github.com/theQRL/go-zond@v0.1.1/crypto/bls12381/g1.go (about)

     1  // Copyright 2020 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package bls12381
    18  
    19  import (
    20  	"errors"
    21  	"math"
    22  	"math/big"
    23  )
    24  
    25  // PointG1 is type for point in G1.
    26  // PointG1 is both used for Affine and Jacobian point representation.
    27  // If z is equal to one the point is considered as in affine form.
    28  type PointG1 [3]fe
    29  
    30  func (p *PointG1) Set(p2 *PointG1) *PointG1 {
    31  	p[0].set(&p2[0])
    32  	p[1].set(&p2[1])
    33  	p[2].set(&p2[2])
    34  	return p
    35  }
    36  
    37  // Zero returns G1 point in point at infinity representation
    38  func (p *PointG1) Zero() *PointG1 {
    39  	p[0].zero()
    40  	p[1].one()
    41  	p[2].zero()
    42  	return p
    43  }
    44  
    45  type tempG1 struct {
    46  	t [9]*fe
    47  }
    48  
    49  // G1 is struct for G1 group.
    50  type G1 struct {
    51  	tempG1
    52  }
    53  
    54  // NewG1 constructs a new G1 instance.
    55  func NewG1() *G1 {
    56  	t := newTempG1()
    57  	return &G1{t}
    58  }
    59  
    60  func newTempG1() tempG1 {
    61  	t := [9]*fe{}
    62  	for i := 0; i < 9; i++ {
    63  		t[i] = &fe{}
    64  	}
    65  	return tempG1{t}
    66  }
    67  
    68  // Q returns group order in big.Int.
    69  func (g *G1) Q() *big.Int {
    70  	return new(big.Int).Set(q)
    71  }
    72  
    73  func (g *G1) fromBytesUnchecked(in []byte) (*PointG1, error) {
    74  	p0, err := fromBytes(in[:48])
    75  	if err != nil {
    76  		return nil, err
    77  	}
    78  	p1, err := fromBytes(in[48:])
    79  	if err != nil {
    80  		return nil, err
    81  	}
    82  	p2 := new(fe).one()
    83  	return &PointG1{*p0, *p1, *p2}, nil
    84  }
    85  
    86  // FromBytes constructs a new point given uncompressed byte input.
    87  // FromBytes does not take zcash flags into account.
    88  // Byte input expected to be larger than 96 bytes.
    89  // First 96 bytes should be concatenation of x and y values.
    90  // Point (0, 0) is considered as infinity.
    91  func (g *G1) FromBytes(in []byte) (*PointG1, error) {
    92  	if len(in) != 96 {
    93  		return nil, errors.New("input string should be equal or larger than 96")
    94  	}
    95  	p0, err := fromBytes(in[:48])
    96  	if err != nil {
    97  		return nil, err
    98  	}
    99  	p1, err := fromBytes(in[48:])
   100  	if err != nil {
   101  		return nil, err
   102  	}
   103  	// check if given input points to infinity
   104  	if p0.isZero() && p1.isZero() {
   105  		return g.Zero(), nil
   106  	}
   107  	p2 := new(fe).one()
   108  	p := &PointG1{*p0, *p1, *p2}
   109  	if !g.IsOnCurve(p) {
   110  		return nil, errors.New("point is not on curve")
   111  	}
   112  	return p, nil
   113  }
   114  
   115  // DecodePoint given encoded (x, y) coordinates in 128 bytes returns a valid G1 Point.
   116  func (g *G1) DecodePoint(in []byte) (*PointG1, error) {
   117  	if len(in) != 128 {
   118  		return nil, errors.New("invalid g1 point length")
   119  	}
   120  	pointBytes := make([]byte, 96)
   121  	// decode x
   122  	xBytes, err := decodeFieldElement(in[:64])
   123  	if err != nil {
   124  		return nil, err
   125  	}
   126  	// decode y
   127  	yBytes, err := decodeFieldElement(in[64:])
   128  	if err != nil {
   129  		return nil, err
   130  	}
   131  	copy(pointBytes[:48], xBytes)
   132  	copy(pointBytes[48:], yBytes)
   133  	return g.FromBytes(pointBytes)
   134  }
   135  
   136  // ToBytes serializes a point into bytes in uncompressed form.
   137  // ToBytes does not take zcash flags into account.
   138  // ToBytes returns (0, 0) if point is infinity.
   139  func (g *G1) ToBytes(p *PointG1) []byte {
   140  	out := make([]byte, 96)
   141  	if g.IsZero(p) {
   142  		return out
   143  	}
   144  	g.Affine(p)
   145  	copy(out[:48], toBytes(&p[0]))
   146  	copy(out[48:], toBytes(&p[1]))
   147  	return out
   148  }
   149  
   150  // EncodePoint encodes a point into 128 bytes.
   151  func (g *G1) EncodePoint(p *PointG1) []byte {
   152  	outRaw := g.ToBytes(p)
   153  	out := make([]byte, 128)
   154  	// encode x
   155  	copy(out[16:], outRaw[:48])
   156  	// encode y
   157  	copy(out[64+16:], outRaw[48:])
   158  	return out
   159  }
   160  
   161  // New creates a new G1 Point which is equal to zero in other words point at infinity.
   162  func (g *G1) New() *PointG1 {
   163  	return g.Zero()
   164  }
   165  
   166  // Zero returns a new G1 Point which is equal to point at infinity.
   167  func (g *G1) Zero() *PointG1 {
   168  	return new(PointG1).Zero()
   169  }
   170  
   171  // One returns a new G1 Point which is equal to generator point.
   172  func (g *G1) One() *PointG1 {
   173  	p := &PointG1{}
   174  	return p.Set(&g1One)
   175  }
   176  
   177  // IsZero returns true if given point is equal to zero.
   178  func (g *G1) IsZero(p *PointG1) bool {
   179  	return p[2].isZero()
   180  }
   181  
   182  // Equal checks if given two G1 point is equal in their affine form.
   183  func (g *G1) Equal(p1, p2 *PointG1) bool {
   184  	if g.IsZero(p1) {
   185  		return g.IsZero(p2)
   186  	}
   187  	if g.IsZero(p2) {
   188  		return g.IsZero(p1)
   189  	}
   190  	t := g.t
   191  	square(t[0], &p1[2])
   192  	square(t[1], &p2[2])
   193  	mul(t[2], t[0], &p2[0])
   194  	mul(t[3], t[1], &p1[0])
   195  	mul(t[0], t[0], &p1[2])
   196  	mul(t[1], t[1], &p2[2])
   197  	mul(t[1], t[1], &p1[1])
   198  	mul(t[0], t[0], &p2[1])
   199  	return t[0].equal(t[1]) && t[2].equal(t[3])
   200  }
   201  
   202  // InCorrectSubgroup checks whether given point is in correct subgroup.
   203  func (g *G1) InCorrectSubgroup(p *PointG1) bool {
   204  	tmp := &PointG1{}
   205  	g.MulScalar(tmp, p, q)
   206  	return g.IsZero(tmp)
   207  }
   208  
   209  // IsOnCurve checks a G1 point is on curve.
   210  func (g *G1) IsOnCurve(p *PointG1) bool {
   211  	if g.IsZero(p) {
   212  		return true
   213  	}
   214  	t := g.t
   215  	square(t[0], &p[1])
   216  	square(t[1], &p[0])
   217  	mul(t[1], t[1], &p[0])
   218  	square(t[2], &p[2])
   219  	square(t[3], t[2])
   220  	mul(t[2], t[2], t[3])
   221  	mul(t[2], b, t[2])
   222  	add(t[1], t[1], t[2])
   223  	return t[0].equal(t[1])
   224  }
   225  
   226  // IsAffine checks a G1 point whether it is in affine form.
   227  func (g *G1) IsAffine(p *PointG1) bool {
   228  	return p[2].isOne()
   229  }
   230  
   231  // Affine calculates affine form of given G1 point.
   232  func (g *G1) Affine(p *PointG1) *PointG1 {
   233  	if g.IsZero(p) {
   234  		return p
   235  	}
   236  	if !g.IsAffine(p) {
   237  		t := g.t
   238  		inverse(t[0], &p[2])
   239  		square(t[1], t[0])
   240  		mul(&p[0], &p[0], t[1])
   241  		mul(t[0], t[0], t[1])
   242  		mul(&p[1], &p[1], t[0])
   243  		p[2].one()
   244  	}
   245  	return p
   246  }
   247  
   248  // Add adds two G1 points p1, p2 and assigns the result to point at first argument.
   249  func (g *G1) Add(r, p1, p2 *PointG1) *PointG1 {
   250  	// www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
   251  	if g.IsZero(p1) {
   252  		return r.Set(p2)
   253  	}
   254  	if g.IsZero(p2) {
   255  		return r.Set(p1)
   256  	}
   257  	t := g.t
   258  	square(t[7], &p1[2])
   259  	mul(t[1], &p2[0], t[7])
   260  	mul(t[2], &p1[2], t[7])
   261  	mul(t[0], &p2[1], t[2])
   262  	square(t[8], &p2[2])
   263  	mul(t[3], &p1[0], t[8])
   264  	mul(t[4], &p2[2], t[8])
   265  	mul(t[2], &p1[1], t[4])
   266  	if t[1].equal(t[3]) {
   267  		if t[0].equal(t[2]) {
   268  			return g.Double(r, p1)
   269  		}
   270  		return r.Zero()
   271  	}
   272  	sub(t[1], t[1], t[3])
   273  	double(t[4], t[1])
   274  	square(t[4], t[4])
   275  	mul(t[5], t[1], t[4])
   276  	sub(t[0], t[0], t[2])
   277  	double(t[0], t[0])
   278  	square(t[6], t[0])
   279  	sub(t[6], t[6], t[5])
   280  	mul(t[3], t[3], t[4])
   281  	double(t[4], t[3])
   282  	sub(&r[0], t[6], t[4])
   283  	sub(t[4], t[3], &r[0])
   284  	mul(t[6], t[2], t[5])
   285  	double(t[6], t[6])
   286  	mul(t[0], t[0], t[4])
   287  	sub(&r[1], t[0], t[6])
   288  	add(t[0], &p1[2], &p2[2])
   289  	square(t[0], t[0])
   290  	sub(t[0], t[0], t[7])
   291  	sub(t[0], t[0], t[8])
   292  	mul(&r[2], t[0], t[1])
   293  	return r
   294  }
   295  
   296  // Double doubles a G1 point p and assigns the result to the point at first argument.
   297  func (g *G1) Double(r, p *PointG1) *PointG1 {
   298  	// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
   299  	if g.IsZero(p) {
   300  		return r.Set(p)
   301  	}
   302  	t := g.t
   303  	square(t[0], &p[0])
   304  	square(t[1], &p[1])
   305  	square(t[2], t[1])
   306  	add(t[1], &p[0], t[1])
   307  	square(t[1], t[1])
   308  	sub(t[1], t[1], t[0])
   309  	sub(t[1], t[1], t[2])
   310  	double(t[1], t[1])
   311  	double(t[3], t[0])
   312  	add(t[0], t[3], t[0])
   313  	square(t[4], t[0])
   314  	double(t[3], t[1])
   315  	sub(&r[0], t[4], t[3])
   316  	sub(t[1], t[1], &r[0])
   317  	double(t[2], t[2])
   318  	double(t[2], t[2])
   319  	double(t[2], t[2])
   320  	mul(t[0], t[0], t[1])
   321  	sub(t[1], t[0], t[2])
   322  	mul(t[0], &p[1], &p[2])
   323  	r[1].set(t[1])
   324  	double(&r[2], t[0])
   325  	return r
   326  }
   327  
   328  // Neg negates a G1 point p and assigns the result to the point at first argument.
   329  func (g *G1) Neg(r, p *PointG1) *PointG1 {
   330  	r[0].set(&p[0])
   331  	r[2].set(&p[2])
   332  	neg(&r[1], &p[1])
   333  	return r
   334  }
   335  
   336  // Sub subtracts two G1 points p1, p2 and assigns the result to point at first argument.
   337  func (g *G1) Sub(c, a, b *PointG1) *PointG1 {
   338  	d := &PointG1{}
   339  	g.Neg(d, b)
   340  	g.Add(c, a, d)
   341  	return c
   342  }
   343  
   344  // MulScalar multiplies a point by given scalar value in big.Int and assigns the result to point at first argument.
   345  func (g *G1) MulScalar(c, p *PointG1, e *big.Int) *PointG1 {
   346  	q, n := &PointG1{}, &PointG1{}
   347  	n.Set(p)
   348  	l := e.BitLen()
   349  	for i := 0; i < l; i++ {
   350  		if e.Bit(i) == 1 {
   351  			g.Add(q, q, n)
   352  		}
   353  		g.Double(n, n)
   354  	}
   355  	return c.Set(q)
   356  }
   357  
   358  // ClearCofactor maps given a G1 point to correct subgroup
   359  func (g *G1) ClearCofactor(p *PointG1) {
   360  	g.MulScalar(p, p, cofactorEFFG1)
   361  }
   362  
   363  // MultiExp calculates multi exponentiation. Given pairs of G1 point and scalar values
   364  // (P_0, e_0), (P_1, e_1), ... (P_n, e_n) calculates r = e_0 * P_0 + e_1 * P_1 + ... + e_n * P_n
   365  // Length of points and scalars are expected to be equal, otherwise an error is returned.
   366  // Result is assigned to point at first argument.
   367  func (g *G1) MultiExp(r *PointG1, points []*PointG1, powers []*big.Int) (*PointG1, error) {
   368  	if len(points) != len(powers) {
   369  		return nil, errors.New("point and scalar vectors should be in same length")
   370  	}
   371  	var c uint32 = 3
   372  	if len(powers) >= 32 {
   373  		c = uint32(math.Ceil(math.Log10(float64(len(powers)))))
   374  	}
   375  	bucketSize, numBits := (1<<c)-1, uint32(g.Q().BitLen())
   376  	windows := make([]*PointG1, numBits/c+1)
   377  	bucket := make([]*PointG1, bucketSize)
   378  	acc, sum := g.New(), g.New()
   379  	for i := 0; i < bucketSize; i++ {
   380  		bucket[i] = g.New()
   381  	}
   382  	mask := (uint64(1) << c) - 1
   383  	j := 0
   384  	var cur uint32
   385  	for cur <= numBits {
   386  		acc.Zero()
   387  		bucket = make([]*PointG1, (1<<c)-1)
   388  		for i := 0; i < len(bucket); i++ {
   389  			bucket[i] = g.New()
   390  		}
   391  		for i := 0; i < len(powers); i++ {
   392  			s0 := powers[i].Uint64()
   393  			index := uint(s0 & mask)
   394  			if index != 0 {
   395  				g.Add(bucket[index-1], bucket[index-1], points[i])
   396  			}
   397  			powers[i] = new(big.Int).Rsh(powers[i], uint(c))
   398  		}
   399  		sum.Zero()
   400  		for i := len(bucket) - 1; i >= 0; i-- {
   401  			g.Add(sum, sum, bucket[i])
   402  			g.Add(acc, acc, sum)
   403  		}
   404  		windows[j] = g.New()
   405  		windows[j].Set(acc)
   406  		j++
   407  		cur += c
   408  	}
   409  	acc.Zero()
   410  	for i := len(windows) - 1; i >= 0; i-- {
   411  		for j := uint32(0); j < c; j++ {
   412  			g.Double(acc, acc)
   413  		}
   414  		g.Add(acc, acc, windows[i])
   415  	}
   416  	return r.Set(acc), nil
   417  }
   418  
   419  // MapToCurve given a byte slice returns a valid G1 point.
   420  // This mapping function implements the Simplified Shallue-van de Woestijne-Ulas method.
   421  // https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06
   422  // Input byte slice should be a valid field element, otherwise an error is returned.
   423  func (g *G1) MapToCurve(in []byte) (*PointG1, error) {
   424  	u, err := fromBytes(in)
   425  	if err != nil {
   426  		return nil, err
   427  	}
   428  	x, y := swuMapG1(u)
   429  	isogenyMapG1(x, y)
   430  	one := new(fe).one()
   431  	p := &PointG1{*x, *y, *one}
   432  	g.ClearCofactor(p)
   433  	return g.Affine(p), nil
   434  }