github.com/tcnksm/go@v0.0.0-20141208075154-439b32936367/src/regexp/exec.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package regexp
     6  
     7  import (
     8  	"io"
     9  	"regexp/syntax"
    10  )
    11  
    12  // A queue is a 'sparse array' holding pending threads of execution.
    13  // See http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
    14  type queue struct {
    15  	sparse []uint32
    16  	dense  []entry
    17  }
    18  
    19  // A entry is an entry on a queue.
    20  // It holds both the instruction pc and the actual thread.
    21  // Some queue entries are just place holders so that the machine
    22  // knows it has considered that pc.  Such entries have t == nil.
    23  type entry struct {
    24  	pc uint32
    25  	t  *thread
    26  }
    27  
    28  // A thread is the state of a single path through the machine:
    29  // an instruction and a corresponding capture array.
    30  // See http://swtch.com/~rsc/regexp/regexp2.html
    31  type thread struct {
    32  	inst *syntax.Inst
    33  	cap  []int
    34  }
    35  
    36  // A machine holds all the state during an NFA simulation for p.
    37  type machine struct {
    38  	re       *Regexp      // corresponding Regexp
    39  	p        *syntax.Prog // compiled program
    40  	op       *onePassProg // compiled onepass program, or notOnePass
    41  	q0, q1   queue        // two queues for runq, nextq
    42  	pool     []*thread    // pool of available threads
    43  	matched  bool         // whether a match was found
    44  	matchcap []int        // capture information for the match
    45  
    46  	// cached inputs, to avoid allocation
    47  	inputBytes  inputBytes
    48  	inputString inputString
    49  	inputReader inputReader
    50  }
    51  
    52  func (m *machine) newInputBytes(b []byte) input {
    53  	m.inputBytes.str = b
    54  	return &m.inputBytes
    55  }
    56  
    57  func (m *machine) newInputString(s string) input {
    58  	m.inputString.str = s
    59  	return &m.inputString
    60  }
    61  
    62  func (m *machine) newInputReader(r io.RuneReader) input {
    63  	m.inputReader.r = r
    64  	m.inputReader.atEOT = false
    65  	m.inputReader.pos = 0
    66  	return &m.inputReader
    67  }
    68  
    69  // progMachine returns a new machine running the prog p.
    70  func progMachine(p *syntax.Prog, op *onePassProg) *machine {
    71  	m := &machine{p: p, op: op}
    72  	n := len(m.p.Inst)
    73  	m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
    74  	m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
    75  	ncap := p.NumCap
    76  	if ncap < 2 {
    77  		ncap = 2
    78  	}
    79  	m.matchcap = make([]int, ncap)
    80  	return m
    81  }
    82  
    83  func (m *machine) init(ncap int) {
    84  	for _, t := range m.pool {
    85  		t.cap = t.cap[:ncap]
    86  	}
    87  	m.matchcap = m.matchcap[:ncap]
    88  }
    89  
    90  // alloc allocates a new thread with the given instruction.
    91  // It uses the free pool if possible.
    92  func (m *machine) alloc(i *syntax.Inst) *thread {
    93  	var t *thread
    94  	if n := len(m.pool); n > 0 {
    95  		t = m.pool[n-1]
    96  		m.pool = m.pool[:n-1]
    97  	} else {
    98  		t = new(thread)
    99  		t.cap = make([]int, len(m.matchcap), cap(m.matchcap))
   100  	}
   101  	t.inst = i
   102  	return t
   103  }
   104  
   105  // free returns t to the free pool.
   106  func (m *machine) free(t *thread) {
   107  	m.inputBytes.str = nil
   108  	m.inputString.str = ""
   109  	m.inputReader.r = nil
   110  	m.pool = append(m.pool, t)
   111  }
   112  
   113  // match runs the machine over the input starting at pos.
   114  // It reports whether a match was found.
   115  // If so, m.matchcap holds the submatch information.
   116  func (m *machine) match(i input, pos int) bool {
   117  	startCond := m.re.cond
   118  	if startCond == ^syntax.EmptyOp(0) { // impossible
   119  		return false
   120  	}
   121  	m.matched = false
   122  	for i := range m.matchcap {
   123  		m.matchcap[i] = -1
   124  	}
   125  	runq, nextq := &m.q0, &m.q1
   126  	r, r1 := endOfText, endOfText
   127  	width, width1 := 0, 0
   128  	r, width = i.step(pos)
   129  	if r != endOfText {
   130  		r1, width1 = i.step(pos + width)
   131  	}
   132  	var flag syntax.EmptyOp
   133  	if pos == 0 {
   134  		flag = syntax.EmptyOpContext(-1, r)
   135  	} else {
   136  		flag = i.context(pos)
   137  	}
   138  	for {
   139  		if len(runq.dense) == 0 {
   140  			if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
   141  				// Anchored match, past beginning of text.
   142  				break
   143  			}
   144  			if m.matched {
   145  				// Have match; finished exploring alternatives.
   146  				break
   147  			}
   148  			if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
   149  				// Match requires literal prefix; fast search for it.
   150  				advance := i.index(m.re, pos)
   151  				if advance < 0 {
   152  					break
   153  				}
   154  				pos += advance
   155  				r, width = i.step(pos)
   156  				r1, width1 = i.step(pos + width)
   157  			}
   158  		}
   159  		if !m.matched {
   160  			if len(m.matchcap) > 0 {
   161  				m.matchcap[0] = pos
   162  			}
   163  			m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil)
   164  		}
   165  		flag = syntax.EmptyOpContext(r, r1)
   166  		m.step(runq, nextq, pos, pos+width, r, flag)
   167  		if width == 0 {
   168  			break
   169  		}
   170  		if len(m.matchcap) == 0 && m.matched {
   171  			// Found a match and not paying attention
   172  			// to where it is, so any match will do.
   173  			break
   174  		}
   175  		pos += width
   176  		r, width = r1, width1
   177  		if r != endOfText {
   178  			r1, width1 = i.step(pos + width)
   179  		}
   180  		runq, nextq = nextq, runq
   181  	}
   182  	m.clear(nextq)
   183  	return m.matched
   184  }
   185  
   186  // clear frees all threads on the thread queue.
   187  func (m *machine) clear(q *queue) {
   188  	for _, d := range q.dense {
   189  		if d.t != nil {
   190  			// m.free(d.t)
   191  			m.pool = append(m.pool, d.t)
   192  		}
   193  	}
   194  	q.dense = q.dense[:0]
   195  }
   196  
   197  // step executes one step of the machine, running each of the threads
   198  // on runq and appending new threads to nextq.
   199  // The step processes the rune c (which may be endOfText),
   200  // which starts at position pos and ends at nextPos.
   201  // nextCond gives the setting for the empty-width flags after c.
   202  func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) {
   203  	longest := m.re.longest
   204  	for j := 0; j < len(runq.dense); j++ {
   205  		d := &runq.dense[j]
   206  		t := d.t
   207  		if t == nil {
   208  			continue
   209  		}
   210  		if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
   211  			// m.free(t)
   212  			m.pool = append(m.pool, t)
   213  			continue
   214  		}
   215  		i := t.inst
   216  		add := false
   217  		switch i.Op {
   218  		default:
   219  			panic("bad inst")
   220  
   221  		case syntax.InstMatch:
   222  			if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {
   223  				t.cap[1] = pos
   224  				copy(m.matchcap, t.cap)
   225  			}
   226  			if !longest {
   227  				// First-match mode: cut off all lower-priority threads.
   228  				for _, d := range runq.dense[j+1:] {
   229  					if d.t != nil {
   230  						// m.free(d.t)
   231  						m.pool = append(m.pool, d.t)
   232  					}
   233  				}
   234  				runq.dense = runq.dense[:0]
   235  			}
   236  			m.matched = true
   237  
   238  		case syntax.InstRune:
   239  			add = i.MatchRune(c)
   240  		case syntax.InstRune1:
   241  			add = c == i.Rune[0]
   242  		case syntax.InstRuneAny:
   243  			add = true
   244  		case syntax.InstRuneAnyNotNL:
   245  			add = c != '\n'
   246  		}
   247  		if add {
   248  			t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
   249  		}
   250  		if t != nil {
   251  			// m.free(t)
   252  			m.pool = append(m.pool, t)
   253  		}
   254  	}
   255  	runq.dense = runq.dense[:0]
   256  }
   257  
   258  // add adds an entry to q for pc, unless the q already has such an entry.
   259  // It also recursively adds an entry for all instructions reachable from pc by following
   260  // empty-width conditions satisfied by cond.  pos gives the current position
   261  // in the input.
   262  func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp, t *thread) *thread {
   263  	if pc == 0 {
   264  		return t
   265  	}
   266  	if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {
   267  		return t
   268  	}
   269  
   270  	j := len(q.dense)
   271  	q.dense = q.dense[:j+1]
   272  	d := &q.dense[j]
   273  	d.t = nil
   274  	d.pc = pc
   275  	q.sparse[pc] = uint32(j)
   276  
   277  	i := &m.p.Inst[pc]
   278  	switch i.Op {
   279  	default:
   280  		panic("unhandled")
   281  	case syntax.InstFail:
   282  		// nothing
   283  	case syntax.InstAlt, syntax.InstAltMatch:
   284  		t = m.add(q, i.Out, pos, cap, cond, t)
   285  		t = m.add(q, i.Arg, pos, cap, cond, t)
   286  	case syntax.InstEmptyWidth:
   287  		if syntax.EmptyOp(i.Arg)&^cond == 0 {
   288  			t = m.add(q, i.Out, pos, cap, cond, t)
   289  		}
   290  	case syntax.InstNop:
   291  		t = m.add(q, i.Out, pos, cap, cond, t)
   292  	case syntax.InstCapture:
   293  		if int(i.Arg) < len(cap) {
   294  			opos := cap[i.Arg]
   295  			cap[i.Arg] = pos
   296  			m.add(q, i.Out, pos, cap, cond, nil)
   297  			cap[i.Arg] = opos
   298  		} else {
   299  			t = m.add(q, i.Out, pos, cap, cond, t)
   300  		}
   301  	case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
   302  		if t == nil {
   303  			t = m.alloc(i)
   304  		} else {
   305  			t.inst = i
   306  		}
   307  		if len(cap) > 0 && &t.cap[0] != &cap[0] {
   308  			copy(t.cap, cap)
   309  		}
   310  		d.t = t
   311  		t = nil
   312  	}
   313  	return t
   314  }
   315  
   316  // onepass runs the machine over the input starting at pos.
   317  // It reports whether a match was found.
   318  // If so, m.matchcap holds the submatch information.
   319  func (m *machine) onepass(i input, pos int) bool {
   320  	startCond := m.re.cond
   321  	if startCond == ^syntax.EmptyOp(0) { // impossible
   322  		return false
   323  	}
   324  	m.matched = false
   325  	for i := range m.matchcap {
   326  		m.matchcap[i] = -1
   327  	}
   328  	r, r1 := endOfText, endOfText
   329  	width, width1 := 0, 0
   330  	r, width = i.step(pos)
   331  	if r != endOfText {
   332  		r1, width1 = i.step(pos + width)
   333  	}
   334  	var flag syntax.EmptyOp
   335  	if pos == 0 {
   336  		flag = syntax.EmptyOpContext(-1, r)
   337  	} else {
   338  		flag = i.context(pos)
   339  	}
   340  	pc := m.op.Start
   341  	inst := m.op.Inst[pc]
   342  	// If there is a simple literal prefix, skip over it.
   343  	if pos == 0 && syntax.EmptyOp(inst.Arg)&^flag == 0 &&
   344  		len(m.re.prefix) > 0 && i.canCheckPrefix() {
   345  		// Match requires literal prefix; fast search for it.
   346  		if i.hasPrefix(m.re) {
   347  			pos += len(m.re.prefix)
   348  			r, width = i.step(pos)
   349  			r1, width1 = i.step(pos + width)
   350  			flag = i.context(pos)
   351  			pc = int(m.re.prefixEnd)
   352  		} else {
   353  			return m.matched
   354  		}
   355  	}
   356  	for {
   357  		inst = m.op.Inst[pc]
   358  		pc = int(inst.Out)
   359  		switch inst.Op {
   360  		default:
   361  			panic("bad inst")
   362  		case syntax.InstMatch:
   363  			m.matched = true
   364  			if len(m.matchcap) > 0 {
   365  				m.matchcap[0] = 0
   366  				m.matchcap[1] = pos
   367  			}
   368  			return m.matched
   369  		case syntax.InstRune:
   370  			if !inst.MatchRune(r) {
   371  				return m.matched
   372  			}
   373  		case syntax.InstRune1:
   374  			if r != inst.Rune[0] {
   375  				return m.matched
   376  			}
   377  		case syntax.InstRuneAny:
   378  			// Nothing
   379  		case syntax.InstRuneAnyNotNL:
   380  			if r == '\n' {
   381  				return m.matched
   382  			}
   383  		// peek at the input rune to see which branch of the Alt to take
   384  		case syntax.InstAlt, syntax.InstAltMatch:
   385  			pc = int(onePassNext(&inst, r))
   386  			continue
   387  		case syntax.InstFail:
   388  			return m.matched
   389  		case syntax.InstNop:
   390  			continue
   391  		case syntax.InstEmptyWidth:
   392  			if syntax.EmptyOp(inst.Arg)&^flag != 0 {
   393  				return m.matched
   394  			}
   395  			continue
   396  		case syntax.InstCapture:
   397  			if int(inst.Arg) < len(m.matchcap) {
   398  				m.matchcap[inst.Arg] = pos
   399  			}
   400  			continue
   401  		}
   402  		if width == 0 {
   403  			break
   404  		}
   405  		flag = syntax.EmptyOpContext(r, r1)
   406  		pos += width
   407  		r, width = r1, width1
   408  		if r != endOfText {
   409  			r1, width1 = i.step(pos + width)
   410  		}
   411  	}
   412  	return m.matched
   413  }
   414  
   415  // empty is a non-nil 0-element slice,
   416  // so doExecute can avoid an allocation
   417  // when 0 captures are requested from a successful match.
   418  var empty = make([]int, 0)
   419  
   420  // doExecute finds the leftmost match in the input and returns
   421  // the position of its subexpressions.
   422  func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int) []int {
   423  	m := re.get()
   424  	var i input
   425  	if r != nil {
   426  		i = m.newInputReader(r)
   427  	} else if b != nil {
   428  		i = m.newInputBytes(b)
   429  	} else {
   430  		i = m.newInputString(s)
   431  	}
   432  	if m.op != notOnePass {
   433  		if !m.onepass(i, pos) {
   434  			re.put(m)
   435  			return nil
   436  		}
   437  	} else {
   438  		m.init(ncap)
   439  		if !m.match(i, pos) {
   440  			re.put(m)
   441  			return nil
   442  		}
   443  	}
   444  	if ncap == 0 {
   445  		re.put(m)
   446  		return empty // empty but not nil
   447  	}
   448  	cap := make([]int, len(m.matchcap))
   449  	copy(cap, m.matchcap)
   450  	re.put(m)
   451  	return cap
   452  }