github.com/tcnksm/go@v0.0.0-20141208075154-439b32936367/src/text/template/parse/parse.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package parse builds parse trees for templates as defined by text/template 6 // and html/template. Clients should use those packages to construct templates 7 // rather than this one, which provides shared internal data structures not 8 // intended for general use. 9 package parse 10 11 import ( 12 "bytes" 13 "fmt" 14 "runtime" 15 "strconv" 16 "strings" 17 ) 18 19 // Tree is the representation of a single parsed template. 20 type Tree struct { 21 Name string // name of the template represented by the tree. 22 ParseName string // name of the top-level template during parsing, for error messages. 23 Root *ListNode // top-level root of the tree. 24 text string // text parsed to create the template (or its parent) 25 // Parsing only; cleared after parse. 26 funcs []map[string]interface{} 27 lex *lexer 28 token [3]item // three-token lookahead for parser. 29 peekCount int 30 vars []string // variables defined at the moment. 31 } 32 33 // Copy returns a copy of the Tree. Any parsing state is discarded. 34 func (t *Tree) Copy() *Tree { 35 if t == nil { 36 return nil 37 } 38 return &Tree{ 39 Name: t.Name, 40 ParseName: t.ParseName, 41 Root: t.Root.CopyList(), 42 text: t.text, 43 } 44 } 45 46 // Parse returns a map from template name to parse.Tree, created by parsing the 47 // templates described in the argument string. The top-level template will be 48 // given the specified name. If an error is encountered, parsing stops and an 49 // empty map is returned with the error. 50 func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (treeSet map[string]*Tree, err error) { 51 treeSet = make(map[string]*Tree) 52 t := New(name) 53 t.text = text 54 _, err = t.Parse(text, leftDelim, rightDelim, treeSet, funcs...) 55 return 56 } 57 58 // next returns the next token. 59 func (t *Tree) next() item { 60 if t.peekCount > 0 { 61 t.peekCount-- 62 } else { 63 t.token[0] = t.lex.nextItem() 64 } 65 return t.token[t.peekCount] 66 } 67 68 // backup backs the input stream up one token. 69 func (t *Tree) backup() { 70 t.peekCount++ 71 } 72 73 // backup2 backs the input stream up two tokens. 74 // The zeroth token is already there. 75 func (t *Tree) backup2(t1 item) { 76 t.token[1] = t1 77 t.peekCount = 2 78 } 79 80 // backup3 backs the input stream up three tokens 81 // The zeroth token is already there. 82 func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back. 83 t.token[1] = t1 84 t.token[2] = t2 85 t.peekCount = 3 86 } 87 88 // peek returns but does not consume the next token. 89 func (t *Tree) peek() item { 90 if t.peekCount > 0 { 91 return t.token[t.peekCount-1] 92 } 93 t.peekCount = 1 94 t.token[0] = t.lex.nextItem() 95 return t.token[0] 96 } 97 98 // nextNonSpace returns the next non-space token. 99 func (t *Tree) nextNonSpace() (token item) { 100 for { 101 token = t.next() 102 if token.typ != itemSpace { 103 break 104 } 105 } 106 return token 107 } 108 109 // peekNonSpace returns but does not consume the next non-space token. 110 func (t *Tree) peekNonSpace() (token item) { 111 for { 112 token = t.next() 113 if token.typ != itemSpace { 114 break 115 } 116 } 117 t.backup() 118 return token 119 } 120 121 // Parsing. 122 123 // New allocates a new parse tree with the given name. 124 func New(name string, funcs ...map[string]interface{}) *Tree { 125 return &Tree{ 126 Name: name, 127 funcs: funcs, 128 } 129 } 130 131 // ErrorContext returns a textual representation of the location of the node in the input text. 132 // The receiver is only used when the node does not have a pointer to the tree inside, 133 // which can occur in old code. 134 func (t *Tree) ErrorContext(n Node) (location, context string) { 135 pos := int(n.Position()) 136 tree := n.tree() 137 if tree == nil { 138 tree = t 139 } 140 text := tree.text[:pos] 141 byteNum := strings.LastIndex(text, "\n") 142 if byteNum == -1 { 143 byteNum = pos // On first line. 144 } else { 145 byteNum++ // After the newline. 146 byteNum = pos - byteNum 147 } 148 lineNum := 1 + strings.Count(text, "\n") 149 context = n.String() 150 if len(context) > 20 { 151 context = fmt.Sprintf("%.20s...", context) 152 } 153 return fmt.Sprintf("%s:%d:%d", tree.ParseName, lineNum, byteNum), context 154 } 155 156 // errorf formats the error and terminates processing. 157 func (t *Tree) errorf(format string, args ...interface{}) { 158 t.Root = nil 159 format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.lex.lineNumber(), format) 160 panic(fmt.Errorf(format, args...)) 161 } 162 163 // error terminates processing. 164 func (t *Tree) error(err error) { 165 t.errorf("%s", err) 166 } 167 168 // expect consumes the next token and guarantees it has the required type. 169 func (t *Tree) expect(expected itemType, context string) item { 170 token := t.nextNonSpace() 171 if token.typ != expected { 172 t.unexpected(token, context) 173 } 174 return token 175 } 176 177 // expectOneOf consumes the next token and guarantees it has one of the required types. 178 func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item { 179 token := t.nextNonSpace() 180 if token.typ != expected1 && token.typ != expected2 { 181 t.unexpected(token, context) 182 } 183 return token 184 } 185 186 // unexpected complains about the token and terminates processing. 187 func (t *Tree) unexpected(token item, context string) { 188 t.errorf("unexpected %s in %s", token, context) 189 } 190 191 // recover is the handler that turns panics into returns from the top level of Parse. 192 func (t *Tree) recover(errp *error) { 193 e := recover() 194 if e != nil { 195 if _, ok := e.(runtime.Error); ok { 196 panic(e) 197 } 198 if t != nil { 199 t.stopParse() 200 } 201 *errp = e.(error) 202 } 203 return 204 } 205 206 // startParse initializes the parser, using the lexer. 207 func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer) { 208 t.Root = nil 209 t.lex = lex 210 t.vars = []string{"$"} 211 t.funcs = funcs 212 } 213 214 // stopParse terminates parsing. 215 func (t *Tree) stopParse() { 216 t.lex = nil 217 t.vars = nil 218 t.funcs = nil 219 } 220 221 // Parse parses the template definition string to construct a representation of 222 // the template for execution. If either action delimiter string is empty, the 223 // default ("{{" or "}}") is used. Embedded template definitions are added to 224 // the treeSet map. 225 func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) { 226 defer t.recover(&err) 227 t.ParseName = t.Name 228 t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim)) 229 t.text = text 230 t.parse(treeSet) 231 t.add(treeSet) 232 t.stopParse() 233 return t, nil 234 } 235 236 // add adds tree to the treeSet. 237 func (t *Tree) add(treeSet map[string]*Tree) { 238 tree := treeSet[t.Name] 239 if tree == nil || IsEmptyTree(tree.Root) { 240 treeSet[t.Name] = t 241 return 242 } 243 if !IsEmptyTree(t.Root) { 244 t.errorf("template: multiple definition of template %q", t.Name) 245 } 246 } 247 248 // IsEmptyTree reports whether this tree (node) is empty of everything but space. 249 func IsEmptyTree(n Node) bool { 250 switch n := n.(type) { 251 case nil: 252 return true 253 case *ActionNode: 254 case *IfNode: 255 case *ListNode: 256 for _, node := range n.Nodes { 257 if !IsEmptyTree(node) { 258 return false 259 } 260 } 261 return true 262 case *RangeNode: 263 case *TemplateNode: 264 case *TextNode: 265 return len(bytes.TrimSpace(n.Text)) == 0 266 case *WithNode: 267 default: 268 panic("unknown node: " + n.String()) 269 } 270 return false 271 } 272 273 // parse is the top-level parser for a template, essentially the same 274 // as itemList except it also parses {{define}} actions. 275 // It runs to EOF. 276 func (t *Tree) parse(treeSet map[string]*Tree) (next Node) { 277 t.Root = t.newList(t.peek().pos) 278 for t.peek().typ != itemEOF { 279 if t.peek().typ == itemLeftDelim { 280 delim := t.next() 281 if t.nextNonSpace().typ == itemDefine { 282 newT := New("definition") // name will be updated once we know it. 283 newT.text = t.text 284 newT.ParseName = t.ParseName 285 newT.startParse(t.funcs, t.lex) 286 newT.parseDefinition(treeSet) 287 continue 288 } 289 t.backup2(delim) 290 } 291 n := t.textOrAction() 292 if n.Type() == nodeEnd { 293 t.errorf("unexpected %s", n) 294 } 295 t.Root.append(n) 296 } 297 return nil 298 } 299 300 // parseDefinition parses a {{define}} ... {{end}} template definition and 301 // installs the definition in the treeSet map. The "define" keyword has already 302 // been scanned. 303 func (t *Tree) parseDefinition(treeSet map[string]*Tree) { 304 const context = "define clause" 305 name := t.expectOneOf(itemString, itemRawString, context) 306 var err error 307 t.Name, err = strconv.Unquote(name.val) 308 if err != nil { 309 t.error(err) 310 } 311 t.expect(itemRightDelim, context) 312 var end Node 313 t.Root, end = t.itemList() 314 if end.Type() != nodeEnd { 315 t.errorf("unexpected %s in %s", end, context) 316 } 317 t.add(treeSet) 318 t.stopParse() 319 } 320 321 // itemList: 322 // textOrAction* 323 // Terminates at {{end}} or {{else}}, returned separately. 324 func (t *Tree) itemList() (list *ListNode, next Node) { 325 list = t.newList(t.peekNonSpace().pos) 326 for t.peekNonSpace().typ != itemEOF { 327 n := t.textOrAction() 328 switch n.Type() { 329 case nodeEnd, nodeElse: 330 return list, n 331 } 332 list.append(n) 333 } 334 t.errorf("unexpected EOF") 335 return 336 } 337 338 // textOrAction: 339 // text | action 340 func (t *Tree) textOrAction() Node { 341 switch token := t.nextNonSpace(); token.typ { 342 case itemText: 343 return t.newText(token.pos, token.val) 344 case itemLeftDelim: 345 return t.action() 346 default: 347 t.unexpected(token, "input") 348 } 349 return nil 350 } 351 352 // Action: 353 // control 354 // command ("|" command)* 355 // Left delim is past. Now get actions. 356 // First word could be a keyword such as range. 357 func (t *Tree) action() (n Node) { 358 switch token := t.nextNonSpace(); token.typ { 359 case itemElse: 360 return t.elseControl() 361 case itemEnd: 362 return t.endControl() 363 case itemIf: 364 return t.ifControl() 365 case itemRange: 366 return t.rangeControl() 367 case itemTemplate: 368 return t.templateControl() 369 case itemWith: 370 return t.withControl() 371 } 372 t.backup() 373 // Do not pop variables; they persist until "end". 374 return t.newAction(t.peek().pos, t.lex.lineNumber(), t.pipeline("command")) 375 } 376 377 // Pipeline: 378 // declarations? command ('|' command)* 379 func (t *Tree) pipeline(context string) (pipe *PipeNode) { 380 var decl []*VariableNode 381 pos := t.peekNonSpace().pos 382 // Are there declarations? 383 for { 384 if v := t.peekNonSpace(); v.typ == itemVariable { 385 t.next() 386 // Since space is a token, we need 3-token look-ahead here in the worst case: 387 // in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an 388 // argument variable rather than a declaration. So remember the token 389 // adjacent to the variable so we can push it back if necessary. 390 tokenAfterVariable := t.peek() 391 if next := t.peekNonSpace(); next.typ == itemColonEquals || (next.typ == itemChar && next.val == ",") { 392 t.nextNonSpace() 393 variable := t.newVariable(v.pos, v.val) 394 decl = append(decl, variable) 395 t.vars = append(t.vars, v.val) 396 if next.typ == itemChar && next.val == "," { 397 if context == "range" && len(decl) < 2 { 398 continue 399 } 400 t.errorf("too many declarations in %s", context) 401 } 402 } else if tokenAfterVariable.typ == itemSpace { 403 t.backup3(v, tokenAfterVariable) 404 } else { 405 t.backup2(v) 406 } 407 } 408 break 409 } 410 pipe = t.newPipeline(pos, t.lex.lineNumber(), decl) 411 for { 412 switch token := t.nextNonSpace(); token.typ { 413 case itemRightDelim, itemRightParen: 414 if len(pipe.Cmds) == 0 { 415 t.errorf("missing value for %s", context) 416 } 417 if token.typ == itemRightParen { 418 t.backup() 419 } 420 return 421 case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier, 422 itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen: 423 t.backup() 424 pipe.append(t.command()) 425 default: 426 t.unexpected(token, context) 427 } 428 } 429 } 430 431 func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) { 432 defer t.popVars(len(t.vars)) 433 line = t.lex.lineNumber() 434 pipe = t.pipeline(context) 435 var next Node 436 list, next = t.itemList() 437 switch next.Type() { 438 case nodeEnd: //done 439 case nodeElse: 440 if allowElseIf { 441 // Special case for "else if". If the "else" is followed immediately by an "if", 442 // the elseControl will have left the "if" token pending. Treat 443 // {{if a}}_{{else if b}}_{{end}} 444 // as 445 // {{if a}}_{{else}}{{if b}}_{{end}}{{end}}. 446 // To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}} 447 // is assumed. This technique works even for long if-else-if chains. 448 // TODO: Should we allow else-if in with and range? 449 if t.peek().typ == itemIf { 450 t.next() // Consume the "if" token. 451 elseList = t.newList(next.Position()) 452 elseList.append(t.ifControl()) 453 // Do not consume the next item - only one {{end}} required. 454 break 455 } 456 } 457 elseList, next = t.itemList() 458 if next.Type() != nodeEnd { 459 t.errorf("expected end; found %s", next) 460 } 461 } 462 return pipe.Position(), line, pipe, list, elseList 463 } 464 465 // If: 466 // {{if pipeline}} itemList {{end}} 467 // {{if pipeline}} itemList {{else}} itemList {{end}} 468 // If keyword is past. 469 func (t *Tree) ifControl() Node { 470 return t.newIf(t.parseControl(true, "if")) 471 } 472 473 // Range: 474 // {{range pipeline}} itemList {{end}} 475 // {{range pipeline}} itemList {{else}} itemList {{end}} 476 // Range keyword is past. 477 func (t *Tree) rangeControl() Node { 478 return t.newRange(t.parseControl(false, "range")) 479 } 480 481 // With: 482 // {{with pipeline}} itemList {{end}} 483 // {{with pipeline}} itemList {{else}} itemList {{end}} 484 // If keyword is past. 485 func (t *Tree) withControl() Node { 486 return t.newWith(t.parseControl(false, "with")) 487 } 488 489 // End: 490 // {{end}} 491 // End keyword is past. 492 func (t *Tree) endControl() Node { 493 return t.newEnd(t.expect(itemRightDelim, "end").pos) 494 } 495 496 // Else: 497 // {{else}} 498 // Else keyword is past. 499 func (t *Tree) elseControl() Node { 500 // Special case for "else if". 501 peek := t.peekNonSpace() 502 if peek.typ == itemIf { 503 // We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ". 504 return t.newElse(peek.pos, t.lex.lineNumber()) 505 } 506 return t.newElse(t.expect(itemRightDelim, "else").pos, t.lex.lineNumber()) 507 } 508 509 // Template: 510 // {{template stringValue pipeline}} 511 // Template keyword is past. The name must be something that can evaluate 512 // to a string. 513 func (t *Tree) templateControl() Node { 514 var name string 515 token := t.nextNonSpace() 516 switch token.typ { 517 case itemString, itemRawString: 518 s, err := strconv.Unquote(token.val) 519 if err != nil { 520 t.error(err) 521 } 522 name = s 523 default: 524 t.unexpected(token, "template invocation") 525 } 526 var pipe *PipeNode 527 if t.nextNonSpace().typ != itemRightDelim { 528 t.backup() 529 // Do not pop variables; they persist until "end". 530 pipe = t.pipeline("template") 531 } 532 return t.newTemplate(token.pos, t.lex.lineNumber(), name, pipe) 533 } 534 535 // command: 536 // operand (space operand)* 537 // space-separated arguments up to a pipeline character or right delimiter. 538 // we consume the pipe character but leave the right delim to terminate the action. 539 func (t *Tree) command() *CommandNode { 540 cmd := t.newCommand(t.peekNonSpace().pos) 541 for { 542 t.peekNonSpace() // skip leading spaces. 543 operand := t.operand() 544 if operand != nil { 545 cmd.append(operand) 546 } 547 switch token := t.next(); token.typ { 548 case itemSpace: 549 continue 550 case itemError: 551 t.errorf("%s", token.val) 552 case itemRightDelim, itemRightParen: 553 t.backup() 554 case itemPipe: 555 default: 556 t.errorf("unexpected %s in operand; missing space?", token) 557 } 558 break 559 } 560 if len(cmd.Args) == 0 { 561 t.errorf("empty command") 562 } 563 return cmd 564 } 565 566 // operand: 567 // term .Field* 568 // An operand is a space-separated component of a command, 569 // a term possibly followed by field accesses. 570 // A nil return means the next item is not an operand. 571 func (t *Tree) operand() Node { 572 node := t.term() 573 if node == nil { 574 return nil 575 } 576 if t.peek().typ == itemField { 577 chain := t.newChain(t.peek().pos, node) 578 for t.peek().typ == itemField { 579 chain.Add(t.next().val) 580 } 581 // Compatibility with original API: If the term is of type NodeField 582 // or NodeVariable, just put more fields on the original. 583 // Otherwise, keep the Chain node. 584 // TODO: Switch to Chains always when we can. 585 switch node.Type() { 586 case NodeField: 587 node = t.newField(chain.Position(), chain.String()) 588 case NodeVariable: 589 node = t.newVariable(chain.Position(), chain.String()) 590 default: 591 node = chain 592 } 593 } 594 return node 595 } 596 597 // term: 598 // literal (number, string, nil, boolean) 599 // function (identifier) 600 // . 601 // .Field 602 // $ 603 // '(' pipeline ')' 604 // A term is a simple "expression". 605 // A nil return means the next item is not a term. 606 func (t *Tree) term() Node { 607 switch token := t.nextNonSpace(); token.typ { 608 case itemError: 609 t.errorf("%s", token.val) 610 case itemIdentifier: 611 if !t.hasFunction(token.val) { 612 t.errorf("function %q not defined", token.val) 613 } 614 return NewIdentifier(token.val).SetTree(t).SetPos(token.pos) 615 case itemDot: 616 return t.newDot(token.pos) 617 case itemNil: 618 return t.newNil(token.pos) 619 case itemVariable: 620 return t.useVar(token.pos, token.val) 621 case itemField: 622 return t.newField(token.pos, token.val) 623 case itemBool: 624 return t.newBool(token.pos, token.val == "true") 625 case itemCharConstant, itemComplex, itemNumber: 626 number, err := t.newNumber(token.pos, token.val, token.typ) 627 if err != nil { 628 t.error(err) 629 } 630 return number 631 case itemLeftParen: 632 pipe := t.pipeline("parenthesized pipeline") 633 if token := t.next(); token.typ != itemRightParen { 634 t.errorf("unclosed right paren: unexpected %s", token) 635 } 636 return pipe 637 case itemString, itemRawString: 638 s, err := strconv.Unquote(token.val) 639 if err != nil { 640 t.error(err) 641 } 642 return t.newString(token.pos, token.val, s) 643 } 644 t.backup() 645 return nil 646 } 647 648 // hasFunction reports if a function name exists in the Tree's maps. 649 func (t *Tree) hasFunction(name string) bool { 650 for _, funcMap := range t.funcs { 651 if funcMap == nil { 652 continue 653 } 654 if funcMap[name] != nil { 655 return true 656 } 657 } 658 return false 659 } 660 661 // popVars trims the variable list to the specified length 662 func (t *Tree) popVars(n int) { 663 t.vars = t.vars[:n] 664 } 665 666 // useVar returns a node for a variable reference. It errors if the 667 // variable is not defined. 668 func (t *Tree) useVar(pos Pos, name string) Node { 669 v := t.newVariable(pos, name) 670 for _, varName := range t.vars { 671 if varName == v.Ident[0] { 672 return v 673 } 674 } 675 t.errorf("undefined variable %q", v.Ident[0]) 676 return nil 677 }