github.com/tcnksm/go@v0.0.0-20141208075154-439b32936367/src/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "bytes" 9 "fmt" 10 "io" 11 "reflect" 12 "runtime" 13 "sort" 14 "strings" 15 "text/template/parse" 16 ) 17 18 // state represents the state of an execution. It's not part of the 19 // template so that multiple executions of the same template 20 // can execute in parallel. 21 type state struct { 22 tmpl *Template 23 wr io.Writer 24 node parse.Node // current node, for errors 25 vars []variable // push-down stack of variable values. 26 } 27 28 // variable holds the dynamic value of a variable such as $, $x etc. 29 type variable struct { 30 name string 31 value reflect.Value 32 } 33 34 // push pushes a new variable on the stack. 35 func (s *state) push(name string, value reflect.Value) { 36 s.vars = append(s.vars, variable{name, value}) 37 } 38 39 // mark returns the length of the variable stack. 40 func (s *state) mark() int { 41 return len(s.vars) 42 } 43 44 // pop pops the variable stack up to the mark. 45 func (s *state) pop(mark int) { 46 s.vars = s.vars[0:mark] 47 } 48 49 // setVar overwrites the top-nth variable on the stack. Used by range iterations. 50 func (s *state) setVar(n int, value reflect.Value) { 51 s.vars[len(s.vars)-n].value = value 52 } 53 54 // varValue returns the value of the named variable. 55 func (s *state) varValue(name string) reflect.Value { 56 for i := s.mark() - 1; i >= 0; i-- { 57 if s.vars[i].name == name { 58 return s.vars[i].value 59 } 60 } 61 s.errorf("undefined variable: %s", name) 62 return zero 63 } 64 65 var zero reflect.Value 66 67 // at marks the state to be on node n, for error reporting. 68 func (s *state) at(node parse.Node) { 69 s.node = node 70 } 71 72 // doublePercent returns the string with %'s replaced by %%, if necessary, 73 // so it can be used safely inside a Printf format string. 74 func doublePercent(str string) string { 75 if strings.Contains(str, "%") { 76 str = strings.Replace(str, "%", "%%", -1) 77 } 78 return str 79 } 80 81 // errorf formats the error and terminates processing. 82 func (s *state) errorf(format string, args ...interface{}) { 83 name := doublePercent(s.tmpl.Name()) 84 if s.node == nil { 85 format = fmt.Sprintf("template: %s: %s", name, format) 86 } else { 87 location, context := s.tmpl.ErrorContext(s.node) 88 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 89 } 90 panic(fmt.Errorf(format, args...)) 91 } 92 93 // errRecover is the handler that turns panics into returns from the top 94 // level of Parse. 95 func errRecover(errp *error) { 96 e := recover() 97 if e != nil { 98 switch err := e.(type) { 99 case runtime.Error: 100 panic(e) 101 case error: 102 *errp = err 103 default: 104 panic(e) 105 } 106 } 107 } 108 109 // ExecuteTemplate applies the template associated with t that has the given name 110 // to the specified data object and writes the output to wr. 111 // If an error occurs executing the template or writing its output, 112 // execution stops, but partial results may already have been written to 113 // the output writer. 114 // A template may be executed safely in parallel. 115 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 116 tmpl := t.tmpl[name] 117 if tmpl == nil { 118 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 119 } 120 return tmpl.Execute(wr, data) 121 } 122 123 // Execute applies a parsed template to the specified data object, 124 // and writes the output to wr. 125 // If an error occurs executing the template or writing its output, 126 // execution stops, but partial results may already have been written to 127 // the output writer. 128 // A template may be executed safely in parallel. 129 func (t *Template) Execute(wr io.Writer, data interface{}) (err error) { 130 defer errRecover(&err) 131 value := reflect.ValueOf(data) 132 state := &state{ 133 tmpl: t, 134 wr: wr, 135 vars: []variable{{"$", value}}, 136 } 137 t.init() 138 if t.Tree == nil || t.Root == nil { 139 var b bytes.Buffer 140 for name, tmpl := range t.tmpl { 141 if tmpl.Tree == nil || tmpl.Root == nil { 142 continue 143 } 144 if b.Len() > 0 { 145 b.WriteString(", ") 146 } 147 fmt.Fprintf(&b, "%q", name) 148 } 149 var s string 150 if b.Len() > 0 { 151 s = "; defined templates are: " + b.String() 152 } 153 state.errorf("%q is an incomplete or empty template%s", t.Name(), s) 154 } 155 state.walk(value, t.Root) 156 return 157 } 158 159 // Walk functions step through the major pieces of the template structure, 160 // generating output as they go. 161 func (s *state) walk(dot reflect.Value, node parse.Node) { 162 s.at(node) 163 switch node := node.(type) { 164 case *parse.ActionNode: 165 // Do not pop variables so they persist until next end. 166 // Also, if the action declares variables, don't print the result. 167 val := s.evalPipeline(dot, node.Pipe) 168 if len(node.Pipe.Decl) == 0 { 169 s.printValue(node, val) 170 } 171 case *parse.IfNode: 172 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 173 case *parse.ListNode: 174 for _, node := range node.Nodes { 175 s.walk(dot, node) 176 } 177 case *parse.RangeNode: 178 s.walkRange(dot, node) 179 case *parse.TemplateNode: 180 s.walkTemplate(dot, node) 181 case *parse.TextNode: 182 if _, err := s.wr.Write(node.Text); err != nil { 183 s.errorf("%s", err) 184 } 185 case *parse.WithNode: 186 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 187 default: 188 s.errorf("unknown node: %s", node) 189 } 190 } 191 192 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 193 // are identical in behavior except that 'with' sets dot. 194 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 195 defer s.pop(s.mark()) 196 val := s.evalPipeline(dot, pipe) 197 truth, ok := isTrue(val) 198 if !ok { 199 s.errorf("if/with can't use %v", val) 200 } 201 if truth { 202 if typ == parse.NodeWith { 203 s.walk(val, list) 204 } else { 205 s.walk(dot, list) 206 } 207 } else if elseList != nil { 208 s.walk(dot, elseList) 209 } 210 } 211 212 // isTrue reports whether the value is 'true', in the sense of not the zero of its type, 213 // and whether the value has a meaningful truth value. 214 func isTrue(val reflect.Value) (truth, ok bool) { 215 if !val.IsValid() { 216 // Something like var x interface{}, never set. It's a form of nil. 217 return false, true 218 } 219 switch val.Kind() { 220 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 221 truth = val.Len() > 0 222 case reflect.Bool: 223 truth = val.Bool() 224 case reflect.Complex64, reflect.Complex128: 225 truth = val.Complex() != 0 226 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 227 truth = !val.IsNil() 228 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 229 truth = val.Int() != 0 230 case reflect.Float32, reflect.Float64: 231 truth = val.Float() != 0 232 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 233 truth = val.Uint() != 0 234 case reflect.Struct: 235 truth = true // Struct values are always true. 236 default: 237 return 238 } 239 return truth, true 240 } 241 242 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 243 s.at(r) 244 defer s.pop(s.mark()) 245 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 246 // mark top of stack before any variables in the body are pushed. 247 mark := s.mark() 248 oneIteration := func(index, elem reflect.Value) { 249 // Set top var (lexically the second if there are two) to the element. 250 if len(r.Pipe.Decl) > 0 { 251 s.setVar(1, elem) 252 } 253 // Set next var (lexically the first if there are two) to the index. 254 if len(r.Pipe.Decl) > 1 { 255 s.setVar(2, index) 256 } 257 s.walk(elem, r.List) 258 s.pop(mark) 259 } 260 switch val.Kind() { 261 case reflect.Array, reflect.Slice: 262 if val.Len() == 0 { 263 break 264 } 265 for i := 0; i < val.Len(); i++ { 266 oneIteration(reflect.ValueOf(i), val.Index(i)) 267 } 268 return 269 case reflect.Map: 270 if val.Len() == 0 { 271 break 272 } 273 for _, key := range sortKeys(val.MapKeys()) { 274 oneIteration(key, val.MapIndex(key)) 275 } 276 return 277 case reflect.Chan: 278 if val.IsNil() { 279 break 280 } 281 i := 0 282 for ; ; i++ { 283 elem, ok := val.Recv() 284 if !ok { 285 break 286 } 287 oneIteration(reflect.ValueOf(i), elem) 288 } 289 if i == 0 { 290 break 291 } 292 return 293 case reflect.Invalid: 294 break // An invalid value is likely a nil map, etc. and acts like an empty map. 295 default: 296 s.errorf("range can't iterate over %v", val) 297 } 298 if r.ElseList != nil { 299 s.walk(dot, r.ElseList) 300 } 301 } 302 303 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 304 s.at(t) 305 tmpl := s.tmpl.tmpl[t.Name] 306 if tmpl == nil { 307 s.errorf("template %q not defined", t.Name) 308 } 309 // Variables declared by the pipeline persist. 310 dot = s.evalPipeline(dot, t.Pipe) 311 newState := *s 312 newState.tmpl = tmpl 313 // No dynamic scoping: template invocations inherit no variables. 314 newState.vars = []variable{{"$", dot}} 315 newState.walk(dot, tmpl.Root) 316 } 317 318 // Eval functions evaluate pipelines, commands, and their elements and extract 319 // values from the data structure by examining fields, calling methods, and so on. 320 // The printing of those values happens only through walk functions. 321 322 // evalPipeline returns the value acquired by evaluating a pipeline. If the 323 // pipeline has a variable declaration, the variable will be pushed on the 324 // stack. Callers should therefore pop the stack after they are finished 325 // executing commands depending on the pipeline value. 326 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 327 if pipe == nil { 328 return 329 } 330 s.at(pipe) 331 for _, cmd := range pipe.Cmds { 332 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 333 // If the object has type interface{}, dig down one level to the thing inside. 334 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 335 value = reflect.ValueOf(value.Interface()) // lovely! 336 } 337 } 338 for _, variable := range pipe.Decl { 339 s.push(variable.Ident[0], value) 340 } 341 return value 342 } 343 344 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 345 if len(args) > 1 || final.IsValid() { 346 s.errorf("can't give argument to non-function %s", args[0]) 347 } 348 } 349 350 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 351 firstWord := cmd.Args[0] 352 switch n := firstWord.(type) { 353 case *parse.FieldNode: 354 return s.evalFieldNode(dot, n, cmd.Args, final) 355 case *parse.ChainNode: 356 return s.evalChainNode(dot, n, cmd.Args, final) 357 case *parse.IdentifierNode: 358 // Must be a function. 359 return s.evalFunction(dot, n, cmd, cmd.Args, final) 360 case *parse.PipeNode: 361 // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored. 362 return s.evalPipeline(dot, n) 363 case *parse.VariableNode: 364 return s.evalVariableNode(dot, n, cmd.Args, final) 365 } 366 s.at(firstWord) 367 s.notAFunction(cmd.Args, final) 368 switch word := firstWord.(type) { 369 case *parse.BoolNode: 370 return reflect.ValueOf(word.True) 371 case *parse.DotNode: 372 return dot 373 case *parse.NilNode: 374 s.errorf("nil is not a command") 375 case *parse.NumberNode: 376 return s.idealConstant(word) 377 case *parse.StringNode: 378 return reflect.ValueOf(word.Text) 379 } 380 s.errorf("can't evaluate command %q", firstWord) 381 panic("not reached") 382 } 383 384 // idealConstant is called to return the value of a number in a context where 385 // we don't know the type. In that case, the syntax of the number tells us 386 // its type, and we use Go rules to resolve. Note there is no such thing as 387 // a uint ideal constant in this situation - the value must be of int type. 388 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 389 // These are ideal constants but we don't know the type 390 // and we have no context. (If it was a method argument, 391 // we'd know what we need.) The syntax guides us to some extent. 392 s.at(constant) 393 switch { 394 case constant.IsComplex: 395 return reflect.ValueOf(constant.Complex128) // incontrovertible. 396 case constant.IsFloat && !isHexConstant(constant.Text) && strings.IndexAny(constant.Text, ".eE") >= 0: 397 return reflect.ValueOf(constant.Float64) 398 case constant.IsInt: 399 n := int(constant.Int64) 400 if int64(n) != constant.Int64 { 401 s.errorf("%s overflows int", constant.Text) 402 } 403 return reflect.ValueOf(n) 404 case constant.IsUint: 405 s.errorf("%s overflows int", constant.Text) 406 } 407 return zero 408 } 409 410 func isHexConstant(s string) bool { 411 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') 412 } 413 414 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 415 s.at(field) 416 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 417 } 418 419 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 420 s.at(chain) 421 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 422 pipe := s.evalArg(dot, nil, chain.Node) 423 if len(chain.Field) == 0 { 424 s.errorf("internal error: no fields in evalChainNode") 425 } 426 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 427 } 428 429 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 430 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 431 s.at(variable) 432 value := s.varValue(variable.Ident[0]) 433 if len(variable.Ident) == 1 { 434 s.notAFunction(args, final) 435 return value 436 } 437 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 438 } 439 440 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 441 // dot is the environment in which to evaluate arguments, while 442 // receiver is the value being walked along the chain. 443 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 444 n := len(ident) 445 for i := 0; i < n-1; i++ { 446 receiver = s.evalField(dot, ident[i], node, nil, zero, receiver) 447 } 448 // Now if it's a method, it gets the arguments. 449 return s.evalField(dot, ident[n-1], node, args, final, receiver) 450 } 451 452 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 453 s.at(node) 454 name := node.Ident 455 function, ok := findFunction(name, s.tmpl) 456 if !ok { 457 s.errorf("%q is not a defined function", name) 458 } 459 return s.evalCall(dot, function, cmd, name, args, final) 460 } 461 462 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 463 // The 'final' argument represents the return value from the preceding 464 // value of the pipeline, if any. 465 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 466 if !receiver.IsValid() { 467 return zero 468 } 469 typ := receiver.Type() 470 receiver, _ = indirect(receiver) 471 // Unless it's an interface, need to get to a value of type *T to guarantee 472 // we see all methods of T and *T. 473 ptr := receiver 474 if ptr.Kind() != reflect.Interface && ptr.CanAddr() { 475 ptr = ptr.Addr() 476 } 477 if method := ptr.MethodByName(fieldName); method.IsValid() { 478 return s.evalCall(dot, method, node, fieldName, args, final) 479 } 480 hasArgs := len(args) > 1 || final.IsValid() 481 // It's not a method; must be a field of a struct or an element of a map. The receiver must not be nil. 482 receiver, isNil := indirect(receiver) 483 if isNil { 484 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 485 } 486 switch receiver.Kind() { 487 case reflect.Struct: 488 tField, ok := receiver.Type().FieldByName(fieldName) 489 if ok { 490 field := receiver.FieldByIndex(tField.Index) 491 if tField.PkgPath != "" { // field is unexported 492 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 493 } 494 // If it's a function, we must call it. 495 if hasArgs { 496 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 497 } 498 return field 499 } 500 s.errorf("%s is not a field of struct type %s", fieldName, typ) 501 case reflect.Map: 502 // If it's a map, attempt to use the field name as a key. 503 nameVal := reflect.ValueOf(fieldName) 504 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 505 if hasArgs { 506 s.errorf("%s is not a method but has arguments", fieldName) 507 } 508 return receiver.MapIndex(nameVal) 509 } 510 } 511 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 512 panic("not reached") 513 } 514 515 var ( 516 errorType = reflect.TypeOf((*error)(nil)).Elem() 517 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 518 ) 519 520 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 521 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 522 // as the function itself. 523 func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 524 if args != nil { 525 args = args[1:] // Zeroth arg is function name/node; not passed to function. 526 } 527 typ := fun.Type() 528 numIn := len(args) 529 if final.IsValid() { 530 numIn++ 531 } 532 numFixed := len(args) 533 if typ.IsVariadic() { 534 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 535 if numIn < numFixed { 536 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 537 } 538 } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { 539 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) 540 } 541 if !goodFunc(typ) { 542 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 543 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 544 } 545 // Build the arg list. 546 argv := make([]reflect.Value, numIn) 547 // Args must be evaluated. Fixed args first. 548 i := 0 549 for ; i < numFixed && i < len(args); i++ { 550 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 551 } 552 // Now the ... args. 553 if typ.IsVariadic() { 554 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 555 for ; i < len(args); i++ { 556 argv[i] = s.evalArg(dot, argType, args[i]) 557 } 558 } 559 // Add final value if necessary. 560 if final.IsValid() { 561 t := typ.In(typ.NumIn() - 1) 562 if typ.IsVariadic() { 563 t = t.Elem() 564 } 565 argv[i] = s.validateType(final, t) 566 } 567 result := fun.Call(argv) 568 // If we have an error that is not nil, stop execution and return that error to the caller. 569 if len(result) == 2 && !result[1].IsNil() { 570 s.at(node) 571 s.errorf("error calling %s: %s", name, result[1].Interface().(error)) 572 } 573 return result[0] 574 } 575 576 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 577 func canBeNil(typ reflect.Type) bool { 578 switch typ.Kind() { 579 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 580 return true 581 } 582 return false 583 } 584 585 // validateType guarantees that the value is valid and assignable to the type. 586 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 587 if !value.IsValid() { 588 if typ == nil || canBeNil(typ) { 589 // An untyped nil interface{}. Accept as a proper nil value. 590 return reflect.Zero(typ) 591 } 592 s.errorf("invalid value; expected %s", typ) 593 } 594 if typ != nil && !value.Type().AssignableTo(typ) { 595 if value.Kind() == reflect.Interface && !value.IsNil() { 596 value = value.Elem() 597 if value.Type().AssignableTo(typ) { 598 return value 599 } 600 // fallthrough 601 } 602 // Does one dereference or indirection work? We could do more, as we 603 // do with method receivers, but that gets messy and method receivers 604 // are much more constrained, so it makes more sense there than here. 605 // Besides, one is almost always all you need. 606 switch { 607 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 608 value = value.Elem() 609 if !value.IsValid() { 610 s.errorf("dereference of nil pointer of type %s", typ) 611 } 612 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 613 value = value.Addr() 614 default: 615 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 616 } 617 } 618 return value 619 } 620 621 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 622 s.at(n) 623 switch arg := n.(type) { 624 case *parse.DotNode: 625 return s.validateType(dot, typ) 626 case *parse.NilNode: 627 if canBeNil(typ) { 628 return reflect.Zero(typ) 629 } 630 s.errorf("cannot assign nil to %s", typ) 631 case *parse.FieldNode: 632 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) 633 case *parse.VariableNode: 634 return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) 635 case *parse.PipeNode: 636 return s.validateType(s.evalPipeline(dot, arg), typ) 637 case *parse.IdentifierNode: 638 return s.evalFunction(dot, arg, arg, nil, zero) 639 case *parse.ChainNode: 640 return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ) 641 } 642 switch typ.Kind() { 643 case reflect.Bool: 644 return s.evalBool(typ, n) 645 case reflect.Complex64, reflect.Complex128: 646 return s.evalComplex(typ, n) 647 case reflect.Float32, reflect.Float64: 648 return s.evalFloat(typ, n) 649 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 650 return s.evalInteger(typ, n) 651 case reflect.Interface: 652 if typ.NumMethod() == 0 { 653 return s.evalEmptyInterface(dot, n) 654 } 655 case reflect.String: 656 return s.evalString(typ, n) 657 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 658 return s.evalUnsignedInteger(typ, n) 659 } 660 s.errorf("can't handle %s for arg of type %s", n, typ) 661 panic("not reached") 662 } 663 664 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 665 s.at(n) 666 if n, ok := n.(*parse.BoolNode); ok { 667 value := reflect.New(typ).Elem() 668 value.SetBool(n.True) 669 return value 670 } 671 s.errorf("expected bool; found %s", n) 672 panic("not reached") 673 } 674 675 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 676 s.at(n) 677 if n, ok := n.(*parse.StringNode); ok { 678 value := reflect.New(typ).Elem() 679 value.SetString(n.Text) 680 return value 681 } 682 s.errorf("expected string; found %s", n) 683 panic("not reached") 684 } 685 686 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 687 s.at(n) 688 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 689 value := reflect.New(typ).Elem() 690 value.SetInt(n.Int64) 691 return value 692 } 693 s.errorf("expected integer; found %s", n) 694 panic("not reached") 695 } 696 697 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 698 s.at(n) 699 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 700 value := reflect.New(typ).Elem() 701 value.SetUint(n.Uint64) 702 return value 703 } 704 s.errorf("expected unsigned integer; found %s", n) 705 panic("not reached") 706 } 707 708 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 709 s.at(n) 710 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 711 value := reflect.New(typ).Elem() 712 value.SetFloat(n.Float64) 713 return value 714 } 715 s.errorf("expected float; found %s", n) 716 panic("not reached") 717 } 718 719 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 720 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 721 value := reflect.New(typ).Elem() 722 value.SetComplex(n.Complex128) 723 return value 724 } 725 s.errorf("expected complex; found %s", n) 726 panic("not reached") 727 } 728 729 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 730 s.at(n) 731 switch n := n.(type) { 732 case *parse.BoolNode: 733 return reflect.ValueOf(n.True) 734 case *parse.DotNode: 735 return dot 736 case *parse.FieldNode: 737 return s.evalFieldNode(dot, n, nil, zero) 738 case *parse.IdentifierNode: 739 return s.evalFunction(dot, n, n, nil, zero) 740 case *parse.NilNode: 741 // NilNode is handled in evalArg, the only place that calls here. 742 s.errorf("evalEmptyInterface: nil (can't happen)") 743 case *parse.NumberNode: 744 return s.idealConstant(n) 745 case *parse.StringNode: 746 return reflect.ValueOf(n.Text) 747 case *parse.VariableNode: 748 return s.evalVariableNode(dot, n, nil, zero) 749 case *parse.PipeNode: 750 return s.evalPipeline(dot, n) 751 } 752 s.errorf("can't handle assignment of %s to empty interface argument", n) 753 panic("not reached") 754 } 755 756 // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. 757 // We indirect through pointers and empty interfaces (only) because 758 // non-empty interfaces have methods we might need. 759 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 760 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 761 if v.IsNil() { 762 return v, true 763 } 764 if v.Kind() == reflect.Interface && v.NumMethod() > 0 { 765 break 766 } 767 } 768 return v, false 769 } 770 771 // printValue writes the textual representation of the value to the output of 772 // the template. 773 func (s *state) printValue(n parse.Node, v reflect.Value) { 774 s.at(n) 775 iface, ok := printableValue(v) 776 if !ok { 777 s.errorf("can't print %s of type %s", n, v.Type()) 778 } 779 fmt.Fprint(s.wr, iface) 780 } 781 782 // printableValue returns the, possibly indirected, interface value inside v that 783 // is best for a call to formatted printer. 784 func printableValue(v reflect.Value) (interface{}, bool) { 785 if v.Kind() == reflect.Ptr { 786 v, _ = indirect(v) // fmt.Fprint handles nil. 787 } 788 if !v.IsValid() { 789 return "<no value>", true 790 } 791 792 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 793 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 794 v = v.Addr() 795 } else { 796 switch v.Kind() { 797 case reflect.Chan, reflect.Func: 798 return nil, false 799 } 800 } 801 } 802 return v.Interface(), true 803 } 804 805 // Types to help sort the keys in a map for reproducible output. 806 807 type rvs []reflect.Value 808 809 func (x rvs) Len() int { return len(x) } 810 func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 811 812 type rvInts struct{ rvs } 813 814 func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() } 815 816 type rvUints struct{ rvs } 817 818 func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() } 819 820 type rvFloats struct{ rvs } 821 822 func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() } 823 824 type rvStrings struct{ rvs } 825 826 func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() } 827 828 // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. 829 func sortKeys(v []reflect.Value) []reflect.Value { 830 if len(v) <= 1 { 831 return v 832 } 833 switch v[0].Kind() { 834 case reflect.Float32, reflect.Float64: 835 sort.Sort(rvFloats{v}) 836 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 837 sort.Sort(rvInts{v}) 838 case reflect.String: 839 sort.Sort(rvStrings{v}) 840 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 841 sort.Sort(rvUints{v}) 842 } 843 return v 844 }