github.com/tcnksm/go@v0.0.0-20141208075154-439b32936367/src/net/http/server.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP server.  See RFC 2616.
     6  
     7  package http
     8  
     9  import (
    10  	"bufio"
    11  	"crypto/tls"
    12  	"errors"
    13  	"fmt"
    14  	"io"
    15  	"io/ioutil"
    16  	"log"
    17  	"net"
    18  	"net/url"
    19  	"os"
    20  	"path"
    21  	"runtime"
    22  	"strconv"
    23  	"strings"
    24  	"sync"
    25  	"sync/atomic"
    26  	"time"
    27  )
    28  
    29  // Errors introduced by the HTTP server.
    30  var (
    31  	ErrWriteAfterFlush = errors.New("Conn.Write called after Flush")
    32  	ErrBodyNotAllowed  = errors.New("http: request method or response status code does not allow body")
    33  	ErrHijacked        = errors.New("Conn has been hijacked")
    34  	ErrContentLength   = errors.New("Conn.Write wrote more than the declared Content-Length")
    35  )
    36  
    37  // Objects implementing the Handler interface can be
    38  // registered to serve a particular path or subtree
    39  // in the HTTP server.
    40  //
    41  // ServeHTTP should write reply headers and data to the ResponseWriter
    42  // and then return.  Returning signals that the request is finished
    43  // and that the HTTP server can move on to the next request on
    44  // the connection.
    45  //
    46  // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
    47  // that the effect of the panic was isolated to the active request.
    48  // It recovers the panic, logs a stack trace to the server error log,
    49  // and hangs up the connection.
    50  //
    51  type Handler interface {
    52  	ServeHTTP(ResponseWriter, *Request)
    53  }
    54  
    55  // A ResponseWriter interface is used by an HTTP handler to
    56  // construct an HTTP response.
    57  type ResponseWriter interface {
    58  	// Header returns the header map that will be sent by WriteHeader.
    59  	// Changing the header after a call to WriteHeader (or Write) has
    60  	// no effect.
    61  	Header() Header
    62  
    63  	// Write writes the data to the connection as part of an HTTP reply.
    64  	// If WriteHeader has not yet been called, Write calls WriteHeader(http.StatusOK)
    65  	// before writing the data.  If the Header does not contain a
    66  	// Content-Type line, Write adds a Content-Type set to the result of passing
    67  	// the initial 512 bytes of written data to DetectContentType.
    68  	Write([]byte) (int, error)
    69  
    70  	// WriteHeader sends an HTTP response header with status code.
    71  	// If WriteHeader is not called explicitly, the first call to Write
    72  	// will trigger an implicit WriteHeader(http.StatusOK).
    73  	// Thus explicit calls to WriteHeader are mainly used to
    74  	// send error codes.
    75  	WriteHeader(int)
    76  }
    77  
    78  // The Flusher interface is implemented by ResponseWriters that allow
    79  // an HTTP handler to flush buffered data to the client.
    80  //
    81  // Note that even for ResponseWriters that support Flush,
    82  // if the client is connected through an HTTP proxy,
    83  // the buffered data may not reach the client until the response
    84  // completes.
    85  type Flusher interface {
    86  	// Flush sends any buffered data to the client.
    87  	Flush()
    88  }
    89  
    90  // The Hijacker interface is implemented by ResponseWriters that allow
    91  // an HTTP handler to take over the connection.
    92  type Hijacker interface {
    93  	// Hijack lets the caller take over the connection.
    94  	// After a call to Hijack(), the HTTP server library
    95  	// will not do anything else with the connection.
    96  	// It becomes the caller's responsibility to manage
    97  	// and close the connection.
    98  	Hijack() (net.Conn, *bufio.ReadWriter, error)
    99  }
   100  
   101  // The CloseNotifier interface is implemented by ResponseWriters which
   102  // allow detecting when the underlying connection has gone away.
   103  //
   104  // This mechanism can be used to cancel long operations on the server
   105  // if the client has disconnected before the response is ready.
   106  type CloseNotifier interface {
   107  	// CloseNotify returns a channel that receives a single value
   108  	// when the client connection has gone away.
   109  	CloseNotify() <-chan bool
   110  }
   111  
   112  // A conn represents the server side of an HTTP connection.
   113  type conn struct {
   114  	remoteAddr string               // network address of remote side
   115  	server     *Server              // the Server on which the connection arrived
   116  	rwc        net.Conn             // i/o connection
   117  	w          io.Writer            // checkConnErrorWriter's copy of wrc, not zeroed on Hijack
   118  	werr       error                // any errors writing to w
   119  	sr         liveSwitchReader     // where the LimitReader reads from; usually the rwc
   120  	lr         *io.LimitedReader    // io.LimitReader(sr)
   121  	buf        *bufio.ReadWriter    // buffered(lr,rwc), reading from bufio->limitReader->sr->rwc
   122  	tlsState   *tls.ConnectionState // or nil when not using TLS
   123  
   124  	mu           sync.Mutex // guards the following
   125  	clientGone   bool       // if client has disconnected mid-request
   126  	closeNotifyc chan bool  // made lazily
   127  	hijackedv    bool       // connection has been hijacked by handler
   128  }
   129  
   130  func (c *conn) hijacked() bool {
   131  	c.mu.Lock()
   132  	defer c.mu.Unlock()
   133  	return c.hijackedv
   134  }
   135  
   136  func (c *conn) hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   137  	c.mu.Lock()
   138  	defer c.mu.Unlock()
   139  	if c.hijackedv {
   140  		return nil, nil, ErrHijacked
   141  	}
   142  	if c.closeNotifyc != nil {
   143  		return nil, nil, errors.New("http: Hijack is incompatible with use of CloseNotifier")
   144  	}
   145  	c.hijackedv = true
   146  	rwc = c.rwc
   147  	buf = c.buf
   148  	c.rwc = nil
   149  	c.buf = nil
   150  	c.setState(rwc, StateHijacked)
   151  	return
   152  }
   153  
   154  func (c *conn) closeNotify() <-chan bool {
   155  	c.mu.Lock()
   156  	defer c.mu.Unlock()
   157  	if c.closeNotifyc == nil {
   158  		c.closeNotifyc = make(chan bool, 1)
   159  		if c.hijackedv {
   160  			// to obey the function signature, even though
   161  			// it'll never receive a value.
   162  			return c.closeNotifyc
   163  		}
   164  		pr, pw := io.Pipe()
   165  
   166  		readSource := c.sr.r
   167  		c.sr.Lock()
   168  		c.sr.r = pr
   169  		c.sr.Unlock()
   170  		go func() {
   171  			_, err := io.Copy(pw, readSource)
   172  			if err == nil {
   173  				err = io.EOF
   174  			}
   175  			pw.CloseWithError(err)
   176  			c.noteClientGone()
   177  		}()
   178  	}
   179  	return c.closeNotifyc
   180  }
   181  
   182  func (c *conn) noteClientGone() {
   183  	c.mu.Lock()
   184  	defer c.mu.Unlock()
   185  	if c.closeNotifyc != nil && !c.clientGone {
   186  		c.closeNotifyc <- true
   187  	}
   188  	c.clientGone = true
   189  }
   190  
   191  // A switchReader can have its Reader changed at runtime.
   192  // It's not safe for concurrent Reads and switches.
   193  type switchReader struct {
   194  	io.Reader
   195  }
   196  
   197  // A switchWriter can have its Writer changed at runtime.
   198  // It's not safe for concurrent Writes and switches.
   199  type switchWriter struct {
   200  	io.Writer
   201  }
   202  
   203  // A liveSwitchReader is a switchReader that's safe for concurrent
   204  // reads and switches, if its mutex is held.
   205  type liveSwitchReader struct {
   206  	sync.Mutex
   207  	r io.Reader
   208  }
   209  
   210  func (sr *liveSwitchReader) Read(p []byte) (n int, err error) {
   211  	sr.Lock()
   212  	r := sr.r
   213  	sr.Unlock()
   214  	return r.Read(p)
   215  }
   216  
   217  // This should be >= 512 bytes for DetectContentType,
   218  // but otherwise it's somewhat arbitrary.
   219  const bufferBeforeChunkingSize = 2048
   220  
   221  // chunkWriter writes to a response's conn buffer, and is the writer
   222  // wrapped by the response.bufw buffered writer.
   223  //
   224  // chunkWriter also is responsible for finalizing the Header, including
   225  // conditionally setting the Content-Type and setting a Content-Length
   226  // in cases where the handler's final output is smaller than the buffer
   227  // size. It also conditionally adds chunk headers, when in chunking mode.
   228  //
   229  // See the comment above (*response).Write for the entire write flow.
   230  type chunkWriter struct {
   231  	res *response
   232  
   233  	// header is either nil or a deep clone of res.handlerHeader
   234  	// at the time of res.WriteHeader, if res.WriteHeader is
   235  	// called and extra buffering is being done to calculate
   236  	// Content-Type and/or Content-Length.
   237  	header Header
   238  
   239  	// wroteHeader tells whether the header's been written to "the
   240  	// wire" (or rather: w.conn.buf). this is unlike
   241  	// (*response).wroteHeader, which tells only whether it was
   242  	// logically written.
   243  	wroteHeader bool
   244  
   245  	// set by the writeHeader method:
   246  	chunking bool // using chunked transfer encoding for reply body
   247  }
   248  
   249  var (
   250  	crlf       = []byte("\r\n")
   251  	colonSpace = []byte(": ")
   252  )
   253  
   254  func (cw *chunkWriter) Write(p []byte) (n int, err error) {
   255  	if !cw.wroteHeader {
   256  		cw.writeHeader(p)
   257  	}
   258  	if cw.res.req.Method == "HEAD" {
   259  		// Eat writes.
   260  		return len(p), nil
   261  	}
   262  	if cw.chunking {
   263  		_, err = fmt.Fprintf(cw.res.conn.buf, "%x\r\n", len(p))
   264  		if err != nil {
   265  			cw.res.conn.rwc.Close()
   266  			return
   267  		}
   268  	}
   269  	n, err = cw.res.conn.buf.Write(p)
   270  	if cw.chunking && err == nil {
   271  		_, err = cw.res.conn.buf.Write(crlf)
   272  	}
   273  	if err != nil {
   274  		cw.res.conn.rwc.Close()
   275  	}
   276  	return
   277  }
   278  
   279  func (cw *chunkWriter) flush() {
   280  	if !cw.wroteHeader {
   281  		cw.writeHeader(nil)
   282  	}
   283  	cw.res.conn.buf.Flush()
   284  }
   285  
   286  func (cw *chunkWriter) close() {
   287  	if !cw.wroteHeader {
   288  		cw.writeHeader(nil)
   289  	}
   290  	if cw.chunking {
   291  		// zero EOF chunk, trailer key/value pairs (currently
   292  		// unsupported in Go's server), followed by a blank
   293  		// line.
   294  		cw.res.conn.buf.WriteString("0\r\n\r\n")
   295  	}
   296  }
   297  
   298  // A response represents the server side of an HTTP response.
   299  type response struct {
   300  	conn          *conn
   301  	req           *Request // request for this response
   302  	wroteHeader   bool     // reply header has been (logically) written
   303  	wroteContinue bool     // 100 Continue response was written
   304  
   305  	w  *bufio.Writer // buffers output in chunks to chunkWriter
   306  	cw chunkWriter
   307  	sw *switchWriter // of the bufio.Writer, for return to putBufioWriter
   308  
   309  	// handlerHeader is the Header that Handlers get access to,
   310  	// which may be retained and mutated even after WriteHeader.
   311  	// handlerHeader is copied into cw.header at WriteHeader
   312  	// time, and privately mutated thereafter.
   313  	handlerHeader Header
   314  	calledHeader  bool // handler accessed handlerHeader via Header
   315  
   316  	written       int64 // number of bytes written in body
   317  	contentLength int64 // explicitly-declared Content-Length; or -1
   318  	status        int   // status code passed to WriteHeader
   319  
   320  	// close connection after this reply.  set on request and
   321  	// updated after response from handler if there's a
   322  	// "Connection: keep-alive" response header and a
   323  	// Content-Length.
   324  	closeAfterReply bool
   325  
   326  	// requestBodyLimitHit is set by requestTooLarge when
   327  	// maxBytesReader hits its max size. It is checked in
   328  	// WriteHeader, to make sure we don't consume the
   329  	// remaining request body to try to advance to the next HTTP
   330  	// request. Instead, when this is set, we stop reading
   331  	// subsequent requests on this connection and stop reading
   332  	// input from it.
   333  	requestBodyLimitHit bool
   334  
   335  	handlerDone bool // set true when the handler exits
   336  
   337  	// Buffers for Date and Content-Length
   338  	dateBuf [len(TimeFormat)]byte
   339  	clenBuf [10]byte
   340  }
   341  
   342  // requestTooLarge is called by maxBytesReader when too much input has
   343  // been read from the client.
   344  func (w *response) requestTooLarge() {
   345  	w.closeAfterReply = true
   346  	w.requestBodyLimitHit = true
   347  	if !w.wroteHeader {
   348  		w.Header().Set("Connection", "close")
   349  	}
   350  }
   351  
   352  // needsSniff reports whether a Content-Type still needs to be sniffed.
   353  func (w *response) needsSniff() bool {
   354  	_, haveType := w.handlerHeader["Content-Type"]
   355  	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
   356  }
   357  
   358  // writerOnly hides an io.Writer value's optional ReadFrom method
   359  // from io.Copy.
   360  type writerOnly struct {
   361  	io.Writer
   362  }
   363  
   364  func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
   365  	switch v := src.(type) {
   366  	case *os.File:
   367  		fi, err := v.Stat()
   368  		if err != nil {
   369  			return false, err
   370  		}
   371  		return fi.Mode().IsRegular(), nil
   372  	case *io.LimitedReader:
   373  		return srcIsRegularFile(v.R)
   374  	default:
   375  		return
   376  	}
   377  }
   378  
   379  // ReadFrom is here to optimize copying from an *os.File regular file
   380  // to a *net.TCPConn with sendfile.
   381  func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
   382  	// Our underlying w.conn.rwc is usually a *TCPConn (with its
   383  	// own ReadFrom method). If not, or if our src isn't a regular
   384  	// file, just fall back to the normal copy method.
   385  	rf, ok := w.conn.rwc.(io.ReaderFrom)
   386  	regFile, err := srcIsRegularFile(src)
   387  	if err != nil {
   388  		return 0, err
   389  	}
   390  	if !ok || !regFile {
   391  		return io.Copy(writerOnly{w}, src)
   392  	}
   393  
   394  	// sendfile path:
   395  
   396  	if !w.wroteHeader {
   397  		w.WriteHeader(StatusOK)
   398  	}
   399  
   400  	if w.needsSniff() {
   401  		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
   402  		n += n0
   403  		if err != nil {
   404  			return n, err
   405  		}
   406  	}
   407  
   408  	w.w.Flush()  // get rid of any previous writes
   409  	w.cw.flush() // make sure Header is written; flush data to rwc
   410  
   411  	// Now that cw has been flushed, its chunking field is guaranteed initialized.
   412  	if !w.cw.chunking && w.bodyAllowed() {
   413  		n0, err := rf.ReadFrom(src)
   414  		n += n0
   415  		w.written += n0
   416  		return n, err
   417  	}
   418  
   419  	n0, err := io.Copy(writerOnly{w}, src)
   420  	n += n0
   421  	return n, err
   422  }
   423  
   424  // noLimit is an effective infinite upper bound for io.LimitedReader
   425  const noLimit int64 = (1 << 63) - 1
   426  
   427  // debugServerConnections controls whether all server connections are wrapped
   428  // with a verbose logging wrapper.
   429  const debugServerConnections = false
   430  
   431  // Create new connection from rwc.
   432  func (srv *Server) newConn(rwc net.Conn) (c *conn, err error) {
   433  	c = new(conn)
   434  	c.remoteAddr = rwc.RemoteAddr().String()
   435  	c.server = srv
   436  	c.rwc = rwc
   437  	c.w = rwc
   438  	if debugServerConnections {
   439  		c.rwc = newLoggingConn("server", c.rwc)
   440  	}
   441  	c.sr = liveSwitchReader{r: c.rwc}
   442  	c.lr = io.LimitReader(&c.sr, noLimit).(*io.LimitedReader)
   443  	br := newBufioReader(c.lr)
   444  	bw := newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
   445  	c.buf = bufio.NewReadWriter(br, bw)
   446  	return c, nil
   447  }
   448  
   449  var (
   450  	bufioReaderPool   sync.Pool
   451  	bufioWriter2kPool sync.Pool
   452  	bufioWriter4kPool sync.Pool
   453  )
   454  
   455  func bufioWriterPool(size int) *sync.Pool {
   456  	switch size {
   457  	case 2 << 10:
   458  		return &bufioWriter2kPool
   459  	case 4 << 10:
   460  		return &bufioWriter4kPool
   461  	}
   462  	return nil
   463  }
   464  
   465  func newBufioReader(r io.Reader) *bufio.Reader {
   466  	if v := bufioReaderPool.Get(); v != nil {
   467  		br := v.(*bufio.Reader)
   468  		br.Reset(r)
   469  		return br
   470  	}
   471  	return bufio.NewReader(r)
   472  }
   473  
   474  func putBufioReader(br *bufio.Reader) {
   475  	br.Reset(nil)
   476  	bufioReaderPool.Put(br)
   477  }
   478  
   479  func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
   480  	pool := bufioWriterPool(size)
   481  	if pool != nil {
   482  		if v := pool.Get(); v != nil {
   483  			bw := v.(*bufio.Writer)
   484  			bw.Reset(w)
   485  			return bw
   486  		}
   487  	}
   488  	return bufio.NewWriterSize(w, size)
   489  }
   490  
   491  func putBufioWriter(bw *bufio.Writer) {
   492  	bw.Reset(nil)
   493  	if pool := bufioWriterPool(bw.Available()); pool != nil {
   494  		pool.Put(bw)
   495  	}
   496  }
   497  
   498  // DefaultMaxHeaderBytes is the maximum permitted size of the headers
   499  // in an HTTP request.
   500  // This can be overridden by setting Server.MaxHeaderBytes.
   501  const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
   502  
   503  func (srv *Server) maxHeaderBytes() int {
   504  	if srv.MaxHeaderBytes > 0 {
   505  		return srv.MaxHeaderBytes
   506  	}
   507  	return DefaultMaxHeaderBytes
   508  }
   509  
   510  func (srv *Server) initialLimitedReaderSize() int64 {
   511  	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
   512  }
   513  
   514  // wrapper around io.ReaderCloser which on first read, sends an
   515  // HTTP/1.1 100 Continue header
   516  type expectContinueReader struct {
   517  	resp       *response
   518  	readCloser io.ReadCloser
   519  	closed     bool
   520  }
   521  
   522  func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
   523  	if ecr.closed {
   524  		return 0, ErrBodyReadAfterClose
   525  	}
   526  	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
   527  		ecr.resp.wroteContinue = true
   528  		ecr.resp.conn.buf.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
   529  		ecr.resp.conn.buf.Flush()
   530  	}
   531  	return ecr.readCloser.Read(p)
   532  }
   533  
   534  func (ecr *expectContinueReader) Close() error {
   535  	ecr.closed = true
   536  	return ecr.readCloser.Close()
   537  }
   538  
   539  // TimeFormat is the time format to use with
   540  // time.Parse and time.Time.Format when parsing
   541  // or generating times in HTTP headers.
   542  // It is like time.RFC1123 but hard codes GMT as the time zone.
   543  const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
   544  
   545  // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
   546  func appendTime(b []byte, t time.Time) []byte {
   547  	const days = "SunMonTueWedThuFriSat"
   548  	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
   549  
   550  	t = t.UTC()
   551  	yy, mm, dd := t.Date()
   552  	hh, mn, ss := t.Clock()
   553  	day := days[3*t.Weekday():]
   554  	mon := months[3*(mm-1):]
   555  
   556  	return append(b,
   557  		day[0], day[1], day[2], ',', ' ',
   558  		byte('0'+dd/10), byte('0'+dd%10), ' ',
   559  		mon[0], mon[1], mon[2], ' ',
   560  		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
   561  		byte('0'+hh/10), byte('0'+hh%10), ':',
   562  		byte('0'+mn/10), byte('0'+mn%10), ':',
   563  		byte('0'+ss/10), byte('0'+ss%10), ' ',
   564  		'G', 'M', 'T')
   565  }
   566  
   567  var errTooLarge = errors.New("http: request too large")
   568  
   569  // Read next request from connection.
   570  func (c *conn) readRequest() (w *response, err error) {
   571  	if c.hijacked() {
   572  		return nil, ErrHijacked
   573  	}
   574  
   575  	if d := c.server.ReadTimeout; d != 0 {
   576  		c.rwc.SetReadDeadline(time.Now().Add(d))
   577  	}
   578  	if d := c.server.WriteTimeout; d != 0 {
   579  		defer func() {
   580  			c.rwc.SetWriteDeadline(time.Now().Add(d))
   581  		}()
   582  	}
   583  
   584  	c.lr.N = c.server.initialLimitedReaderSize()
   585  	var req *Request
   586  	if req, err = ReadRequest(c.buf.Reader); err != nil {
   587  		if c.lr.N == 0 {
   588  			return nil, errTooLarge
   589  		}
   590  		return nil, err
   591  	}
   592  	c.lr.N = noLimit
   593  
   594  	req.RemoteAddr = c.remoteAddr
   595  	req.TLS = c.tlsState
   596  
   597  	w = &response{
   598  		conn:          c,
   599  		req:           req,
   600  		handlerHeader: make(Header),
   601  		contentLength: -1,
   602  	}
   603  	w.cw.res = w
   604  	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
   605  	return w, nil
   606  }
   607  
   608  func (w *response) Header() Header {
   609  	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
   610  		// Accessing the header between logically writing it
   611  		// and physically writing it means we need to allocate
   612  		// a clone to snapshot the logically written state.
   613  		w.cw.header = w.handlerHeader.clone()
   614  	}
   615  	w.calledHeader = true
   616  	return w.handlerHeader
   617  }
   618  
   619  // maxPostHandlerReadBytes is the max number of Request.Body bytes not
   620  // consumed by a handler that the server will read from the client
   621  // in order to keep a connection alive.  If there are more bytes than
   622  // this then the server to be paranoid instead sends a "Connection:
   623  // close" response.
   624  //
   625  // This number is approximately what a typical machine's TCP buffer
   626  // size is anyway.  (if we have the bytes on the machine, we might as
   627  // well read them)
   628  const maxPostHandlerReadBytes = 256 << 10
   629  
   630  func (w *response) WriteHeader(code int) {
   631  	if w.conn.hijacked() {
   632  		w.conn.server.logf("http: response.WriteHeader on hijacked connection")
   633  		return
   634  	}
   635  	if w.wroteHeader {
   636  		w.conn.server.logf("http: multiple response.WriteHeader calls")
   637  		return
   638  	}
   639  	w.wroteHeader = true
   640  	w.status = code
   641  
   642  	if w.calledHeader && w.cw.header == nil {
   643  		w.cw.header = w.handlerHeader.clone()
   644  	}
   645  
   646  	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
   647  		v, err := strconv.ParseInt(cl, 10, 64)
   648  		if err == nil && v >= 0 {
   649  			w.contentLength = v
   650  		} else {
   651  			w.conn.server.logf("http: invalid Content-Length of %q", cl)
   652  			w.handlerHeader.Del("Content-Length")
   653  		}
   654  	}
   655  }
   656  
   657  // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
   658  // This type is used to avoid extra allocations from cloning and/or populating
   659  // the response Header map and all its 1-element slices.
   660  type extraHeader struct {
   661  	contentType      string
   662  	connection       string
   663  	transferEncoding string
   664  	date             []byte // written if not nil
   665  	contentLength    []byte // written if not nil
   666  }
   667  
   668  // Sorted the same as extraHeader.Write's loop.
   669  var extraHeaderKeys = [][]byte{
   670  	[]byte("Content-Type"),
   671  	[]byte("Connection"),
   672  	[]byte("Transfer-Encoding"),
   673  }
   674  
   675  var (
   676  	headerContentLength = []byte("Content-Length: ")
   677  	headerDate          = []byte("Date: ")
   678  )
   679  
   680  // Write writes the headers described in h to w.
   681  //
   682  // This method has a value receiver, despite the somewhat large size
   683  // of h, because it prevents an allocation. The escape analysis isn't
   684  // smart enough to realize this function doesn't mutate h.
   685  func (h extraHeader) Write(w *bufio.Writer) {
   686  	if h.date != nil {
   687  		w.Write(headerDate)
   688  		w.Write(h.date)
   689  		w.Write(crlf)
   690  	}
   691  	if h.contentLength != nil {
   692  		w.Write(headerContentLength)
   693  		w.Write(h.contentLength)
   694  		w.Write(crlf)
   695  	}
   696  	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
   697  		if v != "" {
   698  			w.Write(extraHeaderKeys[i])
   699  			w.Write(colonSpace)
   700  			w.WriteString(v)
   701  			w.Write(crlf)
   702  		}
   703  	}
   704  }
   705  
   706  // writeHeader finalizes the header sent to the client and writes it
   707  // to cw.res.conn.buf.
   708  //
   709  // p is not written by writeHeader, but is the first chunk of the body
   710  // that will be written.  It is sniffed for a Content-Type if none is
   711  // set explicitly.  It's also used to set the Content-Length, if the
   712  // total body size was small and the handler has already finished
   713  // running.
   714  func (cw *chunkWriter) writeHeader(p []byte) {
   715  	if cw.wroteHeader {
   716  		return
   717  	}
   718  	cw.wroteHeader = true
   719  
   720  	w := cw.res
   721  	keepAlivesEnabled := w.conn.server.doKeepAlives()
   722  	isHEAD := w.req.Method == "HEAD"
   723  
   724  	// header is written out to w.conn.buf below. Depending on the
   725  	// state of the handler, we either own the map or not. If we
   726  	// don't own it, the exclude map is created lazily for
   727  	// WriteSubset to remove headers. The setHeader struct holds
   728  	// headers we need to add.
   729  	header := cw.header
   730  	owned := header != nil
   731  	if !owned {
   732  		header = w.handlerHeader
   733  	}
   734  	var excludeHeader map[string]bool
   735  	delHeader := func(key string) {
   736  		if owned {
   737  			header.Del(key)
   738  			return
   739  		}
   740  		if _, ok := header[key]; !ok {
   741  			return
   742  		}
   743  		if excludeHeader == nil {
   744  			excludeHeader = make(map[string]bool)
   745  		}
   746  		excludeHeader[key] = true
   747  	}
   748  	var setHeader extraHeader
   749  
   750  	// If the handler is done but never sent a Content-Length
   751  	// response header and this is our first (and last) write, set
   752  	// it, even to zero. This helps HTTP/1.0 clients keep their
   753  	// "keep-alive" connections alive.
   754  	// Exceptions: 304/204/1xx responses never get Content-Length, and if
   755  	// it was a HEAD request, we don't know the difference between
   756  	// 0 actual bytes and 0 bytes because the handler noticed it
   757  	// was a HEAD request and chose not to write anything.  So for
   758  	// HEAD, the handler should either write the Content-Length or
   759  	// write non-zero bytes.  If it's actually 0 bytes and the
   760  	// handler never looked at the Request.Method, we just don't
   761  	// send a Content-Length header.
   762  	if w.handlerDone && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
   763  		w.contentLength = int64(len(p))
   764  		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
   765  	}
   766  
   767  	// If this was an HTTP/1.0 request with keep-alive and we sent a
   768  	// Content-Length back, we can make this a keep-alive response ...
   769  	if w.req.wantsHttp10KeepAlive() && keepAlivesEnabled {
   770  		sentLength := header.get("Content-Length") != ""
   771  		if sentLength && header.get("Connection") == "keep-alive" {
   772  			w.closeAfterReply = false
   773  		}
   774  	}
   775  
   776  	// Check for a explicit (and valid) Content-Length header.
   777  	hasCL := w.contentLength != -1
   778  
   779  	if w.req.wantsHttp10KeepAlive() && (isHEAD || hasCL) {
   780  		_, connectionHeaderSet := header["Connection"]
   781  		if !connectionHeaderSet {
   782  			setHeader.connection = "keep-alive"
   783  		}
   784  	} else if !w.req.ProtoAtLeast(1, 1) || w.req.wantsClose() {
   785  		w.closeAfterReply = true
   786  	}
   787  
   788  	if header.get("Connection") == "close" || !keepAlivesEnabled {
   789  		w.closeAfterReply = true
   790  	}
   791  
   792  	// Per RFC 2616, we should consume the request body before
   793  	// replying, if the handler hasn't already done so.  But we
   794  	// don't want to do an unbounded amount of reading here for
   795  	// DoS reasons, so we only try up to a threshold.
   796  	if w.req.ContentLength != 0 && !w.closeAfterReply {
   797  		ecr, isExpecter := w.req.Body.(*expectContinueReader)
   798  		if !isExpecter || ecr.resp.wroteContinue {
   799  			n, _ := io.CopyN(ioutil.Discard, w.req.Body, maxPostHandlerReadBytes+1)
   800  			if n >= maxPostHandlerReadBytes {
   801  				w.requestTooLarge()
   802  				delHeader("Connection")
   803  				setHeader.connection = "close"
   804  			} else {
   805  				w.req.Body.Close()
   806  			}
   807  		}
   808  	}
   809  
   810  	code := w.status
   811  	if bodyAllowedForStatus(code) {
   812  		// If no content type, apply sniffing algorithm to body.
   813  		_, haveType := header["Content-Type"]
   814  		if !haveType {
   815  			setHeader.contentType = DetectContentType(p)
   816  		}
   817  	} else {
   818  		for _, k := range suppressedHeaders(code) {
   819  			delHeader(k)
   820  		}
   821  	}
   822  
   823  	if _, ok := header["Date"]; !ok {
   824  		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
   825  	}
   826  
   827  	te := header.get("Transfer-Encoding")
   828  	hasTE := te != ""
   829  	if hasCL && hasTE && te != "identity" {
   830  		// TODO: return an error if WriteHeader gets a return parameter
   831  		// For now just ignore the Content-Length.
   832  		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
   833  			te, w.contentLength)
   834  		delHeader("Content-Length")
   835  		hasCL = false
   836  	}
   837  
   838  	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
   839  		// do nothing
   840  	} else if code == StatusNoContent {
   841  		delHeader("Transfer-Encoding")
   842  	} else if hasCL {
   843  		delHeader("Transfer-Encoding")
   844  	} else if w.req.ProtoAtLeast(1, 1) {
   845  		// HTTP/1.1 or greater: Transfer-Encoding has been set to identity,  and no
   846  		// content-length has been provided. The connection must be closed after the
   847  		// reply is written, and no chunking is to be done. This is the setup
   848  		// recommended in the Server-Sent Events candidate recommendation 11,
   849  		// section 8.
   850  		if hasTE && te == "identity" {
   851  			cw.chunking = false
   852  			w.closeAfterReply = true
   853  		} else {
   854  			// HTTP/1.1 or greater: use chunked transfer encoding
   855  			// to avoid closing the connection at EOF.
   856  			cw.chunking = true
   857  			setHeader.transferEncoding = "chunked"
   858  		}
   859  	} else {
   860  		// HTTP version < 1.1: cannot do chunked transfer
   861  		// encoding and we don't know the Content-Length so
   862  		// signal EOF by closing connection.
   863  		w.closeAfterReply = true
   864  		delHeader("Transfer-Encoding") // in case already set
   865  	}
   866  
   867  	// Cannot use Content-Length with non-identity Transfer-Encoding.
   868  	if cw.chunking {
   869  		delHeader("Content-Length")
   870  	}
   871  	if !w.req.ProtoAtLeast(1, 0) {
   872  		return
   873  	}
   874  
   875  	if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
   876  		delHeader("Connection")
   877  		if w.req.ProtoAtLeast(1, 1) {
   878  			setHeader.connection = "close"
   879  		}
   880  	}
   881  
   882  	w.conn.buf.WriteString(statusLine(w.req, code))
   883  	cw.header.WriteSubset(w.conn.buf, excludeHeader)
   884  	setHeader.Write(w.conn.buf.Writer)
   885  	w.conn.buf.Write(crlf)
   886  }
   887  
   888  // statusLines is a cache of Status-Line strings, keyed by code (for
   889  // HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a
   890  // map keyed by struct of two fields. This map's max size is bounded
   891  // by 2*len(statusText), two protocol types for each known official
   892  // status code in the statusText map.
   893  var (
   894  	statusMu    sync.RWMutex
   895  	statusLines = make(map[int]string)
   896  )
   897  
   898  // statusLine returns a response Status-Line (RFC 2616 Section 6.1)
   899  // for the given request and response status code.
   900  func statusLine(req *Request, code int) string {
   901  	// Fast path:
   902  	key := code
   903  	proto11 := req.ProtoAtLeast(1, 1)
   904  	if !proto11 {
   905  		key = -key
   906  	}
   907  	statusMu.RLock()
   908  	line, ok := statusLines[key]
   909  	statusMu.RUnlock()
   910  	if ok {
   911  		return line
   912  	}
   913  
   914  	// Slow path:
   915  	proto := "HTTP/1.0"
   916  	if proto11 {
   917  		proto = "HTTP/1.1"
   918  	}
   919  	codestring := strconv.Itoa(code)
   920  	text, ok := statusText[code]
   921  	if !ok {
   922  		text = "status code " + codestring
   923  	}
   924  	line = proto + " " + codestring + " " + text + "\r\n"
   925  	if ok {
   926  		statusMu.Lock()
   927  		defer statusMu.Unlock()
   928  		statusLines[key] = line
   929  	}
   930  	return line
   931  }
   932  
   933  // bodyAllowed returns true if a Write is allowed for this response type.
   934  // It's illegal to call this before the header has been flushed.
   935  func (w *response) bodyAllowed() bool {
   936  	if !w.wroteHeader {
   937  		panic("")
   938  	}
   939  	return bodyAllowedForStatus(w.status)
   940  }
   941  
   942  // The Life Of A Write is like this:
   943  //
   944  // Handler starts. No header has been sent. The handler can either
   945  // write a header, or just start writing.  Writing before sending a header
   946  // sends an implicitly empty 200 OK header.
   947  //
   948  // If the handler didn't declare a Content-Length up front, we either
   949  // go into chunking mode or, if the handler finishes running before
   950  // the chunking buffer size, we compute a Content-Length and send that
   951  // in the header instead.
   952  //
   953  // Likewise, if the handler didn't set a Content-Type, we sniff that
   954  // from the initial chunk of output.
   955  //
   956  // The Writers are wired together like:
   957  //
   958  // 1. *response (the ResponseWriter) ->
   959  // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
   960  // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
   961  //    and which writes the chunk headers, if needed.
   962  // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
   963  // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
   964  //    and populates c.werr with it if so. but otherwise writes to:
   965  // 6. the rwc, the net.Conn.
   966  //
   967  // TODO(bradfitz): short-circuit some of the buffering when the
   968  // initial header contains both a Content-Type and Content-Length.
   969  // Also short-circuit in (1) when the header's been sent and not in
   970  // chunking mode, writing directly to (4) instead, if (2) has no
   971  // buffered data.  More generally, we could short-circuit from (1) to
   972  // (3) even in chunking mode if the write size from (1) is over some
   973  // threshold and nothing is in (2).  The answer might be mostly making
   974  // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
   975  // with this instead.
   976  func (w *response) Write(data []byte) (n int, err error) {
   977  	return w.write(len(data), data, "")
   978  }
   979  
   980  func (w *response) WriteString(data string) (n int, err error) {
   981  	return w.write(len(data), nil, data)
   982  }
   983  
   984  // either dataB or dataS is non-zero.
   985  func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
   986  	if w.conn.hijacked() {
   987  		w.conn.server.logf("http: response.Write on hijacked connection")
   988  		return 0, ErrHijacked
   989  	}
   990  	if !w.wroteHeader {
   991  		w.WriteHeader(StatusOK)
   992  	}
   993  	if lenData == 0 {
   994  		return 0, nil
   995  	}
   996  	if !w.bodyAllowed() {
   997  		return 0, ErrBodyNotAllowed
   998  	}
   999  
  1000  	w.written += int64(lenData) // ignoring errors, for errorKludge
  1001  	if w.contentLength != -1 && w.written > w.contentLength {
  1002  		return 0, ErrContentLength
  1003  	}
  1004  	if dataB != nil {
  1005  		return w.w.Write(dataB)
  1006  	} else {
  1007  		return w.w.WriteString(dataS)
  1008  	}
  1009  }
  1010  
  1011  func (w *response) finishRequest() {
  1012  	w.handlerDone = true
  1013  
  1014  	if !w.wroteHeader {
  1015  		w.WriteHeader(StatusOK)
  1016  	}
  1017  
  1018  	w.w.Flush()
  1019  	putBufioWriter(w.w)
  1020  	w.cw.close()
  1021  	w.conn.buf.Flush()
  1022  
  1023  	// Close the body (regardless of w.closeAfterReply) so we can
  1024  	// re-use its bufio.Reader later safely.
  1025  	w.req.Body.Close()
  1026  
  1027  	if w.req.MultipartForm != nil {
  1028  		w.req.MultipartForm.RemoveAll()
  1029  	}
  1030  
  1031  	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
  1032  		// Did not write enough. Avoid getting out of sync.
  1033  		w.closeAfterReply = true
  1034  	}
  1035  
  1036  	// There was some error writing to the underlying connection
  1037  	// during the request, so don't re-use this conn.
  1038  	if w.conn.werr != nil {
  1039  		w.closeAfterReply = true
  1040  	}
  1041  }
  1042  
  1043  func (w *response) Flush() {
  1044  	if !w.wroteHeader {
  1045  		w.WriteHeader(StatusOK)
  1046  	}
  1047  	w.w.Flush()
  1048  	w.cw.flush()
  1049  }
  1050  
  1051  func (c *conn) finalFlush() {
  1052  	if c.buf != nil {
  1053  		c.buf.Flush()
  1054  
  1055  		// Steal the bufio.Reader (~4KB worth of memory) and its associated
  1056  		// reader for a future connection.
  1057  		putBufioReader(c.buf.Reader)
  1058  
  1059  		// Steal the bufio.Writer (~4KB worth of memory) and its associated
  1060  		// writer for a future connection.
  1061  		putBufioWriter(c.buf.Writer)
  1062  
  1063  		c.buf = nil
  1064  	}
  1065  }
  1066  
  1067  // Close the connection.
  1068  func (c *conn) close() {
  1069  	c.finalFlush()
  1070  	if c.rwc != nil {
  1071  		c.rwc.Close()
  1072  		c.rwc = nil
  1073  	}
  1074  }
  1075  
  1076  // rstAvoidanceDelay is the amount of time we sleep after closing the
  1077  // write side of a TCP connection before closing the entire socket.
  1078  // By sleeping, we increase the chances that the client sees our FIN
  1079  // and processes its final data before they process the subsequent RST
  1080  // from closing a connection with known unread data.
  1081  // This RST seems to occur mostly on BSD systems. (And Windows?)
  1082  // This timeout is somewhat arbitrary (~latency around the planet).
  1083  const rstAvoidanceDelay = 500 * time.Millisecond
  1084  
  1085  type closeWriter interface {
  1086  	CloseWrite() error
  1087  }
  1088  
  1089  var _ closeWriter = (*net.TCPConn)(nil)
  1090  
  1091  // closeWrite flushes any outstanding data and sends a FIN packet (if
  1092  // client is connected via TCP), signalling that we're done.  We then
  1093  // pause for a bit, hoping the client processes it before any
  1094  // subsequent RST.
  1095  //
  1096  // See http://golang.org/issue/3595
  1097  func (c *conn) closeWriteAndWait() {
  1098  	c.finalFlush()
  1099  	if tcp, ok := c.rwc.(closeWriter); ok {
  1100  		tcp.CloseWrite()
  1101  	}
  1102  	time.Sleep(rstAvoidanceDelay)
  1103  }
  1104  
  1105  // validNPN reports whether the proto is not a blacklisted Next
  1106  // Protocol Negotiation protocol.  Empty and built-in protocol types
  1107  // are blacklisted and can't be overridden with alternate
  1108  // implementations.
  1109  func validNPN(proto string) bool {
  1110  	switch proto {
  1111  	case "", "http/1.1", "http/1.0":
  1112  		return false
  1113  	}
  1114  	return true
  1115  }
  1116  
  1117  func (c *conn) setState(nc net.Conn, state ConnState) {
  1118  	if hook := c.server.ConnState; hook != nil {
  1119  		hook(nc, state)
  1120  	}
  1121  }
  1122  
  1123  // Serve a new connection.
  1124  func (c *conn) serve() {
  1125  	origConn := c.rwc // copy it before it's set nil on Close or Hijack
  1126  	defer func() {
  1127  		if err := recover(); err != nil {
  1128  			const size = 64 << 10
  1129  			buf := make([]byte, size)
  1130  			buf = buf[:runtime.Stack(buf, false)]
  1131  			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
  1132  		}
  1133  		if !c.hijacked() {
  1134  			c.close()
  1135  			c.setState(origConn, StateClosed)
  1136  		}
  1137  	}()
  1138  
  1139  	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
  1140  		if d := c.server.ReadTimeout; d != 0 {
  1141  			c.rwc.SetReadDeadline(time.Now().Add(d))
  1142  		}
  1143  		if d := c.server.WriteTimeout; d != 0 {
  1144  			c.rwc.SetWriteDeadline(time.Now().Add(d))
  1145  		}
  1146  		if err := tlsConn.Handshake(); err != nil {
  1147  			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
  1148  			return
  1149  		}
  1150  		c.tlsState = new(tls.ConnectionState)
  1151  		*c.tlsState = tlsConn.ConnectionState()
  1152  		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
  1153  			if fn := c.server.TLSNextProto[proto]; fn != nil {
  1154  				h := initNPNRequest{tlsConn, serverHandler{c.server}}
  1155  				fn(c.server, tlsConn, h)
  1156  			}
  1157  			return
  1158  		}
  1159  	}
  1160  
  1161  	for {
  1162  		w, err := c.readRequest()
  1163  		if c.lr.N != c.server.initialLimitedReaderSize() {
  1164  			// If we read any bytes off the wire, we're active.
  1165  			c.setState(c.rwc, StateActive)
  1166  		}
  1167  		if err != nil {
  1168  			if err == errTooLarge {
  1169  				// Their HTTP client may or may not be
  1170  				// able to read this if we're
  1171  				// responding to them and hanging up
  1172  				// while they're still writing their
  1173  				// request.  Undefined behavior.
  1174  				io.WriteString(c.rwc, "HTTP/1.1 413 Request Entity Too Large\r\n\r\n")
  1175  				c.closeWriteAndWait()
  1176  				break
  1177  			} else if err == io.EOF {
  1178  				break // Don't reply
  1179  			} else if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
  1180  				break // Don't reply
  1181  			}
  1182  			io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\n\r\n")
  1183  			break
  1184  		}
  1185  
  1186  		// Expect 100 Continue support
  1187  		req := w.req
  1188  		if req.expectsContinue() {
  1189  			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
  1190  				// Wrap the Body reader with one that replies on the connection
  1191  				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
  1192  			}
  1193  			req.Header.Del("Expect")
  1194  		} else if req.Header.get("Expect") != "" {
  1195  			w.sendExpectationFailed()
  1196  			break
  1197  		}
  1198  
  1199  		// HTTP cannot have multiple simultaneous active requests.[*]
  1200  		// Until the server replies to this request, it can't read another,
  1201  		// so we might as well run the handler in this goroutine.
  1202  		// [*] Not strictly true: HTTP pipelining.  We could let them all process
  1203  		// in parallel even if their responses need to be serialized.
  1204  		serverHandler{c.server}.ServeHTTP(w, w.req)
  1205  		if c.hijacked() {
  1206  			return
  1207  		}
  1208  		w.finishRequest()
  1209  		if w.closeAfterReply {
  1210  			if w.requestBodyLimitHit {
  1211  				c.closeWriteAndWait()
  1212  			}
  1213  			break
  1214  		}
  1215  		c.setState(c.rwc, StateIdle)
  1216  	}
  1217  }
  1218  
  1219  func (w *response) sendExpectationFailed() {
  1220  	// TODO(bradfitz): let ServeHTTP handlers handle
  1221  	// requests with non-standard expectation[s]? Seems
  1222  	// theoretical at best, and doesn't fit into the
  1223  	// current ServeHTTP model anyway.  We'd need to
  1224  	// make the ResponseWriter an optional
  1225  	// "ExpectReplier" interface or something.
  1226  	//
  1227  	// For now we'll just obey RFC 2616 14.20 which says
  1228  	// "If a server receives a request containing an
  1229  	// Expect field that includes an expectation-
  1230  	// extension that it does not support, it MUST
  1231  	// respond with a 417 (Expectation Failed) status."
  1232  	w.Header().Set("Connection", "close")
  1233  	w.WriteHeader(StatusExpectationFailed)
  1234  	w.finishRequest()
  1235  }
  1236  
  1237  // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
  1238  // and a Hijacker.
  1239  func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
  1240  	if w.wroteHeader {
  1241  		w.cw.flush()
  1242  	}
  1243  	// Release the bufioWriter that writes to the chunk writer, it is not
  1244  	// used after a connection has been hijacked.
  1245  	rwc, buf, err = w.conn.hijack()
  1246  	if err == nil {
  1247  		putBufioWriter(w.w)
  1248  		w.w = nil
  1249  	}
  1250  	return rwc, buf, err
  1251  }
  1252  
  1253  func (w *response) CloseNotify() <-chan bool {
  1254  	return w.conn.closeNotify()
  1255  }
  1256  
  1257  // The HandlerFunc type is an adapter to allow the use of
  1258  // ordinary functions as HTTP handlers.  If f is a function
  1259  // with the appropriate signature, HandlerFunc(f) is a
  1260  // Handler object that calls f.
  1261  type HandlerFunc func(ResponseWriter, *Request)
  1262  
  1263  // ServeHTTP calls f(w, r).
  1264  func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
  1265  	f(w, r)
  1266  }
  1267  
  1268  // Helper handlers
  1269  
  1270  // Error replies to the request with the specified error message and HTTP code.
  1271  // The error message should be plain text.
  1272  func Error(w ResponseWriter, error string, code int) {
  1273  	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
  1274  	w.WriteHeader(code)
  1275  	fmt.Fprintln(w, error)
  1276  }
  1277  
  1278  // NotFound replies to the request with an HTTP 404 not found error.
  1279  func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
  1280  
  1281  // NotFoundHandler returns a simple request handler
  1282  // that replies to each request with a ``404 page not found'' reply.
  1283  func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
  1284  
  1285  // StripPrefix returns a handler that serves HTTP requests
  1286  // by removing the given prefix from the request URL's Path
  1287  // and invoking the handler h. StripPrefix handles a
  1288  // request for a path that doesn't begin with prefix by
  1289  // replying with an HTTP 404 not found error.
  1290  func StripPrefix(prefix string, h Handler) Handler {
  1291  	if prefix == "" {
  1292  		return h
  1293  	}
  1294  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  1295  		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
  1296  			r.URL.Path = p
  1297  			h.ServeHTTP(w, r)
  1298  		} else {
  1299  			NotFound(w, r)
  1300  		}
  1301  	})
  1302  }
  1303  
  1304  // Redirect replies to the request with a redirect to url,
  1305  // which may be a path relative to the request path.
  1306  func Redirect(w ResponseWriter, r *Request, urlStr string, code int) {
  1307  	if u, err := url.Parse(urlStr); err == nil {
  1308  		// If url was relative, make absolute by
  1309  		// combining with request path.
  1310  		// The browser would probably do this for us,
  1311  		// but doing it ourselves is more reliable.
  1312  
  1313  		// NOTE(rsc): RFC 2616 says that the Location
  1314  		// line must be an absolute URI, like
  1315  		// "http://www.google.com/redirect/",
  1316  		// not a path like "/redirect/".
  1317  		// Unfortunately, we don't know what to
  1318  		// put in the host name section to get the
  1319  		// client to connect to us again, so we can't
  1320  		// know the right absolute URI to send back.
  1321  		// Because of this problem, no one pays attention
  1322  		// to the RFC; they all send back just a new path.
  1323  		// So do we.
  1324  		oldpath := r.URL.Path
  1325  		if oldpath == "" { // should not happen, but avoid a crash if it does
  1326  			oldpath = "/"
  1327  		}
  1328  		if u.Scheme == "" {
  1329  			// no leading http://server
  1330  			if urlStr == "" || urlStr[0] != '/' {
  1331  				// make relative path absolute
  1332  				olddir, _ := path.Split(oldpath)
  1333  				urlStr = olddir + urlStr
  1334  			}
  1335  
  1336  			var query string
  1337  			if i := strings.Index(urlStr, "?"); i != -1 {
  1338  				urlStr, query = urlStr[:i], urlStr[i:]
  1339  			}
  1340  
  1341  			// clean up but preserve trailing slash
  1342  			trailing := strings.HasSuffix(urlStr, "/")
  1343  			urlStr = path.Clean(urlStr)
  1344  			if trailing && !strings.HasSuffix(urlStr, "/") {
  1345  				urlStr += "/"
  1346  			}
  1347  			urlStr += query
  1348  		}
  1349  	}
  1350  
  1351  	w.Header().Set("Location", urlStr)
  1352  	w.WriteHeader(code)
  1353  
  1354  	// RFC2616 recommends that a short note "SHOULD" be included in the
  1355  	// response because older user agents may not understand 301/307.
  1356  	// Shouldn't send the response for POST or HEAD; that leaves GET.
  1357  	if r.Method == "GET" {
  1358  		note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n"
  1359  		fmt.Fprintln(w, note)
  1360  	}
  1361  }
  1362  
  1363  var htmlReplacer = strings.NewReplacer(
  1364  	"&", "&amp;",
  1365  	"<", "&lt;",
  1366  	">", "&gt;",
  1367  	// "&#34;" is shorter than "&quot;".
  1368  	`"`, "&#34;",
  1369  	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
  1370  	"'", "&#39;",
  1371  )
  1372  
  1373  func htmlEscape(s string) string {
  1374  	return htmlReplacer.Replace(s)
  1375  }
  1376  
  1377  // Redirect to a fixed URL
  1378  type redirectHandler struct {
  1379  	url  string
  1380  	code int
  1381  }
  1382  
  1383  func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1384  	Redirect(w, r, rh.url, rh.code)
  1385  }
  1386  
  1387  // RedirectHandler returns a request handler that redirects
  1388  // each request it receives to the given url using the given
  1389  // status code.
  1390  func RedirectHandler(url string, code int) Handler {
  1391  	return &redirectHandler{url, code}
  1392  }
  1393  
  1394  // ServeMux is an HTTP request multiplexer.
  1395  // It matches the URL of each incoming request against a list of registered
  1396  // patterns and calls the handler for the pattern that
  1397  // most closely matches the URL.
  1398  //
  1399  // Patterns name fixed, rooted paths, like "/favicon.ico",
  1400  // or rooted subtrees, like "/images/" (note the trailing slash).
  1401  // Longer patterns take precedence over shorter ones, so that
  1402  // if there are handlers registered for both "/images/"
  1403  // and "/images/thumbnails/", the latter handler will be
  1404  // called for paths beginning "/images/thumbnails/" and the
  1405  // former will receive requests for any other paths in the
  1406  // "/images/" subtree.
  1407  //
  1408  // Note that since a pattern ending in a slash names a rooted subtree,
  1409  // the pattern "/" matches all paths not matched by other registered
  1410  // patterns, not just the URL with Path == "/".
  1411  //
  1412  // Patterns may optionally begin with a host name, restricting matches to
  1413  // URLs on that host only.  Host-specific patterns take precedence over
  1414  // general patterns, so that a handler might register for the two patterns
  1415  // "/codesearch" and "codesearch.google.com/" without also taking over
  1416  // requests for "http://www.google.com/".
  1417  //
  1418  // ServeMux also takes care of sanitizing the URL request path,
  1419  // redirecting any request containing . or .. elements to an
  1420  // equivalent .- and ..-free URL.
  1421  type ServeMux struct {
  1422  	mu    sync.RWMutex
  1423  	m     map[string]muxEntry
  1424  	hosts bool // whether any patterns contain hostnames
  1425  }
  1426  
  1427  type muxEntry struct {
  1428  	explicit bool
  1429  	h        Handler
  1430  	pattern  string
  1431  }
  1432  
  1433  // NewServeMux allocates and returns a new ServeMux.
  1434  func NewServeMux() *ServeMux { return &ServeMux{m: make(map[string]muxEntry)} }
  1435  
  1436  // DefaultServeMux is the default ServeMux used by Serve.
  1437  var DefaultServeMux = NewServeMux()
  1438  
  1439  // Does path match pattern?
  1440  func pathMatch(pattern, path string) bool {
  1441  	if len(pattern) == 0 {
  1442  		// should not happen
  1443  		return false
  1444  	}
  1445  	n := len(pattern)
  1446  	if pattern[n-1] != '/' {
  1447  		return pattern == path
  1448  	}
  1449  	return len(path) >= n && path[0:n] == pattern
  1450  }
  1451  
  1452  // Return the canonical path for p, eliminating . and .. elements.
  1453  func cleanPath(p string) string {
  1454  	if p == "" {
  1455  		return "/"
  1456  	}
  1457  	if p[0] != '/' {
  1458  		p = "/" + p
  1459  	}
  1460  	np := path.Clean(p)
  1461  	// path.Clean removes trailing slash except for root;
  1462  	// put the trailing slash back if necessary.
  1463  	if p[len(p)-1] == '/' && np != "/" {
  1464  		np += "/"
  1465  	}
  1466  	return np
  1467  }
  1468  
  1469  // Find a handler on a handler map given a path string
  1470  // Most-specific (longest) pattern wins
  1471  func (mux *ServeMux) match(path string) (h Handler, pattern string) {
  1472  	var n = 0
  1473  	for k, v := range mux.m {
  1474  		if !pathMatch(k, path) {
  1475  			continue
  1476  		}
  1477  		if h == nil || len(k) > n {
  1478  			n = len(k)
  1479  			h = v.h
  1480  			pattern = v.pattern
  1481  		}
  1482  	}
  1483  	return
  1484  }
  1485  
  1486  // Handler returns the handler to use for the given request,
  1487  // consulting r.Method, r.Host, and r.URL.Path. It always returns
  1488  // a non-nil handler. If the path is not in its canonical form, the
  1489  // handler will be an internally-generated handler that redirects
  1490  // to the canonical path.
  1491  //
  1492  // Handler also returns the registered pattern that matches the
  1493  // request or, in the case of internally-generated redirects,
  1494  // the pattern that will match after following the redirect.
  1495  //
  1496  // If there is no registered handler that applies to the request,
  1497  // Handler returns a ``page not found'' handler and an empty pattern.
  1498  func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
  1499  	if r.Method != "CONNECT" {
  1500  		if p := cleanPath(r.URL.Path); p != r.URL.Path {
  1501  			_, pattern = mux.handler(r.Host, p)
  1502  			url := *r.URL
  1503  			url.Path = p
  1504  			return RedirectHandler(url.String(), StatusMovedPermanently), pattern
  1505  		}
  1506  	}
  1507  
  1508  	return mux.handler(r.Host, r.URL.Path)
  1509  }
  1510  
  1511  // handler is the main implementation of Handler.
  1512  // The path is known to be in canonical form, except for CONNECT methods.
  1513  func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
  1514  	mux.mu.RLock()
  1515  	defer mux.mu.RUnlock()
  1516  
  1517  	// Host-specific pattern takes precedence over generic ones
  1518  	if mux.hosts {
  1519  		h, pattern = mux.match(host + path)
  1520  	}
  1521  	if h == nil {
  1522  		h, pattern = mux.match(path)
  1523  	}
  1524  	if h == nil {
  1525  		h, pattern = NotFoundHandler(), ""
  1526  	}
  1527  	return
  1528  }
  1529  
  1530  // ServeHTTP dispatches the request to the handler whose
  1531  // pattern most closely matches the request URL.
  1532  func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
  1533  	if r.RequestURI == "*" {
  1534  		if r.ProtoAtLeast(1, 1) {
  1535  			w.Header().Set("Connection", "close")
  1536  		}
  1537  		w.WriteHeader(StatusBadRequest)
  1538  		return
  1539  	}
  1540  	h, _ := mux.Handler(r)
  1541  	h.ServeHTTP(w, r)
  1542  }
  1543  
  1544  // Handle registers the handler for the given pattern.
  1545  // If a handler already exists for pattern, Handle panics.
  1546  func (mux *ServeMux) Handle(pattern string, handler Handler) {
  1547  	mux.mu.Lock()
  1548  	defer mux.mu.Unlock()
  1549  
  1550  	if pattern == "" {
  1551  		panic("http: invalid pattern " + pattern)
  1552  	}
  1553  	if handler == nil {
  1554  		panic("http: nil handler")
  1555  	}
  1556  	if mux.m[pattern].explicit {
  1557  		panic("http: multiple registrations for " + pattern)
  1558  	}
  1559  
  1560  	mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
  1561  
  1562  	if pattern[0] != '/' {
  1563  		mux.hosts = true
  1564  	}
  1565  
  1566  	// Helpful behavior:
  1567  	// If pattern is /tree/, insert an implicit permanent redirect for /tree.
  1568  	// It can be overridden by an explicit registration.
  1569  	n := len(pattern)
  1570  	if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
  1571  		// If pattern contains a host name, strip it and use remaining
  1572  		// path for redirect.
  1573  		path := pattern
  1574  		if pattern[0] != '/' {
  1575  			// In pattern, at least the last character is a '/', so
  1576  			// strings.Index can't be -1.
  1577  			path = pattern[strings.Index(pattern, "/"):]
  1578  		}
  1579  		mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(path, StatusMovedPermanently), pattern: pattern}
  1580  	}
  1581  }
  1582  
  1583  // HandleFunc registers the handler function for the given pattern.
  1584  func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1585  	mux.Handle(pattern, HandlerFunc(handler))
  1586  }
  1587  
  1588  // Handle registers the handler for the given pattern
  1589  // in the DefaultServeMux.
  1590  // The documentation for ServeMux explains how patterns are matched.
  1591  func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
  1592  
  1593  // HandleFunc registers the handler function for the given pattern
  1594  // in the DefaultServeMux.
  1595  // The documentation for ServeMux explains how patterns are matched.
  1596  func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1597  	DefaultServeMux.HandleFunc(pattern, handler)
  1598  }
  1599  
  1600  // Serve accepts incoming HTTP connections on the listener l,
  1601  // creating a new service goroutine for each.  The service goroutines
  1602  // read requests and then call handler to reply to them.
  1603  // Handler is typically nil, in which case the DefaultServeMux is used.
  1604  func Serve(l net.Listener, handler Handler) error {
  1605  	srv := &Server{Handler: handler}
  1606  	return srv.Serve(l)
  1607  }
  1608  
  1609  // A Server defines parameters for running an HTTP server.
  1610  // The zero value for Server is a valid configuration.
  1611  type Server struct {
  1612  	Addr           string        // TCP address to listen on, ":http" if empty
  1613  	Handler        Handler       // handler to invoke, http.DefaultServeMux if nil
  1614  	ReadTimeout    time.Duration // maximum duration before timing out read of the request
  1615  	WriteTimeout   time.Duration // maximum duration before timing out write of the response
  1616  	MaxHeaderBytes int           // maximum size of request headers, DefaultMaxHeaderBytes if 0
  1617  	TLSConfig      *tls.Config   // optional TLS config, used by ListenAndServeTLS
  1618  
  1619  	// TLSNextProto optionally specifies a function to take over
  1620  	// ownership of the provided TLS connection when an NPN
  1621  	// protocol upgrade has occurred.  The map key is the protocol
  1622  	// name negotiated. The Handler argument should be used to
  1623  	// handle HTTP requests and will initialize the Request's TLS
  1624  	// and RemoteAddr if not already set.  The connection is
  1625  	// automatically closed when the function returns.
  1626  	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
  1627  
  1628  	// ConnState specifies an optional callback function that is
  1629  	// called when a client connection changes state. See the
  1630  	// ConnState type and associated constants for details.
  1631  	ConnState func(net.Conn, ConnState)
  1632  
  1633  	// ErrorLog specifies an optional logger for errors accepting
  1634  	// connections and unexpected behavior from handlers.
  1635  	// If nil, logging goes to os.Stderr via the log package's
  1636  	// standard logger.
  1637  	ErrorLog *log.Logger
  1638  
  1639  	disableKeepAlives int32 // accessed atomically.
  1640  }
  1641  
  1642  // A ConnState represents the state of a client connection to a server.
  1643  // It's used by the optional Server.ConnState hook.
  1644  type ConnState int
  1645  
  1646  const (
  1647  	// StateNew represents a new connection that is expected to
  1648  	// send a request immediately. Connections begin at this
  1649  	// state and then transition to either StateActive or
  1650  	// StateClosed.
  1651  	StateNew ConnState = iota
  1652  
  1653  	// StateActive represents a connection that has read 1 or more
  1654  	// bytes of a request. The Server.ConnState hook for
  1655  	// StateActive fires before the request has entered a handler
  1656  	// and doesn't fire again until the request has been
  1657  	// handled. After the request is handled, the state
  1658  	// transitions to StateClosed, StateHijacked, or StateIdle.
  1659  	StateActive
  1660  
  1661  	// StateIdle represents a connection that has finished
  1662  	// handling a request and is in the keep-alive state, waiting
  1663  	// for a new request. Connections transition from StateIdle
  1664  	// to either StateActive or StateClosed.
  1665  	StateIdle
  1666  
  1667  	// StateHijacked represents a hijacked connection.
  1668  	// This is a terminal state. It does not transition to StateClosed.
  1669  	StateHijacked
  1670  
  1671  	// StateClosed represents a closed connection.
  1672  	// This is a terminal state. Hijacked connections do not
  1673  	// transition to StateClosed.
  1674  	StateClosed
  1675  )
  1676  
  1677  var stateName = map[ConnState]string{
  1678  	StateNew:      "new",
  1679  	StateActive:   "active",
  1680  	StateIdle:     "idle",
  1681  	StateHijacked: "hijacked",
  1682  	StateClosed:   "closed",
  1683  }
  1684  
  1685  func (c ConnState) String() string {
  1686  	return stateName[c]
  1687  }
  1688  
  1689  // serverHandler delegates to either the server's Handler or
  1690  // DefaultServeMux and also handles "OPTIONS *" requests.
  1691  type serverHandler struct {
  1692  	srv *Server
  1693  }
  1694  
  1695  func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
  1696  	handler := sh.srv.Handler
  1697  	if handler == nil {
  1698  		handler = DefaultServeMux
  1699  	}
  1700  	if req.RequestURI == "*" && req.Method == "OPTIONS" {
  1701  		handler = globalOptionsHandler{}
  1702  	}
  1703  	handler.ServeHTTP(rw, req)
  1704  }
  1705  
  1706  // ListenAndServe listens on the TCP network address srv.Addr and then
  1707  // calls Serve to handle requests on incoming connections.  If
  1708  // srv.Addr is blank, ":http" is used.
  1709  func (srv *Server) ListenAndServe() error {
  1710  	addr := srv.Addr
  1711  	if addr == "" {
  1712  		addr = ":http"
  1713  	}
  1714  	ln, err := net.Listen("tcp", addr)
  1715  	if err != nil {
  1716  		return err
  1717  	}
  1718  	return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
  1719  }
  1720  
  1721  // Serve accepts incoming connections on the Listener l, creating a
  1722  // new service goroutine for each.  The service goroutines read requests and
  1723  // then call srv.Handler to reply to them.
  1724  func (srv *Server) Serve(l net.Listener) error {
  1725  	defer l.Close()
  1726  	var tempDelay time.Duration // how long to sleep on accept failure
  1727  	for {
  1728  		rw, e := l.Accept()
  1729  		if e != nil {
  1730  			if ne, ok := e.(net.Error); ok && ne.Temporary() {
  1731  				if tempDelay == 0 {
  1732  					tempDelay = 5 * time.Millisecond
  1733  				} else {
  1734  					tempDelay *= 2
  1735  				}
  1736  				if max := 1 * time.Second; tempDelay > max {
  1737  					tempDelay = max
  1738  				}
  1739  				srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
  1740  				time.Sleep(tempDelay)
  1741  				continue
  1742  			}
  1743  			return e
  1744  		}
  1745  		tempDelay = 0
  1746  		c, err := srv.newConn(rw)
  1747  		if err != nil {
  1748  			continue
  1749  		}
  1750  		c.setState(c.rwc, StateNew) // before Serve can return
  1751  		go c.serve()
  1752  	}
  1753  }
  1754  
  1755  func (s *Server) doKeepAlives() bool {
  1756  	return atomic.LoadInt32(&s.disableKeepAlives) == 0
  1757  }
  1758  
  1759  // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
  1760  // By default, keep-alives are always enabled. Only very
  1761  // resource-constrained environments or servers in the process of
  1762  // shutting down should disable them.
  1763  func (s *Server) SetKeepAlivesEnabled(v bool) {
  1764  	if v {
  1765  		atomic.StoreInt32(&s.disableKeepAlives, 0)
  1766  	} else {
  1767  		atomic.StoreInt32(&s.disableKeepAlives, 1)
  1768  	}
  1769  }
  1770  
  1771  func (s *Server) logf(format string, args ...interface{}) {
  1772  	if s.ErrorLog != nil {
  1773  		s.ErrorLog.Printf(format, args...)
  1774  	} else {
  1775  		log.Printf(format, args...)
  1776  	}
  1777  }
  1778  
  1779  // ListenAndServe listens on the TCP network address addr
  1780  // and then calls Serve with handler to handle requests
  1781  // on incoming connections.  Handler is typically nil,
  1782  // in which case the DefaultServeMux is used.
  1783  //
  1784  // A trivial example server is:
  1785  //
  1786  //	package main
  1787  //
  1788  //	import (
  1789  //		"io"
  1790  //		"net/http"
  1791  //		"log"
  1792  //	)
  1793  //
  1794  //	// hello world, the web server
  1795  //	func HelloServer(w http.ResponseWriter, req *http.Request) {
  1796  //		io.WriteString(w, "hello, world!\n")
  1797  //	}
  1798  //
  1799  //	func main() {
  1800  //		http.HandleFunc("/hello", HelloServer)
  1801  //		err := http.ListenAndServe(":12345", nil)
  1802  //		if err != nil {
  1803  //			log.Fatal("ListenAndServe: ", err)
  1804  //		}
  1805  //	}
  1806  func ListenAndServe(addr string, handler Handler) error {
  1807  	server := &Server{Addr: addr, Handler: handler}
  1808  	return server.ListenAndServe()
  1809  }
  1810  
  1811  // ListenAndServeTLS acts identically to ListenAndServe, except that it
  1812  // expects HTTPS connections. Additionally, files containing a certificate and
  1813  // matching private key for the server must be provided. If the certificate
  1814  // is signed by a certificate authority, the certFile should be the concatenation
  1815  // of the server's certificate followed by the CA's certificate.
  1816  //
  1817  // A trivial example server is:
  1818  //
  1819  //	import (
  1820  //		"log"
  1821  //		"net/http"
  1822  //	)
  1823  //
  1824  //	func handler(w http.ResponseWriter, req *http.Request) {
  1825  //		w.Header().Set("Content-Type", "text/plain")
  1826  //		w.Write([]byte("This is an example server.\n"))
  1827  //	}
  1828  //
  1829  //	func main() {
  1830  //		http.HandleFunc("/", handler)
  1831  //		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
  1832  //		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
  1833  //		if err != nil {
  1834  //			log.Fatal(err)
  1835  //		}
  1836  //	}
  1837  //
  1838  // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
  1839  func ListenAndServeTLS(addr string, certFile string, keyFile string, handler Handler) error {
  1840  	server := &Server{Addr: addr, Handler: handler}
  1841  	return server.ListenAndServeTLS(certFile, keyFile)
  1842  }
  1843  
  1844  // ListenAndServeTLS listens on the TCP network address srv.Addr and
  1845  // then calls Serve to handle requests on incoming TLS connections.
  1846  //
  1847  // Filenames containing a certificate and matching private key for
  1848  // the server must be provided. If the certificate is signed by a
  1849  // certificate authority, the certFile should be the concatenation
  1850  // of the server's certificate followed by the CA's certificate.
  1851  //
  1852  // If srv.Addr is blank, ":https" is used.
  1853  func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
  1854  	addr := srv.Addr
  1855  	if addr == "" {
  1856  		addr = ":https"
  1857  	}
  1858  	config := &tls.Config{}
  1859  	if srv.TLSConfig != nil {
  1860  		*config = *srv.TLSConfig
  1861  	}
  1862  	if config.NextProtos == nil {
  1863  		config.NextProtos = []string{"http/1.1"}
  1864  	}
  1865  
  1866  	var err error
  1867  	config.Certificates = make([]tls.Certificate, 1)
  1868  	config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
  1869  	if err != nil {
  1870  		return err
  1871  	}
  1872  
  1873  	ln, err := net.Listen("tcp", addr)
  1874  	if err != nil {
  1875  		return err
  1876  	}
  1877  
  1878  	tlsListener := tls.NewListener(tcpKeepAliveListener{ln.(*net.TCPListener)}, config)
  1879  	return srv.Serve(tlsListener)
  1880  }
  1881  
  1882  // TimeoutHandler returns a Handler that runs h with the given time limit.
  1883  //
  1884  // The new Handler calls h.ServeHTTP to handle each request, but if a
  1885  // call runs for longer than its time limit, the handler responds with
  1886  // a 503 Service Unavailable error and the given message in its body.
  1887  // (If msg is empty, a suitable default message will be sent.)
  1888  // After such a timeout, writes by h to its ResponseWriter will return
  1889  // ErrHandlerTimeout.
  1890  func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
  1891  	f := func() <-chan time.Time {
  1892  		return time.After(dt)
  1893  	}
  1894  	return &timeoutHandler{h, f, msg}
  1895  }
  1896  
  1897  // ErrHandlerTimeout is returned on ResponseWriter Write calls
  1898  // in handlers which have timed out.
  1899  var ErrHandlerTimeout = errors.New("http: Handler timeout")
  1900  
  1901  type timeoutHandler struct {
  1902  	handler Handler
  1903  	timeout func() <-chan time.Time // returns channel producing a timeout
  1904  	body    string
  1905  }
  1906  
  1907  func (h *timeoutHandler) errorBody() string {
  1908  	if h.body != "" {
  1909  		return h.body
  1910  	}
  1911  	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
  1912  }
  1913  
  1914  func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1915  	done := make(chan bool, 1)
  1916  	tw := &timeoutWriter{w: w}
  1917  	go func() {
  1918  		h.handler.ServeHTTP(tw, r)
  1919  		done <- true
  1920  	}()
  1921  	select {
  1922  	case <-done:
  1923  		return
  1924  	case <-h.timeout():
  1925  		tw.mu.Lock()
  1926  		defer tw.mu.Unlock()
  1927  		if !tw.wroteHeader {
  1928  			tw.w.WriteHeader(StatusServiceUnavailable)
  1929  			tw.w.Write([]byte(h.errorBody()))
  1930  		}
  1931  		tw.timedOut = true
  1932  	}
  1933  }
  1934  
  1935  type timeoutWriter struct {
  1936  	w ResponseWriter
  1937  
  1938  	mu          sync.Mutex
  1939  	timedOut    bool
  1940  	wroteHeader bool
  1941  }
  1942  
  1943  func (tw *timeoutWriter) Header() Header {
  1944  	return tw.w.Header()
  1945  }
  1946  
  1947  func (tw *timeoutWriter) Write(p []byte) (int, error) {
  1948  	tw.mu.Lock()
  1949  	defer tw.mu.Unlock()
  1950  	tw.wroteHeader = true // implicitly at least
  1951  	if tw.timedOut {
  1952  		return 0, ErrHandlerTimeout
  1953  	}
  1954  	return tw.w.Write(p)
  1955  }
  1956  
  1957  func (tw *timeoutWriter) WriteHeader(code int) {
  1958  	tw.mu.Lock()
  1959  	defer tw.mu.Unlock()
  1960  	if tw.timedOut || tw.wroteHeader {
  1961  		return
  1962  	}
  1963  	tw.wroteHeader = true
  1964  	tw.w.WriteHeader(code)
  1965  }
  1966  
  1967  // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
  1968  // connections. It's used by ListenAndServe and ListenAndServeTLS so
  1969  // dead TCP connections (e.g. closing laptop mid-download) eventually
  1970  // go away.
  1971  type tcpKeepAliveListener struct {
  1972  	*net.TCPListener
  1973  }
  1974  
  1975  func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
  1976  	tc, err := ln.AcceptTCP()
  1977  	if err != nil {
  1978  		return
  1979  	}
  1980  	tc.SetKeepAlive(true)
  1981  	tc.SetKeepAlivePeriod(3 * time.Minute)
  1982  	return tc, nil
  1983  }
  1984  
  1985  // globalOptionsHandler responds to "OPTIONS *" requests.
  1986  type globalOptionsHandler struct{}
  1987  
  1988  func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1989  	w.Header().Set("Content-Length", "0")
  1990  	if r.ContentLength != 0 {
  1991  		// Read up to 4KB of OPTIONS body (as mentioned in the
  1992  		// spec as being reserved for future use), but anything
  1993  		// over that is considered a waste of server resources
  1994  		// (or an attack) and we abort and close the connection,
  1995  		// courtesy of MaxBytesReader's EOF behavior.
  1996  		mb := MaxBytesReader(w, r.Body, 4<<10)
  1997  		io.Copy(ioutil.Discard, mb)
  1998  	}
  1999  }
  2000  
  2001  type eofReaderWithWriteTo struct{}
  2002  
  2003  func (eofReaderWithWriteTo) WriteTo(io.Writer) (int64, error) { return 0, nil }
  2004  func (eofReaderWithWriteTo) Read([]byte) (int, error)         { return 0, io.EOF }
  2005  
  2006  // eofReader is a non-nil io.ReadCloser that always returns EOF.
  2007  // It has a WriteTo method so io.Copy won't need a buffer.
  2008  var eofReader = &struct {
  2009  	eofReaderWithWriteTo
  2010  	io.Closer
  2011  }{
  2012  	eofReaderWithWriteTo{},
  2013  	ioutil.NopCloser(nil),
  2014  }
  2015  
  2016  // Verify that an io.Copy from an eofReader won't require a buffer.
  2017  var _ io.WriterTo = eofReader
  2018  
  2019  // initNPNRequest is an HTTP handler that initializes certain
  2020  // uninitialized fields in its *Request. Such partially-initialized
  2021  // Requests come from NPN protocol handlers.
  2022  type initNPNRequest struct {
  2023  	c *tls.Conn
  2024  	h serverHandler
  2025  }
  2026  
  2027  func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
  2028  	if req.TLS == nil {
  2029  		req.TLS = &tls.ConnectionState{}
  2030  		*req.TLS = h.c.ConnectionState()
  2031  	}
  2032  	if req.Body == nil {
  2033  		req.Body = eofReader
  2034  	}
  2035  	if req.RemoteAddr == "" {
  2036  		req.RemoteAddr = h.c.RemoteAddr().String()
  2037  	}
  2038  	h.h.ServeHTTP(rw, req)
  2039  }
  2040  
  2041  // loggingConn is used for debugging.
  2042  type loggingConn struct {
  2043  	name string
  2044  	net.Conn
  2045  }
  2046  
  2047  var (
  2048  	uniqNameMu   sync.Mutex
  2049  	uniqNameNext = make(map[string]int)
  2050  )
  2051  
  2052  func newLoggingConn(baseName string, c net.Conn) net.Conn {
  2053  	uniqNameMu.Lock()
  2054  	defer uniqNameMu.Unlock()
  2055  	uniqNameNext[baseName]++
  2056  	return &loggingConn{
  2057  		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
  2058  		Conn: c,
  2059  	}
  2060  }
  2061  
  2062  func (c *loggingConn) Write(p []byte) (n int, err error) {
  2063  	log.Printf("%s.Write(%d) = ....", c.name, len(p))
  2064  	n, err = c.Conn.Write(p)
  2065  	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
  2066  	return
  2067  }
  2068  
  2069  func (c *loggingConn) Read(p []byte) (n int, err error) {
  2070  	log.Printf("%s.Read(%d) = ....", c.name, len(p))
  2071  	n, err = c.Conn.Read(p)
  2072  	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
  2073  	return
  2074  }
  2075  
  2076  func (c *loggingConn) Close() (err error) {
  2077  	log.Printf("%s.Close() = ...", c.name)
  2078  	err = c.Conn.Close()
  2079  	log.Printf("%s.Close() = %v", c.name, err)
  2080  	return
  2081  }
  2082  
  2083  // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
  2084  // It only contains one field (and a pointer field at that), so it
  2085  // fits in an interface value without an extra allocation.
  2086  type checkConnErrorWriter struct {
  2087  	c *conn
  2088  }
  2089  
  2090  func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
  2091  	n, err = w.c.w.Write(p) // c.w == c.rwc, except after a hijack, when rwc is nil.
  2092  	if err != nil && w.c.werr == nil {
  2093  		w.c.werr = err
  2094  	}
  2095  	return
  2096  }