github.com/theQRL/go-zond@v0.1.1/common/math/big.go (about)

     1  // Copyright 2017 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package math provides integer math utilities.
    18  package math
    19  
    20  import (
    21  	"fmt"
    22  	"math/big"
    23  )
    24  
    25  // Various big integer limit values.
    26  var (
    27  	tt255     = BigPow(2, 255)
    28  	tt256     = BigPow(2, 256)
    29  	tt256m1   = new(big.Int).Sub(tt256, big.NewInt(1))
    30  	tt63      = BigPow(2, 63)
    31  	MaxBig256 = new(big.Int).Set(tt256m1)
    32  	MaxBig63  = new(big.Int).Sub(tt63, big.NewInt(1))
    33  )
    34  
    35  const (
    36  	// number of bits in a big.Word
    37  	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
    38  	// number of bytes in a big.Word
    39  	wordBytes = wordBits / 8
    40  )
    41  
    42  // HexOrDecimal256 marshals big.Int as hex or decimal.
    43  type HexOrDecimal256 big.Int
    44  
    45  // NewHexOrDecimal256 creates a new HexOrDecimal256
    46  func NewHexOrDecimal256(x int64) *HexOrDecimal256 {
    47  	b := big.NewInt(x)
    48  	h := HexOrDecimal256(*b)
    49  	return &h
    50  }
    51  
    52  // UnmarshalJSON implements json.Unmarshaler.
    53  //
    54  // It is similar to UnmarshalText, but allows parsing real decimals too, not just
    55  // quoted decimal strings.
    56  func (i *HexOrDecimal256) UnmarshalJSON(input []byte) error {
    57  	if len(input) > 0 && input[0] == '"' {
    58  		input = input[1 : len(input)-1]
    59  	}
    60  	return i.UnmarshalText(input)
    61  }
    62  
    63  // UnmarshalText implements encoding.TextUnmarshaler.
    64  func (i *HexOrDecimal256) UnmarshalText(input []byte) error {
    65  	bigint, ok := ParseBig256(string(input))
    66  	if !ok {
    67  		return fmt.Errorf("invalid hex or decimal integer %q", input)
    68  	}
    69  	*i = HexOrDecimal256(*bigint)
    70  	return nil
    71  }
    72  
    73  // MarshalText implements encoding.TextMarshaler.
    74  func (i *HexOrDecimal256) MarshalText() ([]byte, error) {
    75  	if i == nil {
    76  		return []byte("0x0"), nil
    77  	}
    78  	return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil
    79  }
    80  
    81  // Decimal256 unmarshals big.Int as a decimal string. When unmarshalling,
    82  // it however accepts either "0x"-prefixed (hex encoded) or non-prefixed (decimal)
    83  type Decimal256 big.Int
    84  
    85  // NewDecimal256 creates a new Decimal256
    86  func NewDecimal256(x int64) *Decimal256 {
    87  	b := big.NewInt(x)
    88  	d := Decimal256(*b)
    89  	return &d
    90  }
    91  
    92  // UnmarshalText implements encoding.TextUnmarshaler.
    93  func (i *Decimal256) UnmarshalText(input []byte) error {
    94  	bigint, ok := ParseBig256(string(input))
    95  	if !ok {
    96  		return fmt.Errorf("invalid hex or decimal integer %q", input)
    97  	}
    98  	*i = Decimal256(*bigint)
    99  	return nil
   100  }
   101  
   102  // MarshalText implements encoding.TextMarshaler.
   103  func (i *Decimal256) MarshalText() ([]byte, error) {
   104  	return []byte(i.String()), nil
   105  }
   106  
   107  // String implements Stringer.
   108  func (i *Decimal256) String() string {
   109  	if i == nil {
   110  		return "0"
   111  	}
   112  	return fmt.Sprintf("%#d", (*big.Int)(i))
   113  }
   114  
   115  // ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
   116  // Leading zeros are accepted. The empty string parses as zero.
   117  func ParseBig256(s string) (*big.Int, bool) {
   118  	if s == "" {
   119  		return new(big.Int), true
   120  	}
   121  	var bigint *big.Int
   122  	var ok bool
   123  	if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
   124  		bigint, ok = new(big.Int).SetString(s[2:], 16)
   125  	} else {
   126  		bigint, ok = new(big.Int).SetString(s, 10)
   127  	}
   128  	if ok && bigint.BitLen() > 256 {
   129  		bigint, ok = nil, false
   130  	}
   131  	return bigint, ok
   132  }
   133  
   134  // MustParseBig256 parses s as a 256 bit big integer and panics if the string is invalid.
   135  func MustParseBig256(s string) *big.Int {
   136  	v, ok := ParseBig256(s)
   137  	if !ok {
   138  		panic("invalid 256 bit integer: " + s)
   139  	}
   140  	return v
   141  }
   142  
   143  // BigPow returns a ** b as a big integer.
   144  func BigPow(a, b int64) *big.Int {
   145  	r := big.NewInt(a)
   146  	return r.Exp(r, big.NewInt(b), nil)
   147  }
   148  
   149  // BigMax returns the larger of x or y.
   150  func BigMax(x, y *big.Int) *big.Int {
   151  	if x.Cmp(y) < 0 {
   152  		return y
   153  	}
   154  	return x
   155  }
   156  
   157  // BigMin returns the smaller of x or y.
   158  func BigMin(x, y *big.Int) *big.Int {
   159  	if x.Cmp(y) > 0 {
   160  		return y
   161  	}
   162  	return x
   163  }
   164  
   165  // FirstBitSet returns the index of the first 1 bit in v, counting from LSB.
   166  func FirstBitSet(v *big.Int) int {
   167  	for i := 0; i < v.BitLen(); i++ {
   168  		if v.Bit(i) > 0 {
   169  			return i
   170  		}
   171  	}
   172  	return v.BitLen()
   173  }
   174  
   175  // PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
   176  // of the slice is at least n bytes.
   177  func PaddedBigBytes(bigint *big.Int, n int) []byte {
   178  	if bigint.BitLen()/8 >= n {
   179  		return bigint.Bytes()
   180  	}
   181  	ret := make([]byte, n)
   182  	ReadBits(bigint, ret)
   183  	return ret
   184  }
   185  
   186  // bigEndianByteAt returns the byte at position n,
   187  // in Big-Endian encoding
   188  // So n==0 returns the least significant byte
   189  func bigEndianByteAt(bigint *big.Int, n int) byte {
   190  	words := bigint.Bits()
   191  	// Check word-bucket the byte will reside in
   192  	i := n / wordBytes
   193  	if i >= len(words) {
   194  		return byte(0)
   195  	}
   196  	word := words[i]
   197  	// Offset of the byte
   198  	shift := 8 * uint(n%wordBytes)
   199  
   200  	return byte(word >> shift)
   201  }
   202  
   203  // Byte returns the byte at position n,
   204  // with the supplied padlength in Little-Endian encoding.
   205  // n==0 returns the MSB
   206  // Example: bigint '5', padlength 32, n=31 => 5
   207  func Byte(bigint *big.Int, padlength, n int) byte {
   208  	if n >= padlength {
   209  		return byte(0)
   210  	}
   211  	return bigEndianByteAt(bigint, padlength-1-n)
   212  }
   213  
   214  // ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
   215  // that buf has enough space. If buf is too short the result will be incomplete.
   216  func ReadBits(bigint *big.Int, buf []byte) {
   217  	i := len(buf)
   218  	for _, d := range bigint.Bits() {
   219  		for j := 0; j < wordBytes && i > 0; j++ {
   220  			i--
   221  			buf[i] = byte(d)
   222  			d >>= 8
   223  		}
   224  	}
   225  }
   226  
   227  // U256 encodes as a 256 bit two's complement number. This operation is destructive.
   228  func U256(x *big.Int) *big.Int {
   229  	return x.And(x, tt256m1)
   230  }
   231  
   232  // U256Bytes converts a big Int into a 256bit EVM number.
   233  // This operation is destructive.
   234  func U256Bytes(n *big.Int) []byte {
   235  	return PaddedBigBytes(U256(n), 32)
   236  }
   237  
   238  // S256 interprets x as a two's complement number.
   239  // x must not exceed 256 bits (the result is undefined if it does) and is not modified.
   240  //
   241  //	S256(0)        = 0
   242  //	S256(1)        = 1
   243  //	S256(2**255)   = -2**255
   244  //	S256(2**256-1) = -1
   245  func S256(x *big.Int) *big.Int {
   246  	if x.Cmp(tt255) < 0 {
   247  		return x
   248  	}
   249  	return new(big.Int).Sub(x, tt256)
   250  }
   251  
   252  // Exp implements exponentiation by squaring.
   253  // Exp returns a newly-allocated big integer and does not change
   254  // base or exponent. The result is truncated to 256 bits.
   255  //
   256  // Courtesy @karalabe and @chfast
   257  func Exp(base, exponent *big.Int) *big.Int {
   258  	result := big.NewInt(1)
   259  
   260  	for _, word := range exponent.Bits() {
   261  		for i := 0; i < wordBits; i++ {
   262  			if word&1 == 1 {
   263  				U256(result.Mul(result, base))
   264  			}
   265  			U256(base.Mul(base, base))
   266  			word >>= 1
   267  		}
   268  	}
   269  	return result
   270  }