github.com/tcnksm/go@v0.0.0-20141208075154-439b32936367/src/regexp/syntax/parse.go (about)

     1  // Copyright 2011 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package syntax
     6  
     7  import (
     8  	"sort"
     9  	"strings"
    10  	"unicode"
    11  	"unicode/utf8"
    12  )
    13  
    14  // An Error describes a failure to parse a regular expression
    15  // and gives the offending expression.
    16  type Error struct {
    17  	Code ErrorCode
    18  	Expr string
    19  }
    20  
    21  func (e *Error) Error() string {
    22  	return "error parsing regexp: " + e.Code.String() + ": `" + e.Expr + "`"
    23  }
    24  
    25  // An ErrorCode describes a failure to parse a regular expression.
    26  type ErrorCode string
    27  
    28  const (
    29  	// Unexpected error
    30  	ErrInternalError ErrorCode = "regexp/syntax: internal error"
    31  
    32  	// Parse errors
    33  	ErrInvalidCharClass      ErrorCode = "invalid character class"
    34  	ErrInvalidCharRange      ErrorCode = "invalid character class range"
    35  	ErrInvalidEscape         ErrorCode = "invalid escape sequence"
    36  	ErrInvalidNamedCapture   ErrorCode = "invalid named capture"
    37  	ErrInvalidPerlOp         ErrorCode = "invalid or unsupported Perl syntax"
    38  	ErrInvalidRepeatOp       ErrorCode = "invalid nested repetition operator"
    39  	ErrInvalidRepeatSize     ErrorCode = "invalid repeat count"
    40  	ErrInvalidUTF8           ErrorCode = "invalid UTF-8"
    41  	ErrMissingBracket        ErrorCode = "missing closing ]"
    42  	ErrMissingParen          ErrorCode = "missing closing )"
    43  	ErrMissingRepeatArgument ErrorCode = "missing argument to repetition operator"
    44  	ErrTrailingBackslash     ErrorCode = "trailing backslash at end of expression"
    45  	ErrUnexpectedParen       ErrorCode = "unexpected )"
    46  )
    47  
    48  func (e ErrorCode) String() string {
    49  	return string(e)
    50  }
    51  
    52  // Flags control the behavior of the parser and record information about regexp context.
    53  type Flags uint16
    54  
    55  const (
    56  	FoldCase      Flags = 1 << iota // case-insensitive match
    57  	Literal                         // treat pattern as literal string
    58  	ClassNL                         // allow character classes like [^a-z] and [[:space:]] to match newline
    59  	DotNL                           // allow . to match newline
    60  	OneLine                         // treat ^ and $ as only matching at beginning and end of text
    61  	NonGreedy                       // make repetition operators default to non-greedy
    62  	PerlX                           // allow Perl extensions
    63  	UnicodeGroups                   // allow \p{Han}, \P{Han} for Unicode group and negation
    64  	WasDollar                       // regexp OpEndText was $, not \z
    65  	Simple                          // regexp contains no counted repetition
    66  
    67  	MatchNL = ClassNL | DotNL
    68  
    69  	Perl        = ClassNL | OneLine | PerlX | UnicodeGroups // as close to Perl as possible
    70  	POSIX Flags = 0                                         // POSIX syntax
    71  )
    72  
    73  // Pseudo-ops for parsing stack.
    74  const (
    75  	opLeftParen = opPseudo + iota
    76  	opVerticalBar
    77  )
    78  
    79  type parser struct {
    80  	flags       Flags     // parse mode flags
    81  	stack       []*Regexp // stack of parsed expressions
    82  	free        *Regexp
    83  	numCap      int // number of capturing groups seen
    84  	wholeRegexp string
    85  	tmpClass    []rune // temporary char class work space
    86  }
    87  
    88  func (p *parser) newRegexp(op Op) *Regexp {
    89  	re := p.free
    90  	if re != nil {
    91  		p.free = re.Sub0[0]
    92  		*re = Regexp{}
    93  	} else {
    94  		re = new(Regexp)
    95  	}
    96  	re.Op = op
    97  	return re
    98  }
    99  
   100  func (p *parser) reuse(re *Regexp) {
   101  	re.Sub0[0] = p.free
   102  	p.free = re
   103  }
   104  
   105  // Parse stack manipulation.
   106  
   107  // push pushes the regexp re onto the parse stack and returns the regexp.
   108  func (p *parser) push(re *Regexp) *Regexp {
   109  	if re.Op == OpCharClass && len(re.Rune) == 2 && re.Rune[0] == re.Rune[1] {
   110  		// Single rune.
   111  		if p.maybeConcat(re.Rune[0], p.flags&^FoldCase) {
   112  			return nil
   113  		}
   114  		re.Op = OpLiteral
   115  		re.Rune = re.Rune[:1]
   116  		re.Flags = p.flags &^ FoldCase
   117  	} else if re.Op == OpCharClass && len(re.Rune) == 4 &&
   118  		re.Rune[0] == re.Rune[1] && re.Rune[2] == re.Rune[3] &&
   119  		unicode.SimpleFold(re.Rune[0]) == re.Rune[2] &&
   120  		unicode.SimpleFold(re.Rune[2]) == re.Rune[0] ||
   121  		re.Op == OpCharClass && len(re.Rune) == 2 &&
   122  			re.Rune[0]+1 == re.Rune[1] &&
   123  			unicode.SimpleFold(re.Rune[0]) == re.Rune[1] &&
   124  			unicode.SimpleFold(re.Rune[1]) == re.Rune[0] {
   125  		// Case-insensitive rune like [Aa] or [Δδ].
   126  		if p.maybeConcat(re.Rune[0], p.flags|FoldCase) {
   127  			return nil
   128  		}
   129  
   130  		// Rewrite as (case-insensitive) literal.
   131  		re.Op = OpLiteral
   132  		re.Rune = re.Rune[:1]
   133  		re.Flags = p.flags | FoldCase
   134  	} else {
   135  		// Incremental concatenation.
   136  		p.maybeConcat(-1, 0)
   137  	}
   138  
   139  	p.stack = append(p.stack, re)
   140  	return re
   141  }
   142  
   143  // maybeConcat implements incremental concatenation
   144  // of literal runes into string nodes.  The parser calls this
   145  // before each push, so only the top fragment of the stack
   146  // might need processing.  Since this is called before a push,
   147  // the topmost literal is no longer subject to operators like *
   148  // (Otherwise ab* would turn into (ab)*.)
   149  // If r >= 0 and there's a node left over, maybeConcat uses it
   150  // to push r with the given flags.
   151  // maybeConcat reports whether r was pushed.
   152  func (p *parser) maybeConcat(r rune, flags Flags) bool {
   153  	n := len(p.stack)
   154  	if n < 2 {
   155  		return false
   156  	}
   157  
   158  	re1 := p.stack[n-1]
   159  	re2 := p.stack[n-2]
   160  	if re1.Op != OpLiteral || re2.Op != OpLiteral || re1.Flags&FoldCase != re2.Flags&FoldCase {
   161  		return false
   162  	}
   163  
   164  	// Push re1 into re2.
   165  	re2.Rune = append(re2.Rune, re1.Rune...)
   166  
   167  	// Reuse re1 if possible.
   168  	if r >= 0 {
   169  		re1.Rune = re1.Rune0[:1]
   170  		re1.Rune[0] = r
   171  		re1.Flags = flags
   172  		return true
   173  	}
   174  
   175  	p.stack = p.stack[:n-1]
   176  	p.reuse(re1)
   177  	return false // did not push r
   178  }
   179  
   180  // newLiteral returns a new OpLiteral Regexp with the given flags
   181  func (p *parser) newLiteral(r rune, flags Flags) *Regexp {
   182  	re := p.newRegexp(OpLiteral)
   183  	re.Flags = flags
   184  	if flags&FoldCase != 0 {
   185  		r = minFoldRune(r)
   186  	}
   187  	re.Rune0[0] = r
   188  	re.Rune = re.Rune0[:1]
   189  	return re
   190  }
   191  
   192  // minFoldRune returns the minimum rune fold-equivalent to r.
   193  func minFoldRune(r rune) rune {
   194  	if r < minFold || r > maxFold {
   195  		return r
   196  	}
   197  	min := r
   198  	r0 := r
   199  	for r = unicode.SimpleFold(r); r != r0; r = unicode.SimpleFold(r) {
   200  		if min > r {
   201  			min = r
   202  		}
   203  	}
   204  	return min
   205  }
   206  
   207  // literal pushes a literal regexp for the rune r on the stack
   208  // and returns that regexp.
   209  func (p *parser) literal(r rune) {
   210  	p.push(p.newLiteral(r, p.flags))
   211  }
   212  
   213  // op pushes a regexp with the given op onto the stack
   214  // and returns that regexp.
   215  func (p *parser) op(op Op) *Regexp {
   216  	re := p.newRegexp(op)
   217  	re.Flags = p.flags
   218  	return p.push(re)
   219  }
   220  
   221  // repeat replaces the top stack element with itself repeated according to op, min, max.
   222  // before is the regexp suffix starting at the repetition operator.
   223  // after is the regexp suffix following after the repetition operator.
   224  // repeat returns an updated 'after' and an error, if any.
   225  func (p *parser) repeat(op Op, min, max int, before, after, lastRepeat string) (string, error) {
   226  	flags := p.flags
   227  	if p.flags&PerlX != 0 {
   228  		if len(after) > 0 && after[0] == '?' {
   229  			after = after[1:]
   230  			flags ^= NonGreedy
   231  		}
   232  		if lastRepeat != "" {
   233  			// In Perl it is not allowed to stack repetition operators:
   234  			// a** is a syntax error, not a doubled star, and a++ means
   235  			// something else entirely, which we don't support!
   236  			return "", &Error{ErrInvalidRepeatOp, lastRepeat[:len(lastRepeat)-len(after)]}
   237  		}
   238  	}
   239  	n := len(p.stack)
   240  	if n == 0 {
   241  		return "", &Error{ErrMissingRepeatArgument, before[:len(before)-len(after)]}
   242  	}
   243  	sub := p.stack[n-1]
   244  	if sub.Op >= opPseudo {
   245  		return "", &Error{ErrMissingRepeatArgument, before[:len(before)-len(after)]}
   246  	}
   247  
   248  	re := p.newRegexp(op)
   249  	re.Min = min
   250  	re.Max = max
   251  	re.Flags = flags
   252  	re.Sub = re.Sub0[:1]
   253  	re.Sub[0] = sub
   254  	p.stack[n-1] = re
   255  
   256  	if op == OpRepeat && (min >= 2 || max >= 2) && !repeatIsValid(re, 1000) {
   257  		return "", &Error{ErrInvalidRepeatSize, before[:len(before)-len(after)]}
   258  	}
   259  
   260  	return after, nil
   261  }
   262  
   263  // repeatIsValid reports whether the repetition re is valid.
   264  // Valid means that the combination of the top-level repetition
   265  // and any inner repetitions does not exceed n copies of the
   266  // innermost thing.
   267  // This function rewalks the regexp tree and is called for every repetition,
   268  // so we have to worry about inducing quadratic behavior in the parser.
   269  // We avoid this by only calling repeatIsValid when min or max >= 2.
   270  // In that case the depth of any >= 2 nesting can only get to 9 without
   271  // triggering a parse error, so each subtree can only be rewalked 9 times.
   272  func repeatIsValid(re *Regexp, n int) bool {
   273  	if re.Op == OpRepeat {
   274  		m := re.Max
   275  		if m == 0 {
   276  			return true
   277  		}
   278  		if m < 0 {
   279  			m = re.Min
   280  		}
   281  		if m > n {
   282  			return false
   283  		}
   284  		if m > 0 {
   285  			n /= m
   286  		}
   287  	}
   288  	for _, sub := range re.Sub {
   289  		if !repeatIsValid(sub, n) {
   290  			return false
   291  		}
   292  	}
   293  	return true
   294  }
   295  
   296  // concat replaces the top of the stack (above the topmost '|' or '(') with its concatenation.
   297  func (p *parser) concat() *Regexp {
   298  	p.maybeConcat(-1, 0)
   299  
   300  	// Scan down to find pseudo-operator | or (.
   301  	i := len(p.stack)
   302  	for i > 0 && p.stack[i-1].Op < opPseudo {
   303  		i--
   304  	}
   305  	subs := p.stack[i:]
   306  	p.stack = p.stack[:i]
   307  
   308  	// Empty concatenation is special case.
   309  	if len(subs) == 0 {
   310  		return p.push(p.newRegexp(OpEmptyMatch))
   311  	}
   312  
   313  	return p.push(p.collapse(subs, OpConcat))
   314  }
   315  
   316  // alternate replaces the top of the stack (above the topmost '(') with its alternation.
   317  func (p *parser) alternate() *Regexp {
   318  	// Scan down to find pseudo-operator (.
   319  	// There are no | above (.
   320  	i := len(p.stack)
   321  	for i > 0 && p.stack[i-1].Op < opPseudo {
   322  		i--
   323  	}
   324  	subs := p.stack[i:]
   325  	p.stack = p.stack[:i]
   326  
   327  	// Make sure top class is clean.
   328  	// All the others already are (see swapVerticalBar).
   329  	if len(subs) > 0 {
   330  		cleanAlt(subs[len(subs)-1])
   331  	}
   332  
   333  	// Empty alternate is special case
   334  	// (shouldn't happen but easy to handle).
   335  	if len(subs) == 0 {
   336  		return p.push(p.newRegexp(OpNoMatch))
   337  	}
   338  
   339  	return p.push(p.collapse(subs, OpAlternate))
   340  }
   341  
   342  // cleanAlt cleans re for eventual inclusion in an alternation.
   343  func cleanAlt(re *Regexp) {
   344  	switch re.Op {
   345  	case OpCharClass:
   346  		re.Rune = cleanClass(&re.Rune)
   347  		if len(re.Rune) == 2 && re.Rune[0] == 0 && re.Rune[1] == unicode.MaxRune {
   348  			re.Rune = nil
   349  			re.Op = OpAnyChar
   350  			return
   351  		}
   352  		if len(re.Rune) == 4 && re.Rune[0] == 0 && re.Rune[1] == '\n'-1 && re.Rune[2] == '\n'+1 && re.Rune[3] == unicode.MaxRune {
   353  			re.Rune = nil
   354  			re.Op = OpAnyCharNotNL
   355  			return
   356  		}
   357  		if cap(re.Rune)-len(re.Rune) > 100 {
   358  			// re.Rune will not grow any more.
   359  			// Make a copy or inline to reclaim storage.
   360  			re.Rune = append(re.Rune0[:0], re.Rune...)
   361  		}
   362  	}
   363  }
   364  
   365  // collapse returns the result of applying op to sub.
   366  // If sub contains op nodes, they all get hoisted up
   367  // so that there is never a concat of a concat or an
   368  // alternate of an alternate.
   369  func (p *parser) collapse(subs []*Regexp, op Op) *Regexp {
   370  	if len(subs) == 1 {
   371  		return subs[0]
   372  	}
   373  	re := p.newRegexp(op)
   374  	re.Sub = re.Sub0[:0]
   375  	for _, sub := range subs {
   376  		if sub.Op == op {
   377  			re.Sub = append(re.Sub, sub.Sub...)
   378  			p.reuse(sub)
   379  		} else {
   380  			re.Sub = append(re.Sub, sub)
   381  		}
   382  	}
   383  	if op == OpAlternate {
   384  		re.Sub = p.factor(re.Sub, re.Flags)
   385  		if len(re.Sub) == 1 {
   386  			old := re
   387  			re = re.Sub[0]
   388  			p.reuse(old)
   389  		}
   390  	}
   391  	return re
   392  }
   393  
   394  // factor factors common prefixes from the alternation list sub.
   395  // It returns a replacement list that reuses the same storage and
   396  // frees (passes to p.reuse) any removed *Regexps.
   397  //
   398  // For example,
   399  //     ABC|ABD|AEF|BCX|BCY
   400  // simplifies by literal prefix extraction to
   401  //     A(B(C|D)|EF)|BC(X|Y)
   402  // which simplifies by character class introduction to
   403  //     A(B[CD]|EF)|BC[XY]
   404  //
   405  func (p *parser) factor(sub []*Regexp, flags Flags) []*Regexp {
   406  	if len(sub) < 2 {
   407  		return sub
   408  	}
   409  
   410  	// Round 1: Factor out common literal prefixes.
   411  	var str []rune
   412  	var strflags Flags
   413  	start := 0
   414  	out := sub[:0]
   415  	for i := 0; i <= len(sub); i++ {
   416  		// Invariant: the Regexps that were in sub[0:start] have been
   417  		// used or marked for reuse, and the slice space has been reused
   418  		// for out (len(out) <= start).
   419  		//
   420  		// Invariant: sub[start:i] consists of regexps that all begin
   421  		// with str as modified by strflags.
   422  		var istr []rune
   423  		var iflags Flags
   424  		if i < len(sub) {
   425  			istr, iflags = p.leadingString(sub[i])
   426  			if iflags == strflags {
   427  				same := 0
   428  				for same < len(str) && same < len(istr) && str[same] == istr[same] {
   429  					same++
   430  				}
   431  				if same > 0 {
   432  					// Matches at least one rune in current range.
   433  					// Keep going around.
   434  					str = str[:same]
   435  					continue
   436  				}
   437  			}
   438  		}
   439  
   440  		// Found end of a run with common leading literal string:
   441  		// sub[start:i] all begin with str[0:len(str)], but sub[i]
   442  		// does not even begin with str[0].
   443  		//
   444  		// Factor out common string and append factored expression to out.
   445  		if i == start {
   446  			// Nothing to do - run of length 0.
   447  		} else if i == start+1 {
   448  			// Just one: don't bother factoring.
   449  			out = append(out, sub[start])
   450  		} else {
   451  			// Construct factored form: prefix(suffix1|suffix2|...)
   452  			prefix := p.newRegexp(OpLiteral)
   453  			prefix.Flags = strflags
   454  			prefix.Rune = append(prefix.Rune[:0], str...)
   455  
   456  			for j := start; j < i; j++ {
   457  				sub[j] = p.removeLeadingString(sub[j], len(str))
   458  			}
   459  			suffix := p.collapse(sub[start:i], OpAlternate) // recurse
   460  
   461  			re := p.newRegexp(OpConcat)
   462  			re.Sub = append(re.Sub[:0], prefix, suffix)
   463  			out = append(out, re)
   464  		}
   465  
   466  		// Prepare for next iteration.
   467  		start = i
   468  		str = istr
   469  		strflags = iflags
   470  	}
   471  	sub = out
   472  
   473  	// Round 2: Factor out common complex prefixes,
   474  	// just the first piece of each concatenation,
   475  	// whatever it is.  This is good enough a lot of the time.
   476  	start = 0
   477  	out = sub[:0]
   478  	var first *Regexp
   479  	for i := 0; i <= len(sub); i++ {
   480  		// Invariant: the Regexps that were in sub[0:start] have been
   481  		// used or marked for reuse, and the slice space has been reused
   482  		// for out (len(out) <= start).
   483  		//
   484  		// Invariant: sub[start:i] consists of regexps that all begin with ifirst.
   485  		var ifirst *Regexp
   486  		if i < len(sub) {
   487  			ifirst = p.leadingRegexp(sub[i])
   488  			if first != nil && first.Equal(ifirst) {
   489  				continue
   490  			}
   491  		}
   492  
   493  		// Found end of a run with common leading regexp:
   494  		// sub[start:i] all begin with first but sub[i] does not.
   495  		//
   496  		// Factor out common regexp and append factored expression to out.
   497  		if i == start {
   498  			// Nothing to do - run of length 0.
   499  		} else if i == start+1 {
   500  			// Just one: don't bother factoring.
   501  			out = append(out, sub[start])
   502  		} else {
   503  			// Construct factored form: prefix(suffix1|suffix2|...)
   504  			prefix := first
   505  			for j := start; j < i; j++ {
   506  				reuse := j != start // prefix came from sub[start]
   507  				sub[j] = p.removeLeadingRegexp(sub[j], reuse)
   508  			}
   509  			suffix := p.collapse(sub[start:i], OpAlternate) // recurse
   510  
   511  			re := p.newRegexp(OpConcat)
   512  			re.Sub = append(re.Sub[:0], prefix, suffix)
   513  			out = append(out, re)
   514  		}
   515  
   516  		// Prepare for next iteration.
   517  		start = i
   518  		first = ifirst
   519  	}
   520  	sub = out
   521  
   522  	// Round 3: Collapse runs of single literals into character classes.
   523  	start = 0
   524  	out = sub[:0]
   525  	for i := 0; i <= len(sub); i++ {
   526  		// Invariant: the Regexps that were in sub[0:start] have been
   527  		// used or marked for reuse, and the slice space has been reused
   528  		// for out (len(out) <= start).
   529  		//
   530  		// Invariant: sub[start:i] consists of regexps that are either
   531  		// literal runes or character classes.
   532  		if i < len(sub) && isCharClass(sub[i]) {
   533  			continue
   534  		}
   535  
   536  		// sub[i] is not a char or char class;
   537  		// emit char class for sub[start:i]...
   538  		if i == start {
   539  			// Nothing to do - run of length 0.
   540  		} else if i == start+1 {
   541  			out = append(out, sub[start])
   542  		} else {
   543  			// Make new char class.
   544  			// Start with most complex regexp in sub[start].
   545  			max := start
   546  			for j := start + 1; j < i; j++ {
   547  				if sub[max].Op < sub[j].Op || sub[max].Op == sub[j].Op && len(sub[max].Rune) < len(sub[j].Rune) {
   548  					max = j
   549  				}
   550  			}
   551  			sub[start], sub[max] = sub[max], sub[start]
   552  
   553  			for j := start + 1; j < i; j++ {
   554  				mergeCharClass(sub[start], sub[j])
   555  				p.reuse(sub[j])
   556  			}
   557  			cleanAlt(sub[start])
   558  			out = append(out, sub[start])
   559  		}
   560  
   561  		// ... and then emit sub[i].
   562  		if i < len(sub) {
   563  			out = append(out, sub[i])
   564  		}
   565  		start = i + 1
   566  	}
   567  	sub = out
   568  
   569  	// Round 4: Collapse runs of empty matches into a single empty match.
   570  	start = 0
   571  	out = sub[:0]
   572  	for i := range sub {
   573  		if i+1 < len(sub) && sub[i].Op == OpEmptyMatch && sub[i+1].Op == OpEmptyMatch {
   574  			continue
   575  		}
   576  		out = append(out, sub[i])
   577  	}
   578  	sub = out
   579  
   580  	return sub
   581  }
   582  
   583  // leadingString returns the leading literal string that re begins with.
   584  // The string refers to storage in re or its children.
   585  func (p *parser) leadingString(re *Regexp) ([]rune, Flags) {
   586  	if re.Op == OpConcat && len(re.Sub) > 0 {
   587  		re = re.Sub[0]
   588  	}
   589  	if re.Op != OpLiteral {
   590  		return nil, 0
   591  	}
   592  	return re.Rune, re.Flags & FoldCase
   593  }
   594  
   595  // removeLeadingString removes the first n leading runes
   596  // from the beginning of re.  It returns the replacement for re.
   597  func (p *parser) removeLeadingString(re *Regexp, n int) *Regexp {
   598  	if re.Op == OpConcat && len(re.Sub) > 0 {
   599  		// Removing a leading string in a concatenation
   600  		// might simplify the concatenation.
   601  		sub := re.Sub[0]
   602  		sub = p.removeLeadingString(sub, n)
   603  		re.Sub[0] = sub
   604  		if sub.Op == OpEmptyMatch {
   605  			p.reuse(sub)
   606  			switch len(re.Sub) {
   607  			case 0, 1:
   608  				// Impossible but handle.
   609  				re.Op = OpEmptyMatch
   610  				re.Sub = nil
   611  			case 2:
   612  				old := re
   613  				re = re.Sub[1]
   614  				p.reuse(old)
   615  			default:
   616  				copy(re.Sub, re.Sub[1:])
   617  				re.Sub = re.Sub[:len(re.Sub)-1]
   618  			}
   619  		}
   620  		return re
   621  	}
   622  
   623  	if re.Op == OpLiteral {
   624  		re.Rune = re.Rune[:copy(re.Rune, re.Rune[n:])]
   625  		if len(re.Rune) == 0 {
   626  			re.Op = OpEmptyMatch
   627  		}
   628  	}
   629  	return re
   630  }
   631  
   632  // leadingRegexp returns the leading regexp that re begins with.
   633  // The regexp refers to storage in re or its children.
   634  func (p *parser) leadingRegexp(re *Regexp) *Regexp {
   635  	if re.Op == OpEmptyMatch {
   636  		return nil
   637  	}
   638  	if re.Op == OpConcat && len(re.Sub) > 0 {
   639  		sub := re.Sub[0]
   640  		if sub.Op == OpEmptyMatch {
   641  			return nil
   642  		}
   643  		return sub
   644  	}
   645  	return re
   646  }
   647  
   648  // removeLeadingRegexp removes the leading regexp in re.
   649  // It returns the replacement for re.
   650  // If reuse is true, it passes the removed regexp (if no longer needed) to p.reuse.
   651  func (p *parser) removeLeadingRegexp(re *Regexp, reuse bool) *Regexp {
   652  	if re.Op == OpConcat && len(re.Sub) > 0 {
   653  		if reuse {
   654  			p.reuse(re.Sub[0])
   655  		}
   656  		re.Sub = re.Sub[:copy(re.Sub, re.Sub[1:])]
   657  		switch len(re.Sub) {
   658  		case 0:
   659  			re.Op = OpEmptyMatch
   660  			re.Sub = nil
   661  		case 1:
   662  			old := re
   663  			re = re.Sub[0]
   664  			p.reuse(old)
   665  		}
   666  		return re
   667  	}
   668  	if reuse {
   669  		p.reuse(re)
   670  	}
   671  	return p.newRegexp(OpEmptyMatch)
   672  }
   673  
   674  func literalRegexp(s string, flags Flags) *Regexp {
   675  	re := &Regexp{Op: OpLiteral}
   676  	re.Flags = flags
   677  	re.Rune = re.Rune0[:0] // use local storage for small strings
   678  	for _, c := range s {
   679  		if len(re.Rune) >= cap(re.Rune) {
   680  			// string is too long to fit in Rune0.  let Go handle it
   681  			re.Rune = []rune(s)
   682  			break
   683  		}
   684  		re.Rune = append(re.Rune, c)
   685  	}
   686  	return re
   687  }
   688  
   689  // Parsing.
   690  
   691  // Parse parses a regular expression string s, controlled by the specified
   692  // Flags, and returns a regular expression parse tree. The syntax is
   693  // described in the top-level comment.
   694  func Parse(s string, flags Flags) (*Regexp, error) {
   695  	if flags&Literal != 0 {
   696  		// Trivial parser for literal string.
   697  		if err := checkUTF8(s); err != nil {
   698  			return nil, err
   699  		}
   700  		return literalRegexp(s, flags), nil
   701  	}
   702  
   703  	// Otherwise, must do real work.
   704  	var (
   705  		p          parser
   706  		err        error
   707  		c          rune
   708  		op         Op
   709  		lastRepeat string
   710  	)
   711  	p.flags = flags
   712  	p.wholeRegexp = s
   713  	t := s
   714  	for t != "" {
   715  		repeat := ""
   716  	BigSwitch:
   717  		switch t[0] {
   718  		default:
   719  			if c, t, err = nextRune(t); err != nil {
   720  				return nil, err
   721  			}
   722  			p.literal(c)
   723  
   724  		case '(':
   725  			if p.flags&PerlX != 0 && len(t) >= 2 && t[1] == '?' {
   726  				// Flag changes and non-capturing groups.
   727  				if t, err = p.parsePerlFlags(t); err != nil {
   728  					return nil, err
   729  				}
   730  				break
   731  			}
   732  			p.numCap++
   733  			p.op(opLeftParen).Cap = p.numCap
   734  			t = t[1:]
   735  		case '|':
   736  			if err = p.parseVerticalBar(); err != nil {
   737  				return nil, err
   738  			}
   739  			t = t[1:]
   740  		case ')':
   741  			if err = p.parseRightParen(); err != nil {
   742  				return nil, err
   743  			}
   744  			t = t[1:]
   745  		case '^':
   746  			if p.flags&OneLine != 0 {
   747  				p.op(OpBeginText)
   748  			} else {
   749  				p.op(OpBeginLine)
   750  			}
   751  			t = t[1:]
   752  		case '$':
   753  			if p.flags&OneLine != 0 {
   754  				p.op(OpEndText).Flags |= WasDollar
   755  			} else {
   756  				p.op(OpEndLine)
   757  			}
   758  			t = t[1:]
   759  		case '.':
   760  			if p.flags&DotNL != 0 {
   761  				p.op(OpAnyChar)
   762  			} else {
   763  				p.op(OpAnyCharNotNL)
   764  			}
   765  			t = t[1:]
   766  		case '[':
   767  			if t, err = p.parseClass(t); err != nil {
   768  				return nil, err
   769  			}
   770  		case '*', '+', '?':
   771  			before := t
   772  			switch t[0] {
   773  			case '*':
   774  				op = OpStar
   775  			case '+':
   776  				op = OpPlus
   777  			case '?':
   778  				op = OpQuest
   779  			}
   780  			after := t[1:]
   781  			if after, err = p.repeat(op, 0, 0, before, after, lastRepeat); err != nil {
   782  				return nil, err
   783  			}
   784  			repeat = before
   785  			t = after
   786  		case '{':
   787  			op = OpRepeat
   788  			before := t
   789  			min, max, after, ok := p.parseRepeat(t)
   790  			if !ok {
   791  				// If the repeat cannot be parsed, { is a literal.
   792  				p.literal('{')
   793  				t = t[1:]
   794  				break
   795  			}
   796  			if min < 0 || min > 1000 || max > 1000 || max >= 0 && min > max {
   797  				// Numbers were too big, or max is present and min > max.
   798  				return nil, &Error{ErrInvalidRepeatSize, before[:len(before)-len(after)]}
   799  			}
   800  			if after, err = p.repeat(op, min, max, before, after, lastRepeat); err != nil {
   801  				return nil, err
   802  			}
   803  			repeat = before
   804  			t = after
   805  		case '\\':
   806  			if p.flags&PerlX != 0 && len(t) >= 2 {
   807  				switch t[1] {
   808  				case 'A':
   809  					p.op(OpBeginText)
   810  					t = t[2:]
   811  					break BigSwitch
   812  				case 'b':
   813  					p.op(OpWordBoundary)
   814  					t = t[2:]
   815  					break BigSwitch
   816  				case 'B':
   817  					p.op(OpNoWordBoundary)
   818  					t = t[2:]
   819  					break BigSwitch
   820  				case 'C':
   821  					// any byte; not supported
   822  					return nil, &Error{ErrInvalidEscape, t[:2]}
   823  				case 'Q':
   824  					// \Q ... \E: the ... is always literals
   825  					var lit string
   826  					if i := strings.Index(t, `\E`); i < 0 {
   827  						lit = t[2:]
   828  						t = ""
   829  					} else {
   830  						lit = t[2:i]
   831  						t = t[i+2:]
   832  					}
   833  					p.push(literalRegexp(lit, p.flags))
   834  					break BigSwitch
   835  				case 'z':
   836  					p.op(OpEndText)
   837  					t = t[2:]
   838  					break BigSwitch
   839  				}
   840  			}
   841  
   842  			re := p.newRegexp(OpCharClass)
   843  			re.Flags = p.flags
   844  
   845  			// Look for Unicode character group like \p{Han}
   846  			if len(t) >= 2 && (t[1] == 'p' || t[1] == 'P') {
   847  				r, rest, err := p.parseUnicodeClass(t, re.Rune0[:0])
   848  				if err != nil {
   849  					return nil, err
   850  				}
   851  				if r != nil {
   852  					re.Rune = r
   853  					t = rest
   854  					p.push(re)
   855  					break BigSwitch
   856  				}
   857  			}
   858  
   859  			// Perl character class escape.
   860  			if r, rest := p.parsePerlClassEscape(t, re.Rune0[:0]); r != nil {
   861  				re.Rune = r
   862  				t = rest
   863  				p.push(re)
   864  				break BigSwitch
   865  			}
   866  			p.reuse(re)
   867  
   868  			// Ordinary single-character escape.
   869  			if c, t, err = p.parseEscape(t); err != nil {
   870  				return nil, err
   871  			}
   872  			p.literal(c)
   873  		}
   874  		lastRepeat = repeat
   875  	}
   876  
   877  	p.concat()
   878  	if p.swapVerticalBar() {
   879  		// pop vertical bar
   880  		p.stack = p.stack[:len(p.stack)-1]
   881  	}
   882  	p.alternate()
   883  
   884  	n := len(p.stack)
   885  	if n != 1 {
   886  		return nil, &Error{ErrMissingParen, s}
   887  	}
   888  	return p.stack[0], nil
   889  }
   890  
   891  // parseRepeat parses {min} (max=min) or {min,} (max=-1) or {min,max}.
   892  // If s is not of that form, it returns ok == false.
   893  // If s has the right form but the values are too big, it returns min == -1, ok == true.
   894  func (p *parser) parseRepeat(s string) (min, max int, rest string, ok bool) {
   895  	if s == "" || s[0] != '{' {
   896  		return
   897  	}
   898  	s = s[1:]
   899  	var ok1 bool
   900  	if min, s, ok1 = p.parseInt(s); !ok1 {
   901  		return
   902  	}
   903  	if s == "" {
   904  		return
   905  	}
   906  	if s[0] != ',' {
   907  		max = min
   908  	} else {
   909  		s = s[1:]
   910  		if s == "" {
   911  			return
   912  		}
   913  		if s[0] == '}' {
   914  			max = -1
   915  		} else if max, s, ok1 = p.parseInt(s); !ok1 {
   916  			return
   917  		} else if max < 0 {
   918  			// parseInt found too big a number
   919  			min = -1
   920  		}
   921  	}
   922  	if s == "" || s[0] != '}' {
   923  		return
   924  	}
   925  	rest = s[1:]
   926  	ok = true
   927  	return
   928  }
   929  
   930  // parsePerlFlags parses a Perl flag setting or non-capturing group or both,
   931  // like (?i) or (?: or (?i:.  It removes the prefix from s and updates the parse state.
   932  // The caller must have ensured that s begins with "(?".
   933  func (p *parser) parsePerlFlags(s string) (rest string, err error) {
   934  	t := s
   935  
   936  	// Check for named captures, first introduced in Python's regexp library.
   937  	// As usual, there are three slightly different syntaxes:
   938  	//
   939  	//   (?P<name>expr)   the original, introduced by Python
   940  	//   (?<name>expr)    the .NET alteration, adopted by Perl 5.10
   941  	//   (?'name'expr)    another .NET alteration, adopted by Perl 5.10
   942  	//
   943  	// Perl 5.10 gave in and implemented the Python version too,
   944  	// but they claim that the last two are the preferred forms.
   945  	// PCRE and languages based on it (specifically, PHP and Ruby)
   946  	// support all three as well.  EcmaScript 4 uses only the Python form.
   947  	//
   948  	// In both the open source world (via Code Search) and the
   949  	// Google source tree, (?P<expr>name) is the dominant form,
   950  	// so that's the one we implement.  One is enough.
   951  	if len(t) > 4 && t[2] == 'P' && t[3] == '<' {
   952  		// Pull out name.
   953  		end := strings.IndexRune(t, '>')
   954  		if end < 0 {
   955  			if err = checkUTF8(t); err != nil {
   956  				return "", err
   957  			}
   958  			return "", &Error{ErrInvalidNamedCapture, s}
   959  		}
   960  
   961  		capture := t[:end+1] // "(?P<name>"
   962  		name := t[4:end]     // "name"
   963  		if err = checkUTF8(name); err != nil {
   964  			return "", err
   965  		}
   966  		if !isValidCaptureName(name) {
   967  			return "", &Error{ErrInvalidNamedCapture, capture}
   968  		}
   969  
   970  		// Like ordinary capture, but named.
   971  		p.numCap++
   972  		re := p.op(opLeftParen)
   973  		re.Cap = p.numCap
   974  		re.Name = name
   975  		return t[end+1:], nil
   976  	}
   977  
   978  	// Non-capturing group.  Might also twiddle Perl flags.
   979  	var c rune
   980  	t = t[2:] // skip (?
   981  	flags := p.flags
   982  	sign := +1
   983  	sawFlag := false
   984  Loop:
   985  	for t != "" {
   986  		if c, t, err = nextRune(t); err != nil {
   987  			return "", err
   988  		}
   989  		switch c {
   990  		default:
   991  			break Loop
   992  
   993  		// Flags.
   994  		case 'i':
   995  			flags |= FoldCase
   996  			sawFlag = true
   997  		case 'm':
   998  			flags &^= OneLine
   999  			sawFlag = true
  1000  		case 's':
  1001  			flags |= DotNL
  1002  			sawFlag = true
  1003  		case 'U':
  1004  			flags |= NonGreedy
  1005  			sawFlag = true
  1006  
  1007  		// Switch to negation.
  1008  		case '-':
  1009  			if sign < 0 {
  1010  				break Loop
  1011  			}
  1012  			sign = -1
  1013  			// Invert flags so that | above turn into &^ and vice versa.
  1014  			// We'll invert flags again before using it below.
  1015  			flags = ^flags
  1016  			sawFlag = false
  1017  
  1018  		// End of flags, starting group or not.
  1019  		case ':', ')':
  1020  			if sign < 0 {
  1021  				if !sawFlag {
  1022  					break Loop
  1023  				}
  1024  				flags = ^flags
  1025  			}
  1026  			if c == ':' {
  1027  				// Open new group
  1028  				p.op(opLeftParen)
  1029  			}
  1030  			p.flags = flags
  1031  			return t, nil
  1032  		}
  1033  	}
  1034  
  1035  	return "", &Error{ErrInvalidPerlOp, s[:len(s)-len(t)]}
  1036  }
  1037  
  1038  // isValidCaptureName reports whether name
  1039  // is a valid capture name: [A-Za-z0-9_]+.
  1040  // PCRE limits names to 32 bytes.
  1041  // Python rejects names starting with digits.
  1042  // We don't enforce either of those.
  1043  func isValidCaptureName(name string) bool {
  1044  	if name == "" {
  1045  		return false
  1046  	}
  1047  	for _, c := range name {
  1048  		if c != '_' && !isalnum(c) {
  1049  			return false
  1050  		}
  1051  	}
  1052  	return true
  1053  }
  1054  
  1055  // parseInt parses a decimal integer.
  1056  func (p *parser) parseInt(s string) (n int, rest string, ok bool) {
  1057  	if s == "" || s[0] < '0' || '9' < s[0] {
  1058  		return
  1059  	}
  1060  	// Disallow leading zeros.
  1061  	if len(s) >= 2 && s[0] == '0' && '0' <= s[1] && s[1] <= '9' {
  1062  		return
  1063  	}
  1064  	t := s
  1065  	for s != "" && '0' <= s[0] && s[0] <= '9' {
  1066  		s = s[1:]
  1067  	}
  1068  	rest = s
  1069  	ok = true
  1070  	// Have digits, compute value.
  1071  	t = t[:len(t)-len(s)]
  1072  	for i := 0; i < len(t); i++ {
  1073  		// Avoid overflow.
  1074  		if n >= 1e8 {
  1075  			n = -1
  1076  			break
  1077  		}
  1078  		n = n*10 + int(t[i]) - '0'
  1079  	}
  1080  	return
  1081  }
  1082  
  1083  // can this be represented as a character class?
  1084  // single-rune literal string, char class, ., and .|\n.
  1085  func isCharClass(re *Regexp) bool {
  1086  	return re.Op == OpLiteral && len(re.Rune) == 1 ||
  1087  		re.Op == OpCharClass ||
  1088  		re.Op == OpAnyCharNotNL ||
  1089  		re.Op == OpAnyChar
  1090  }
  1091  
  1092  // does re match r?
  1093  func matchRune(re *Regexp, r rune) bool {
  1094  	switch re.Op {
  1095  	case OpLiteral:
  1096  		return len(re.Rune) == 1 && re.Rune[0] == r
  1097  	case OpCharClass:
  1098  		for i := 0; i < len(re.Rune); i += 2 {
  1099  			if re.Rune[i] <= r && r <= re.Rune[i+1] {
  1100  				return true
  1101  			}
  1102  		}
  1103  		return false
  1104  	case OpAnyCharNotNL:
  1105  		return r != '\n'
  1106  	case OpAnyChar:
  1107  		return true
  1108  	}
  1109  	return false
  1110  }
  1111  
  1112  // parseVerticalBar handles a | in the input.
  1113  func (p *parser) parseVerticalBar() error {
  1114  	p.concat()
  1115  
  1116  	// The concatenation we just parsed is on top of the stack.
  1117  	// If it sits above an opVerticalBar, swap it below
  1118  	// (things below an opVerticalBar become an alternation).
  1119  	// Otherwise, push a new vertical bar.
  1120  	if !p.swapVerticalBar() {
  1121  		p.op(opVerticalBar)
  1122  	}
  1123  
  1124  	return nil
  1125  }
  1126  
  1127  // mergeCharClass makes dst = dst|src.
  1128  // The caller must ensure that dst.Op >= src.Op,
  1129  // to reduce the amount of copying.
  1130  func mergeCharClass(dst, src *Regexp) {
  1131  	switch dst.Op {
  1132  	case OpAnyChar:
  1133  		// src doesn't add anything.
  1134  	case OpAnyCharNotNL:
  1135  		// src might add \n
  1136  		if matchRune(src, '\n') {
  1137  			dst.Op = OpAnyChar
  1138  		}
  1139  	case OpCharClass:
  1140  		// src is simpler, so either literal or char class
  1141  		if src.Op == OpLiteral {
  1142  			dst.Rune = appendLiteral(dst.Rune, src.Rune[0], src.Flags)
  1143  		} else {
  1144  			dst.Rune = appendClass(dst.Rune, src.Rune)
  1145  		}
  1146  	case OpLiteral:
  1147  		// both literal
  1148  		if src.Rune[0] == dst.Rune[0] && src.Flags == dst.Flags {
  1149  			break
  1150  		}
  1151  		dst.Op = OpCharClass
  1152  		dst.Rune = appendLiteral(dst.Rune[:0], dst.Rune[0], dst.Flags)
  1153  		dst.Rune = appendLiteral(dst.Rune, src.Rune[0], src.Flags)
  1154  	}
  1155  }
  1156  
  1157  // If the top of the stack is an element followed by an opVerticalBar
  1158  // swapVerticalBar swaps the two and returns true.
  1159  // Otherwise it returns false.
  1160  func (p *parser) swapVerticalBar() bool {
  1161  	// If above and below vertical bar are literal or char class,
  1162  	// can merge into a single char class.
  1163  	n := len(p.stack)
  1164  	if n >= 3 && p.stack[n-2].Op == opVerticalBar && isCharClass(p.stack[n-1]) && isCharClass(p.stack[n-3]) {
  1165  		re1 := p.stack[n-1]
  1166  		re3 := p.stack[n-3]
  1167  		// Make re3 the more complex of the two.
  1168  		if re1.Op > re3.Op {
  1169  			re1, re3 = re3, re1
  1170  			p.stack[n-3] = re3
  1171  		}
  1172  		mergeCharClass(re3, re1)
  1173  		p.reuse(re1)
  1174  		p.stack = p.stack[:n-1]
  1175  		return true
  1176  	}
  1177  
  1178  	if n >= 2 {
  1179  		re1 := p.stack[n-1]
  1180  		re2 := p.stack[n-2]
  1181  		if re2.Op == opVerticalBar {
  1182  			if n >= 3 {
  1183  				// Now out of reach.
  1184  				// Clean opportunistically.
  1185  				cleanAlt(p.stack[n-3])
  1186  			}
  1187  			p.stack[n-2] = re1
  1188  			p.stack[n-1] = re2
  1189  			return true
  1190  		}
  1191  	}
  1192  	return false
  1193  }
  1194  
  1195  // parseRightParen handles a ) in the input.
  1196  func (p *parser) parseRightParen() error {
  1197  	p.concat()
  1198  	if p.swapVerticalBar() {
  1199  		// pop vertical bar
  1200  		p.stack = p.stack[:len(p.stack)-1]
  1201  	}
  1202  	p.alternate()
  1203  
  1204  	n := len(p.stack)
  1205  	if n < 2 {
  1206  		return &Error{ErrUnexpectedParen, p.wholeRegexp}
  1207  	}
  1208  	re1 := p.stack[n-1]
  1209  	re2 := p.stack[n-2]
  1210  	p.stack = p.stack[:n-2]
  1211  	if re2.Op != opLeftParen {
  1212  		return &Error{ErrUnexpectedParen, p.wholeRegexp}
  1213  	}
  1214  	// Restore flags at time of paren.
  1215  	p.flags = re2.Flags
  1216  	if re2.Cap == 0 {
  1217  		// Just for grouping.
  1218  		p.push(re1)
  1219  	} else {
  1220  		re2.Op = OpCapture
  1221  		re2.Sub = re2.Sub0[:1]
  1222  		re2.Sub[0] = re1
  1223  		p.push(re2)
  1224  	}
  1225  	return nil
  1226  }
  1227  
  1228  // parseEscape parses an escape sequence at the beginning of s
  1229  // and returns the rune.
  1230  func (p *parser) parseEscape(s string) (r rune, rest string, err error) {
  1231  	t := s[1:]
  1232  	if t == "" {
  1233  		return 0, "", &Error{ErrTrailingBackslash, ""}
  1234  	}
  1235  	c, t, err := nextRune(t)
  1236  	if err != nil {
  1237  		return 0, "", err
  1238  	}
  1239  
  1240  Switch:
  1241  	switch c {
  1242  	default:
  1243  		if c < utf8.RuneSelf && !isalnum(c) {
  1244  			// Escaped non-word characters are always themselves.
  1245  			// PCRE is not quite so rigorous: it accepts things like
  1246  			// \q, but we don't.  We once rejected \_, but too many
  1247  			// programs and people insist on using it, so allow \_.
  1248  			return c, t, nil
  1249  		}
  1250  
  1251  	// Octal escapes.
  1252  	case '1', '2', '3', '4', '5', '6', '7':
  1253  		// Single non-zero digit is a backreference; not supported
  1254  		if t == "" || t[0] < '0' || t[0] > '7' {
  1255  			break
  1256  		}
  1257  		fallthrough
  1258  	case '0':
  1259  		// Consume up to three octal digits; already have one.
  1260  		r = c - '0'
  1261  		for i := 1; i < 3; i++ {
  1262  			if t == "" || t[0] < '0' || t[0] > '7' {
  1263  				break
  1264  			}
  1265  			r = r*8 + rune(t[0]) - '0'
  1266  			t = t[1:]
  1267  		}
  1268  		return r, t, nil
  1269  
  1270  	// Hexadecimal escapes.
  1271  	case 'x':
  1272  		if t == "" {
  1273  			break
  1274  		}
  1275  		if c, t, err = nextRune(t); err != nil {
  1276  			return 0, "", err
  1277  		}
  1278  		if c == '{' {
  1279  			// Any number of digits in braces.
  1280  			// Perl accepts any text at all; it ignores all text
  1281  			// after the first non-hex digit.  We require only hex digits,
  1282  			// and at least one.
  1283  			nhex := 0
  1284  			r = 0
  1285  			for {
  1286  				if t == "" {
  1287  					break Switch
  1288  				}
  1289  				if c, t, err = nextRune(t); err != nil {
  1290  					return 0, "", err
  1291  				}
  1292  				if c == '}' {
  1293  					break
  1294  				}
  1295  				v := unhex(c)
  1296  				if v < 0 {
  1297  					break Switch
  1298  				}
  1299  				r = r*16 + v
  1300  				if r > unicode.MaxRune {
  1301  					break Switch
  1302  				}
  1303  				nhex++
  1304  			}
  1305  			if nhex == 0 {
  1306  				break Switch
  1307  			}
  1308  			return r, t, nil
  1309  		}
  1310  
  1311  		// Easy case: two hex digits.
  1312  		x := unhex(c)
  1313  		if c, t, err = nextRune(t); err != nil {
  1314  			return 0, "", err
  1315  		}
  1316  		y := unhex(c)
  1317  		if x < 0 || y < 0 {
  1318  			break
  1319  		}
  1320  		return x*16 + y, t, nil
  1321  
  1322  	// C escapes.  There is no case 'b', to avoid misparsing
  1323  	// the Perl word-boundary \b as the C backspace \b
  1324  	// when in POSIX mode.  In Perl, /\b/ means word-boundary
  1325  	// but /[\b]/ means backspace.  We don't support that.
  1326  	// If you want a backspace, embed a literal backspace
  1327  	// character or use \x08.
  1328  	case 'a':
  1329  		return '\a', t, err
  1330  	case 'f':
  1331  		return '\f', t, err
  1332  	case 'n':
  1333  		return '\n', t, err
  1334  	case 'r':
  1335  		return '\r', t, err
  1336  	case 't':
  1337  		return '\t', t, err
  1338  	case 'v':
  1339  		return '\v', t, err
  1340  	}
  1341  	return 0, "", &Error{ErrInvalidEscape, s[:len(s)-len(t)]}
  1342  }
  1343  
  1344  // parseClassChar parses a character class character at the beginning of s
  1345  // and returns it.
  1346  func (p *parser) parseClassChar(s, wholeClass string) (r rune, rest string, err error) {
  1347  	if s == "" {
  1348  		return 0, "", &Error{Code: ErrMissingBracket, Expr: wholeClass}
  1349  	}
  1350  
  1351  	// Allow regular escape sequences even though
  1352  	// many need not be escaped in this context.
  1353  	if s[0] == '\\' {
  1354  		return p.parseEscape(s)
  1355  	}
  1356  
  1357  	return nextRune(s)
  1358  }
  1359  
  1360  type charGroup struct {
  1361  	sign  int
  1362  	class []rune
  1363  }
  1364  
  1365  // parsePerlClassEscape parses a leading Perl character class escape like \d
  1366  // from the beginning of s.  If one is present, it appends the characters to r
  1367  // and returns the new slice r and the remainder of the string.
  1368  func (p *parser) parsePerlClassEscape(s string, r []rune) (out []rune, rest string) {
  1369  	if p.flags&PerlX == 0 || len(s) < 2 || s[0] != '\\' {
  1370  		return
  1371  	}
  1372  	g := perlGroup[s[0:2]]
  1373  	if g.sign == 0 {
  1374  		return
  1375  	}
  1376  	return p.appendGroup(r, g), s[2:]
  1377  }
  1378  
  1379  // parseNamedClass parses a leading POSIX named character class like [:alnum:]
  1380  // from the beginning of s.  If one is present, it appends the characters to r
  1381  // and returns the new slice r and the remainder of the string.
  1382  func (p *parser) parseNamedClass(s string, r []rune) (out []rune, rest string, err error) {
  1383  	if len(s) < 2 || s[0] != '[' || s[1] != ':' {
  1384  		return
  1385  	}
  1386  
  1387  	i := strings.Index(s[2:], ":]")
  1388  	if i < 0 {
  1389  		return
  1390  	}
  1391  	i += 2
  1392  	name, s := s[0:i+2], s[i+2:]
  1393  	g := posixGroup[name]
  1394  	if g.sign == 0 {
  1395  		return nil, "", &Error{ErrInvalidCharRange, name}
  1396  	}
  1397  	return p.appendGroup(r, g), s, nil
  1398  }
  1399  
  1400  func (p *parser) appendGroup(r []rune, g charGroup) []rune {
  1401  	if p.flags&FoldCase == 0 {
  1402  		if g.sign < 0 {
  1403  			r = appendNegatedClass(r, g.class)
  1404  		} else {
  1405  			r = appendClass(r, g.class)
  1406  		}
  1407  	} else {
  1408  		tmp := p.tmpClass[:0]
  1409  		tmp = appendFoldedClass(tmp, g.class)
  1410  		p.tmpClass = tmp
  1411  		tmp = cleanClass(&p.tmpClass)
  1412  		if g.sign < 0 {
  1413  			r = appendNegatedClass(r, tmp)
  1414  		} else {
  1415  			r = appendClass(r, tmp)
  1416  		}
  1417  	}
  1418  	return r
  1419  }
  1420  
  1421  var anyTable = &unicode.RangeTable{
  1422  	R16: []unicode.Range16{{Lo: 0, Hi: 1<<16 - 1, Stride: 1}},
  1423  	R32: []unicode.Range32{{Lo: 1 << 16, Hi: unicode.MaxRune, Stride: 1}},
  1424  }
  1425  
  1426  // unicodeTable returns the unicode.RangeTable identified by name
  1427  // and the table of additional fold-equivalent code points.
  1428  func unicodeTable(name string) (*unicode.RangeTable, *unicode.RangeTable) {
  1429  	// Special case: "Any" means any.
  1430  	if name == "Any" {
  1431  		return anyTable, anyTable
  1432  	}
  1433  	if t := unicode.Categories[name]; t != nil {
  1434  		return t, unicode.FoldCategory[name]
  1435  	}
  1436  	if t := unicode.Scripts[name]; t != nil {
  1437  		return t, unicode.FoldScript[name]
  1438  	}
  1439  	return nil, nil
  1440  }
  1441  
  1442  // parseUnicodeClass parses a leading Unicode character class like \p{Han}
  1443  // from the beginning of s.  If one is present, it appends the characters to r
  1444  // and returns the new slice r and the remainder of the string.
  1445  func (p *parser) parseUnicodeClass(s string, r []rune) (out []rune, rest string, err error) {
  1446  	if p.flags&UnicodeGroups == 0 || len(s) < 2 || s[0] != '\\' || s[1] != 'p' && s[1] != 'P' {
  1447  		return
  1448  	}
  1449  
  1450  	// Committed to parse or return error.
  1451  	sign := +1
  1452  	if s[1] == 'P' {
  1453  		sign = -1
  1454  	}
  1455  	t := s[2:]
  1456  	c, t, err := nextRune(t)
  1457  	if err != nil {
  1458  		return
  1459  	}
  1460  	var seq, name string
  1461  	if c != '{' {
  1462  		// Single-letter name.
  1463  		seq = s[:len(s)-len(t)]
  1464  		name = seq[2:]
  1465  	} else {
  1466  		// Name is in braces.
  1467  		end := strings.IndexRune(s, '}')
  1468  		if end < 0 {
  1469  			if err = checkUTF8(s); err != nil {
  1470  				return
  1471  			}
  1472  			return nil, "", &Error{ErrInvalidCharRange, s}
  1473  		}
  1474  		seq, t = s[:end+1], s[end+1:]
  1475  		name = s[3:end]
  1476  		if err = checkUTF8(name); err != nil {
  1477  			return
  1478  		}
  1479  	}
  1480  
  1481  	// Group can have leading negation too.  \p{^Han} == \P{Han}, \P{^Han} == \p{Han}.
  1482  	if name != "" && name[0] == '^' {
  1483  		sign = -sign
  1484  		name = name[1:]
  1485  	}
  1486  
  1487  	tab, fold := unicodeTable(name)
  1488  	if tab == nil {
  1489  		return nil, "", &Error{ErrInvalidCharRange, seq}
  1490  	}
  1491  
  1492  	if p.flags&FoldCase == 0 || fold == nil {
  1493  		if sign > 0 {
  1494  			r = appendTable(r, tab)
  1495  		} else {
  1496  			r = appendNegatedTable(r, tab)
  1497  		}
  1498  	} else {
  1499  		// Merge and clean tab and fold in a temporary buffer.
  1500  		// This is necessary for the negative case and just tidy
  1501  		// for the positive case.
  1502  		tmp := p.tmpClass[:0]
  1503  		tmp = appendTable(tmp, tab)
  1504  		tmp = appendTable(tmp, fold)
  1505  		p.tmpClass = tmp
  1506  		tmp = cleanClass(&p.tmpClass)
  1507  		if sign > 0 {
  1508  			r = appendClass(r, tmp)
  1509  		} else {
  1510  			r = appendNegatedClass(r, tmp)
  1511  		}
  1512  	}
  1513  	return r, t, nil
  1514  }
  1515  
  1516  // parseClass parses a character class at the beginning of s
  1517  // and pushes it onto the parse stack.
  1518  func (p *parser) parseClass(s string) (rest string, err error) {
  1519  	t := s[1:] // chop [
  1520  	re := p.newRegexp(OpCharClass)
  1521  	re.Flags = p.flags
  1522  	re.Rune = re.Rune0[:0]
  1523  
  1524  	sign := +1
  1525  	if t != "" && t[0] == '^' {
  1526  		sign = -1
  1527  		t = t[1:]
  1528  
  1529  		// If character class does not match \n, add it here,
  1530  		// so that negation later will do the right thing.
  1531  		if p.flags&ClassNL == 0 {
  1532  			re.Rune = append(re.Rune, '\n', '\n')
  1533  		}
  1534  	}
  1535  
  1536  	class := re.Rune
  1537  	first := true // ] and - are okay as first char in class
  1538  	for t == "" || t[0] != ']' || first {
  1539  		// POSIX: - is only okay unescaped as first or last in class.
  1540  		// Perl: - is okay anywhere.
  1541  		if t != "" && t[0] == '-' && p.flags&PerlX == 0 && !first && (len(t) == 1 || t[1] != ']') {
  1542  			_, size := utf8.DecodeRuneInString(t[1:])
  1543  			return "", &Error{Code: ErrInvalidCharRange, Expr: t[:1+size]}
  1544  		}
  1545  		first = false
  1546  
  1547  		// Look for POSIX [:alnum:] etc.
  1548  		if len(t) > 2 && t[0] == '[' && t[1] == ':' {
  1549  			nclass, nt, err := p.parseNamedClass(t, class)
  1550  			if err != nil {
  1551  				return "", err
  1552  			}
  1553  			if nclass != nil {
  1554  				class, t = nclass, nt
  1555  				continue
  1556  			}
  1557  		}
  1558  
  1559  		// Look for Unicode character group like \p{Han}.
  1560  		nclass, nt, err := p.parseUnicodeClass(t, class)
  1561  		if err != nil {
  1562  			return "", err
  1563  		}
  1564  		if nclass != nil {
  1565  			class, t = nclass, nt
  1566  			continue
  1567  		}
  1568  
  1569  		// Look for Perl character class symbols (extension).
  1570  		if nclass, nt := p.parsePerlClassEscape(t, class); nclass != nil {
  1571  			class, t = nclass, nt
  1572  			continue
  1573  		}
  1574  
  1575  		// Single character or simple range.
  1576  		rng := t
  1577  		var lo, hi rune
  1578  		if lo, t, err = p.parseClassChar(t, s); err != nil {
  1579  			return "", err
  1580  		}
  1581  		hi = lo
  1582  		// [a-] means (a|-) so check for final ].
  1583  		if len(t) >= 2 && t[0] == '-' && t[1] != ']' {
  1584  			t = t[1:]
  1585  			if hi, t, err = p.parseClassChar(t, s); err != nil {
  1586  				return "", err
  1587  			}
  1588  			if hi < lo {
  1589  				rng = rng[:len(rng)-len(t)]
  1590  				return "", &Error{Code: ErrInvalidCharRange, Expr: rng}
  1591  			}
  1592  		}
  1593  		if p.flags&FoldCase == 0 {
  1594  			class = appendRange(class, lo, hi)
  1595  		} else {
  1596  			class = appendFoldedRange(class, lo, hi)
  1597  		}
  1598  	}
  1599  	t = t[1:] // chop ]
  1600  
  1601  	// Use &re.Rune instead of &class to avoid allocation.
  1602  	re.Rune = class
  1603  	class = cleanClass(&re.Rune)
  1604  	if sign < 0 {
  1605  		class = negateClass(class)
  1606  	}
  1607  	re.Rune = class
  1608  	p.push(re)
  1609  	return t, nil
  1610  }
  1611  
  1612  // cleanClass sorts the ranges (pairs of elements of r),
  1613  // merges them, and eliminates duplicates.
  1614  func cleanClass(rp *[]rune) []rune {
  1615  
  1616  	// Sort by lo increasing, hi decreasing to break ties.
  1617  	sort.Sort(ranges{rp})
  1618  
  1619  	r := *rp
  1620  	if len(r) < 2 {
  1621  		return r
  1622  	}
  1623  
  1624  	// Merge abutting, overlapping.
  1625  	w := 2 // write index
  1626  	for i := 2; i < len(r); i += 2 {
  1627  		lo, hi := r[i], r[i+1]
  1628  		if lo <= r[w-1]+1 {
  1629  			// merge with previous range
  1630  			if hi > r[w-1] {
  1631  				r[w-1] = hi
  1632  			}
  1633  			continue
  1634  		}
  1635  		// new disjoint range
  1636  		r[w] = lo
  1637  		r[w+1] = hi
  1638  		w += 2
  1639  	}
  1640  
  1641  	return r[:w]
  1642  }
  1643  
  1644  // appendLiteral returns the result of appending the literal x to the class r.
  1645  func appendLiteral(r []rune, x rune, flags Flags) []rune {
  1646  	if flags&FoldCase != 0 {
  1647  		return appendFoldedRange(r, x, x)
  1648  	}
  1649  	return appendRange(r, x, x)
  1650  }
  1651  
  1652  // appendRange returns the result of appending the range lo-hi to the class r.
  1653  func appendRange(r []rune, lo, hi rune) []rune {
  1654  	// Expand last range or next to last range if it overlaps or abuts.
  1655  	// Checking two ranges helps when appending case-folded
  1656  	// alphabets, so that one range can be expanding A-Z and the
  1657  	// other expanding a-z.
  1658  	n := len(r)
  1659  	for i := 2; i <= 4; i += 2 { // twice, using i=2, i=4
  1660  		if n >= i {
  1661  			rlo, rhi := r[n-i], r[n-i+1]
  1662  			if lo <= rhi+1 && rlo <= hi+1 {
  1663  				if lo < rlo {
  1664  					r[n-i] = lo
  1665  				}
  1666  				if hi > rhi {
  1667  					r[n-i+1] = hi
  1668  				}
  1669  				return r
  1670  			}
  1671  		}
  1672  	}
  1673  
  1674  	return append(r, lo, hi)
  1675  }
  1676  
  1677  const (
  1678  	// minimum and maximum runes involved in folding.
  1679  	// checked during test.
  1680  	minFold = 0x0041
  1681  	maxFold = 0x118df
  1682  )
  1683  
  1684  // appendFoldedRange returns the result of appending the range lo-hi
  1685  // and its case folding-equivalent runes to the class r.
  1686  func appendFoldedRange(r []rune, lo, hi rune) []rune {
  1687  	// Optimizations.
  1688  	if lo <= minFold && hi >= maxFold {
  1689  		// Range is full: folding can't add more.
  1690  		return appendRange(r, lo, hi)
  1691  	}
  1692  	if hi < minFold || lo > maxFold {
  1693  		// Range is outside folding possibilities.
  1694  		return appendRange(r, lo, hi)
  1695  	}
  1696  	if lo < minFold {
  1697  		// [lo, minFold-1] needs no folding.
  1698  		r = appendRange(r, lo, minFold-1)
  1699  		lo = minFold
  1700  	}
  1701  	if hi > maxFold {
  1702  		// [maxFold+1, hi] needs no folding.
  1703  		r = appendRange(r, maxFold+1, hi)
  1704  		hi = maxFold
  1705  	}
  1706  
  1707  	// Brute force.  Depend on appendRange to coalesce ranges on the fly.
  1708  	for c := lo; c <= hi; c++ {
  1709  		r = appendRange(r, c, c)
  1710  		f := unicode.SimpleFold(c)
  1711  		for f != c {
  1712  			r = appendRange(r, f, f)
  1713  			f = unicode.SimpleFold(f)
  1714  		}
  1715  	}
  1716  	return r
  1717  }
  1718  
  1719  // appendClass returns the result of appending the class x to the class r.
  1720  // It assume x is clean.
  1721  func appendClass(r []rune, x []rune) []rune {
  1722  	for i := 0; i < len(x); i += 2 {
  1723  		r = appendRange(r, x[i], x[i+1])
  1724  	}
  1725  	return r
  1726  }
  1727  
  1728  // appendFolded returns the result of appending the case folding of the class x to the class r.
  1729  func appendFoldedClass(r []rune, x []rune) []rune {
  1730  	for i := 0; i < len(x); i += 2 {
  1731  		r = appendFoldedRange(r, x[i], x[i+1])
  1732  	}
  1733  	return r
  1734  }
  1735  
  1736  // appendNegatedClass returns the result of appending the negation of the class x to the class r.
  1737  // It assumes x is clean.
  1738  func appendNegatedClass(r []rune, x []rune) []rune {
  1739  	nextLo := '\u0000'
  1740  	for i := 0; i < len(x); i += 2 {
  1741  		lo, hi := x[i], x[i+1]
  1742  		if nextLo <= lo-1 {
  1743  			r = appendRange(r, nextLo, lo-1)
  1744  		}
  1745  		nextLo = hi + 1
  1746  	}
  1747  	if nextLo <= unicode.MaxRune {
  1748  		r = appendRange(r, nextLo, unicode.MaxRune)
  1749  	}
  1750  	return r
  1751  }
  1752  
  1753  // appendTable returns the result of appending x to the class r.
  1754  func appendTable(r []rune, x *unicode.RangeTable) []rune {
  1755  	for _, xr := range x.R16 {
  1756  		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
  1757  		if stride == 1 {
  1758  			r = appendRange(r, lo, hi)
  1759  			continue
  1760  		}
  1761  		for c := lo; c <= hi; c += stride {
  1762  			r = appendRange(r, c, c)
  1763  		}
  1764  	}
  1765  	for _, xr := range x.R32 {
  1766  		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
  1767  		if stride == 1 {
  1768  			r = appendRange(r, lo, hi)
  1769  			continue
  1770  		}
  1771  		for c := lo; c <= hi; c += stride {
  1772  			r = appendRange(r, c, c)
  1773  		}
  1774  	}
  1775  	return r
  1776  }
  1777  
  1778  // appendNegatedTable returns the result of appending the negation of x to the class r.
  1779  func appendNegatedTable(r []rune, x *unicode.RangeTable) []rune {
  1780  	nextLo := '\u0000' // lo end of next class to add
  1781  	for _, xr := range x.R16 {
  1782  		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
  1783  		if stride == 1 {
  1784  			if nextLo <= lo-1 {
  1785  				r = appendRange(r, nextLo, lo-1)
  1786  			}
  1787  			nextLo = hi + 1
  1788  			continue
  1789  		}
  1790  		for c := lo; c <= hi; c += stride {
  1791  			if nextLo <= c-1 {
  1792  				r = appendRange(r, nextLo, c-1)
  1793  			}
  1794  			nextLo = c + 1
  1795  		}
  1796  	}
  1797  	for _, xr := range x.R32 {
  1798  		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
  1799  		if stride == 1 {
  1800  			if nextLo <= lo-1 {
  1801  				r = appendRange(r, nextLo, lo-1)
  1802  			}
  1803  			nextLo = hi + 1
  1804  			continue
  1805  		}
  1806  		for c := lo; c <= hi; c += stride {
  1807  			if nextLo <= c-1 {
  1808  				r = appendRange(r, nextLo, c-1)
  1809  			}
  1810  			nextLo = c + 1
  1811  		}
  1812  	}
  1813  	if nextLo <= unicode.MaxRune {
  1814  		r = appendRange(r, nextLo, unicode.MaxRune)
  1815  	}
  1816  	return r
  1817  }
  1818  
  1819  // negateClass overwrites r and returns r's negation.
  1820  // It assumes the class r is already clean.
  1821  func negateClass(r []rune) []rune {
  1822  	nextLo := '\u0000' // lo end of next class to add
  1823  	w := 0             // write index
  1824  	for i := 0; i < len(r); i += 2 {
  1825  		lo, hi := r[i], r[i+1]
  1826  		if nextLo <= lo-1 {
  1827  			r[w] = nextLo
  1828  			r[w+1] = lo - 1
  1829  			w += 2
  1830  		}
  1831  		nextLo = hi + 1
  1832  	}
  1833  	r = r[:w]
  1834  	if nextLo <= unicode.MaxRune {
  1835  		// It's possible for the negation to have one more
  1836  		// range - this one - than the original class, so use append.
  1837  		r = append(r, nextLo, unicode.MaxRune)
  1838  	}
  1839  	return r
  1840  }
  1841  
  1842  // ranges implements sort.Interface on a []rune.
  1843  // The choice of receiver type definition is strange
  1844  // but avoids an allocation since we already have
  1845  // a *[]rune.
  1846  type ranges struct {
  1847  	p *[]rune
  1848  }
  1849  
  1850  func (ra ranges) Less(i, j int) bool {
  1851  	p := *ra.p
  1852  	i *= 2
  1853  	j *= 2
  1854  	return p[i] < p[j] || p[i] == p[j] && p[i+1] > p[j+1]
  1855  }
  1856  
  1857  func (ra ranges) Len() int {
  1858  	return len(*ra.p) / 2
  1859  }
  1860  
  1861  func (ra ranges) Swap(i, j int) {
  1862  	p := *ra.p
  1863  	i *= 2
  1864  	j *= 2
  1865  	p[i], p[i+1], p[j], p[j+1] = p[j], p[j+1], p[i], p[i+1]
  1866  }
  1867  
  1868  func checkUTF8(s string) error {
  1869  	for s != "" {
  1870  		rune, size := utf8.DecodeRuneInString(s)
  1871  		if rune == utf8.RuneError && size == 1 {
  1872  			return &Error{Code: ErrInvalidUTF8, Expr: s}
  1873  		}
  1874  		s = s[size:]
  1875  	}
  1876  	return nil
  1877  }
  1878  
  1879  func nextRune(s string) (c rune, t string, err error) {
  1880  	c, size := utf8.DecodeRuneInString(s)
  1881  	if c == utf8.RuneError && size == 1 {
  1882  		return 0, "", &Error{Code: ErrInvalidUTF8, Expr: s}
  1883  	}
  1884  	return c, s[size:], nil
  1885  }
  1886  
  1887  func isalnum(c rune) bool {
  1888  	return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z'
  1889  }
  1890  
  1891  func unhex(c rune) rune {
  1892  	if '0' <= c && c <= '9' {
  1893  		return c - '0'
  1894  	}
  1895  	if 'a' <= c && c <= 'f' {
  1896  		return c - 'a' + 10
  1897  	}
  1898  	if 'A' <= c && c <= 'F' {
  1899  		return c - 'A' + 10
  1900  	}
  1901  	return -1
  1902  }