github.com/tcnksm/go@v0.0.0-20141208075154-439b32936367/src/text/template/exec.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package template
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"io"
    11  	"reflect"
    12  	"runtime"
    13  	"sort"
    14  	"strings"
    15  	"text/template/parse"
    16  )
    17  
    18  // state represents the state of an execution. It's not part of the
    19  // template so that multiple executions of the same template
    20  // can execute in parallel.
    21  type state struct {
    22  	tmpl *Template
    23  	wr   io.Writer
    24  	node parse.Node // current node, for errors
    25  	vars []variable // push-down stack of variable values.
    26  }
    27  
    28  // variable holds the dynamic value of a variable such as $, $x etc.
    29  type variable struct {
    30  	name  string
    31  	value reflect.Value
    32  }
    33  
    34  // push pushes a new variable on the stack.
    35  func (s *state) push(name string, value reflect.Value) {
    36  	s.vars = append(s.vars, variable{name, value})
    37  }
    38  
    39  // mark returns the length of the variable stack.
    40  func (s *state) mark() int {
    41  	return len(s.vars)
    42  }
    43  
    44  // pop pops the variable stack up to the mark.
    45  func (s *state) pop(mark int) {
    46  	s.vars = s.vars[0:mark]
    47  }
    48  
    49  // setVar overwrites the top-nth variable on the stack. Used by range iterations.
    50  func (s *state) setVar(n int, value reflect.Value) {
    51  	s.vars[len(s.vars)-n].value = value
    52  }
    53  
    54  // varValue returns the value of the named variable.
    55  func (s *state) varValue(name string) reflect.Value {
    56  	for i := s.mark() - 1; i >= 0; i-- {
    57  		if s.vars[i].name == name {
    58  			return s.vars[i].value
    59  		}
    60  	}
    61  	s.errorf("undefined variable: %s", name)
    62  	return zero
    63  }
    64  
    65  var zero reflect.Value
    66  
    67  // at marks the state to be on node n, for error reporting.
    68  func (s *state) at(node parse.Node) {
    69  	s.node = node
    70  }
    71  
    72  // doublePercent returns the string with %'s replaced by %%, if necessary,
    73  // so it can be used safely inside a Printf format string.
    74  func doublePercent(str string) string {
    75  	if strings.Contains(str, "%") {
    76  		str = strings.Replace(str, "%", "%%", -1)
    77  	}
    78  	return str
    79  }
    80  
    81  // errorf formats the error and terminates processing.
    82  func (s *state) errorf(format string, args ...interface{}) {
    83  	name := doublePercent(s.tmpl.Name())
    84  	if s.node == nil {
    85  		format = fmt.Sprintf("template: %s: %s", name, format)
    86  	} else {
    87  		location, context := s.tmpl.ErrorContext(s.node)
    88  		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
    89  	}
    90  	panic(fmt.Errorf(format, args...))
    91  }
    92  
    93  // errRecover is the handler that turns panics into returns from the top
    94  // level of Parse.
    95  func errRecover(errp *error) {
    96  	e := recover()
    97  	if e != nil {
    98  		switch err := e.(type) {
    99  		case runtime.Error:
   100  			panic(e)
   101  		case error:
   102  			*errp = err
   103  		default:
   104  			panic(e)
   105  		}
   106  	}
   107  }
   108  
   109  // ExecuteTemplate applies the template associated with t that has the given name
   110  // to the specified data object and writes the output to wr.
   111  // If an error occurs executing the template or writing its output,
   112  // execution stops, but partial results may already have been written to
   113  // the output writer.
   114  // A template may be executed safely in parallel.
   115  func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
   116  	tmpl := t.tmpl[name]
   117  	if tmpl == nil {
   118  		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
   119  	}
   120  	return tmpl.Execute(wr, data)
   121  }
   122  
   123  // Execute applies a parsed template to the specified data object,
   124  // and writes the output to wr.
   125  // If an error occurs executing the template or writing its output,
   126  // execution stops, but partial results may already have been written to
   127  // the output writer.
   128  // A template may be executed safely in parallel.
   129  func (t *Template) Execute(wr io.Writer, data interface{}) (err error) {
   130  	defer errRecover(&err)
   131  	value := reflect.ValueOf(data)
   132  	state := &state{
   133  		tmpl: t,
   134  		wr:   wr,
   135  		vars: []variable{{"$", value}},
   136  	}
   137  	t.init()
   138  	if t.Tree == nil || t.Root == nil {
   139  		var b bytes.Buffer
   140  		for name, tmpl := range t.tmpl {
   141  			if tmpl.Tree == nil || tmpl.Root == nil {
   142  				continue
   143  			}
   144  			if b.Len() > 0 {
   145  				b.WriteString(", ")
   146  			}
   147  			fmt.Fprintf(&b, "%q", name)
   148  		}
   149  		var s string
   150  		if b.Len() > 0 {
   151  			s = "; defined templates are: " + b.String()
   152  		}
   153  		state.errorf("%q is an incomplete or empty template%s", t.Name(), s)
   154  	}
   155  	state.walk(value, t.Root)
   156  	return
   157  }
   158  
   159  // Walk functions step through the major pieces of the template structure,
   160  // generating output as they go.
   161  func (s *state) walk(dot reflect.Value, node parse.Node) {
   162  	s.at(node)
   163  	switch node := node.(type) {
   164  	case *parse.ActionNode:
   165  		// Do not pop variables so they persist until next end.
   166  		// Also, if the action declares variables, don't print the result.
   167  		val := s.evalPipeline(dot, node.Pipe)
   168  		if len(node.Pipe.Decl) == 0 {
   169  			s.printValue(node, val)
   170  		}
   171  	case *parse.IfNode:
   172  		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
   173  	case *parse.ListNode:
   174  		for _, node := range node.Nodes {
   175  			s.walk(dot, node)
   176  		}
   177  	case *parse.RangeNode:
   178  		s.walkRange(dot, node)
   179  	case *parse.TemplateNode:
   180  		s.walkTemplate(dot, node)
   181  	case *parse.TextNode:
   182  		if _, err := s.wr.Write(node.Text); err != nil {
   183  			s.errorf("%s", err)
   184  		}
   185  	case *parse.WithNode:
   186  		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
   187  	default:
   188  		s.errorf("unknown node: %s", node)
   189  	}
   190  }
   191  
   192  // walkIfOrWith walks an 'if' or 'with' node. The two control structures
   193  // are identical in behavior except that 'with' sets dot.
   194  func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
   195  	defer s.pop(s.mark())
   196  	val := s.evalPipeline(dot, pipe)
   197  	truth, ok := isTrue(val)
   198  	if !ok {
   199  		s.errorf("if/with can't use %v", val)
   200  	}
   201  	if truth {
   202  		if typ == parse.NodeWith {
   203  			s.walk(val, list)
   204  		} else {
   205  			s.walk(dot, list)
   206  		}
   207  	} else if elseList != nil {
   208  		s.walk(dot, elseList)
   209  	}
   210  }
   211  
   212  // isTrue reports whether the value is 'true', in the sense of not the zero of its type,
   213  // and whether the value has a meaningful truth value.
   214  func isTrue(val reflect.Value) (truth, ok bool) {
   215  	if !val.IsValid() {
   216  		// Something like var x interface{}, never set. It's a form of nil.
   217  		return false, true
   218  	}
   219  	switch val.Kind() {
   220  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   221  		truth = val.Len() > 0
   222  	case reflect.Bool:
   223  		truth = val.Bool()
   224  	case reflect.Complex64, reflect.Complex128:
   225  		truth = val.Complex() != 0
   226  	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
   227  		truth = !val.IsNil()
   228  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   229  		truth = val.Int() != 0
   230  	case reflect.Float32, reflect.Float64:
   231  		truth = val.Float() != 0
   232  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   233  		truth = val.Uint() != 0
   234  	case reflect.Struct:
   235  		truth = true // Struct values are always true.
   236  	default:
   237  		return
   238  	}
   239  	return truth, true
   240  }
   241  
   242  func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
   243  	s.at(r)
   244  	defer s.pop(s.mark())
   245  	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
   246  	// mark top of stack before any variables in the body are pushed.
   247  	mark := s.mark()
   248  	oneIteration := func(index, elem reflect.Value) {
   249  		// Set top var (lexically the second if there are two) to the element.
   250  		if len(r.Pipe.Decl) > 0 {
   251  			s.setVar(1, elem)
   252  		}
   253  		// Set next var (lexically the first if there are two) to the index.
   254  		if len(r.Pipe.Decl) > 1 {
   255  			s.setVar(2, index)
   256  		}
   257  		s.walk(elem, r.List)
   258  		s.pop(mark)
   259  	}
   260  	switch val.Kind() {
   261  	case reflect.Array, reflect.Slice:
   262  		if val.Len() == 0 {
   263  			break
   264  		}
   265  		for i := 0; i < val.Len(); i++ {
   266  			oneIteration(reflect.ValueOf(i), val.Index(i))
   267  		}
   268  		return
   269  	case reflect.Map:
   270  		if val.Len() == 0 {
   271  			break
   272  		}
   273  		for _, key := range sortKeys(val.MapKeys()) {
   274  			oneIteration(key, val.MapIndex(key))
   275  		}
   276  		return
   277  	case reflect.Chan:
   278  		if val.IsNil() {
   279  			break
   280  		}
   281  		i := 0
   282  		for ; ; i++ {
   283  			elem, ok := val.Recv()
   284  			if !ok {
   285  				break
   286  			}
   287  			oneIteration(reflect.ValueOf(i), elem)
   288  		}
   289  		if i == 0 {
   290  			break
   291  		}
   292  		return
   293  	case reflect.Invalid:
   294  		break // An invalid value is likely a nil map, etc. and acts like an empty map.
   295  	default:
   296  		s.errorf("range can't iterate over %v", val)
   297  	}
   298  	if r.ElseList != nil {
   299  		s.walk(dot, r.ElseList)
   300  	}
   301  }
   302  
   303  func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
   304  	s.at(t)
   305  	tmpl := s.tmpl.tmpl[t.Name]
   306  	if tmpl == nil {
   307  		s.errorf("template %q not defined", t.Name)
   308  	}
   309  	// Variables declared by the pipeline persist.
   310  	dot = s.evalPipeline(dot, t.Pipe)
   311  	newState := *s
   312  	newState.tmpl = tmpl
   313  	// No dynamic scoping: template invocations inherit no variables.
   314  	newState.vars = []variable{{"$", dot}}
   315  	newState.walk(dot, tmpl.Root)
   316  }
   317  
   318  // Eval functions evaluate pipelines, commands, and their elements and extract
   319  // values from the data structure by examining fields, calling methods, and so on.
   320  // The printing of those values happens only through walk functions.
   321  
   322  // evalPipeline returns the value acquired by evaluating a pipeline. If the
   323  // pipeline has a variable declaration, the variable will be pushed on the
   324  // stack. Callers should therefore pop the stack after they are finished
   325  // executing commands depending on the pipeline value.
   326  func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
   327  	if pipe == nil {
   328  		return
   329  	}
   330  	s.at(pipe)
   331  	for _, cmd := range pipe.Cmds {
   332  		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
   333  		// If the object has type interface{}, dig down one level to the thing inside.
   334  		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
   335  			value = reflect.ValueOf(value.Interface()) // lovely!
   336  		}
   337  	}
   338  	for _, variable := range pipe.Decl {
   339  		s.push(variable.Ident[0], value)
   340  	}
   341  	return value
   342  }
   343  
   344  func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
   345  	if len(args) > 1 || final.IsValid() {
   346  		s.errorf("can't give argument to non-function %s", args[0])
   347  	}
   348  }
   349  
   350  func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
   351  	firstWord := cmd.Args[0]
   352  	switch n := firstWord.(type) {
   353  	case *parse.FieldNode:
   354  		return s.evalFieldNode(dot, n, cmd.Args, final)
   355  	case *parse.ChainNode:
   356  		return s.evalChainNode(dot, n, cmd.Args, final)
   357  	case *parse.IdentifierNode:
   358  		// Must be a function.
   359  		return s.evalFunction(dot, n, cmd, cmd.Args, final)
   360  	case *parse.PipeNode:
   361  		// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
   362  		return s.evalPipeline(dot, n)
   363  	case *parse.VariableNode:
   364  		return s.evalVariableNode(dot, n, cmd.Args, final)
   365  	}
   366  	s.at(firstWord)
   367  	s.notAFunction(cmd.Args, final)
   368  	switch word := firstWord.(type) {
   369  	case *parse.BoolNode:
   370  		return reflect.ValueOf(word.True)
   371  	case *parse.DotNode:
   372  		return dot
   373  	case *parse.NilNode:
   374  		s.errorf("nil is not a command")
   375  	case *parse.NumberNode:
   376  		return s.idealConstant(word)
   377  	case *parse.StringNode:
   378  		return reflect.ValueOf(word.Text)
   379  	}
   380  	s.errorf("can't evaluate command %q", firstWord)
   381  	panic("not reached")
   382  }
   383  
   384  // idealConstant is called to return the value of a number in a context where
   385  // we don't know the type. In that case, the syntax of the number tells us
   386  // its type, and we use Go rules to resolve.  Note there is no such thing as
   387  // a uint ideal constant in this situation - the value must be of int type.
   388  func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
   389  	// These are ideal constants but we don't know the type
   390  	// and we have no context.  (If it was a method argument,
   391  	// we'd know what we need.) The syntax guides us to some extent.
   392  	s.at(constant)
   393  	switch {
   394  	case constant.IsComplex:
   395  		return reflect.ValueOf(constant.Complex128) // incontrovertible.
   396  	case constant.IsFloat && !isHexConstant(constant.Text) && strings.IndexAny(constant.Text, ".eE") >= 0:
   397  		return reflect.ValueOf(constant.Float64)
   398  	case constant.IsInt:
   399  		n := int(constant.Int64)
   400  		if int64(n) != constant.Int64 {
   401  			s.errorf("%s overflows int", constant.Text)
   402  		}
   403  		return reflect.ValueOf(n)
   404  	case constant.IsUint:
   405  		s.errorf("%s overflows int", constant.Text)
   406  	}
   407  	return zero
   408  }
   409  
   410  func isHexConstant(s string) bool {
   411  	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
   412  }
   413  
   414  func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
   415  	s.at(field)
   416  	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
   417  }
   418  
   419  func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
   420  	s.at(chain)
   421  	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
   422  	pipe := s.evalArg(dot, nil, chain.Node)
   423  	if len(chain.Field) == 0 {
   424  		s.errorf("internal error: no fields in evalChainNode")
   425  	}
   426  	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
   427  }
   428  
   429  func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
   430  	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
   431  	s.at(variable)
   432  	value := s.varValue(variable.Ident[0])
   433  	if len(variable.Ident) == 1 {
   434  		s.notAFunction(args, final)
   435  		return value
   436  	}
   437  	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
   438  }
   439  
   440  // evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
   441  // dot is the environment in which to evaluate arguments, while
   442  // receiver is the value being walked along the chain.
   443  func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
   444  	n := len(ident)
   445  	for i := 0; i < n-1; i++ {
   446  		receiver = s.evalField(dot, ident[i], node, nil, zero, receiver)
   447  	}
   448  	// Now if it's a method, it gets the arguments.
   449  	return s.evalField(dot, ident[n-1], node, args, final, receiver)
   450  }
   451  
   452  func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
   453  	s.at(node)
   454  	name := node.Ident
   455  	function, ok := findFunction(name, s.tmpl)
   456  	if !ok {
   457  		s.errorf("%q is not a defined function", name)
   458  	}
   459  	return s.evalCall(dot, function, cmd, name, args, final)
   460  }
   461  
   462  // evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
   463  // The 'final' argument represents the return value from the preceding
   464  // value of the pipeline, if any.
   465  func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
   466  	if !receiver.IsValid() {
   467  		return zero
   468  	}
   469  	typ := receiver.Type()
   470  	receiver, _ = indirect(receiver)
   471  	// Unless it's an interface, need to get to a value of type *T to guarantee
   472  	// we see all methods of T and *T.
   473  	ptr := receiver
   474  	if ptr.Kind() != reflect.Interface && ptr.CanAddr() {
   475  		ptr = ptr.Addr()
   476  	}
   477  	if method := ptr.MethodByName(fieldName); method.IsValid() {
   478  		return s.evalCall(dot, method, node, fieldName, args, final)
   479  	}
   480  	hasArgs := len(args) > 1 || final.IsValid()
   481  	// It's not a method; must be a field of a struct or an element of a map. The receiver must not be nil.
   482  	receiver, isNil := indirect(receiver)
   483  	if isNil {
   484  		s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   485  	}
   486  	switch receiver.Kind() {
   487  	case reflect.Struct:
   488  		tField, ok := receiver.Type().FieldByName(fieldName)
   489  		if ok {
   490  			field := receiver.FieldByIndex(tField.Index)
   491  			if tField.PkgPath != "" { // field is unexported
   492  				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
   493  			}
   494  			// If it's a function, we must call it.
   495  			if hasArgs {
   496  				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
   497  			}
   498  			return field
   499  		}
   500  		s.errorf("%s is not a field of struct type %s", fieldName, typ)
   501  	case reflect.Map:
   502  		// If it's a map, attempt to use the field name as a key.
   503  		nameVal := reflect.ValueOf(fieldName)
   504  		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
   505  			if hasArgs {
   506  				s.errorf("%s is not a method but has arguments", fieldName)
   507  			}
   508  			return receiver.MapIndex(nameVal)
   509  		}
   510  	}
   511  	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
   512  	panic("not reached")
   513  }
   514  
   515  var (
   516  	errorType       = reflect.TypeOf((*error)(nil)).Elem()
   517  	fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
   518  )
   519  
   520  // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
   521  // it looks just like a function call.  The arg list, if non-nil, includes (in the manner of the shell), arg[0]
   522  // as the function itself.
   523  func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
   524  	if args != nil {
   525  		args = args[1:] // Zeroth arg is function name/node; not passed to function.
   526  	}
   527  	typ := fun.Type()
   528  	numIn := len(args)
   529  	if final.IsValid() {
   530  		numIn++
   531  	}
   532  	numFixed := len(args)
   533  	if typ.IsVariadic() {
   534  		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
   535  		if numIn < numFixed {
   536  			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
   537  		}
   538  	} else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() {
   539  		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
   540  	}
   541  	if !goodFunc(typ) {
   542  		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
   543  		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
   544  	}
   545  	// Build the arg list.
   546  	argv := make([]reflect.Value, numIn)
   547  	// Args must be evaluated. Fixed args first.
   548  	i := 0
   549  	for ; i < numFixed && i < len(args); i++ {
   550  		argv[i] = s.evalArg(dot, typ.In(i), args[i])
   551  	}
   552  	// Now the ... args.
   553  	if typ.IsVariadic() {
   554  		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
   555  		for ; i < len(args); i++ {
   556  			argv[i] = s.evalArg(dot, argType, args[i])
   557  		}
   558  	}
   559  	// Add final value if necessary.
   560  	if final.IsValid() {
   561  		t := typ.In(typ.NumIn() - 1)
   562  		if typ.IsVariadic() {
   563  			t = t.Elem()
   564  		}
   565  		argv[i] = s.validateType(final, t)
   566  	}
   567  	result := fun.Call(argv)
   568  	// If we have an error that is not nil, stop execution and return that error to the caller.
   569  	if len(result) == 2 && !result[1].IsNil() {
   570  		s.at(node)
   571  		s.errorf("error calling %s: %s", name, result[1].Interface().(error))
   572  	}
   573  	return result[0]
   574  }
   575  
   576  // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
   577  func canBeNil(typ reflect.Type) bool {
   578  	switch typ.Kind() {
   579  	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
   580  		return true
   581  	}
   582  	return false
   583  }
   584  
   585  // validateType guarantees that the value is valid and assignable to the type.
   586  func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
   587  	if !value.IsValid() {
   588  		if typ == nil || canBeNil(typ) {
   589  			// An untyped nil interface{}. Accept as a proper nil value.
   590  			return reflect.Zero(typ)
   591  		}
   592  		s.errorf("invalid value; expected %s", typ)
   593  	}
   594  	if typ != nil && !value.Type().AssignableTo(typ) {
   595  		if value.Kind() == reflect.Interface && !value.IsNil() {
   596  			value = value.Elem()
   597  			if value.Type().AssignableTo(typ) {
   598  				return value
   599  			}
   600  			// fallthrough
   601  		}
   602  		// Does one dereference or indirection work? We could do more, as we
   603  		// do with method receivers, but that gets messy and method receivers
   604  		// are much more constrained, so it makes more sense there than here.
   605  		// Besides, one is almost always all you need.
   606  		switch {
   607  		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
   608  			value = value.Elem()
   609  			if !value.IsValid() {
   610  				s.errorf("dereference of nil pointer of type %s", typ)
   611  			}
   612  		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
   613  			value = value.Addr()
   614  		default:
   615  			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
   616  		}
   617  	}
   618  	return value
   619  }
   620  
   621  func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
   622  	s.at(n)
   623  	switch arg := n.(type) {
   624  	case *parse.DotNode:
   625  		return s.validateType(dot, typ)
   626  	case *parse.NilNode:
   627  		if canBeNil(typ) {
   628  			return reflect.Zero(typ)
   629  		}
   630  		s.errorf("cannot assign nil to %s", typ)
   631  	case *parse.FieldNode:
   632  		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ)
   633  	case *parse.VariableNode:
   634  		return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ)
   635  	case *parse.PipeNode:
   636  		return s.validateType(s.evalPipeline(dot, arg), typ)
   637  	case *parse.IdentifierNode:
   638  		return s.evalFunction(dot, arg, arg, nil, zero)
   639  	case *parse.ChainNode:
   640  		return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ)
   641  	}
   642  	switch typ.Kind() {
   643  	case reflect.Bool:
   644  		return s.evalBool(typ, n)
   645  	case reflect.Complex64, reflect.Complex128:
   646  		return s.evalComplex(typ, n)
   647  	case reflect.Float32, reflect.Float64:
   648  		return s.evalFloat(typ, n)
   649  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   650  		return s.evalInteger(typ, n)
   651  	case reflect.Interface:
   652  		if typ.NumMethod() == 0 {
   653  			return s.evalEmptyInterface(dot, n)
   654  		}
   655  	case reflect.String:
   656  		return s.evalString(typ, n)
   657  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   658  		return s.evalUnsignedInteger(typ, n)
   659  	}
   660  	s.errorf("can't handle %s for arg of type %s", n, typ)
   661  	panic("not reached")
   662  }
   663  
   664  func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
   665  	s.at(n)
   666  	if n, ok := n.(*parse.BoolNode); ok {
   667  		value := reflect.New(typ).Elem()
   668  		value.SetBool(n.True)
   669  		return value
   670  	}
   671  	s.errorf("expected bool; found %s", n)
   672  	panic("not reached")
   673  }
   674  
   675  func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
   676  	s.at(n)
   677  	if n, ok := n.(*parse.StringNode); ok {
   678  		value := reflect.New(typ).Elem()
   679  		value.SetString(n.Text)
   680  		return value
   681  	}
   682  	s.errorf("expected string; found %s", n)
   683  	panic("not reached")
   684  }
   685  
   686  func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
   687  	s.at(n)
   688  	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
   689  		value := reflect.New(typ).Elem()
   690  		value.SetInt(n.Int64)
   691  		return value
   692  	}
   693  	s.errorf("expected integer; found %s", n)
   694  	panic("not reached")
   695  }
   696  
   697  func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
   698  	s.at(n)
   699  	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
   700  		value := reflect.New(typ).Elem()
   701  		value.SetUint(n.Uint64)
   702  		return value
   703  	}
   704  	s.errorf("expected unsigned integer; found %s", n)
   705  	panic("not reached")
   706  }
   707  
   708  func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
   709  	s.at(n)
   710  	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
   711  		value := reflect.New(typ).Elem()
   712  		value.SetFloat(n.Float64)
   713  		return value
   714  	}
   715  	s.errorf("expected float; found %s", n)
   716  	panic("not reached")
   717  }
   718  
   719  func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
   720  	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
   721  		value := reflect.New(typ).Elem()
   722  		value.SetComplex(n.Complex128)
   723  		return value
   724  	}
   725  	s.errorf("expected complex; found %s", n)
   726  	panic("not reached")
   727  }
   728  
   729  func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
   730  	s.at(n)
   731  	switch n := n.(type) {
   732  	case *parse.BoolNode:
   733  		return reflect.ValueOf(n.True)
   734  	case *parse.DotNode:
   735  		return dot
   736  	case *parse.FieldNode:
   737  		return s.evalFieldNode(dot, n, nil, zero)
   738  	case *parse.IdentifierNode:
   739  		return s.evalFunction(dot, n, n, nil, zero)
   740  	case *parse.NilNode:
   741  		// NilNode is handled in evalArg, the only place that calls here.
   742  		s.errorf("evalEmptyInterface: nil (can't happen)")
   743  	case *parse.NumberNode:
   744  		return s.idealConstant(n)
   745  	case *parse.StringNode:
   746  		return reflect.ValueOf(n.Text)
   747  	case *parse.VariableNode:
   748  		return s.evalVariableNode(dot, n, nil, zero)
   749  	case *parse.PipeNode:
   750  		return s.evalPipeline(dot, n)
   751  	}
   752  	s.errorf("can't handle assignment of %s to empty interface argument", n)
   753  	panic("not reached")
   754  }
   755  
   756  // indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
   757  // We indirect through pointers and empty interfaces (only) because
   758  // non-empty interfaces have methods we might need.
   759  func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
   760  	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
   761  		if v.IsNil() {
   762  			return v, true
   763  		}
   764  		if v.Kind() == reflect.Interface && v.NumMethod() > 0 {
   765  			break
   766  		}
   767  	}
   768  	return v, false
   769  }
   770  
   771  // printValue writes the textual representation of the value to the output of
   772  // the template.
   773  func (s *state) printValue(n parse.Node, v reflect.Value) {
   774  	s.at(n)
   775  	iface, ok := printableValue(v)
   776  	if !ok {
   777  		s.errorf("can't print %s of type %s", n, v.Type())
   778  	}
   779  	fmt.Fprint(s.wr, iface)
   780  }
   781  
   782  // printableValue returns the, possibly indirected, interface value inside v that
   783  // is best for a call to formatted printer.
   784  func printableValue(v reflect.Value) (interface{}, bool) {
   785  	if v.Kind() == reflect.Ptr {
   786  		v, _ = indirect(v) // fmt.Fprint handles nil.
   787  	}
   788  	if !v.IsValid() {
   789  		return "<no value>", true
   790  	}
   791  
   792  	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
   793  		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
   794  			v = v.Addr()
   795  		} else {
   796  			switch v.Kind() {
   797  			case reflect.Chan, reflect.Func:
   798  				return nil, false
   799  			}
   800  		}
   801  	}
   802  	return v.Interface(), true
   803  }
   804  
   805  // Types to help sort the keys in a map for reproducible output.
   806  
   807  type rvs []reflect.Value
   808  
   809  func (x rvs) Len() int      { return len(x) }
   810  func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   811  
   812  type rvInts struct{ rvs }
   813  
   814  func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() }
   815  
   816  type rvUints struct{ rvs }
   817  
   818  func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() }
   819  
   820  type rvFloats struct{ rvs }
   821  
   822  func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() }
   823  
   824  type rvStrings struct{ rvs }
   825  
   826  func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() }
   827  
   828  // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
   829  func sortKeys(v []reflect.Value) []reflect.Value {
   830  	if len(v) <= 1 {
   831  		return v
   832  	}
   833  	switch v[0].Kind() {
   834  	case reflect.Float32, reflect.Float64:
   835  		sort.Sort(rvFloats{v})
   836  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   837  		sort.Sort(rvInts{v})
   838  	case reflect.String:
   839  		sort.Sort(rvStrings{v})
   840  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   841  		sort.Sort(rvUints{v})
   842  	}
   843  	return v
   844  }