github.com/theQRL/go-zond@v0.1.1/core/state/snapshot/iterator_fast.go (about)

     1  // Copyright 2019 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package snapshot
    18  
    19  import (
    20  	"bytes"
    21  	"fmt"
    22  	"sort"
    23  
    24  	"github.com/theQRL/go-zond/common"
    25  	"golang.org/x/exp/slices"
    26  )
    27  
    28  // weightedIterator is a iterator with an assigned weight. It is used to prioritise
    29  // which account or storage slot is the correct one if multiple iterators find the
    30  // same one (modified in multiple consecutive blocks).
    31  type weightedIterator struct {
    32  	it       Iterator
    33  	priority int
    34  }
    35  
    36  func (it *weightedIterator) Cmp(other *weightedIterator) int {
    37  	// Order the iterators primarily by the account hashes
    38  	hashI := it.it.Hash()
    39  	hashJ := other.it.Hash()
    40  
    41  	switch bytes.Compare(hashI[:], hashJ[:]) {
    42  	case -1:
    43  		return -1
    44  	case 1:
    45  		return 1
    46  	}
    47  	// Same account/storage-slot in multiple layers, split by priority
    48  	if it.priority < other.priority {
    49  		return -1
    50  	}
    51  	if it.priority > other.priority {
    52  		return 1
    53  	}
    54  	return 0
    55  }
    56  
    57  // fastIterator is a more optimized multi-layer iterator which maintains a
    58  // direct mapping of all iterators leading down to the bottom layer.
    59  type fastIterator struct {
    60  	tree *Tree       // Snapshot tree to reinitialize stale sub-iterators with
    61  	root common.Hash // Root hash to reinitialize stale sub-iterators through
    62  
    63  	curAccount []byte
    64  	curSlot    []byte
    65  
    66  	iterators []*weightedIterator
    67  	initiated bool
    68  	account   bool
    69  	fail      error
    70  }
    71  
    72  // newFastIterator creates a new hierarchical account or storage iterator with one
    73  // element per diff layer. The returned combo iterator can be used to walk over
    74  // the entire snapshot diff stack simultaneously.
    75  func newFastIterator(tree *Tree, root common.Hash, account common.Hash, seek common.Hash, accountIterator bool) (*fastIterator, error) {
    76  	snap := tree.Snapshot(root)
    77  	if snap == nil {
    78  		return nil, fmt.Errorf("unknown snapshot: %x", root)
    79  	}
    80  	fi := &fastIterator{
    81  		tree:    tree,
    82  		root:    root,
    83  		account: accountIterator,
    84  	}
    85  	current := snap.(snapshot)
    86  	for depth := 0; current != nil; depth++ {
    87  		if accountIterator {
    88  			fi.iterators = append(fi.iterators, &weightedIterator{
    89  				it:       current.AccountIterator(seek),
    90  				priority: depth,
    91  			})
    92  		} else {
    93  			// If the whole storage is destructed in this layer, don't
    94  			// bother deeper layer anymore. But we should still keep
    95  			// the iterator for this layer, since the iterator can contain
    96  			// some valid slots which belongs to the re-created account.
    97  			it, destructed := current.StorageIterator(account, seek)
    98  			fi.iterators = append(fi.iterators, &weightedIterator{
    99  				it:       it,
   100  				priority: depth,
   101  			})
   102  			if destructed {
   103  				break
   104  			}
   105  		}
   106  		current = current.Parent()
   107  	}
   108  	fi.init()
   109  	return fi, nil
   110  }
   111  
   112  // init walks over all the iterators and resolves any clashes between them, after
   113  // which it prepares the stack for step-by-step iteration.
   114  func (fi *fastIterator) init() {
   115  	// Track which account hashes are iterators positioned on
   116  	var positioned = make(map[common.Hash]int)
   117  
   118  	// Position all iterators and track how many remain live
   119  	for i := 0; i < len(fi.iterators); i++ {
   120  		// Retrieve the first element and if it clashes with a previous iterator,
   121  		// advance either the current one or the old one. Repeat until nothing is
   122  		// clashing any more.
   123  		it := fi.iterators[i]
   124  		for {
   125  			// If the iterator is exhausted, drop it off the end
   126  			if !it.it.Next() {
   127  				it.it.Release()
   128  				last := len(fi.iterators) - 1
   129  
   130  				fi.iterators[i] = fi.iterators[last]
   131  				fi.iterators[last] = nil
   132  				fi.iterators = fi.iterators[:last]
   133  
   134  				i--
   135  				break
   136  			}
   137  			// The iterator is still alive, check for collisions with previous ones
   138  			hash := it.it.Hash()
   139  			if other, exist := positioned[hash]; !exist {
   140  				positioned[hash] = i
   141  				break
   142  			} else {
   143  				// Iterators collide, one needs to be progressed, use priority to
   144  				// determine which.
   145  				//
   146  				// This whole else-block can be avoided, if we instead
   147  				// do an initial priority-sort of the iterators. If we do that,
   148  				// then we'll only wind up here if a lower-priority (preferred) iterator
   149  				// has the same value, and then we will always just continue.
   150  				// However, it costs an extra sort, so it's probably not better
   151  				if fi.iterators[other].priority < it.priority {
   152  					// The 'it' should be progressed
   153  					continue
   154  				} else {
   155  					// The 'other' should be progressed, swap them
   156  					it = fi.iterators[other]
   157  					fi.iterators[other], fi.iterators[i] = fi.iterators[i], fi.iterators[other]
   158  					continue
   159  				}
   160  			}
   161  		}
   162  	}
   163  	// Re-sort the entire list
   164  	slices.SortFunc(fi.iterators, func(a, b *weightedIterator) int { return a.Cmp(b) })
   165  	fi.initiated = false
   166  }
   167  
   168  // Next steps the iterator forward one element, returning false if exhausted.
   169  func (fi *fastIterator) Next() bool {
   170  	if len(fi.iterators) == 0 {
   171  		return false
   172  	}
   173  	if !fi.initiated {
   174  		// Don't forward first time -- we had to 'Next' once in order to
   175  		// do the sorting already
   176  		fi.initiated = true
   177  		if fi.account {
   178  			fi.curAccount = fi.iterators[0].it.(AccountIterator).Account()
   179  		} else {
   180  			fi.curSlot = fi.iterators[0].it.(StorageIterator).Slot()
   181  		}
   182  		if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
   183  			fi.fail = innerErr
   184  			return false
   185  		}
   186  		if fi.curAccount != nil || fi.curSlot != nil {
   187  			return true
   188  		}
   189  		// Implicit else: we've hit a nil-account or nil-slot, and need to
   190  		// fall through to the loop below to land on something non-nil
   191  	}
   192  	// If an account or a slot is deleted in one of the layers, the key will
   193  	// still be there, but the actual value will be nil. However, the iterator
   194  	// should not export nil-values (but instead simply omit the key), so we
   195  	// need to loop here until we either
   196  	//  - get a non-nil value,
   197  	//  - hit an error,
   198  	//  - or exhaust the iterator
   199  	for {
   200  		if !fi.next(0) {
   201  			return false // exhausted
   202  		}
   203  		if fi.account {
   204  			fi.curAccount = fi.iterators[0].it.(AccountIterator).Account()
   205  		} else {
   206  			fi.curSlot = fi.iterators[0].it.(StorageIterator).Slot()
   207  		}
   208  		if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
   209  			fi.fail = innerErr
   210  			return false // error
   211  		}
   212  		if fi.curAccount != nil || fi.curSlot != nil {
   213  			break // non-nil value found
   214  		}
   215  	}
   216  	return true
   217  }
   218  
   219  // next handles the next operation internally and should be invoked when we know
   220  // that two elements in the list may have the same value.
   221  //
   222  // For example, if the iterated hashes become [2,3,5,5,8,9,10], then we should
   223  // invoke next(3), which will call Next on elem 3 (the second '5') and will
   224  // cascade along the list, applying the same operation if needed.
   225  func (fi *fastIterator) next(idx int) bool {
   226  	// If this particular iterator got exhausted, remove it and return true (the
   227  	// next one is surely not exhausted yet, otherwise it would have been removed
   228  	// already).
   229  	if it := fi.iterators[idx].it; !it.Next() {
   230  		it.Release()
   231  
   232  		fi.iterators = append(fi.iterators[:idx], fi.iterators[idx+1:]...)
   233  		return len(fi.iterators) > 0
   234  	}
   235  	// If there's no one left to cascade into, return
   236  	if idx == len(fi.iterators)-1 {
   237  		return true
   238  	}
   239  	// We next-ed the iterator at 'idx', now we may have to re-sort that element
   240  	var (
   241  		cur, next         = fi.iterators[idx], fi.iterators[idx+1]
   242  		curHash, nextHash = cur.it.Hash(), next.it.Hash()
   243  	)
   244  	if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
   245  		// It is still in correct place
   246  		return true
   247  	} else if diff == 0 && cur.priority < next.priority {
   248  		// So still in correct place, but we need to iterate on the next
   249  		fi.next(idx + 1)
   250  		return true
   251  	}
   252  	// At this point, the iterator is in the wrong location, but the remaining
   253  	// list is sorted. Find out where to move the item.
   254  	clash := -1
   255  	index := sort.Search(len(fi.iterators), func(n int) bool {
   256  		// The iterator always advances forward, so anything before the old slot
   257  		// is known to be behind us, so just skip them altogether. This actually
   258  		// is an important clause since the sort order got invalidated.
   259  		if n < idx {
   260  			return false
   261  		}
   262  		if n == len(fi.iterators)-1 {
   263  			// Can always place an elem last
   264  			return true
   265  		}
   266  		nextHash := fi.iterators[n+1].it.Hash()
   267  		if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
   268  			return true
   269  		} else if diff > 0 {
   270  			return false
   271  		}
   272  		// The elem we're placing it next to has the same value,
   273  		// so whichever winds up on n+1 will need further iteration
   274  		clash = n + 1
   275  
   276  		return cur.priority < fi.iterators[n+1].priority
   277  	})
   278  	fi.move(idx, index)
   279  	if clash != -1 {
   280  		fi.next(clash)
   281  	}
   282  	return true
   283  }
   284  
   285  // move advances an iterator to another position in the list.
   286  func (fi *fastIterator) move(index, newpos int) {
   287  	elem := fi.iterators[index]
   288  	copy(fi.iterators[index:], fi.iterators[index+1:newpos+1])
   289  	fi.iterators[newpos] = elem
   290  }
   291  
   292  // Error returns any failure that occurred during iteration, which might have
   293  // caused a premature iteration exit (e.g. snapshot stack becoming stale).
   294  func (fi *fastIterator) Error() error {
   295  	return fi.fail
   296  }
   297  
   298  // Hash returns the current key
   299  func (fi *fastIterator) Hash() common.Hash {
   300  	return fi.iterators[0].it.Hash()
   301  }
   302  
   303  // Account returns the current account blob.
   304  // Note the returned account is not a copy, please don't modify it.
   305  func (fi *fastIterator) Account() []byte {
   306  	return fi.curAccount
   307  }
   308  
   309  // Slot returns the current storage slot.
   310  // Note the returned slot is not a copy, please don't modify it.
   311  func (fi *fastIterator) Slot() []byte {
   312  	return fi.curSlot
   313  }
   314  
   315  // Release iterates over all the remaining live layer iterators and releases each
   316  // of them individually.
   317  func (fi *fastIterator) Release() {
   318  	for _, it := range fi.iterators {
   319  		it.it.Release()
   320  	}
   321  	fi.iterators = nil
   322  }
   323  
   324  // Debug is a convenience helper during testing
   325  func (fi *fastIterator) Debug() {
   326  	for _, it := range fi.iterators {
   327  		fmt.Printf("[p=%v v=%v] ", it.priority, it.it.Hash()[0])
   328  	}
   329  	fmt.Println()
   330  }
   331  
   332  // newFastAccountIterator creates a new hierarchical account iterator with one
   333  // element per diff layer. The returned combo iterator can be used to walk over
   334  // the entire snapshot diff stack simultaneously.
   335  func newFastAccountIterator(tree *Tree, root common.Hash, seek common.Hash) (AccountIterator, error) {
   336  	return newFastIterator(tree, root, common.Hash{}, seek, true)
   337  }
   338  
   339  // newFastStorageIterator creates a new hierarchical storage iterator with one
   340  // element per diff layer. The returned combo iterator can be used to walk over
   341  // the entire snapshot diff stack simultaneously.
   342  func newFastStorageIterator(tree *Tree, root common.Hash, account common.Hash, seek common.Hash) (StorageIterator, error) {
   343  	return newFastIterator(tree, root, account, seek, false)
   344  }