github.com/tcnksm/go@v0.0.0-20141208075154-439b32936367/src/encoding/asn1/asn1.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package asn1 implements parsing of DER-encoded ASN.1 data structures,
     6  // as defined in ITU-T Rec X.690.
     7  //
     8  // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
     9  // http://luca.ntop.org/Teaching/Appunti/asn1.html.
    10  package asn1
    11  
    12  // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
    13  // are different encoding formats for those objects. Here, we'll be dealing
    14  // with DER, the Distinguished Encoding Rules. DER is used in X.509 because
    15  // it's fast to parse and, unlike BER, has a unique encoding for every object.
    16  // When calculating hashes over objects, it's important that the resulting
    17  // bytes be the same at both ends and DER removes this margin of error.
    18  //
    19  // ASN.1 is very complex and this package doesn't attempt to implement
    20  // everything by any means.
    21  
    22  import (
    23  	"fmt"
    24  	"math/big"
    25  	"reflect"
    26  	"strconv"
    27  	"time"
    28  )
    29  
    30  // A StructuralError suggests that the ASN.1 data is valid, but the Go type
    31  // which is receiving it doesn't match.
    32  type StructuralError struct {
    33  	Msg string
    34  }
    35  
    36  func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
    37  
    38  // A SyntaxError suggests that the ASN.1 data is invalid.
    39  type SyntaxError struct {
    40  	Msg string
    41  }
    42  
    43  func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
    44  
    45  // We start by dealing with each of the primitive types in turn.
    46  
    47  // BOOLEAN
    48  
    49  func parseBool(bytes []byte) (ret bool, err error) {
    50  	if len(bytes) != 1 {
    51  		err = SyntaxError{"invalid boolean"}
    52  		return
    53  	}
    54  
    55  	// DER demands that "If the encoding represents the boolean value TRUE,
    56  	// its single contents octet shall have all eight bits set to one."
    57  	// Thus only 0 and 255 are valid encoded values.
    58  	switch bytes[0] {
    59  	case 0:
    60  		ret = false
    61  	case 0xff:
    62  		ret = true
    63  	default:
    64  		err = SyntaxError{"invalid boolean"}
    65  	}
    66  
    67  	return
    68  }
    69  
    70  // INTEGER
    71  
    72  // parseInt64 treats the given bytes as a big-endian, signed integer and
    73  // returns the result.
    74  func parseInt64(bytes []byte) (ret int64, err error) {
    75  	if len(bytes) > 8 {
    76  		// We'll overflow an int64 in this case.
    77  		err = StructuralError{"integer too large"}
    78  		return
    79  	}
    80  	for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
    81  		ret <<= 8
    82  		ret |= int64(bytes[bytesRead])
    83  	}
    84  
    85  	// Shift up and down in order to sign extend the result.
    86  	ret <<= 64 - uint8(len(bytes))*8
    87  	ret >>= 64 - uint8(len(bytes))*8
    88  	return
    89  }
    90  
    91  // parseInt treats the given bytes as a big-endian, signed integer and returns
    92  // the result.
    93  func parseInt32(bytes []byte) (int32, error) {
    94  	ret64, err := parseInt64(bytes)
    95  	if err != nil {
    96  		return 0, err
    97  	}
    98  	if ret64 != int64(int32(ret64)) {
    99  		return 0, StructuralError{"integer too large"}
   100  	}
   101  	return int32(ret64), nil
   102  }
   103  
   104  var bigOne = big.NewInt(1)
   105  
   106  // parseBigInt treats the given bytes as a big-endian, signed integer and returns
   107  // the result.
   108  func parseBigInt(bytes []byte) *big.Int {
   109  	ret := new(big.Int)
   110  	if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
   111  		// This is a negative number.
   112  		notBytes := make([]byte, len(bytes))
   113  		for i := range notBytes {
   114  			notBytes[i] = ^bytes[i]
   115  		}
   116  		ret.SetBytes(notBytes)
   117  		ret.Add(ret, bigOne)
   118  		ret.Neg(ret)
   119  		return ret
   120  	}
   121  	ret.SetBytes(bytes)
   122  	return ret
   123  }
   124  
   125  // BIT STRING
   126  
   127  // BitString is the structure to use when you want an ASN.1 BIT STRING type. A
   128  // bit string is padded up to the nearest byte in memory and the number of
   129  // valid bits is recorded. Padding bits will be zero.
   130  type BitString struct {
   131  	Bytes     []byte // bits packed into bytes.
   132  	BitLength int    // length in bits.
   133  }
   134  
   135  // At returns the bit at the given index. If the index is out of range it
   136  // returns false.
   137  func (b BitString) At(i int) int {
   138  	if i < 0 || i >= b.BitLength {
   139  		return 0
   140  	}
   141  	x := i / 8
   142  	y := 7 - uint(i%8)
   143  	return int(b.Bytes[x]>>y) & 1
   144  }
   145  
   146  // RightAlign returns a slice where the padding bits are at the beginning. The
   147  // slice may share memory with the BitString.
   148  func (b BitString) RightAlign() []byte {
   149  	shift := uint(8 - (b.BitLength % 8))
   150  	if shift == 8 || len(b.Bytes) == 0 {
   151  		return b.Bytes
   152  	}
   153  
   154  	a := make([]byte, len(b.Bytes))
   155  	a[0] = b.Bytes[0] >> shift
   156  	for i := 1; i < len(b.Bytes); i++ {
   157  		a[i] = b.Bytes[i-1] << (8 - shift)
   158  		a[i] |= b.Bytes[i] >> shift
   159  	}
   160  
   161  	return a
   162  }
   163  
   164  // parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
   165  func parseBitString(bytes []byte) (ret BitString, err error) {
   166  	if len(bytes) == 0 {
   167  		err = SyntaxError{"zero length BIT STRING"}
   168  		return
   169  	}
   170  	paddingBits := int(bytes[0])
   171  	if paddingBits > 7 ||
   172  		len(bytes) == 1 && paddingBits > 0 ||
   173  		bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
   174  		err = SyntaxError{"invalid padding bits in BIT STRING"}
   175  		return
   176  	}
   177  	ret.BitLength = (len(bytes)-1)*8 - paddingBits
   178  	ret.Bytes = bytes[1:]
   179  	return
   180  }
   181  
   182  // OBJECT IDENTIFIER
   183  
   184  // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
   185  type ObjectIdentifier []int
   186  
   187  // Equal reports whether oi and other represent the same identifier.
   188  func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
   189  	if len(oi) != len(other) {
   190  		return false
   191  	}
   192  	for i := 0; i < len(oi); i++ {
   193  		if oi[i] != other[i] {
   194  			return false
   195  		}
   196  	}
   197  
   198  	return true
   199  }
   200  
   201  func (oi ObjectIdentifier) String() string {
   202  	var s string
   203  
   204  	for i, v := range oi {
   205  		if i > 0 {
   206  			s += "."
   207  		}
   208  		s += strconv.Itoa(v)
   209  	}
   210  
   211  	return s
   212  }
   213  
   214  // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
   215  // returns it. An object identifier is a sequence of variable length integers
   216  // that are assigned in a hierarchy.
   217  func parseObjectIdentifier(bytes []byte) (s []int, err error) {
   218  	if len(bytes) == 0 {
   219  		err = SyntaxError{"zero length OBJECT IDENTIFIER"}
   220  		return
   221  	}
   222  
   223  	// In the worst case, we get two elements from the first byte (which is
   224  	// encoded differently) and then every varint is a single byte long.
   225  	s = make([]int, len(bytes)+1)
   226  
   227  	// The first varint is 40*value1 + value2:
   228  	// According to this packing, value1 can take the values 0, 1 and 2 only.
   229  	// When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
   230  	// then there are no restrictions on value2.
   231  	v, offset, err := parseBase128Int(bytes, 0)
   232  	if err != nil {
   233  		return
   234  	}
   235  	if v < 80 {
   236  		s[0] = v / 40
   237  		s[1] = v % 40
   238  	} else {
   239  		s[0] = 2
   240  		s[1] = v - 80
   241  	}
   242  
   243  	i := 2
   244  	for ; offset < len(bytes); i++ {
   245  		v, offset, err = parseBase128Int(bytes, offset)
   246  		if err != nil {
   247  			return
   248  		}
   249  		s[i] = v
   250  	}
   251  	s = s[0:i]
   252  	return
   253  }
   254  
   255  // ENUMERATED
   256  
   257  // An Enumerated is represented as a plain int.
   258  type Enumerated int
   259  
   260  // FLAG
   261  
   262  // A Flag accepts any data and is set to true if present.
   263  type Flag bool
   264  
   265  // parseBase128Int parses a base-128 encoded int from the given offset in the
   266  // given byte slice. It returns the value and the new offset.
   267  func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
   268  	offset = initOffset
   269  	for shifted := 0; offset < len(bytes); shifted++ {
   270  		if shifted > 4 {
   271  			err = StructuralError{"base 128 integer too large"}
   272  			return
   273  		}
   274  		ret <<= 7
   275  		b := bytes[offset]
   276  		ret |= int(b & 0x7f)
   277  		offset++
   278  		if b&0x80 == 0 {
   279  			return
   280  		}
   281  	}
   282  	err = SyntaxError{"truncated base 128 integer"}
   283  	return
   284  }
   285  
   286  // UTCTime
   287  
   288  func parseUTCTime(bytes []byte) (ret time.Time, err error) {
   289  	s := string(bytes)
   290  	ret, err = time.Parse("0601021504Z0700", s)
   291  	if err != nil {
   292  		ret, err = time.Parse("060102150405Z0700", s)
   293  	}
   294  	if err == nil && ret.Year() >= 2050 {
   295  		// UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
   296  		ret = ret.AddDate(-100, 0, 0)
   297  	}
   298  
   299  	return
   300  }
   301  
   302  // parseGeneralizedTime parses the GeneralizedTime from the given byte slice
   303  // and returns the resulting time.
   304  func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
   305  	return time.Parse("20060102150405Z0700", string(bytes))
   306  }
   307  
   308  // PrintableString
   309  
   310  // parsePrintableString parses a ASN.1 PrintableString from the given byte
   311  // array and returns it.
   312  func parsePrintableString(bytes []byte) (ret string, err error) {
   313  	for _, b := range bytes {
   314  		if !isPrintable(b) {
   315  			err = SyntaxError{"PrintableString contains invalid character"}
   316  			return
   317  		}
   318  	}
   319  	ret = string(bytes)
   320  	return
   321  }
   322  
   323  // isPrintable returns true iff the given b is in the ASN.1 PrintableString set.
   324  func isPrintable(b byte) bool {
   325  	return 'a' <= b && b <= 'z' ||
   326  		'A' <= b && b <= 'Z' ||
   327  		'0' <= b && b <= '9' ||
   328  		'\'' <= b && b <= ')' ||
   329  		'+' <= b && b <= '/' ||
   330  		b == ' ' ||
   331  		b == ':' ||
   332  		b == '=' ||
   333  		b == '?' ||
   334  		// This is technically not allowed in a PrintableString.
   335  		// However, x509 certificates with wildcard strings don't
   336  		// always use the correct string type so we permit it.
   337  		b == '*'
   338  }
   339  
   340  // IA5String
   341  
   342  // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
   343  // byte slice and returns it.
   344  func parseIA5String(bytes []byte) (ret string, err error) {
   345  	for _, b := range bytes {
   346  		if b >= 0x80 {
   347  			err = SyntaxError{"IA5String contains invalid character"}
   348  			return
   349  		}
   350  	}
   351  	ret = string(bytes)
   352  	return
   353  }
   354  
   355  // T61String
   356  
   357  // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
   358  // byte slice and returns it.
   359  func parseT61String(bytes []byte) (ret string, err error) {
   360  	return string(bytes), nil
   361  }
   362  
   363  // UTF8String
   364  
   365  // parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
   366  // array and returns it.
   367  func parseUTF8String(bytes []byte) (ret string, err error) {
   368  	return string(bytes), nil
   369  }
   370  
   371  // A RawValue represents an undecoded ASN.1 object.
   372  type RawValue struct {
   373  	Class, Tag int
   374  	IsCompound bool
   375  	Bytes      []byte
   376  	FullBytes  []byte // includes the tag and length
   377  }
   378  
   379  // RawContent is used to signal that the undecoded, DER data needs to be
   380  // preserved for a struct. To use it, the first field of the struct must have
   381  // this type. It's an error for any of the other fields to have this type.
   382  type RawContent []byte
   383  
   384  // Tagging
   385  
   386  // parseTagAndLength parses an ASN.1 tag and length pair from the given offset
   387  // into a byte slice. It returns the parsed data and the new offset. SET and
   388  // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
   389  // don't distinguish between ordered and unordered objects in this code.
   390  func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
   391  	offset = initOffset
   392  	b := bytes[offset]
   393  	offset++
   394  	ret.class = int(b >> 6)
   395  	ret.isCompound = b&0x20 == 0x20
   396  	ret.tag = int(b & 0x1f)
   397  
   398  	// If the bottom five bits are set, then the tag number is actually base 128
   399  	// encoded afterwards
   400  	if ret.tag == 0x1f {
   401  		ret.tag, offset, err = parseBase128Int(bytes, offset)
   402  		if err != nil {
   403  			return
   404  		}
   405  	}
   406  	if offset >= len(bytes) {
   407  		err = SyntaxError{"truncated tag or length"}
   408  		return
   409  	}
   410  	b = bytes[offset]
   411  	offset++
   412  	if b&0x80 == 0 {
   413  		// The length is encoded in the bottom 7 bits.
   414  		ret.length = int(b & 0x7f)
   415  	} else {
   416  		// Bottom 7 bits give the number of length bytes to follow.
   417  		numBytes := int(b & 0x7f)
   418  		if numBytes == 0 {
   419  			err = SyntaxError{"indefinite length found (not DER)"}
   420  			return
   421  		}
   422  		ret.length = 0
   423  		for i := 0; i < numBytes; i++ {
   424  			if offset >= len(bytes) {
   425  				err = SyntaxError{"truncated tag or length"}
   426  				return
   427  			}
   428  			b = bytes[offset]
   429  			offset++
   430  			if ret.length >= 1<<23 {
   431  				// We can't shift ret.length up without
   432  				// overflowing.
   433  				err = StructuralError{"length too large"}
   434  				return
   435  			}
   436  			ret.length <<= 8
   437  			ret.length |= int(b)
   438  			if ret.length == 0 {
   439  				// DER requires that lengths be minimal.
   440  				err = StructuralError{"superfluous leading zeros in length"}
   441  				return
   442  			}
   443  		}
   444  	}
   445  
   446  	return
   447  }
   448  
   449  // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
   450  // a number of ASN.1 values from the given byte slice and returns them as a
   451  // slice of Go values of the given type.
   452  func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
   453  	expectedTag, compoundType, ok := getUniversalType(elemType)
   454  	if !ok {
   455  		err = StructuralError{"unknown Go type for slice"}
   456  		return
   457  	}
   458  
   459  	// First we iterate over the input and count the number of elements,
   460  	// checking that the types are correct in each case.
   461  	numElements := 0
   462  	for offset := 0; offset < len(bytes); {
   463  		var t tagAndLength
   464  		t, offset, err = parseTagAndLength(bytes, offset)
   465  		if err != nil {
   466  			return
   467  		}
   468  		switch t.tag {
   469  		case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
   470  			// We pretend that various other string types are
   471  			// PRINTABLE STRINGs so that a sequence of them can be
   472  			// parsed into a []string.
   473  			t.tag = tagPrintableString
   474  		case tagGeneralizedTime, tagUTCTime:
   475  			// Likewise, both time types are treated the same.
   476  			t.tag = tagUTCTime
   477  		}
   478  
   479  		if t.class != classUniversal || t.isCompound != compoundType || t.tag != expectedTag {
   480  			err = StructuralError{"sequence tag mismatch"}
   481  			return
   482  		}
   483  		if invalidLength(offset, t.length, len(bytes)) {
   484  			err = SyntaxError{"truncated sequence"}
   485  			return
   486  		}
   487  		offset += t.length
   488  		numElements++
   489  	}
   490  	ret = reflect.MakeSlice(sliceType, numElements, numElements)
   491  	params := fieldParameters{}
   492  	offset := 0
   493  	for i := 0; i < numElements; i++ {
   494  		offset, err = parseField(ret.Index(i), bytes, offset, params)
   495  		if err != nil {
   496  			return
   497  		}
   498  	}
   499  	return
   500  }
   501  
   502  var (
   503  	bitStringType        = reflect.TypeOf(BitString{})
   504  	objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
   505  	enumeratedType       = reflect.TypeOf(Enumerated(0))
   506  	flagType             = reflect.TypeOf(Flag(false))
   507  	timeType             = reflect.TypeOf(time.Time{})
   508  	rawValueType         = reflect.TypeOf(RawValue{})
   509  	rawContentsType      = reflect.TypeOf(RawContent(nil))
   510  	bigIntType           = reflect.TypeOf(new(big.Int))
   511  )
   512  
   513  // invalidLength returns true iff offset + length > sliceLength, or if the
   514  // addition would overflow.
   515  func invalidLength(offset, length, sliceLength int) bool {
   516  	return offset+length < offset || offset+length > sliceLength
   517  }
   518  
   519  // parseField is the main parsing function. Given a byte slice and an offset
   520  // into the array, it will try to parse a suitable ASN.1 value out and store it
   521  // in the given Value.
   522  func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
   523  	offset = initOffset
   524  	fieldType := v.Type()
   525  
   526  	// If we have run out of data, it may be that there are optional elements at the end.
   527  	if offset == len(bytes) {
   528  		if !setDefaultValue(v, params) {
   529  			err = SyntaxError{"sequence truncated"}
   530  		}
   531  		return
   532  	}
   533  
   534  	// Deal with raw values.
   535  	if fieldType == rawValueType {
   536  		var t tagAndLength
   537  		t, offset, err = parseTagAndLength(bytes, offset)
   538  		if err != nil {
   539  			return
   540  		}
   541  		if invalidLength(offset, t.length, len(bytes)) {
   542  			err = SyntaxError{"data truncated"}
   543  			return
   544  		}
   545  		result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
   546  		offset += t.length
   547  		v.Set(reflect.ValueOf(result))
   548  		return
   549  	}
   550  
   551  	// Deal with the ANY type.
   552  	if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
   553  		var t tagAndLength
   554  		t, offset, err = parseTagAndLength(bytes, offset)
   555  		if err != nil {
   556  			return
   557  		}
   558  		if invalidLength(offset, t.length, len(bytes)) {
   559  			err = SyntaxError{"data truncated"}
   560  			return
   561  		}
   562  		var result interface{}
   563  		if !t.isCompound && t.class == classUniversal {
   564  			innerBytes := bytes[offset : offset+t.length]
   565  			switch t.tag {
   566  			case tagPrintableString:
   567  				result, err = parsePrintableString(innerBytes)
   568  			case tagIA5String:
   569  				result, err = parseIA5String(innerBytes)
   570  			case tagT61String:
   571  				result, err = parseT61String(innerBytes)
   572  			case tagUTF8String:
   573  				result, err = parseUTF8String(innerBytes)
   574  			case tagInteger:
   575  				result, err = parseInt64(innerBytes)
   576  			case tagBitString:
   577  				result, err = parseBitString(innerBytes)
   578  			case tagOID:
   579  				result, err = parseObjectIdentifier(innerBytes)
   580  			case tagUTCTime:
   581  				result, err = parseUTCTime(innerBytes)
   582  			case tagOctetString:
   583  				result = innerBytes
   584  			default:
   585  				// If we don't know how to handle the type, we just leave Value as nil.
   586  			}
   587  		}
   588  		offset += t.length
   589  		if err != nil {
   590  			return
   591  		}
   592  		if result != nil {
   593  			v.Set(reflect.ValueOf(result))
   594  		}
   595  		return
   596  	}
   597  	universalTag, compoundType, ok1 := getUniversalType(fieldType)
   598  	if !ok1 {
   599  		err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
   600  		return
   601  	}
   602  
   603  	t, offset, err := parseTagAndLength(bytes, offset)
   604  	if err != nil {
   605  		return
   606  	}
   607  	if params.explicit {
   608  		expectedClass := classContextSpecific
   609  		if params.application {
   610  			expectedClass = classApplication
   611  		}
   612  		if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
   613  			if t.length > 0 {
   614  				t, offset, err = parseTagAndLength(bytes, offset)
   615  				if err != nil {
   616  					return
   617  				}
   618  			} else {
   619  				if fieldType != flagType {
   620  					err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
   621  					return
   622  				}
   623  				v.SetBool(true)
   624  				return
   625  			}
   626  		} else {
   627  			// The tags didn't match, it might be an optional element.
   628  			ok := setDefaultValue(v, params)
   629  			if ok {
   630  				offset = initOffset
   631  			} else {
   632  				err = StructuralError{"explicitly tagged member didn't match"}
   633  			}
   634  			return
   635  		}
   636  	}
   637  
   638  	// Special case for strings: all the ASN.1 string types map to the Go
   639  	// type string. getUniversalType returns the tag for PrintableString
   640  	// when it sees a string, so if we see a different string type on the
   641  	// wire, we change the universal type to match.
   642  	if universalTag == tagPrintableString {
   643  		if t.class == classUniversal {
   644  			switch t.tag {
   645  			case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
   646  				universalTag = t.tag
   647  			}
   648  		} else if params.stringType != 0 {
   649  			universalTag = params.stringType
   650  		}
   651  	}
   652  
   653  	// Special case for time: UTCTime and GeneralizedTime both map to the
   654  	// Go type time.Time.
   655  	if universalTag == tagUTCTime && t.tag == tagGeneralizedTime && t.class == classUniversal {
   656  		universalTag = tagGeneralizedTime
   657  	}
   658  
   659  	if params.set {
   660  		universalTag = tagSet
   661  	}
   662  
   663  	expectedClass := classUniversal
   664  	expectedTag := universalTag
   665  
   666  	if !params.explicit && params.tag != nil {
   667  		expectedClass = classContextSpecific
   668  		expectedTag = *params.tag
   669  	}
   670  
   671  	if !params.explicit && params.application && params.tag != nil {
   672  		expectedClass = classApplication
   673  		expectedTag = *params.tag
   674  	}
   675  
   676  	// We have unwrapped any explicit tagging at this point.
   677  	if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
   678  		// Tags don't match. Again, it could be an optional element.
   679  		ok := setDefaultValue(v, params)
   680  		if ok {
   681  			offset = initOffset
   682  		} else {
   683  			err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
   684  		}
   685  		return
   686  	}
   687  	if invalidLength(offset, t.length, len(bytes)) {
   688  		err = SyntaxError{"data truncated"}
   689  		return
   690  	}
   691  	innerBytes := bytes[offset : offset+t.length]
   692  	offset += t.length
   693  
   694  	// We deal with the structures defined in this package first.
   695  	switch fieldType {
   696  	case objectIdentifierType:
   697  		newSlice, err1 := parseObjectIdentifier(innerBytes)
   698  		v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
   699  		if err1 == nil {
   700  			reflect.Copy(v, reflect.ValueOf(newSlice))
   701  		}
   702  		err = err1
   703  		return
   704  	case bitStringType:
   705  		bs, err1 := parseBitString(innerBytes)
   706  		if err1 == nil {
   707  			v.Set(reflect.ValueOf(bs))
   708  		}
   709  		err = err1
   710  		return
   711  	case timeType:
   712  		var time time.Time
   713  		var err1 error
   714  		if universalTag == tagUTCTime {
   715  			time, err1 = parseUTCTime(innerBytes)
   716  		} else {
   717  			time, err1 = parseGeneralizedTime(innerBytes)
   718  		}
   719  		if err1 == nil {
   720  			v.Set(reflect.ValueOf(time))
   721  		}
   722  		err = err1
   723  		return
   724  	case enumeratedType:
   725  		parsedInt, err1 := parseInt32(innerBytes)
   726  		if err1 == nil {
   727  			v.SetInt(int64(parsedInt))
   728  		}
   729  		err = err1
   730  		return
   731  	case flagType:
   732  		v.SetBool(true)
   733  		return
   734  	case bigIntType:
   735  		parsedInt := parseBigInt(innerBytes)
   736  		v.Set(reflect.ValueOf(parsedInt))
   737  		return
   738  	}
   739  	switch val := v; val.Kind() {
   740  	case reflect.Bool:
   741  		parsedBool, err1 := parseBool(innerBytes)
   742  		if err1 == nil {
   743  			val.SetBool(parsedBool)
   744  		}
   745  		err = err1
   746  		return
   747  	case reflect.Int, reflect.Int32, reflect.Int64:
   748  		if val.Type().Size() == 4 {
   749  			parsedInt, err1 := parseInt32(innerBytes)
   750  			if err1 == nil {
   751  				val.SetInt(int64(parsedInt))
   752  			}
   753  			err = err1
   754  		} else {
   755  			parsedInt, err1 := parseInt64(innerBytes)
   756  			if err1 == nil {
   757  				val.SetInt(parsedInt)
   758  			}
   759  			err = err1
   760  		}
   761  		return
   762  	// TODO(dfc) Add support for the remaining integer types
   763  	case reflect.Struct:
   764  		structType := fieldType
   765  
   766  		if structType.NumField() > 0 &&
   767  			structType.Field(0).Type == rawContentsType {
   768  			bytes := bytes[initOffset:offset]
   769  			val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
   770  		}
   771  
   772  		innerOffset := 0
   773  		for i := 0; i < structType.NumField(); i++ {
   774  			field := structType.Field(i)
   775  			if i == 0 && field.Type == rawContentsType {
   776  				continue
   777  			}
   778  			innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
   779  			if err != nil {
   780  				return
   781  			}
   782  		}
   783  		// We allow extra bytes at the end of the SEQUENCE because
   784  		// adding elements to the end has been used in X.509 as the
   785  		// version numbers have increased.
   786  		return
   787  	case reflect.Slice:
   788  		sliceType := fieldType
   789  		if sliceType.Elem().Kind() == reflect.Uint8 {
   790  			val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
   791  			reflect.Copy(val, reflect.ValueOf(innerBytes))
   792  			return
   793  		}
   794  		newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
   795  		if err1 == nil {
   796  			val.Set(newSlice)
   797  		}
   798  		err = err1
   799  		return
   800  	case reflect.String:
   801  		var v string
   802  		switch universalTag {
   803  		case tagPrintableString:
   804  			v, err = parsePrintableString(innerBytes)
   805  		case tagIA5String:
   806  			v, err = parseIA5String(innerBytes)
   807  		case tagT61String:
   808  			v, err = parseT61String(innerBytes)
   809  		case tagUTF8String:
   810  			v, err = parseUTF8String(innerBytes)
   811  		case tagGeneralString:
   812  			// GeneralString is specified in ISO-2022/ECMA-35,
   813  			// A brief review suggests that it includes structures
   814  			// that allow the encoding to change midstring and
   815  			// such. We give up and pass it as an 8-bit string.
   816  			v, err = parseT61String(innerBytes)
   817  		default:
   818  			err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
   819  		}
   820  		if err == nil {
   821  			val.SetString(v)
   822  		}
   823  		return
   824  	}
   825  	err = StructuralError{"unsupported: " + v.Type().String()}
   826  	return
   827  }
   828  
   829  // canHaveDefaultValue reports whether k is a Kind that we will set a default
   830  // value for. (A signed integer, essentially.)
   831  func canHaveDefaultValue(k reflect.Kind) bool {
   832  	switch k {
   833  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   834  		return true
   835  	}
   836  
   837  	return false
   838  }
   839  
   840  // setDefaultValue is used to install a default value, from a tag string, into
   841  // a Value. It is successful if the field was optional, even if a default value
   842  // wasn't provided or it failed to install it into the Value.
   843  func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
   844  	if !params.optional {
   845  		return
   846  	}
   847  	ok = true
   848  	if params.defaultValue == nil {
   849  		return
   850  	}
   851  	if canHaveDefaultValue(v.Kind()) {
   852  		v.SetInt(*params.defaultValue)
   853  	}
   854  	return
   855  }
   856  
   857  // Unmarshal parses the DER-encoded ASN.1 data structure b
   858  // and uses the reflect package to fill in an arbitrary value pointed at by val.
   859  // Because Unmarshal uses the reflect package, the structs
   860  // being written to must use upper case field names.
   861  //
   862  // An ASN.1 INTEGER can be written to an int, int32, int64,
   863  // or *big.Int (from the math/big package).
   864  // If the encoded value does not fit in the Go type,
   865  // Unmarshal returns a parse error.
   866  //
   867  // An ASN.1 BIT STRING can be written to a BitString.
   868  //
   869  // An ASN.1 OCTET STRING can be written to a []byte.
   870  //
   871  // An ASN.1 OBJECT IDENTIFIER can be written to an
   872  // ObjectIdentifier.
   873  //
   874  // An ASN.1 ENUMERATED can be written to an Enumerated.
   875  //
   876  // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
   877  //
   878  // An ASN.1 PrintableString or IA5String can be written to a string.
   879  //
   880  // Any of the above ASN.1 values can be written to an interface{}.
   881  // The value stored in the interface has the corresponding Go type.
   882  // For integers, that type is int64.
   883  //
   884  // An ASN.1 SEQUENCE OF x or SET OF x can be written
   885  // to a slice if an x can be written to the slice's element type.
   886  //
   887  // An ASN.1 SEQUENCE or SET can be written to a struct
   888  // if each of the elements in the sequence can be
   889  // written to the corresponding element in the struct.
   890  //
   891  // The following tags on struct fields have special meaning to Unmarshal:
   892  //
   893  //	application	specifies that a APPLICATION tag is used
   894  //	default:x	sets the default value for optional integer fields
   895  //	explicit	specifies that an additional, explicit tag wraps the implicit one
   896  //	optional	marks the field as ASN.1 OPTIONAL
   897  //	set		causes a SET, rather than a SEQUENCE type to be expected
   898  //	tag:x		specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
   899  //
   900  // If the type of the first field of a structure is RawContent then the raw
   901  // ASN1 contents of the struct will be stored in it.
   902  //
   903  // If the type name of a slice element ends with "SET" then it's treated as if
   904  // the "set" tag was set on it. This can be used with nested slices where a
   905  // struct tag cannot be given.
   906  //
   907  // Other ASN.1 types are not supported; if it encounters them,
   908  // Unmarshal returns a parse error.
   909  func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
   910  	return UnmarshalWithParams(b, val, "")
   911  }
   912  
   913  // UnmarshalWithParams allows field parameters to be specified for the
   914  // top-level element. The form of the params is the same as the field tags.
   915  func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
   916  	v := reflect.ValueOf(val).Elem()
   917  	offset, err := parseField(v, b, 0, parseFieldParameters(params))
   918  	if err != nil {
   919  		return nil, err
   920  	}
   921  	return b[offset:], nil
   922  }