github.com/tcnksm/go@v0.0.0-20141208075154-439b32936367/src/regexp/regexp.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package regexp implements regular expression search.
     6  //
     7  // The syntax of the regular expressions accepted is the same
     8  // general syntax used by Perl, Python, and other languages.
     9  // More precisely, it is the syntax accepted by RE2 and described at
    10  // http://code.google.com/p/re2/wiki/Syntax, except for \C.
    11  // For an overview of the syntax, run
    12  //   godoc regexp/syntax
    13  //
    14  // The regexp implementation provided by this package is
    15  // guaranteed to run in time linear in the size of the input.
    16  // (This is a property not guaranteed by most open source
    17  // implementations of regular expressions.) For more information
    18  // about this property, see
    19  //	http://swtch.com/~rsc/regexp/regexp1.html
    20  // or any book about automata theory.
    21  //
    22  // All characters are UTF-8-encoded code points.
    23  //
    24  // There are 16 methods of Regexp that match a regular expression and identify
    25  // the matched text.  Their names are matched by this regular expression:
    26  //
    27  //	Find(All)?(String)?(Submatch)?(Index)?
    28  //
    29  // If 'All' is present, the routine matches successive non-overlapping
    30  // matches of the entire expression.  Empty matches abutting a preceding
    31  // match are ignored.  The return value is a slice containing the successive
    32  // return values of the corresponding non-'All' routine.  These routines take
    33  // an extra integer argument, n; if n >= 0, the function returns at most n
    34  // matches/submatches.
    35  //
    36  // If 'String' is present, the argument is a string; otherwise it is a slice
    37  // of bytes; return values are adjusted as appropriate.
    38  //
    39  // If 'Submatch' is present, the return value is a slice identifying the
    40  // successive submatches of the expression. Submatches are matches of
    41  // parenthesized subexpressions (also known as capturing groups) within the
    42  // regular expression, numbered from left to right in order of opening
    43  // parenthesis. Submatch 0 is the match of the entire expression, submatch 1
    44  // the match of the first parenthesized subexpression, and so on.
    45  //
    46  // If 'Index' is present, matches and submatches are identified by byte index
    47  // pairs within the input string: result[2*n:2*n+1] identifies the indexes of
    48  // the nth submatch.  The pair for n==0 identifies the match of the entire
    49  // expression.  If 'Index' is not present, the match is identified by the
    50  // text of the match/submatch.  If an index is negative, it means that
    51  // subexpression did not match any string in the input.
    52  //
    53  // There is also a subset of the methods that can be applied to text read
    54  // from a RuneReader:
    55  //
    56  //	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
    57  //
    58  // This set may grow.  Note that regular expression matches may need to
    59  // examine text beyond the text returned by a match, so the methods that
    60  // match text from a RuneReader may read arbitrarily far into the input
    61  // before returning.
    62  //
    63  // (There are a few other methods that do not match this pattern.)
    64  //
    65  package regexp
    66  
    67  import (
    68  	"bytes"
    69  	"io"
    70  	"regexp/syntax"
    71  	"strconv"
    72  	"strings"
    73  	"sync"
    74  	"unicode"
    75  	"unicode/utf8"
    76  )
    77  
    78  var debug = false
    79  
    80  // Regexp is the representation of a compiled regular expression.
    81  // A Regexp is safe for concurrent use by multiple goroutines.
    82  type Regexp struct {
    83  	// read-only after Compile
    84  	expr           string         // as passed to Compile
    85  	prog           *syntax.Prog   // compiled program
    86  	onepass        *onePassProg   // onpass program or nil
    87  	prefix         string         // required prefix in unanchored matches
    88  	prefixBytes    []byte         // prefix, as a []byte
    89  	prefixComplete bool           // prefix is the entire regexp
    90  	prefixRune     rune           // first rune in prefix
    91  	prefixEnd      uint32         // pc for last rune in prefix
    92  	cond           syntax.EmptyOp // empty-width conditions required at start of match
    93  	numSubexp      int
    94  	subexpNames    []string
    95  	longest        bool
    96  
    97  	// cache of machines for running regexp
    98  	mu      sync.Mutex
    99  	machine []*machine
   100  }
   101  
   102  // String returns the source text used to compile the regular expression.
   103  func (re *Regexp) String() string {
   104  	return re.expr
   105  }
   106  
   107  // Compile parses a regular expression and returns, if successful,
   108  // a Regexp object that can be used to match against text.
   109  //
   110  // When matching against text, the regexp returns a match that
   111  // begins as early as possible in the input (leftmost), and among those
   112  // it chooses the one that a backtracking search would have found first.
   113  // This so-called leftmost-first matching is the same semantics
   114  // that Perl, Python, and other implementations use, although this
   115  // package implements it without the expense of backtracking.
   116  // For POSIX leftmost-longest matching, see CompilePOSIX.
   117  func Compile(expr string) (*Regexp, error) {
   118  	return compile(expr, syntax.Perl, false)
   119  }
   120  
   121  // CompilePOSIX is like Compile but restricts the regular expression
   122  // to POSIX ERE (egrep) syntax and changes the match semantics to
   123  // leftmost-longest.
   124  //
   125  // That is, when matching against text, the regexp returns a match that
   126  // begins as early as possible in the input (leftmost), and among those
   127  // it chooses a match that is as long as possible.
   128  // This so-called leftmost-longest matching is the same semantics
   129  // that early regular expression implementations used and that POSIX
   130  // specifies.
   131  //
   132  // However, there can be multiple leftmost-longest matches, with different
   133  // submatch choices, and here this package diverges from POSIX.
   134  // Among the possible leftmost-longest matches, this package chooses
   135  // the one that a backtracking search would have found first, while POSIX
   136  // specifies that the match be chosen to maximize the length of the first
   137  // subexpression, then the second, and so on from left to right.
   138  // The POSIX rule is computationally prohibitive and not even well-defined.
   139  // See http://swtch.com/~rsc/regexp/regexp2.html#posix for details.
   140  func CompilePOSIX(expr string) (*Regexp, error) {
   141  	return compile(expr, syntax.POSIX, true)
   142  }
   143  
   144  // Longest makes future searches prefer the leftmost-longest match.
   145  // That is, when matching against text, the regexp returns a match that
   146  // begins as early as possible in the input (leftmost), and among those
   147  // it chooses a match that is as long as possible.
   148  func (re *Regexp) Longest() {
   149  	re.longest = true
   150  }
   151  
   152  func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
   153  	re, err := syntax.Parse(expr, mode)
   154  	if err != nil {
   155  		return nil, err
   156  	}
   157  	maxCap := re.MaxCap()
   158  	capNames := re.CapNames()
   159  
   160  	re = re.Simplify()
   161  	prog, err := syntax.Compile(re)
   162  	if err != nil {
   163  		return nil, err
   164  	}
   165  	regexp := &Regexp{
   166  		expr:        expr,
   167  		prog:        prog,
   168  		onepass:     compileOnePass(prog),
   169  		numSubexp:   maxCap,
   170  		subexpNames: capNames,
   171  		cond:        prog.StartCond(),
   172  		longest:     longest,
   173  	}
   174  	if regexp.onepass == notOnePass {
   175  		regexp.prefix, regexp.prefixComplete = prog.Prefix()
   176  	} else {
   177  		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
   178  	}
   179  	if regexp.prefix != "" {
   180  		// TODO(rsc): Remove this allocation by adding
   181  		// IndexString to package bytes.
   182  		regexp.prefixBytes = []byte(regexp.prefix)
   183  		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
   184  	}
   185  	return regexp, nil
   186  }
   187  
   188  // get returns a machine to use for matching re.
   189  // It uses the re's machine cache if possible, to avoid
   190  // unnecessary allocation.
   191  func (re *Regexp) get() *machine {
   192  	re.mu.Lock()
   193  	if n := len(re.machine); n > 0 {
   194  		z := re.machine[n-1]
   195  		re.machine = re.machine[:n-1]
   196  		re.mu.Unlock()
   197  		return z
   198  	}
   199  	re.mu.Unlock()
   200  	z := progMachine(re.prog, re.onepass)
   201  	z.re = re
   202  	return z
   203  }
   204  
   205  // put returns a machine to the re's machine cache.
   206  // There is no attempt to limit the size of the cache, so it will
   207  // grow to the maximum number of simultaneous matches
   208  // run using re.  (The cache empties when re gets garbage collected.)
   209  func (re *Regexp) put(z *machine) {
   210  	re.mu.Lock()
   211  	re.machine = append(re.machine, z)
   212  	re.mu.Unlock()
   213  }
   214  
   215  // MustCompile is like Compile but panics if the expression cannot be parsed.
   216  // It simplifies safe initialization of global variables holding compiled regular
   217  // expressions.
   218  func MustCompile(str string) *Regexp {
   219  	regexp, error := Compile(str)
   220  	if error != nil {
   221  		panic(`regexp: Compile(` + quote(str) + `): ` + error.Error())
   222  	}
   223  	return regexp
   224  }
   225  
   226  // MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
   227  // It simplifies safe initialization of global variables holding compiled regular
   228  // expressions.
   229  func MustCompilePOSIX(str string) *Regexp {
   230  	regexp, error := CompilePOSIX(str)
   231  	if error != nil {
   232  		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + error.Error())
   233  	}
   234  	return regexp
   235  }
   236  
   237  func quote(s string) string {
   238  	if strconv.CanBackquote(s) {
   239  		return "`" + s + "`"
   240  	}
   241  	return strconv.Quote(s)
   242  }
   243  
   244  // NumSubexp returns the number of parenthesized subexpressions in this Regexp.
   245  func (re *Regexp) NumSubexp() int {
   246  	return re.numSubexp
   247  }
   248  
   249  // SubexpNames returns the names of the parenthesized subexpressions
   250  // in this Regexp.  The name for the first sub-expression is names[1],
   251  // so that if m is a match slice, the name for m[i] is SubexpNames()[i].
   252  // Since the Regexp as a whole cannot be named, names[0] is always
   253  // the empty string.  The slice should not be modified.
   254  func (re *Regexp) SubexpNames() []string {
   255  	return re.subexpNames
   256  }
   257  
   258  const endOfText rune = -1
   259  
   260  // input abstracts different representations of the input text. It provides
   261  // one-character lookahead.
   262  type input interface {
   263  	step(pos int) (r rune, width int) // advance one rune
   264  	canCheckPrefix() bool             // can we look ahead without losing info?
   265  	hasPrefix(re *Regexp) bool
   266  	index(re *Regexp, pos int) int
   267  	context(pos int) syntax.EmptyOp
   268  }
   269  
   270  // inputString scans a string.
   271  type inputString struct {
   272  	str string
   273  }
   274  
   275  func (i *inputString) step(pos int) (rune, int) {
   276  	if pos < len(i.str) {
   277  		c := i.str[pos]
   278  		if c < utf8.RuneSelf {
   279  			return rune(c), 1
   280  		}
   281  		return utf8.DecodeRuneInString(i.str[pos:])
   282  	}
   283  	return endOfText, 0
   284  }
   285  
   286  func (i *inputString) canCheckPrefix() bool {
   287  	return true
   288  }
   289  
   290  func (i *inputString) hasPrefix(re *Regexp) bool {
   291  	return strings.HasPrefix(i.str, re.prefix)
   292  }
   293  
   294  func (i *inputString) index(re *Regexp, pos int) int {
   295  	return strings.Index(i.str[pos:], re.prefix)
   296  }
   297  
   298  func (i *inputString) context(pos int) syntax.EmptyOp {
   299  	r1, r2 := endOfText, endOfText
   300  	if pos > 0 && pos <= len(i.str) {
   301  		r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
   302  	}
   303  	if pos < len(i.str) {
   304  		r2, _ = utf8.DecodeRuneInString(i.str[pos:])
   305  	}
   306  	return syntax.EmptyOpContext(r1, r2)
   307  }
   308  
   309  // inputBytes scans a byte slice.
   310  type inputBytes struct {
   311  	str []byte
   312  }
   313  
   314  func (i *inputBytes) step(pos int) (rune, int) {
   315  	if pos < len(i.str) {
   316  		c := i.str[pos]
   317  		if c < utf8.RuneSelf {
   318  			return rune(c), 1
   319  		}
   320  		return utf8.DecodeRune(i.str[pos:])
   321  	}
   322  	return endOfText, 0
   323  }
   324  
   325  func (i *inputBytes) canCheckPrefix() bool {
   326  	return true
   327  }
   328  
   329  func (i *inputBytes) hasPrefix(re *Regexp) bool {
   330  	return bytes.HasPrefix(i.str, re.prefixBytes)
   331  }
   332  
   333  func (i *inputBytes) index(re *Regexp, pos int) int {
   334  	return bytes.Index(i.str[pos:], re.prefixBytes)
   335  }
   336  
   337  func (i *inputBytes) context(pos int) syntax.EmptyOp {
   338  	r1, r2 := endOfText, endOfText
   339  	if pos > 0 && pos <= len(i.str) {
   340  		r1, _ = utf8.DecodeLastRune(i.str[:pos])
   341  	}
   342  	if pos < len(i.str) {
   343  		r2, _ = utf8.DecodeRune(i.str[pos:])
   344  	}
   345  	return syntax.EmptyOpContext(r1, r2)
   346  }
   347  
   348  // inputReader scans a RuneReader.
   349  type inputReader struct {
   350  	r     io.RuneReader
   351  	atEOT bool
   352  	pos   int
   353  }
   354  
   355  func (i *inputReader) step(pos int) (rune, int) {
   356  	if !i.atEOT && pos != i.pos {
   357  		return endOfText, 0
   358  
   359  	}
   360  	r, w, err := i.r.ReadRune()
   361  	if err != nil {
   362  		i.atEOT = true
   363  		return endOfText, 0
   364  	}
   365  	i.pos += w
   366  	return r, w
   367  }
   368  
   369  func (i *inputReader) canCheckPrefix() bool {
   370  	return false
   371  }
   372  
   373  func (i *inputReader) hasPrefix(re *Regexp) bool {
   374  	return false
   375  }
   376  
   377  func (i *inputReader) index(re *Regexp, pos int) int {
   378  	return -1
   379  }
   380  
   381  func (i *inputReader) context(pos int) syntax.EmptyOp {
   382  	return 0
   383  }
   384  
   385  // LiteralPrefix returns a literal string that must begin any match
   386  // of the regular expression re.  It returns the boolean true if the
   387  // literal string comprises the entire regular expression.
   388  func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
   389  	return re.prefix, re.prefixComplete
   390  }
   391  
   392  // MatchReader reports whether the Regexp matches the text read by the
   393  // RuneReader.
   394  func (re *Regexp) MatchReader(r io.RuneReader) bool {
   395  	return re.doExecute(r, nil, "", 0, 0) != nil
   396  }
   397  
   398  // MatchString reports whether the Regexp matches the string s.
   399  func (re *Regexp) MatchString(s string) bool {
   400  	return re.doExecute(nil, nil, s, 0, 0) != nil
   401  }
   402  
   403  // Match reports whether the Regexp matches the byte slice b.
   404  func (re *Regexp) Match(b []byte) bool {
   405  	return re.doExecute(nil, b, "", 0, 0) != nil
   406  }
   407  
   408  // MatchReader checks whether a textual regular expression matches the text
   409  // read by the RuneReader.  More complicated queries need to use Compile and
   410  // the full Regexp interface.
   411  func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
   412  	re, err := Compile(pattern)
   413  	if err != nil {
   414  		return false, err
   415  	}
   416  	return re.MatchReader(r), nil
   417  }
   418  
   419  // MatchString checks whether a textual regular expression
   420  // matches a string.  More complicated queries need
   421  // to use Compile and the full Regexp interface.
   422  func MatchString(pattern string, s string) (matched bool, err error) {
   423  	re, err := Compile(pattern)
   424  	if err != nil {
   425  		return false, err
   426  	}
   427  	return re.MatchString(s), nil
   428  }
   429  
   430  // Match checks whether a textual regular expression
   431  // matches a byte slice.  More complicated queries need
   432  // to use Compile and the full Regexp interface.
   433  func Match(pattern string, b []byte) (matched bool, err error) {
   434  	re, err := Compile(pattern)
   435  	if err != nil {
   436  		return false, err
   437  	}
   438  	return re.Match(b), nil
   439  }
   440  
   441  // ReplaceAllString returns a copy of src, replacing matches of the Regexp
   442  // with the replacement string repl.  Inside repl, $ signs are interpreted as
   443  // in Expand, so for instance $1 represents the text of the first submatch.
   444  func (re *Regexp) ReplaceAllString(src, repl string) string {
   445  	n := 2
   446  	if strings.Index(repl, "$") >= 0 {
   447  		n = 2 * (re.numSubexp + 1)
   448  	}
   449  	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
   450  		return re.expand(dst, repl, nil, src, match)
   451  	})
   452  	return string(b)
   453  }
   454  
   455  // ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp
   456  // with the replacement string repl.  The replacement repl is substituted directly,
   457  // without using Expand.
   458  func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
   459  	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
   460  		return append(dst, repl...)
   461  	}))
   462  }
   463  
   464  // ReplaceAllStringFunc returns a copy of src in which all matches of the
   465  // Regexp have been replaced by the return value of function repl applied
   466  // to the matched substring.  The replacement returned by repl is substituted
   467  // directly, without using Expand.
   468  func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
   469  	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
   470  		return append(dst, repl(src[match[0]:match[1]])...)
   471  	})
   472  	return string(b)
   473  }
   474  
   475  func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
   476  	lastMatchEnd := 0 // end position of the most recent match
   477  	searchPos := 0    // position where we next look for a match
   478  	var buf []byte
   479  	var endPos int
   480  	if bsrc != nil {
   481  		endPos = len(bsrc)
   482  	} else {
   483  		endPos = len(src)
   484  	}
   485  	for searchPos <= endPos {
   486  		a := re.doExecute(nil, bsrc, src, searchPos, nmatch)
   487  		if len(a) == 0 {
   488  			break // no more matches
   489  		}
   490  
   491  		// Copy the unmatched characters before this match.
   492  		if bsrc != nil {
   493  			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
   494  		} else {
   495  			buf = append(buf, src[lastMatchEnd:a[0]]...)
   496  		}
   497  
   498  		// Now insert a copy of the replacement string, but not for a
   499  		// match of the empty string immediately after another match.
   500  		// (Otherwise, we get double replacement for patterns that
   501  		// match both empty and nonempty strings.)
   502  		if a[1] > lastMatchEnd || a[0] == 0 {
   503  			buf = repl(buf, a)
   504  		}
   505  		lastMatchEnd = a[1]
   506  
   507  		// Advance past this match; always advance at least one character.
   508  		var width int
   509  		if bsrc != nil {
   510  			_, width = utf8.DecodeRune(bsrc[searchPos:])
   511  		} else {
   512  			_, width = utf8.DecodeRuneInString(src[searchPos:])
   513  		}
   514  		if searchPos+width > a[1] {
   515  			searchPos += width
   516  		} else if searchPos+1 > a[1] {
   517  			// This clause is only needed at the end of the input
   518  			// string.  In that case, DecodeRuneInString returns width=0.
   519  			searchPos++
   520  		} else {
   521  			searchPos = a[1]
   522  		}
   523  	}
   524  
   525  	// Copy the unmatched characters after the last match.
   526  	if bsrc != nil {
   527  		buf = append(buf, bsrc[lastMatchEnd:]...)
   528  	} else {
   529  		buf = append(buf, src[lastMatchEnd:]...)
   530  	}
   531  
   532  	return buf
   533  }
   534  
   535  // ReplaceAll returns a copy of src, replacing matches of the Regexp
   536  // with the replacement text repl.  Inside repl, $ signs are interpreted as
   537  // in Expand, so for instance $1 represents the text of the first submatch.
   538  func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
   539  	n := 2
   540  	if bytes.IndexByte(repl, '$') >= 0 {
   541  		n = 2 * (re.numSubexp + 1)
   542  	}
   543  	srepl := ""
   544  	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
   545  		if len(srepl) != len(repl) {
   546  			srepl = string(repl)
   547  		}
   548  		return re.expand(dst, srepl, src, "", match)
   549  	})
   550  	return b
   551  }
   552  
   553  // ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
   554  // with the replacement bytes repl.  The replacement repl is substituted directly,
   555  // without using Expand.
   556  func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
   557  	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
   558  		return append(dst, repl...)
   559  	})
   560  }
   561  
   562  // ReplaceAllFunc returns a copy of src in which all matches of the
   563  // Regexp have been replaced by the return value of function repl applied
   564  // to the matched byte slice.  The replacement returned by repl is substituted
   565  // directly, without using Expand.
   566  func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
   567  	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
   568  		return append(dst, repl(src[match[0]:match[1]])...)
   569  	})
   570  }
   571  
   572  var specialBytes = []byte(`\.+*?()|[]{}^$`)
   573  
   574  func special(b byte) bool {
   575  	return bytes.IndexByte(specialBytes, b) >= 0
   576  }
   577  
   578  // QuoteMeta returns a string that quotes all regular expression metacharacters
   579  // inside the argument text; the returned string is a regular expression matching
   580  // the literal text.  For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
   581  func QuoteMeta(s string) string {
   582  	b := make([]byte, 2*len(s))
   583  
   584  	// A byte loop is correct because all metacharacters are ASCII.
   585  	j := 0
   586  	for i := 0; i < len(s); i++ {
   587  		if special(s[i]) {
   588  			b[j] = '\\'
   589  			j++
   590  		}
   591  		b[j] = s[i]
   592  		j++
   593  	}
   594  	return string(b[0:j])
   595  }
   596  
   597  // The number of capture values in the program may correspond
   598  // to fewer capturing expressions than are in the regexp.
   599  // For example, "(a){0}" turns into an empty program, so the
   600  // maximum capture in the program is 0 but we need to return
   601  // an expression for \1.  Pad appends -1s to the slice a as needed.
   602  func (re *Regexp) pad(a []int) []int {
   603  	if a == nil {
   604  		// No match.
   605  		return nil
   606  	}
   607  	n := (1 + re.numSubexp) * 2
   608  	for len(a) < n {
   609  		a = append(a, -1)
   610  	}
   611  	return a
   612  }
   613  
   614  // Find matches in slice b if b is non-nil, otherwise find matches in string s.
   615  func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
   616  	var end int
   617  	if b == nil {
   618  		end = len(s)
   619  	} else {
   620  		end = len(b)
   621  	}
   622  
   623  	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
   624  		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap)
   625  		if len(matches) == 0 {
   626  			break
   627  		}
   628  
   629  		accept := true
   630  		if matches[1] == pos {
   631  			// We've found an empty match.
   632  			if matches[0] == prevMatchEnd {
   633  				// We don't allow an empty match right
   634  				// after a previous match, so ignore it.
   635  				accept = false
   636  			}
   637  			var width int
   638  			// TODO: use step()
   639  			if b == nil {
   640  				_, width = utf8.DecodeRuneInString(s[pos:end])
   641  			} else {
   642  				_, width = utf8.DecodeRune(b[pos:end])
   643  			}
   644  			if width > 0 {
   645  				pos += width
   646  			} else {
   647  				pos = end + 1
   648  			}
   649  		} else {
   650  			pos = matches[1]
   651  		}
   652  		prevMatchEnd = matches[1]
   653  
   654  		if accept {
   655  			deliver(re.pad(matches))
   656  			i++
   657  		}
   658  	}
   659  }
   660  
   661  // Find returns a slice holding the text of the leftmost match in b of the regular expression.
   662  // A return value of nil indicates no match.
   663  func (re *Regexp) Find(b []byte) []byte {
   664  	a := re.doExecute(nil, b, "", 0, 2)
   665  	if a == nil {
   666  		return nil
   667  	}
   668  	return b[a[0]:a[1]]
   669  }
   670  
   671  // FindIndex returns a two-element slice of integers defining the location of
   672  // the leftmost match in b of the regular expression.  The match itself is at
   673  // b[loc[0]:loc[1]].
   674  // A return value of nil indicates no match.
   675  func (re *Regexp) FindIndex(b []byte) (loc []int) {
   676  	a := re.doExecute(nil, b, "", 0, 2)
   677  	if a == nil {
   678  		return nil
   679  	}
   680  	return a[0:2]
   681  }
   682  
   683  // FindString returns a string holding the text of the leftmost match in s of the regular
   684  // expression.  If there is no match, the return value is an empty string,
   685  // but it will also be empty if the regular expression successfully matches
   686  // an empty string.  Use FindStringIndex or FindStringSubmatch if it is
   687  // necessary to distinguish these cases.
   688  func (re *Regexp) FindString(s string) string {
   689  	a := re.doExecute(nil, nil, s, 0, 2)
   690  	if a == nil {
   691  		return ""
   692  	}
   693  	return s[a[0]:a[1]]
   694  }
   695  
   696  // FindStringIndex returns a two-element slice of integers defining the
   697  // location of the leftmost match in s of the regular expression.  The match
   698  // itself is at s[loc[0]:loc[1]].
   699  // A return value of nil indicates no match.
   700  func (re *Regexp) FindStringIndex(s string) (loc []int) {
   701  	a := re.doExecute(nil, nil, s, 0, 2)
   702  	if a == nil {
   703  		return nil
   704  	}
   705  	return a[0:2]
   706  }
   707  
   708  // FindReaderIndex returns a two-element slice of integers defining the
   709  // location of the leftmost match of the regular expression in text read from
   710  // the RuneReader.  The match text was found in the input stream at
   711  // byte offset loc[0] through loc[1]-1.
   712  // A return value of nil indicates no match.
   713  func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
   714  	a := re.doExecute(r, nil, "", 0, 2)
   715  	if a == nil {
   716  		return nil
   717  	}
   718  	return a[0:2]
   719  }
   720  
   721  // FindSubmatch returns a slice of slices holding the text of the leftmost
   722  // match of the regular expression in b and the matches, if any, of its
   723  // subexpressions, as defined by the 'Submatch' descriptions in the package
   724  // comment.
   725  // A return value of nil indicates no match.
   726  func (re *Regexp) FindSubmatch(b []byte) [][]byte {
   727  	a := re.doExecute(nil, b, "", 0, re.prog.NumCap)
   728  	if a == nil {
   729  		return nil
   730  	}
   731  	ret := make([][]byte, 1+re.numSubexp)
   732  	for i := range ret {
   733  		if 2*i < len(a) && a[2*i] >= 0 {
   734  			ret[i] = b[a[2*i]:a[2*i+1]]
   735  		}
   736  	}
   737  	return ret
   738  }
   739  
   740  // Expand appends template to dst and returns the result; during the
   741  // append, Expand replaces variables in the template with corresponding
   742  // matches drawn from src.  The match slice should have been returned by
   743  // FindSubmatchIndex.
   744  //
   745  // In the template, a variable is denoted by a substring of the form
   746  // $name or ${name}, where name is a non-empty sequence of letters,
   747  // digits, and underscores.  A purely numeric name like $1 refers to
   748  // the submatch with the corresponding index; other names refer to
   749  // capturing parentheses named with the (?P<name>...) syntax.  A
   750  // reference to an out of range or unmatched index or a name that is not
   751  // present in the regular expression is replaced with an empty slice.
   752  //
   753  // In the $name form, name is taken to be as long as possible: $1x is
   754  // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
   755  //
   756  // To insert a literal $ in the output, use $$ in the template.
   757  func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
   758  	return re.expand(dst, string(template), src, "", match)
   759  }
   760  
   761  // ExpandString is like Expand but the template and source are strings.
   762  // It appends to and returns a byte slice in order to give the calling
   763  // code control over allocation.
   764  func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
   765  	return re.expand(dst, template, nil, src, match)
   766  }
   767  
   768  func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
   769  	for len(template) > 0 {
   770  		i := strings.Index(template, "$")
   771  		if i < 0 {
   772  			break
   773  		}
   774  		dst = append(dst, template[:i]...)
   775  		template = template[i:]
   776  		if len(template) > 1 && template[1] == '$' {
   777  			// Treat $$ as $.
   778  			dst = append(dst, '$')
   779  			template = template[2:]
   780  			continue
   781  		}
   782  		name, num, rest, ok := extract(template)
   783  		if !ok {
   784  			// Malformed; treat $ as raw text.
   785  			dst = append(dst, '$')
   786  			template = template[1:]
   787  			continue
   788  		}
   789  		template = rest
   790  		if num >= 0 {
   791  			if 2*num+1 < len(match) && match[2*num] >= 0 {
   792  				if bsrc != nil {
   793  					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
   794  				} else {
   795  					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
   796  				}
   797  			}
   798  		} else {
   799  			for i, namei := range re.subexpNames {
   800  				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
   801  					if bsrc != nil {
   802  						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
   803  					} else {
   804  						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
   805  					}
   806  					break
   807  				}
   808  			}
   809  		}
   810  	}
   811  	dst = append(dst, template...)
   812  	return dst
   813  }
   814  
   815  // extract returns the name from a leading "$name" or "${name}" in str.
   816  // If it is a number, extract returns num set to that number; otherwise num = -1.
   817  func extract(str string) (name string, num int, rest string, ok bool) {
   818  	if len(str) < 2 || str[0] != '$' {
   819  		return
   820  	}
   821  	brace := false
   822  	if str[1] == '{' {
   823  		brace = true
   824  		str = str[2:]
   825  	} else {
   826  		str = str[1:]
   827  	}
   828  	i := 0
   829  	for i < len(str) {
   830  		rune, size := utf8.DecodeRuneInString(str[i:])
   831  		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
   832  			break
   833  		}
   834  		i += size
   835  	}
   836  	if i == 0 {
   837  		// empty name is not okay
   838  		return
   839  	}
   840  	name = str[:i]
   841  	if brace {
   842  		if i >= len(str) || str[i] != '}' {
   843  			// missing closing brace
   844  			return
   845  		}
   846  		i++
   847  	}
   848  
   849  	// Parse number.
   850  	num = 0
   851  	for i := 0; i < len(name); i++ {
   852  		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
   853  			num = -1
   854  			break
   855  		}
   856  		num = num*10 + int(name[i]) - '0'
   857  	}
   858  	// Disallow leading zeros.
   859  	if name[0] == '0' && len(name) > 1 {
   860  		num = -1
   861  	}
   862  
   863  	rest = str[i:]
   864  	ok = true
   865  	return
   866  }
   867  
   868  // FindSubmatchIndex returns a slice holding the index pairs identifying the
   869  // leftmost match of the regular expression in b and the matches, if any, of
   870  // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
   871  // in the package comment.
   872  // A return value of nil indicates no match.
   873  func (re *Regexp) FindSubmatchIndex(b []byte) []int {
   874  	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap))
   875  }
   876  
   877  // FindStringSubmatch returns a slice of strings holding the text of the
   878  // leftmost match of the regular expression in s and the matches, if any, of
   879  // its subexpressions, as defined by the 'Submatch' description in the
   880  // package comment.
   881  // A return value of nil indicates no match.
   882  func (re *Regexp) FindStringSubmatch(s string) []string {
   883  	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap)
   884  	if a == nil {
   885  		return nil
   886  	}
   887  	ret := make([]string, 1+re.numSubexp)
   888  	for i := range ret {
   889  		if 2*i < len(a) && a[2*i] >= 0 {
   890  			ret[i] = s[a[2*i]:a[2*i+1]]
   891  		}
   892  	}
   893  	return ret
   894  }
   895  
   896  // FindStringSubmatchIndex returns a slice holding the index pairs
   897  // identifying the leftmost match of the regular expression in s and the
   898  // matches, if any, of its subexpressions, as defined by the 'Submatch' and
   899  // 'Index' descriptions in the package comment.
   900  // A return value of nil indicates no match.
   901  func (re *Regexp) FindStringSubmatchIndex(s string) []int {
   902  	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap))
   903  }
   904  
   905  // FindReaderSubmatchIndex returns a slice holding the index pairs
   906  // identifying the leftmost match of the regular expression of text read by
   907  // the RuneReader, and the matches, if any, of its subexpressions, as defined
   908  // by the 'Submatch' and 'Index' descriptions in the package comment.  A
   909  // return value of nil indicates no match.
   910  func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
   911  	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap))
   912  }
   913  
   914  const startSize = 10 // The size at which to start a slice in the 'All' routines.
   915  
   916  // FindAll is the 'All' version of Find; it returns a slice of all successive
   917  // matches of the expression, as defined by the 'All' description in the
   918  // package comment.
   919  // A return value of nil indicates no match.
   920  func (re *Regexp) FindAll(b []byte, n int) [][]byte {
   921  	if n < 0 {
   922  		n = len(b) + 1
   923  	}
   924  	result := make([][]byte, 0, startSize)
   925  	re.allMatches("", b, n, func(match []int) {
   926  		result = append(result, b[match[0]:match[1]])
   927  	})
   928  	if len(result) == 0 {
   929  		return nil
   930  	}
   931  	return result
   932  }
   933  
   934  // FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
   935  // successive matches of the expression, as defined by the 'All' description
   936  // in the package comment.
   937  // A return value of nil indicates no match.
   938  func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
   939  	if n < 0 {
   940  		n = len(b) + 1
   941  	}
   942  	result := make([][]int, 0, startSize)
   943  	re.allMatches("", b, n, func(match []int) {
   944  		result = append(result, match[0:2])
   945  	})
   946  	if len(result) == 0 {
   947  		return nil
   948  	}
   949  	return result
   950  }
   951  
   952  // FindAllString is the 'All' version of FindString; it returns a slice of all
   953  // successive matches of the expression, as defined by the 'All' description
   954  // in the package comment.
   955  // A return value of nil indicates no match.
   956  func (re *Regexp) FindAllString(s string, n int) []string {
   957  	if n < 0 {
   958  		n = len(s) + 1
   959  	}
   960  	result := make([]string, 0, startSize)
   961  	re.allMatches(s, nil, n, func(match []int) {
   962  		result = append(result, s[match[0]:match[1]])
   963  	})
   964  	if len(result) == 0 {
   965  		return nil
   966  	}
   967  	return result
   968  }
   969  
   970  // FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
   971  // slice of all successive matches of the expression, as defined by the 'All'
   972  // description in the package comment.
   973  // A return value of nil indicates no match.
   974  func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
   975  	if n < 0 {
   976  		n = len(s) + 1
   977  	}
   978  	result := make([][]int, 0, startSize)
   979  	re.allMatches(s, nil, n, func(match []int) {
   980  		result = append(result, match[0:2])
   981  	})
   982  	if len(result) == 0 {
   983  		return nil
   984  	}
   985  	return result
   986  }
   987  
   988  // FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
   989  // of all successive matches of the expression, as defined by the 'All'
   990  // description in the package comment.
   991  // A return value of nil indicates no match.
   992  func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
   993  	if n < 0 {
   994  		n = len(b) + 1
   995  	}
   996  	result := make([][][]byte, 0, startSize)
   997  	re.allMatches("", b, n, func(match []int) {
   998  		slice := make([][]byte, len(match)/2)
   999  		for j := range slice {
  1000  			if match[2*j] >= 0 {
  1001  				slice[j] = b[match[2*j]:match[2*j+1]]
  1002  			}
  1003  		}
  1004  		result = append(result, slice)
  1005  	})
  1006  	if len(result) == 0 {
  1007  		return nil
  1008  	}
  1009  	return result
  1010  }
  1011  
  1012  // FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
  1013  // a slice of all successive matches of the expression, as defined by the
  1014  // 'All' description in the package comment.
  1015  // A return value of nil indicates no match.
  1016  func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
  1017  	if n < 0 {
  1018  		n = len(b) + 1
  1019  	}
  1020  	result := make([][]int, 0, startSize)
  1021  	re.allMatches("", b, n, func(match []int) {
  1022  		result = append(result, match)
  1023  	})
  1024  	if len(result) == 0 {
  1025  		return nil
  1026  	}
  1027  	return result
  1028  }
  1029  
  1030  // FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
  1031  // returns a slice of all successive matches of the expression, as defined by
  1032  // the 'All' description in the package comment.
  1033  // A return value of nil indicates no match.
  1034  func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
  1035  	if n < 0 {
  1036  		n = len(s) + 1
  1037  	}
  1038  	result := make([][]string, 0, startSize)
  1039  	re.allMatches(s, nil, n, func(match []int) {
  1040  		slice := make([]string, len(match)/2)
  1041  		for j := range slice {
  1042  			if match[2*j] >= 0 {
  1043  				slice[j] = s[match[2*j]:match[2*j+1]]
  1044  			}
  1045  		}
  1046  		result = append(result, slice)
  1047  	})
  1048  	if len(result) == 0 {
  1049  		return nil
  1050  	}
  1051  	return result
  1052  }
  1053  
  1054  // FindAllStringSubmatchIndex is the 'All' version of
  1055  // FindStringSubmatchIndex; it returns a slice of all successive matches of
  1056  // the expression, as defined by the 'All' description in the package
  1057  // comment.
  1058  // A return value of nil indicates no match.
  1059  func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
  1060  	if n < 0 {
  1061  		n = len(s) + 1
  1062  	}
  1063  	result := make([][]int, 0, startSize)
  1064  	re.allMatches(s, nil, n, func(match []int) {
  1065  		result = append(result, match)
  1066  	})
  1067  	if len(result) == 0 {
  1068  		return nil
  1069  	}
  1070  	return result
  1071  }
  1072  
  1073  // Split slices s into substrings separated by the expression and returns a slice of
  1074  // the substrings between those expression matches.
  1075  //
  1076  // The slice returned by this method consists of all the substrings of s
  1077  // not contained in the slice returned by FindAllString. When called on an expression
  1078  // that contains no metacharacters, it is equivalent to strings.SplitN.
  1079  //
  1080  // Example:
  1081  //   s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
  1082  //   // s: ["", "b", "b", "c", "cadaaae"]
  1083  //
  1084  // The count determines the number of substrings to return:
  1085  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
  1086  //   n == 0: the result is nil (zero substrings)
  1087  //   n < 0: all substrings
  1088  func (re *Regexp) Split(s string, n int) []string {
  1089  
  1090  	if n == 0 {
  1091  		return nil
  1092  	}
  1093  
  1094  	if len(re.expr) > 0 && len(s) == 0 {
  1095  		return []string{""}
  1096  	}
  1097  
  1098  	matches := re.FindAllStringIndex(s, n)
  1099  	strings := make([]string, 0, len(matches))
  1100  
  1101  	beg := 0
  1102  	end := 0
  1103  	for _, match := range matches {
  1104  		if n > 0 && len(strings) >= n-1 {
  1105  			break
  1106  		}
  1107  
  1108  		end = match[0]
  1109  		if match[1] != 0 {
  1110  			strings = append(strings, s[beg:end])
  1111  		}
  1112  		beg = match[1]
  1113  	}
  1114  
  1115  	if end != len(s) {
  1116  		strings = append(strings, s[beg:])
  1117  	}
  1118  
  1119  	return strings
  1120  }