nameBytes []byte                 // []byte(name)
   940  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
   941  
   942  	tag       bool
   943  	index     []int
   944  	typ       reflect.Type
   945  	omitEmpty bool
   946  	quoted    bool
   947  }
   948  
   949  func fillField(f field) field {
   950  	f.nameBytes = []byte(f.name)
   951  	f.equalFold = foldFunc(f.nameBytes)
   952  	return f
   953  }
   954  
   955  // byName sorts field by name, breaking ties with depth,
   956  // then breaking ties with "name came from json tag", then
   957  // breaking ties with index sequence.
   958  type byName []field
   959  
   960  func (x byName) Len() int { return len(x) }
   961  
   962  func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   963  
   964  func (x byName) Less(i, j int) bool {
   965  	if x[i].name != x[j].name {
   966  		return x[i].name < x[j].name
   967  	}
   968  	if len(x[i].index) != len(x[j].index) {
   969  		return len(x[i].index) < len(x[j].index)
   970  	}
   971  	if x[i].tag != x[j].tag {
   972  		return x[i].tag
   973  	}
   974  	return byIndex(x).Less(i, j)
   975  }
   976  
   977  // byIndex sorts field by index sequence.
   978  type byIndex []field
   979  
   980  func (x byIndex) Len() int { return len(x) }
   981  
   982  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   983  
   984  func (x byIndex) Less(i, j int) bool {
   985  	for k, xik := range x[i].index {
   986  		if k >= len(x[j].index) {
   987  			return false
   988  		}
   989  		if xik != x[j].index[k] {
   990  			return xik < x[j].index[k]
   991  		}
   992  	}
   993  	return len(x[i].index) < len(x[j].index)
   994  }
   995  
   996  // typeFields returns a list of fields that JSON should recognize for the given type.
   997  // The algorithm is breadth-first search over the set of structs to include - the top struct
   998  // and then any reachable anonymous structs.
   999  func typeFields(t reflect.Type) []field {
  1000  	// Anonymous fields to explore at the current level and the next.
  1001  	current := []field{}
  1002  	next := []field{{typ: t}}
  1003  
  1004  	// Count of queued names for current level and the next.
  1005  	count := map[reflect.Type]int{}
  1006  	nextCount := map[reflect.Type]int{}
  1007  
  1008  	// Types already visited at an earlier level.
  1009  	visited := map[reflect.Type]bool{}
  1010  
  1011  	// Fields found.
  1012  	var fields []field
  1013  
  1014  	for len(next) > 0 {
  1015  		current, next = next, current[:0]
  1016  		count, nextCount = nextCount, map[reflect.Type]int{}
  1017  
  1018  		for _, f := range current {
  1019  			if visited[f.typ] {
  1020  				continue
  1021  			}
  1022  			visited[f.typ] = true
  1023  
  1024  			// Scan f.typ for fields to include.
  1025  			for i := 0; i < f.typ.NumField(); i++ {
  1026  				sf := f.typ.Field(i)
  1027  				if sf.PkgPath != "" { // unexported
  1028  					continue
  1029  				}
  1030  				tag := sf.Tag.Get("json")
  1031  				if tag == "-" {
  1032  					continue
  1033  				}
  1034  				name, opts := parseTag(tag)
  1035  				if !isValidTag(name) {
  1036  					name = ""
  1037  				}
  1038  				index := make([]int, len(f.index)+1)
  1039  				copy(index, f.index)
  1040  				index[len(f.index)] = i
  1041  
  1042  				ft := sf.Type
  1043  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1044  					// Follow pointer.
  1045  					ft = ft.Elem()
  1046  				}
  1047  
  1048  				// Record found field and index sequence.
  1049  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1050  					tagged := name != ""
  1051  					if name == "" {
  1052  						name = sf.Name
  1053  					}
  1054  					fields = append(fields, fillField(field{
  1055  						name:      name,
  1056  						tag:       tagged,
  1057  						index:     index,
  1058  						typ:       ft,
  1059  						omitEmpty: opts.Contains("omitempty"),
  1060  						quoted:    opts.Contains("string"),
  1061  					}))
  1062  					if count[f.typ] > 1 {
  1063  						// If there were multiple instances, add a second,
  1064  						// so that the annihilation code will see a duplicate.
  1065  						// It only cares about the distinction between 1 or 2,
  1066  						// so don't bother generating any more copies.
  1067  						fields = append(fields, fields[len(fields)-1])
  1068  					}
  1069  					continue
  1070  				}
  1071  
  1072  				// Record new anonymous struct to explore in next round.
  1073  				nextCount[ft]++
  1074  				if nextCount[ft] == 1 {
  1075  					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
  1076  				}
  1077  			}
  1078  		}
  1079  	}
  1080  
  1081  	sort.Sort(byName(fields))
  1082  
  1083  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1084  	// except that fields with JSON tags are promoted.
  1085  
  1086  	// The fields are sorted in primary order of name, secondary order
  1087  	// of field index length. Loop over names; for each name, delete
  1088  	// hidden fields by choosing the one dominant field that survives.
  1089  	out := fields[:0]
  1090  	for advance, i := 0, 0; i < len(fields); i += advance {
  1091  		// One iteration per name.
  1092  		// Find the sequence of fields with the name of this first field.
  1093  		fi := fields[i]
  1094  		name := fi.name
  1095  		for advance = 1; i+advance < len(fields); advance++ {
  1096  			fj := fields[i+advance]
  1097  			if fj.name != name {
  1098  				break
  1099  			}
  1100  		}
  1101  		if advance == 1 { // Only one field with this name
  1102  			out = append(out, fi)
  1103  			continue
  1104  		}
  1105  		dominant, ok := dominantField(fields[i : i+advance])
  1106  		if ok {
  1107  			out = append(out, dominant)
  1108  		}
  1109  	}
  1110  
  1111  	fields = out
  1112  	sort.Sort(byIndex(fields))
  1113  
  1114  	return fields
  1115  }
  1116  
  1117  // dominantField looks through the fields, all of which are known to
  1118  // have the same name, to find the single field that dominates the
  1119  // others using Go's embedding rules, modified by the presence of
  1120  // JSON tags. If there are multiple top-level fields, the boolean
  1121  // will be false: This condition is an error in Go and we skip all
  1122  // the fields.
  1123  func dominantField(fields []field) (field, bool) {
  1124  	// The fields are sorted in increasing index-length order. The winner
  1125  	// must therefore be one with the shortest index length. Drop all
  1126  	// longer entries, which is easy: just truncate the slice.
  1127  	length := len(fields[0].index)
  1128  	tagged := -1 // Index of first tagged field.
  1129  	for i, f := range fields {
  1130  		if len(f.index) > length {
  1131  			fields = fields[:i]
  1132  			break
  1133  		}
  1134  		if f.tag {
  1135  			if tagged >= 0 {
  1136  				// Multiple tagged fields at the same level: conflict.
  1137  				// Return no field.
  1138  				return field{}, false
  1139  			}
  1140  			tagged = i
  1141  		}
  1142  	}
  1143  	if tagged >= 0 {
  1144  		return fields[tagged], true
  1145  	}
  1146  	// All remaining fields have the same length. If there's more than one,
  1147  	// we have a conflict (two fields named "X" at the same level) and we
  1148  	// return no field.
  1149  	if len(fields) > 1 {
  1150  		return field{}, false
  1151  	}
  1152  	return fields[0], true
  1153  }
  1154  
  1155  var fieldCache struct {
  1156  	sync.RWMutex
  1157  	m map[reflect.Type][]field
  1158  }
  1159  
  1160  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1161  func cachedTypeFields(t reflect.Type) []field {
  1162  	fieldCache.RLock()
  1163  	f := fieldCache.m[t]
  1164  	fieldCache.RUnlock()
  1165  	if f != nil {
  1166  		return f
  1167  	}
  1168  
  1169  	// Compute fields without lock.
  1170  	// Might duplicate effort but won't hold other computations back.
  1171  	f = typeFields(t)
  1172  	if f == nil {
  1173  		f = []field{}
  1174  	}
  1175  
  1176  	fieldCache.Lock()
  1177  	if fieldCache.m == nil {
  1178  		fieldCache.m = map[reflect.Type][]field{}
  1179  	}
  1180  	fieldCache.m[t] = f
  1181  	fieldCache.Unlock()
  1182  	return f
  1183  }