github.com/tenderly/bsc@v1.0.7/core/vm/interpreter.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package vm
    18  
    19  import (
    20  	"fmt"
    21  	"hash"
    22  	"sync/atomic"
    23  
    24  	"github.com/tenderly/bsc/common"
    25  	"github.com/tenderly/bsc/common/math"
    26  	"github.com/tenderly/bsc/log"
    27  )
    28  
    29  // Config are the configuration options for the Interpreter
    30  type Config struct {
    31  	Debug                   bool   // Enables debugging
    32  	Tracer                  Tracer // Opcode logger
    33  	NoRecursion             bool   // Disables call, callcode, delegate call and create
    34  	EnablePreimageRecording bool   // Enables recording of SHA3/keccak preimages
    35  
    36  	JumpTable [256]operation // EVM instruction table, automatically populated if unset
    37  
    38  	EWASMInterpreter string // External EWASM interpreter options
    39  	EVMInterpreter   string // External EVM interpreter options
    40  
    41  	ExtraEips []int // Additional EIPS that are to be enabled
    42  }
    43  
    44  // Interpreter is used to run Ethereum based contracts and will utilise the
    45  // passed environment to query external sources for state information.
    46  // The Interpreter will run the byte code VM based on the passed
    47  // configuration.
    48  type Interpreter interface {
    49  	// Run loops and evaluates the contract's code with the given input data and returns
    50  	// the return byte-slice and an error if one occurred.
    51  	Run(contract *Contract, input []byte, static bool) ([]byte, error)
    52  	// CanRun tells if the contract, passed as an argument, can be
    53  	// run by the current interpreter. This is meant so that the
    54  	// caller can do something like:
    55  	//
    56  	// ```golang
    57  	// for _, interpreter := range interpreters {
    58  	//   if interpreter.CanRun(contract.code) {
    59  	//     interpreter.Run(contract.code, input)
    60  	//   }
    61  	// }
    62  	// ```
    63  	CanRun([]byte) bool
    64  }
    65  
    66  // callCtx contains the things that are per-call, such as stack and memory,
    67  // but not transients like pc and gas
    68  type callCtx struct {
    69  	memory   *Memory
    70  	stack    *Stack
    71  	contract *Contract
    72  }
    73  
    74  // keccakState wraps sha3.state. In addition to the usual hash methods, it also supports
    75  // Read to get a variable amount of data from the hash state. Read is faster than Sum
    76  // because it doesn't copy the internal state, but also modifies the internal state.
    77  type keccakState interface {
    78  	hash.Hash
    79  	Read([]byte) (int, error)
    80  }
    81  
    82  // EVMInterpreter represents an EVM interpreter
    83  type EVMInterpreter struct {
    84  	evm *EVM
    85  	cfg Config
    86  
    87  	intPool *intPool
    88  
    89  	hasher    keccakState // Keccak256 hasher instance shared across opcodes
    90  	hasherBuf common.Hash // Keccak256 hasher result array shared aross opcodes
    91  
    92  	readOnly   bool   // Whether to throw on stateful modifications
    93  	returnData []byte // Last CALL's return data for subsequent reuse
    94  }
    95  
    96  // NewEVMInterpreter returns a new instance of the Interpreter.
    97  func NewEVMInterpreter(evm *EVM, cfg Config) *EVMInterpreter {
    98  	// We use the STOP instruction whether to see
    99  	// the jump table was initialised. If it was not
   100  	// we'll set the default jump table.
   101  	if !cfg.JumpTable[STOP].valid {
   102  		var jt JumpTable
   103  		switch {
   104  		case evm.chainRules.IsIstanbul:
   105  			jt = istanbulInstructionSet
   106  		case evm.chainRules.IsConstantinople:
   107  			jt = constantinopleInstructionSet
   108  		case evm.chainRules.IsByzantium:
   109  			jt = byzantiumInstructionSet
   110  		case evm.chainRules.IsEIP158:
   111  			jt = spuriousDragonInstructionSet
   112  		case evm.chainRules.IsEIP150:
   113  			jt = tangerineWhistleInstructionSet
   114  		case evm.chainRules.IsHomestead:
   115  			jt = homesteadInstructionSet
   116  		default:
   117  			jt = frontierInstructionSet
   118  		}
   119  		for i, eip := range cfg.ExtraEips {
   120  			if err := EnableEIP(eip, &jt); err != nil {
   121  				// Disable it, so caller can check if it's activated or not
   122  				cfg.ExtraEips = append(cfg.ExtraEips[:i], cfg.ExtraEips[i+1:]...)
   123  				log.Error("EIP activation failed", "eip", eip, "error", err)
   124  			}
   125  		}
   126  		cfg.JumpTable = jt
   127  	}
   128  
   129  	return &EVMInterpreter{
   130  		evm: evm,
   131  		cfg: cfg,
   132  	}
   133  }
   134  
   135  // Run loops and evaluates the contract's code with the given input data and returns
   136  // the return byte-slice and an error if one occurred.
   137  //
   138  // It's important to note that any errors returned by the interpreter should be
   139  // considered a revert-and-consume-all-gas operation except for
   140  // errExecutionReverted which means revert-and-keep-gas-left.
   141  func (in *EVMInterpreter) Run(contract *Contract, input []byte, readOnly bool) (ret []byte, err error) {
   142  	if in.intPool == nil {
   143  		in.intPool = poolOfIntPools.get()
   144  		defer func() {
   145  			poolOfIntPools.put(in.intPool)
   146  			in.intPool = nil
   147  		}()
   148  	}
   149  
   150  	// Increment the call depth which is restricted to 1024
   151  	in.evm.depth++
   152  	defer func() { in.evm.depth-- }()
   153  
   154  	// Make sure the readOnly is only set if we aren't in readOnly yet.
   155  	// This makes also sure that the readOnly flag isn't removed for child calls.
   156  	if readOnly && !in.readOnly {
   157  		in.readOnly = true
   158  		defer func() { in.readOnly = false }()
   159  	}
   160  
   161  	// Reset the previous call's return data. It's unimportant to preserve the old buffer
   162  	// as every returning call will return new data anyway.
   163  	in.returnData = nil
   164  
   165  	// TODO  temporary fix for issue
   166  	// Don't bother with the execution if there's no code.
   167  	//if len(contract.Code) == 0 {
   168  	//	return nil, nil
   169  	//}
   170  
   171  	var (
   172  		op          OpCode        // current opcode
   173  		mem         = NewMemory() // bound memory
   174  		stack       = newstack()  // local stack
   175  		callContext = &callCtx{
   176  			memory:   mem,
   177  			stack:    stack,
   178  			contract: contract,
   179  		}
   180  		// For optimisation reason we're using uint64 as the program counter.
   181  		// It's theoretically possible to go above 2^64. The YP defines the PC
   182  		// to be uint256. Practically much less so feasible.
   183  		pc   = uint64(0) // program counter
   184  		cost uint64
   185  		// copies used by tracer
   186  		pcCopy  uint64 // needed for the deferred Tracer
   187  		gasCopy uint64 // for Tracer to log gas remaining before execution
   188  		logged  bool   // deferred Tracer should ignore already logged steps
   189  		res     []byte // result of the opcode execution function
   190  	)
   191  	contract.Input = input
   192  
   193  	// Reclaim the stack as an int pool when the execution stops
   194  	defer func() { in.intPool.put(stack.data...) }()
   195  
   196  	if in.cfg.Debug {
   197  		defer func() {
   198  			if err != nil {
   199  				if !logged {
   200  					in.cfg.Tracer.CaptureState(in.evm, pcCopy, op, gasCopy, cost, mem, stack, contract, in.evm.depth, err)
   201  				} else {
   202  					in.cfg.Tracer.CaptureFault(in.evm, pcCopy, op, gasCopy, cost, mem, stack, contract, in.evm.depth, err)
   203  				}
   204  			}
   205  		}()
   206  	}
   207  	// The Interpreter main run loop (contextual). This loop runs until either an
   208  	// explicit STOP, RETURN or SELFDESTRUCT is executed, an error occurred during
   209  	// the execution of one of the operations or until the done flag is set by the
   210  	// parent context.
   211  	steps := 0
   212  	for {
   213  		steps++
   214  		if steps%1000 == 0 && atomic.LoadInt32(&in.evm.abort) != 0 {
   215  			break
   216  		}
   217  		if in.cfg.Debug {
   218  			// Capture pre-execution values for tracing.
   219  			logged, pcCopy, gasCopy = false, pc, contract.Gas
   220  		}
   221  
   222  		// Get the operation from the jump table and validate the stack to ensure there are
   223  		// enough stack items available to perform the operation.
   224  		op = contract.GetOp(pc)
   225  		operation := in.cfg.JumpTable[op]
   226  		if !operation.valid {
   227  			return nil, fmt.Errorf("invalid opcode 0x%x", int(op))
   228  		}
   229  		// Validate stack
   230  		if sLen := stack.len(); sLen < operation.minStack {
   231  			return nil, fmt.Errorf("stack underflow (%d <=> %d)", sLen, operation.minStack)
   232  		} else if sLen > operation.maxStack {
   233  			return nil, fmt.Errorf("stack limit reached %d (%d)", sLen, operation.maxStack)
   234  		}
   235  		// If the operation is valid, enforce and write restrictions
   236  		if in.readOnly && in.evm.chainRules.IsByzantium {
   237  			// If the interpreter is operating in readonly mode, make sure no
   238  			// state-modifying operation is performed. The 3rd stack item
   239  			// for a call operation is the value. Transferring value from one
   240  			// account to the others means the state is modified and should also
   241  			// return with an error.
   242  			if operation.writes || (op == CALL && stack.Back(2).Sign() != 0) {
   243  				return nil, errWriteProtection
   244  			}
   245  		}
   246  		// Static portion of gas
   247  		cost = operation.constantGas // For tracing
   248  		if !contract.UseGas(operation.constantGas) {
   249  			return nil, ErrOutOfGas
   250  		}
   251  
   252  		var memorySize uint64
   253  		// calculate the new memory size and expand the memory to fit
   254  		// the operation
   255  		// Memory check needs to be done prior to evaluating the dynamic gas portion,
   256  		// to detect calculation overflows
   257  		if operation.memorySize != nil {
   258  			memSize, overflow := operation.memorySize(stack)
   259  			if overflow {
   260  				return nil, errGasUintOverflow
   261  			}
   262  			// memory is expanded in words of 32 bytes. Gas
   263  			// is also calculated in words.
   264  			if memorySize, overflow = math.SafeMul(toWordSize(memSize), 32); overflow {
   265  				return nil, errGasUintOverflow
   266  			}
   267  		}
   268  		// Dynamic portion of gas
   269  		// consume the gas and return an error if not enough gas is available.
   270  		// cost is explicitly set so that the capture state defer method can get the proper cost
   271  		if operation.dynamicGas != nil {
   272  			var dynamicCost uint64
   273  			dynamicCost, err = operation.dynamicGas(in.evm, contract, stack, mem, memorySize)
   274  			cost += dynamicCost // total cost, for debug tracing
   275  			if err != nil || !contract.UseGas(dynamicCost) {
   276  				return nil, ErrOutOfGas
   277  			}
   278  		}
   279  		if memorySize > 0 {
   280  			mem.Resize(memorySize)
   281  		}
   282  
   283  		if in.cfg.Debug {
   284  			in.cfg.Tracer.CaptureState(in.evm, pc, op, gasCopy, cost, mem, stack, contract, in.evm.depth, err)
   285  			logged = true
   286  		}
   287  
   288  		// execute the operation
   289  		res, err = operation.execute(&pc, in, callContext)
   290  		// verifyPool is a build flag. Pool verification makes sure the integrity
   291  		// of the integer pool by comparing values to a default value.
   292  		if verifyPool {
   293  			verifyIntegerPool(in.intPool)
   294  		}
   295  		// if the operation clears the return data (e.g. it has returning data)
   296  		// set the last return to the result of the operation.
   297  		if operation.returns {
   298  			in.returnData = res
   299  		}
   300  
   301  		switch {
   302  		case err != nil:
   303  			return nil, err
   304  		case operation.reverts:
   305  			return res, errExecutionReverted
   306  		case operation.halts:
   307  			return res, nil
   308  		case !operation.jumps:
   309  			pc++
   310  		}
   311  	}
   312  	return nil, nil
   313  }
   314  
   315  // CanRun tells if the contract, passed as an argument, can be
   316  // run by the current interpreter.
   317  func (in *EVMInterpreter) CanRun(code []byte) bool {
   318  	return true
   319  }