github.com/tenderly/bsc@v1.0.7/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "math/big" 24 25 "github.com/tenderly/bsc/common" 26 "github.com/tenderly/bsc/common/math" 27 "github.com/tenderly/bsc/crypto" 28 "github.com/tenderly/bsc/crypto/blake2b" 29 "github.com/tenderly/bsc/crypto/bn256" 30 "github.com/tenderly/bsc/params" 31 32 //lint:ignore SA1019 Needed for precompile 33 "golang.org/x/crypto/ripemd160" 34 ) 35 36 // PrecompiledContract is the basic interface for native Go contracts. The implementation 37 // requires a deterministic gas count based on the input size of the Run method of the 38 // contract. 39 type PrecompiledContract interface { 40 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 41 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 42 } 43 44 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 45 // contracts used in the Frontier and Homestead releases. 46 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 47 common.BytesToAddress([]byte{1}): &ecrecover{}, 48 common.BytesToAddress([]byte{2}): &sha256hash{}, 49 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 50 common.BytesToAddress([]byte{4}): &dataCopy{}, 51 } 52 53 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 54 // contracts used in the Byzantium release. 55 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 56 common.BytesToAddress([]byte{1}): &ecrecover{}, 57 common.BytesToAddress([]byte{2}): &sha256hash{}, 58 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 59 common.BytesToAddress([]byte{4}): &dataCopy{}, 60 common.BytesToAddress([]byte{5}): &bigModExp{}, 61 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 62 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 63 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 64 } 65 66 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 67 // contracts used in the Istanbul release. 68 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 69 common.BytesToAddress([]byte{1}): &ecrecover{}, 70 common.BytesToAddress([]byte{2}): &sha256hash{}, 71 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 72 common.BytesToAddress([]byte{4}): &dataCopy{}, 73 common.BytesToAddress([]byte{5}): &bigModExp{}, 74 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 75 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 76 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 77 common.BytesToAddress([]byte{9}): &blake2F{}, 78 79 common.BytesToAddress([]byte{100}): &tmHeaderValidate{}, 80 common.BytesToAddress([]byte{101}): &iavlMerkleProofValidate{}, 81 } 82 83 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 84 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 85 gas := p.RequiredGas(input) 86 if contract.UseGas(gas) { 87 return p.Run(input) 88 } 89 return nil, ErrOutOfGas 90 } 91 92 // ECRECOVER implemented as a native contract. 93 type ecrecover struct{} 94 95 func (c *ecrecover) RequiredGas(input []byte) uint64 { 96 return params.EcrecoverGas 97 } 98 99 func (c *ecrecover) Run(input []byte) ([]byte, error) { 100 const ecRecoverInputLength = 128 101 102 input = common.RightPadBytes(input, ecRecoverInputLength) 103 // "input" is (hash, v, r, s), each 32 bytes 104 // but for ecrecover we want (r, s, v) 105 106 r := new(big.Int).SetBytes(input[64:96]) 107 s := new(big.Int).SetBytes(input[96:128]) 108 v := input[63] - 27 109 110 // tighter sig s values input homestead only apply to tx sigs 111 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 112 return nil, nil 113 } 114 // We must make sure not to modify the 'input', so placing the 'v' along with 115 // the signature needs to be done on a new allocation 116 sig := make([]byte, 65) 117 copy(sig, input[64:128]) 118 sig[64] = v 119 // v needs to be at the end for libsecp256k1 120 pubKey, err := crypto.Ecrecover(input[:32], sig) 121 // make sure the public key is a valid one 122 if err != nil { 123 return nil, nil 124 } 125 126 // the first byte of pubkey is bitcoin heritage 127 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 128 } 129 130 // SHA256 implemented as a native contract. 131 type sha256hash struct{} 132 133 // RequiredGas returns the gas required to execute the pre-compiled contract. 134 // 135 // This method does not require any overflow checking as the input size gas costs 136 // required for anything significant is so high it's impossible to pay for. 137 func (c *sha256hash) RequiredGas(input []byte) uint64 { 138 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 139 } 140 func (c *sha256hash) Run(input []byte) ([]byte, error) { 141 h := sha256.Sum256(input) 142 return h[:], nil 143 } 144 145 // RIPEMD160 implemented as a native contract. 146 type ripemd160hash struct{} 147 148 // RequiredGas returns the gas required to execute the pre-compiled contract. 149 // 150 // This method does not require any overflow checking as the input size gas costs 151 // required for anything significant is so high it's impossible to pay for. 152 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 153 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 154 } 155 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 156 ripemd := ripemd160.New() 157 ripemd.Write(input) 158 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 159 } 160 161 // data copy implemented as a native contract. 162 type dataCopy struct{} 163 164 // RequiredGas returns the gas required to execute the pre-compiled contract. 165 // 166 // This method does not require any overflow checking as the input size gas costs 167 // required for anything significant is so high it's impossible to pay for. 168 func (c *dataCopy) RequiredGas(input []byte) uint64 { 169 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 170 } 171 func (c *dataCopy) Run(in []byte) ([]byte, error) { 172 return in, nil 173 } 174 175 // bigModExp implements a native big integer exponential modular operation. 176 type bigModExp struct{} 177 178 var ( 179 big1 = big.NewInt(1) 180 big4 = big.NewInt(4) 181 big8 = big.NewInt(8) 182 big16 = big.NewInt(16) 183 big32 = big.NewInt(32) 184 big64 = big.NewInt(64) 185 big96 = big.NewInt(96) 186 big480 = big.NewInt(480) 187 big1024 = big.NewInt(1024) 188 big3072 = big.NewInt(3072) 189 big199680 = big.NewInt(199680) 190 ) 191 192 // RequiredGas returns the gas required to execute the pre-compiled contract. 193 func (c *bigModExp) RequiredGas(input []byte) uint64 { 194 var ( 195 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 196 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 197 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 198 ) 199 if len(input) > 96 { 200 input = input[96:] 201 } else { 202 input = input[:0] 203 } 204 // Retrieve the head 32 bytes of exp for the adjusted exponent length 205 var expHead *big.Int 206 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 207 expHead = new(big.Int) 208 } else { 209 if expLen.Cmp(big32) > 0 { 210 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 211 } else { 212 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 213 } 214 } 215 // Calculate the adjusted exponent length 216 var msb int 217 if bitlen := expHead.BitLen(); bitlen > 0 { 218 msb = bitlen - 1 219 } 220 adjExpLen := new(big.Int) 221 if expLen.Cmp(big32) > 0 { 222 adjExpLen.Sub(expLen, big32) 223 adjExpLen.Mul(big8, adjExpLen) 224 } 225 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 226 227 // Calculate the gas cost of the operation 228 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 229 switch { 230 case gas.Cmp(big64) <= 0: 231 gas.Mul(gas, gas) 232 case gas.Cmp(big1024) <= 0: 233 gas = new(big.Int).Add( 234 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 235 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 236 ) 237 default: 238 gas = new(big.Int).Add( 239 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 240 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 241 ) 242 } 243 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 244 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 245 246 if gas.BitLen() > 64 { 247 return math.MaxUint64 248 } 249 return gas.Uint64() 250 } 251 252 func (c *bigModExp) Run(input []byte) ([]byte, error) { 253 var ( 254 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 255 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 256 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 257 ) 258 if len(input) > 96 { 259 input = input[96:] 260 } else { 261 input = input[:0] 262 } 263 // Handle a special case when both the base and mod length is zero 264 if baseLen == 0 && modLen == 0 { 265 return []byte{}, nil 266 } 267 // Retrieve the operands and execute the exponentiation 268 var ( 269 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 270 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 271 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 272 ) 273 if mod.BitLen() == 0 { 274 // Modulo 0 is undefined, return zero 275 return common.LeftPadBytes([]byte{}, int(modLen)), nil 276 } 277 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 278 } 279 280 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 281 // returning it, or an error if the point is invalid. 282 func newCurvePoint(blob []byte) (*bn256.G1, error) { 283 p := new(bn256.G1) 284 if _, err := p.Unmarshal(blob); err != nil { 285 return nil, err 286 } 287 return p, nil 288 } 289 290 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 291 // returning it, or an error if the point is invalid. 292 func newTwistPoint(blob []byte) (*bn256.G2, error) { 293 p := new(bn256.G2) 294 if _, err := p.Unmarshal(blob); err != nil { 295 return nil, err 296 } 297 return p, nil 298 } 299 300 // runBn256Add implements the Bn256Add precompile, referenced by both 301 // Byzantium and Istanbul operations. 302 func runBn256Add(input []byte) ([]byte, error) { 303 x, err := newCurvePoint(getData(input, 0, 64)) 304 if err != nil { 305 return nil, err 306 } 307 y, err := newCurvePoint(getData(input, 64, 64)) 308 if err != nil { 309 return nil, err 310 } 311 res := new(bn256.G1) 312 res.Add(x, y) 313 return res.Marshal(), nil 314 } 315 316 // bn256Add implements a native elliptic curve point addition conforming to 317 // Istanbul consensus rules. 318 type bn256AddIstanbul struct{} 319 320 // RequiredGas returns the gas required to execute the pre-compiled contract. 321 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 322 return params.Bn256AddGasIstanbul 323 } 324 325 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 326 return runBn256Add(input) 327 } 328 329 // bn256AddByzantium implements a native elliptic curve point addition 330 // conforming to Byzantium consensus rules. 331 type bn256AddByzantium struct{} 332 333 // RequiredGas returns the gas required to execute the pre-compiled contract. 334 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 335 return params.Bn256AddGasByzantium 336 } 337 338 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 339 return runBn256Add(input) 340 } 341 342 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 343 // both Byzantium and Istanbul operations. 344 func runBn256ScalarMul(input []byte) ([]byte, error) { 345 p, err := newCurvePoint(getData(input, 0, 64)) 346 if err != nil { 347 return nil, err 348 } 349 res := new(bn256.G1) 350 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 351 return res.Marshal(), nil 352 } 353 354 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 355 // multiplication conforming to Istanbul consensus rules. 356 type bn256ScalarMulIstanbul struct{} 357 358 // RequiredGas returns the gas required to execute the pre-compiled contract. 359 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 360 return params.Bn256ScalarMulGasIstanbul 361 } 362 363 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 364 return runBn256ScalarMul(input) 365 } 366 367 // bn256ScalarMulByzantium implements a native elliptic curve scalar 368 // multiplication conforming to Byzantium consensus rules. 369 type bn256ScalarMulByzantium struct{} 370 371 // RequiredGas returns the gas required to execute the pre-compiled contract. 372 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 373 return params.Bn256ScalarMulGasByzantium 374 } 375 376 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 377 return runBn256ScalarMul(input) 378 } 379 380 var ( 381 // true32Byte is returned if the bn256 pairing check succeeds. 382 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 383 384 // false32Byte is returned if the bn256 pairing check fails. 385 false32Byte = make([]byte, 32) 386 387 // errBadPairingInput is returned if the bn256 pairing input is invalid. 388 errBadPairingInput = errors.New("bad elliptic curve pairing size") 389 ) 390 391 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 392 // Byzantium and Istanbul operations. 393 func runBn256Pairing(input []byte) ([]byte, error) { 394 // Handle some corner cases cheaply 395 if len(input)%192 > 0 { 396 return nil, errBadPairingInput 397 } 398 // Convert the input into a set of coordinates 399 var ( 400 cs []*bn256.G1 401 ts []*bn256.G2 402 ) 403 for i := 0; i < len(input); i += 192 { 404 c, err := newCurvePoint(input[i : i+64]) 405 if err != nil { 406 return nil, err 407 } 408 t, err := newTwistPoint(input[i+64 : i+192]) 409 if err != nil { 410 return nil, err 411 } 412 cs = append(cs, c) 413 ts = append(ts, t) 414 } 415 // Execute the pairing checks and return the results 416 if bn256.PairingCheck(cs, ts) { 417 return true32Byte, nil 418 } 419 return false32Byte, nil 420 } 421 422 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 423 // conforming to Istanbul consensus rules. 424 type bn256PairingIstanbul struct{} 425 426 // RequiredGas returns the gas required to execute the pre-compiled contract. 427 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 428 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 429 } 430 431 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 432 return runBn256Pairing(input) 433 } 434 435 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 436 // conforming to Byzantium consensus rules. 437 type bn256PairingByzantium struct{} 438 439 // RequiredGas returns the gas required to execute the pre-compiled contract. 440 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 441 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 442 } 443 444 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 445 return runBn256Pairing(input) 446 } 447 448 type blake2F struct{} 449 450 func (c *blake2F) RequiredGas(input []byte) uint64 { 451 // If the input is malformed, we can't calculate the gas, return 0 and let the 452 // actual call choke and fault. 453 if len(input) != blake2FInputLength { 454 return 0 455 } 456 return uint64(binary.BigEndian.Uint32(input[0:4])) 457 } 458 459 const ( 460 blake2FInputLength = 213 461 blake2FFinalBlockBytes = byte(1) 462 blake2FNonFinalBlockBytes = byte(0) 463 ) 464 465 var ( 466 errBlake2FInvalidInputLength = errors.New("invalid input length") 467 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 468 ) 469 470 func (c *blake2F) Run(input []byte) ([]byte, error) { 471 // Make sure the input is valid (correct lenth and final flag) 472 if len(input) != blake2FInputLength { 473 return nil, errBlake2FInvalidInputLength 474 } 475 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 476 return nil, errBlake2FInvalidFinalFlag 477 } 478 // Parse the input into the Blake2b call parameters 479 var ( 480 rounds = binary.BigEndian.Uint32(input[0:4]) 481 final = (input[212] == blake2FFinalBlockBytes) 482 483 h [8]uint64 484 m [16]uint64 485 t [2]uint64 486 ) 487 for i := 0; i < 8; i++ { 488 offset := 4 + i*8 489 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 490 } 491 for i := 0; i < 16; i++ { 492 offset := 68 + i*8 493 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 494 } 495 t[0] = binary.LittleEndian.Uint64(input[196:204]) 496 t[1] = binary.LittleEndian.Uint64(input[204:212]) 497 498 // Execute the compression function, extract and return the result 499 blake2b.F(&h, m, t, final, rounds) 500 501 output := make([]byte, 64) 502 for i := 0; i < 8; i++ { 503 offset := i * 8 504 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 505 } 506 return output, nil 507 }