github.com/tcnksm/go@v0.0.0-20141208075154-439b32936367/src/crypto/elliptic/p224.go (about)

     1  // Copyright 2012 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package elliptic
     6  
     7  // This is a constant-time, 32-bit implementation of P224. See FIPS 186-3,
     8  // section D.2.2.
     9  //
    10  // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
    11  
    12  import (
    13  	"math/big"
    14  )
    15  
    16  var p224 p224Curve
    17  
    18  type p224Curve struct {
    19  	*CurveParams
    20  	gx, gy, b p224FieldElement
    21  }
    22  
    23  func initP224() {
    24  	// See FIPS 186-3, section D.2.2
    25  	p224.CurveParams = new(CurveParams)
    26  	p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10)
    27  	p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10)
    28  	p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16)
    29  	p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16)
    30  	p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16)
    31  	p224.BitSize = 224
    32  
    33  	p224FromBig(&p224.gx, p224.Gx)
    34  	p224FromBig(&p224.gy, p224.Gy)
    35  	p224FromBig(&p224.b, p224.B)
    36  }
    37  
    38  // P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2)
    39  func P224() Curve {
    40  	initonce.Do(initAll)
    41  	return p224
    42  }
    43  
    44  func (curve p224Curve) Params() *CurveParams {
    45  	return curve.CurveParams
    46  }
    47  
    48  func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool {
    49  	var x, y p224FieldElement
    50  	p224FromBig(&x, bigX)
    51  	p224FromBig(&y, bigY)
    52  
    53  	// y² = x³ - 3x + b
    54  	var tmp p224LargeFieldElement
    55  	var x3 p224FieldElement
    56  	p224Square(&x3, &x, &tmp)
    57  	p224Mul(&x3, &x3, &x, &tmp)
    58  
    59  	for i := 0; i < 8; i++ {
    60  		x[i] *= 3
    61  	}
    62  	p224Sub(&x3, &x3, &x)
    63  	p224Reduce(&x3)
    64  	p224Add(&x3, &x3, &curve.b)
    65  	p224Contract(&x3, &x3)
    66  
    67  	p224Square(&y, &y, &tmp)
    68  	p224Contract(&y, &y)
    69  
    70  	for i := 0; i < 8; i++ {
    71  		if y[i] != x3[i] {
    72  			return false
    73  		}
    74  	}
    75  	return true
    76  }
    77  
    78  func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) {
    79  	var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement
    80  
    81  	p224FromBig(&x1, bigX1)
    82  	p224FromBig(&y1, bigY1)
    83  	if bigX1.Sign() != 0 || bigY1.Sign() != 0 {
    84  		z1[0] = 1
    85  	}
    86  	p224FromBig(&x2, bigX2)
    87  	p224FromBig(&y2, bigY2)
    88  	if bigX2.Sign() != 0 || bigY2.Sign() != 0 {
    89  		z2[0] = 1
    90  	}
    91  
    92  	p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2)
    93  	return p224ToAffine(&x3, &y3, &z3)
    94  }
    95  
    96  func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) {
    97  	var x1, y1, z1, x2, y2, z2 p224FieldElement
    98  
    99  	p224FromBig(&x1, bigX1)
   100  	p224FromBig(&y1, bigY1)
   101  	z1[0] = 1
   102  
   103  	p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1)
   104  	return p224ToAffine(&x2, &y2, &z2)
   105  }
   106  
   107  func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) {
   108  	var x1, y1, z1, x2, y2, z2 p224FieldElement
   109  
   110  	p224FromBig(&x1, bigX1)
   111  	p224FromBig(&y1, bigY1)
   112  	z1[0] = 1
   113  
   114  	p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar)
   115  	return p224ToAffine(&x2, &y2, &z2)
   116  }
   117  
   118  func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
   119  	var z1, x2, y2, z2 p224FieldElement
   120  
   121  	z1[0] = 1
   122  	p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar)
   123  	return p224ToAffine(&x2, &y2, &z2)
   124  }
   125  
   126  // Field element functions.
   127  //
   128  // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.
   129  //
   130  // Field elements are represented by a FieldElement, which is a typedef to an
   131  // array of 8 uint32's. The value of a FieldElement, a, is:
   132  //   a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
   133  //
   134  // Using 28-bit limbs means that there's only 4 bits of headroom, which is less
   135  // than we would really like. But it has the useful feature that we hit 2**224
   136  // exactly, making the reflections during a reduce much nicer.
   137  type p224FieldElement [8]uint32
   138  
   139  // p224P is the order of the field, represented as a p224FieldElement.
   140  var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff}
   141  
   142  // p224IsZero returns 1 if a == 0 mod p and 0 otherwise.
   143  //
   144  // a[i] < 2**29
   145  func p224IsZero(a *p224FieldElement) uint32 {
   146  	// Since a p224FieldElement contains 224 bits there are two possible
   147  	// representations of 0: 0 and p.
   148  	var minimal p224FieldElement
   149  	p224Contract(&minimal, a)
   150  
   151  	var isZero, isP uint32
   152  	for i, v := range minimal {
   153  		isZero |= v
   154  		isP |= v - p224P[i]
   155  	}
   156  
   157  	// If either isZero or isP is 0, then we should return 1.
   158  	isZero |= isZero >> 16
   159  	isZero |= isZero >> 8
   160  	isZero |= isZero >> 4
   161  	isZero |= isZero >> 2
   162  	isZero |= isZero >> 1
   163  
   164  	isP |= isP >> 16
   165  	isP |= isP >> 8
   166  	isP |= isP >> 4
   167  	isP |= isP >> 2
   168  	isP |= isP >> 1
   169  
   170  	// For isZero and isP, the LSB is 0 iff all the bits are zero.
   171  	result := isZero & isP
   172  	result = (^result) & 1
   173  
   174  	return result
   175  }
   176  
   177  // p224Add computes *out = a+b
   178  //
   179  // a[i] + b[i] < 2**32
   180  func p224Add(out, a, b *p224FieldElement) {
   181  	for i := 0; i < 8; i++ {
   182  		out[i] = a[i] + b[i]
   183  	}
   184  }
   185  
   186  const two31p3 = 1<<31 + 1<<3
   187  const two31m3 = 1<<31 - 1<<3
   188  const two31m15m3 = 1<<31 - 1<<15 - 1<<3
   189  
   190  // p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can
   191  // subtract smaller amounts without underflow. See the section "Subtraction" in
   192  // [1] for reasoning.
   193  var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3}
   194  
   195  // p224Sub computes *out = a-b
   196  //
   197  // a[i], b[i] < 2**30
   198  // out[i] < 2**32
   199  func p224Sub(out, a, b *p224FieldElement) {
   200  	for i := 0; i < 8; i++ {
   201  		out[i] = a[i] + p224ZeroModP31[i] - b[i]
   202  	}
   203  }
   204  
   205  // LargeFieldElement also represents an element of the field. The limbs are
   206  // still spaced 28-bits apart and in little-endian order. So the limbs are at
   207  // 0, 28, 56, ..., 392 bits, each 64-bits wide.
   208  type p224LargeFieldElement [15]uint64
   209  
   210  const two63p35 = 1<<63 + 1<<35
   211  const two63m35 = 1<<63 - 1<<35
   212  const two63m35m19 = 1<<63 - 1<<35 - 1<<19
   213  
   214  // p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section
   215  // "Subtraction" in [1] for why.
   216  var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35}
   217  
   218  const bottom12Bits = 0xfff
   219  const bottom28Bits = 0xfffffff
   220  
   221  // p224Mul computes *out = a*b
   222  //
   223  // a[i] < 2**29, b[i] < 2**30 (or vice versa)
   224  // out[i] < 2**29
   225  func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) {
   226  	for i := 0; i < 15; i++ {
   227  		tmp[i] = 0
   228  	}
   229  
   230  	for i := 0; i < 8; i++ {
   231  		for j := 0; j < 8; j++ {
   232  			tmp[i+j] += uint64(a[i]) * uint64(b[j])
   233  		}
   234  	}
   235  
   236  	p224ReduceLarge(out, tmp)
   237  }
   238  
   239  // Square computes *out = a*a
   240  //
   241  // a[i] < 2**29
   242  // out[i] < 2**29
   243  func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) {
   244  	for i := 0; i < 15; i++ {
   245  		tmp[i] = 0
   246  	}
   247  
   248  	for i := 0; i < 8; i++ {
   249  		for j := 0; j <= i; j++ {
   250  			r := uint64(a[i]) * uint64(a[j])
   251  			if i == j {
   252  				tmp[i+j] += r
   253  			} else {
   254  				tmp[i+j] += r << 1
   255  			}
   256  		}
   257  	}
   258  
   259  	p224ReduceLarge(out, tmp)
   260  }
   261  
   262  // ReduceLarge converts a p224LargeFieldElement to a p224FieldElement.
   263  //
   264  // in[i] < 2**62
   265  func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) {
   266  	for i := 0; i < 8; i++ {
   267  		in[i] += p224ZeroModP63[i]
   268  	}
   269  
   270  	// Eliminate the coefficients at 2**224 and greater.
   271  	for i := 14; i >= 8; i-- {
   272  		in[i-8] -= in[i]
   273  		in[i-5] += (in[i] & 0xffff) << 12
   274  		in[i-4] += in[i] >> 16
   275  	}
   276  	in[8] = 0
   277  	// in[0..8] < 2**64
   278  
   279  	// As the values become small enough, we start to store them in |out|
   280  	// and use 32-bit operations.
   281  	for i := 1; i < 8; i++ {
   282  		in[i+1] += in[i] >> 28
   283  		out[i] = uint32(in[i] & bottom28Bits)
   284  	}
   285  	in[0] -= in[8]
   286  	out[3] += uint32(in[8]&0xffff) << 12
   287  	out[4] += uint32(in[8] >> 16)
   288  	// in[0] < 2**64
   289  	// out[3] < 2**29
   290  	// out[4] < 2**29
   291  	// out[1,2,5..7] < 2**28
   292  
   293  	out[0] = uint32(in[0] & bottom28Bits)
   294  	out[1] += uint32((in[0] >> 28) & bottom28Bits)
   295  	out[2] += uint32(in[0] >> 56)
   296  	// out[0] < 2**28
   297  	// out[1..4] < 2**29
   298  	// out[5..7] < 2**28
   299  }
   300  
   301  // Reduce reduces the coefficients of a to smaller bounds.
   302  //
   303  // On entry: a[i] < 2**31 + 2**30
   304  // On exit: a[i] < 2**29
   305  func p224Reduce(a *p224FieldElement) {
   306  	for i := 0; i < 7; i++ {
   307  		a[i+1] += a[i] >> 28
   308  		a[i] &= bottom28Bits
   309  	}
   310  	top := a[7] >> 28
   311  	a[7] &= bottom28Bits
   312  
   313  	// top < 2**4
   314  	mask := top
   315  	mask |= mask >> 2
   316  	mask |= mask >> 1
   317  	mask <<= 31
   318  	mask = uint32(int32(mask) >> 31)
   319  	// Mask is all ones if top != 0, all zero otherwise
   320  
   321  	a[0] -= top
   322  	a[3] += top << 12
   323  
   324  	// We may have just made a[0] negative but, if we did, then we must
   325  	// have added something to a[3], this it's > 2**12. Therefore we can
   326  	// carry down to a[0].
   327  	a[3] -= 1 & mask
   328  	a[2] += mask & (1<<28 - 1)
   329  	a[1] += mask & (1<<28 - 1)
   330  	a[0] += mask & (1 << 28)
   331  }
   332  
   333  // p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1),
   334  // i.e. Fermat's little theorem.
   335  func p224Invert(out, in *p224FieldElement) {
   336  	var f1, f2, f3, f4 p224FieldElement
   337  	var c p224LargeFieldElement
   338  
   339  	p224Square(&f1, in, &c)    // 2
   340  	p224Mul(&f1, &f1, in, &c)  // 2**2 - 1
   341  	p224Square(&f1, &f1, &c)   // 2**3 - 2
   342  	p224Mul(&f1, &f1, in, &c)  // 2**3 - 1
   343  	p224Square(&f2, &f1, &c)   // 2**4 - 2
   344  	p224Square(&f2, &f2, &c)   // 2**5 - 4
   345  	p224Square(&f2, &f2, &c)   // 2**6 - 8
   346  	p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1
   347  	p224Square(&f2, &f1, &c)   // 2**7 - 2
   348  	for i := 0; i < 5; i++ {   // 2**12 - 2**6
   349  		p224Square(&f2, &f2, &c)
   350  	}
   351  	p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1
   352  	p224Square(&f3, &f2, &c)   // 2**13 - 2
   353  	for i := 0; i < 11; i++ {  // 2**24 - 2**12
   354  		p224Square(&f3, &f3, &c)
   355  	}
   356  	p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1
   357  	p224Square(&f3, &f2, &c)   // 2**25 - 2
   358  	for i := 0; i < 23; i++ {  // 2**48 - 2**24
   359  		p224Square(&f3, &f3, &c)
   360  	}
   361  	p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1
   362  	p224Square(&f4, &f3, &c)   // 2**49 - 2
   363  	for i := 0; i < 47; i++ {  // 2**96 - 2**48
   364  		p224Square(&f4, &f4, &c)
   365  	}
   366  	p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1
   367  	p224Square(&f4, &f3, &c)   // 2**97 - 2
   368  	for i := 0; i < 23; i++ {  // 2**120 - 2**24
   369  		p224Square(&f4, &f4, &c)
   370  	}
   371  	p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1
   372  	for i := 0; i < 6; i++ {   // 2**126 - 2**6
   373  		p224Square(&f2, &f2, &c)
   374  	}
   375  	p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1
   376  	p224Square(&f1, &f1, &c)   // 2**127 - 2
   377  	p224Mul(&f1, &f1, in, &c)  // 2**127 - 1
   378  	for i := 0; i < 97; i++ {  // 2**224 - 2**97
   379  		p224Square(&f1, &f1, &c)
   380  	}
   381  	p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1
   382  }
   383  
   384  // p224Contract converts a FieldElement to its unique, minimal form.
   385  //
   386  // On entry, in[i] < 2**29
   387  // On exit, in[i] < 2**28
   388  func p224Contract(out, in *p224FieldElement) {
   389  	copy(out[:], in[:])
   390  
   391  	for i := 0; i < 7; i++ {
   392  		out[i+1] += out[i] >> 28
   393  		out[i] &= bottom28Bits
   394  	}
   395  	top := out[7] >> 28
   396  	out[7] &= bottom28Bits
   397  
   398  	out[0] -= top
   399  	out[3] += top << 12
   400  
   401  	// We may just have made out[i] negative. So we carry down. If we made
   402  	// out[0] negative then we know that out[3] is sufficiently positive
   403  	// because we just added to it.
   404  	for i := 0; i < 3; i++ {
   405  		mask := uint32(int32(out[i]) >> 31)
   406  		out[i] += (1 << 28) & mask
   407  		out[i+1] -= 1 & mask
   408  	}
   409  
   410  	// We might have pushed out[3] over 2**28 so we perform another, partial,
   411  	// carry chain.
   412  	for i := 3; i < 7; i++ {
   413  		out[i+1] += out[i] >> 28
   414  		out[i] &= bottom28Bits
   415  	}
   416  	top = out[7] >> 28
   417  	out[7] &= bottom28Bits
   418  
   419  	// Eliminate top while maintaining the same value mod p.
   420  	out[0] -= top
   421  	out[3] += top << 12
   422  
   423  	// There are two cases to consider for out[3]:
   424  	//   1) The first time that we eliminated top, we didn't push out[3] over
   425  	//      2**28. In this case, the partial carry chain didn't change any values
   426  	//      and top is zero.
   427  	//   2) We did push out[3] over 2**28 the first time that we eliminated top.
   428  	//      The first value of top was in [0..16), therefore, prior to eliminating
   429  	//      the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
   430  	//      overflowing and being reduced by the second carry chain, out[3] <=
   431  	//      0xf000. Thus it cannot have overflowed when we eliminated top for the
   432  	//      second time.
   433  
   434  	// Again, we may just have made out[0] negative, so do the same carry down.
   435  	// As before, if we made out[0] negative then we know that out[3] is
   436  	// sufficiently positive.
   437  	for i := 0; i < 3; i++ {
   438  		mask := uint32(int32(out[i]) >> 31)
   439  		out[i] += (1 << 28) & mask
   440  		out[i+1] -= 1 & mask
   441  	}
   442  
   443  	// Now we see if the value is >= p and, if so, subtract p.
   444  
   445  	// First we build a mask from the top four limbs, which must all be
   446  	// equal to bottom28Bits if the whole value is >= p. If top4AllOnes
   447  	// ends up with any zero bits in the bottom 28 bits, then this wasn't
   448  	// true.
   449  	top4AllOnes := uint32(0xffffffff)
   450  	for i := 4; i < 8; i++ {
   451  		top4AllOnes &= out[i]
   452  	}
   453  	top4AllOnes |= 0xf0000000
   454  	// Now we replicate any zero bits to all the bits in top4AllOnes.
   455  	top4AllOnes &= top4AllOnes >> 16
   456  	top4AllOnes &= top4AllOnes >> 8
   457  	top4AllOnes &= top4AllOnes >> 4
   458  	top4AllOnes &= top4AllOnes >> 2
   459  	top4AllOnes &= top4AllOnes >> 1
   460  	top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31)
   461  
   462  	// Now we test whether the bottom three limbs are non-zero.
   463  	bottom3NonZero := out[0] | out[1] | out[2]
   464  	bottom3NonZero |= bottom3NonZero >> 16
   465  	bottom3NonZero |= bottom3NonZero >> 8
   466  	bottom3NonZero |= bottom3NonZero >> 4
   467  	bottom3NonZero |= bottom3NonZero >> 2
   468  	bottom3NonZero |= bottom3NonZero >> 1
   469  	bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31)
   470  
   471  	// Everything depends on the value of out[3].
   472  	//    If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p
   473  	//    If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,
   474  	//      then the whole value is >= p
   475  	//    If it's < 0xffff000, then the whole value is < p
   476  	n := out[3] - 0xffff000
   477  	out3Equal := n
   478  	out3Equal |= out3Equal >> 16
   479  	out3Equal |= out3Equal >> 8
   480  	out3Equal |= out3Equal >> 4
   481  	out3Equal |= out3Equal >> 2
   482  	out3Equal |= out3Equal >> 1
   483  	out3Equal = ^uint32(int32(out3Equal<<31) >> 31)
   484  
   485  	// If out[3] > 0xffff000 then n's MSB will be zero.
   486  	out3GT := ^uint32(int32(n) >> 31)
   487  
   488  	mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT)
   489  	out[0] -= 1 & mask
   490  	out[3] -= 0xffff000 & mask
   491  	out[4] -= 0xfffffff & mask
   492  	out[5] -= 0xfffffff & mask
   493  	out[6] -= 0xfffffff & mask
   494  	out[7] -= 0xfffffff & mask
   495  }
   496  
   497  // Group element functions.
   498  //
   499  // These functions deal with group elements. The group is an elliptic curve
   500  // group with a = -3 defined in FIPS 186-3, section D.2.2.
   501  
   502  // p224AddJacobian computes *out = a+b where a != b.
   503  func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
   504  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl
   505  	var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement
   506  	var c p224LargeFieldElement
   507  
   508  	z1IsZero := p224IsZero(z1)
   509  	z2IsZero := p224IsZero(z2)
   510  
   511  	// Z1Z1 = Z1²
   512  	p224Square(&z1z1, z1, &c)
   513  	// Z2Z2 = Z2²
   514  	p224Square(&z2z2, z2, &c)
   515  	// U1 = X1*Z2Z2
   516  	p224Mul(&u1, x1, &z2z2, &c)
   517  	// U2 = X2*Z1Z1
   518  	p224Mul(&u2, x2, &z1z1, &c)
   519  	// S1 = Y1*Z2*Z2Z2
   520  	p224Mul(&s1, z2, &z2z2, &c)
   521  	p224Mul(&s1, y1, &s1, &c)
   522  	// S2 = Y2*Z1*Z1Z1
   523  	p224Mul(&s2, z1, &z1z1, &c)
   524  	p224Mul(&s2, y2, &s2, &c)
   525  	// H = U2-U1
   526  	p224Sub(&h, &u2, &u1)
   527  	p224Reduce(&h)
   528  	xEqual := p224IsZero(&h)
   529  	// I = (2*H)²
   530  	for j := 0; j < 8; j++ {
   531  		i[j] = h[j] << 1
   532  	}
   533  	p224Reduce(&i)
   534  	p224Square(&i, &i, &c)
   535  	// J = H*I
   536  	p224Mul(&j, &h, &i, &c)
   537  	// r = 2*(S2-S1)
   538  	p224Sub(&r, &s2, &s1)
   539  	p224Reduce(&r)
   540  	yEqual := p224IsZero(&r)
   541  	if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 {
   542  		p224DoubleJacobian(x3, y3, z3, x1, y1, z1)
   543  		return
   544  	}
   545  	for i := 0; i < 8; i++ {
   546  		r[i] <<= 1
   547  	}
   548  	p224Reduce(&r)
   549  	// V = U1*I
   550  	p224Mul(&v, &u1, &i, &c)
   551  	// Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
   552  	p224Add(&z1z1, &z1z1, &z2z2)
   553  	p224Add(&z2z2, z1, z2)
   554  	p224Reduce(&z2z2)
   555  	p224Square(&z2z2, &z2z2, &c)
   556  	p224Sub(z3, &z2z2, &z1z1)
   557  	p224Reduce(z3)
   558  	p224Mul(z3, z3, &h, &c)
   559  	// X3 = r²-J-2*V
   560  	for i := 0; i < 8; i++ {
   561  		z1z1[i] = v[i] << 1
   562  	}
   563  	p224Add(&z1z1, &j, &z1z1)
   564  	p224Reduce(&z1z1)
   565  	p224Square(x3, &r, &c)
   566  	p224Sub(x3, x3, &z1z1)
   567  	p224Reduce(x3)
   568  	// Y3 = r*(V-X3)-2*S1*J
   569  	for i := 0; i < 8; i++ {
   570  		s1[i] <<= 1
   571  	}
   572  	p224Mul(&s1, &s1, &j, &c)
   573  	p224Sub(&z1z1, &v, x3)
   574  	p224Reduce(&z1z1)
   575  	p224Mul(&z1z1, &z1z1, &r, &c)
   576  	p224Sub(y3, &z1z1, &s1)
   577  	p224Reduce(y3)
   578  
   579  	p224CopyConditional(x3, x2, z1IsZero)
   580  	p224CopyConditional(x3, x1, z2IsZero)
   581  	p224CopyConditional(y3, y2, z1IsZero)
   582  	p224CopyConditional(y3, y1, z2IsZero)
   583  	p224CopyConditional(z3, z2, z1IsZero)
   584  	p224CopyConditional(z3, z1, z2IsZero)
   585  }
   586  
   587  // p224DoubleJacobian computes *out = a+a.
   588  func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) {
   589  	var delta, gamma, beta, alpha, t p224FieldElement
   590  	var c p224LargeFieldElement
   591  
   592  	p224Square(&delta, z1, &c)
   593  	p224Square(&gamma, y1, &c)
   594  	p224Mul(&beta, x1, &gamma, &c)
   595  
   596  	// alpha = 3*(X1-delta)*(X1+delta)
   597  	p224Add(&t, x1, &delta)
   598  	for i := 0; i < 8; i++ {
   599  		t[i] += t[i] << 1
   600  	}
   601  	p224Reduce(&t)
   602  	p224Sub(&alpha, x1, &delta)
   603  	p224Reduce(&alpha)
   604  	p224Mul(&alpha, &alpha, &t, &c)
   605  
   606  	// Z3 = (Y1+Z1)²-gamma-delta
   607  	p224Add(z3, y1, z1)
   608  	p224Reduce(z3)
   609  	p224Square(z3, z3, &c)
   610  	p224Sub(z3, z3, &gamma)
   611  	p224Reduce(z3)
   612  	p224Sub(z3, z3, &delta)
   613  	p224Reduce(z3)
   614  
   615  	// X3 = alpha²-8*beta
   616  	for i := 0; i < 8; i++ {
   617  		delta[i] = beta[i] << 3
   618  	}
   619  	p224Reduce(&delta)
   620  	p224Square(x3, &alpha, &c)
   621  	p224Sub(x3, x3, &delta)
   622  	p224Reduce(x3)
   623  
   624  	// Y3 = alpha*(4*beta-X3)-8*gamma²
   625  	for i := 0; i < 8; i++ {
   626  		beta[i] <<= 2
   627  	}
   628  	p224Sub(&beta, &beta, x3)
   629  	p224Reduce(&beta)
   630  	p224Square(&gamma, &gamma, &c)
   631  	for i := 0; i < 8; i++ {
   632  		gamma[i] <<= 3
   633  	}
   634  	p224Reduce(&gamma)
   635  	p224Mul(y3, &alpha, &beta, &c)
   636  	p224Sub(y3, y3, &gamma)
   637  	p224Reduce(y3)
   638  }
   639  
   640  // p224CopyConditional sets *out = *in iff the least-significant-bit of control
   641  // is true, and it runs in constant time.
   642  func p224CopyConditional(out, in *p224FieldElement, control uint32) {
   643  	control <<= 31
   644  	control = uint32(int32(control) >> 31)
   645  
   646  	for i := 0; i < 8; i++ {
   647  		out[i] ^= (out[i] ^ in[i]) & control
   648  	}
   649  }
   650  
   651  func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) {
   652  	var xx, yy, zz p224FieldElement
   653  	for i := 0; i < 8; i++ {
   654  		outX[i] = 0
   655  		outY[i] = 0
   656  		outZ[i] = 0
   657  	}
   658  
   659  	for _, byte := range scalar {
   660  		for bitNum := uint(0); bitNum < 8; bitNum++ {
   661  			p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ)
   662  			bit := uint32((byte >> (7 - bitNum)) & 1)
   663  			p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ)
   664  			p224CopyConditional(outX, &xx, bit)
   665  			p224CopyConditional(outY, &yy, bit)
   666  			p224CopyConditional(outZ, &zz, bit)
   667  		}
   668  	}
   669  }
   670  
   671  // p224ToAffine converts from Jacobian to affine form.
   672  func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) {
   673  	var zinv, zinvsq, outx, outy p224FieldElement
   674  	var tmp p224LargeFieldElement
   675  
   676  	if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 {
   677  		return new(big.Int), new(big.Int)
   678  	}
   679  
   680  	p224Invert(&zinv, z)
   681  	p224Square(&zinvsq, &zinv, &tmp)
   682  	p224Mul(x, x, &zinvsq, &tmp)
   683  	p224Mul(&zinvsq, &zinvsq, &zinv, &tmp)
   684  	p224Mul(y, y, &zinvsq, &tmp)
   685  
   686  	p224Contract(&outx, x)
   687  	p224Contract(&outy, y)
   688  	return p224ToBig(&outx), p224ToBig(&outy)
   689  }
   690  
   691  // get28BitsFromEnd returns the least-significant 28 bits from buf>>shift,
   692  // where buf is interpreted as a big-endian number.
   693  func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) {
   694  	var ret uint32
   695  
   696  	for i := uint(0); i < 4; i++ {
   697  		var b byte
   698  		if l := len(buf); l > 0 {
   699  			b = buf[l-1]
   700  			// We don't remove the byte if we're about to return and we're not
   701  			// reading all of it.
   702  			if i != 3 || shift == 4 {
   703  				buf = buf[:l-1]
   704  			}
   705  		}
   706  		ret |= uint32(b) << (8 * i) >> shift
   707  	}
   708  	ret &= bottom28Bits
   709  	return ret, buf
   710  }
   711  
   712  // p224FromBig sets *out = *in.
   713  func p224FromBig(out *p224FieldElement, in *big.Int) {
   714  	bytes := in.Bytes()
   715  	out[0], bytes = get28BitsFromEnd(bytes, 0)
   716  	out[1], bytes = get28BitsFromEnd(bytes, 4)
   717  	out[2], bytes = get28BitsFromEnd(bytes, 0)
   718  	out[3], bytes = get28BitsFromEnd(bytes, 4)
   719  	out[4], bytes = get28BitsFromEnd(bytes, 0)
   720  	out[5], bytes = get28BitsFromEnd(bytes, 4)
   721  	out[6], bytes = get28BitsFromEnd(bytes, 0)
   722  	out[7], bytes = get28BitsFromEnd(bytes, 4)
   723  }
   724  
   725  // p224ToBig returns in as a big.Int.
   726  func p224ToBig(in *p224FieldElement) *big.Int {
   727  	var buf [28]byte
   728  	buf[27] = byte(in[0])
   729  	buf[26] = byte(in[0] >> 8)
   730  	buf[25] = byte(in[0] >> 16)
   731  	buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0)
   732  
   733  	buf[23] = byte(in[1] >> 4)
   734  	buf[22] = byte(in[1] >> 12)
   735  	buf[21] = byte(in[1] >> 20)
   736  
   737  	buf[20] = byte(in[2])
   738  	buf[19] = byte(in[2] >> 8)
   739  	buf[18] = byte(in[2] >> 16)
   740  	buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0)
   741  
   742  	buf[16] = byte(in[3] >> 4)
   743  	buf[15] = byte(in[3] >> 12)
   744  	buf[14] = byte(in[3] >> 20)
   745  
   746  	buf[13] = byte(in[4])
   747  	buf[12] = byte(in[4] >> 8)
   748  	buf[11] = byte(in[4] >> 16)
   749  	buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0)
   750  
   751  	buf[9] = byte(in[5] >> 4)
   752  	buf[8] = byte(in[5] >> 12)
   753  	buf[7] = byte(in[5] >> 20)
   754  
   755  	buf[6] = byte(in[6])
   756  	buf[5] = byte(in[6] >> 8)
   757  	buf[4] = byte(in[6] >> 16)
   758  	buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0)
   759  
   760  	buf[2] = byte(in[7] >> 4)
   761  	buf[1] = byte(in[7] >> 12)
   762  	buf[0] = byte(in[7] >> 20)
   763  
   764  	return new(big.Int).SetBytes(buf[:])
   765  }