github.com/theQRL/go-zond@v0.1.1/crypto/bls12381/g2.go (about)

     1  // Copyright 2020 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package bls12381
    18  
    19  import (
    20  	"errors"
    21  	"math"
    22  	"math/big"
    23  )
    24  
    25  // PointG2 is type for point in G2.
    26  // PointG2 is both used for Affine and Jacobian point representation.
    27  // If z is equal to one the point is considered as in affine form.
    28  type PointG2 [3]fe2
    29  
    30  // Set copies valeus of one point to another.
    31  func (p *PointG2) Set(p2 *PointG2) *PointG2 {
    32  	p[0].set(&p2[0])
    33  	p[1].set(&p2[1])
    34  	p[2].set(&p2[2])
    35  	return p
    36  }
    37  
    38  // Zero returns G2 point in point at infinity representation
    39  func (p *PointG2) Zero() *PointG2 {
    40  	p[0].zero()
    41  	p[1].one()
    42  	p[2].zero()
    43  	return p
    44  }
    45  
    46  type tempG2 struct {
    47  	t [9]*fe2
    48  }
    49  
    50  // G2 is struct for G2 group.
    51  type G2 struct {
    52  	f *fp2
    53  	tempG2
    54  }
    55  
    56  // NewG2 constructs a new G2 instance.
    57  func NewG2() *G2 {
    58  	return newG2(nil)
    59  }
    60  
    61  func newG2(f *fp2) *G2 {
    62  	if f == nil {
    63  		f = newFp2()
    64  	}
    65  	t := newTempG2()
    66  	return &G2{f, t}
    67  }
    68  
    69  func newTempG2() tempG2 {
    70  	t := [9]*fe2{}
    71  	for i := 0; i < 9; i++ {
    72  		t[i] = &fe2{}
    73  	}
    74  	return tempG2{t}
    75  }
    76  
    77  // Q returns group order in big.Int.
    78  func (g *G2) Q() *big.Int {
    79  	return new(big.Int).Set(q)
    80  }
    81  
    82  func (g *G2) fromBytesUnchecked(in []byte) (*PointG2, error) {
    83  	p0, err := g.f.fromBytes(in[:96])
    84  	if err != nil {
    85  		return nil, err
    86  	}
    87  	p1, err := g.f.fromBytes(in[96:])
    88  	if err != nil {
    89  		return nil, err
    90  	}
    91  	p2 := new(fe2).one()
    92  	return &PointG2{*p0, *p1, *p2}, nil
    93  }
    94  
    95  // FromBytes constructs a new point given uncompressed byte input.
    96  // FromBytes does not take zcash flags into account.
    97  // Byte input expected to be larger than 96 bytes.
    98  // First 192 bytes should be concatenation of x and y values
    99  // Point (0, 0) is considered as infinity.
   100  func (g *G2) FromBytes(in []byte) (*PointG2, error) {
   101  	if len(in) != 192 {
   102  		return nil, errors.New("input string should be equal or larger than 192")
   103  	}
   104  	p0, err := g.f.fromBytes(in[:96])
   105  	if err != nil {
   106  		return nil, err
   107  	}
   108  	p1, err := g.f.fromBytes(in[96:])
   109  	if err != nil {
   110  		return nil, err
   111  	}
   112  	// check if given input points to infinity
   113  	if p0.isZero() && p1.isZero() {
   114  		return g.Zero(), nil
   115  	}
   116  	p2 := new(fe2).one()
   117  	p := &PointG2{*p0, *p1, *p2}
   118  	if !g.IsOnCurve(p) {
   119  		return nil, errors.New("point is not on curve")
   120  	}
   121  	return p, nil
   122  }
   123  
   124  // DecodePoint given encoded (x, y) coordinates in 256 bytes returns a valid G2 Point.
   125  func (g *G2) DecodePoint(in []byte) (*PointG2, error) {
   126  	if len(in) != 256 {
   127  		return nil, errors.New("invalid g2 point length")
   128  	}
   129  	pointBytes := make([]byte, 192)
   130  	x0Bytes, err := decodeFieldElement(in[:64])
   131  	if err != nil {
   132  		return nil, err
   133  	}
   134  	x1Bytes, err := decodeFieldElement(in[64:128])
   135  	if err != nil {
   136  		return nil, err
   137  	}
   138  	y0Bytes, err := decodeFieldElement(in[128:192])
   139  	if err != nil {
   140  		return nil, err
   141  	}
   142  	y1Bytes, err := decodeFieldElement(in[192:])
   143  	if err != nil {
   144  		return nil, err
   145  	}
   146  	copy(pointBytes[:48], x1Bytes)
   147  	copy(pointBytes[48:96], x0Bytes)
   148  	copy(pointBytes[96:144], y1Bytes)
   149  	copy(pointBytes[144:192], y0Bytes)
   150  	return g.FromBytes(pointBytes)
   151  }
   152  
   153  // ToBytes serializes a point into bytes in uncompressed form,
   154  // does not take zcash flags into account,
   155  // returns (0, 0) if point is infinity.
   156  func (g *G2) ToBytes(p *PointG2) []byte {
   157  	out := make([]byte, 192)
   158  	if g.IsZero(p) {
   159  		return out
   160  	}
   161  	g.Affine(p)
   162  	copy(out[:96], g.f.toBytes(&p[0]))
   163  	copy(out[96:], g.f.toBytes(&p[1]))
   164  	return out
   165  }
   166  
   167  // EncodePoint encodes a point into 256 bytes.
   168  func (g *G2) EncodePoint(p *PointG2) []byte {
   169  	// outRaw is 96 bytes
   170  	outRaw := g.ToBytes(p)
   171  	out := make([]byte, 256)
   172  	// encode x
   173  	copy(out[16:16+48], outRaw[48:96])
   174  	copy(out[80:80+48], outRaw[:48])
   175  	// encode y
   176  	copy(out[144:144+48], outRaw[144:])
   177  	copy(out[208:208+48], outRaw[96:144])
   178  	return out
   179  }
   180  
   181  // New creates a new G2 Point which is equal to zero in other words point at infinity.
   182  func (g *G2) New() *PointG2 {
   183  	return new(PointG2).Zero()
   184  }
   185  
   186  // Zero returns a new G2 Point which is equal to point at infinity.
   187  func (g *G2) Zero() *PointG2 {
   188  	return new(PointG2).Zero()
   189  }
   190  
   191  // One returns a new G2 Point which is equal to generator point.
   192  func (g *G2) One() *PointG2 {
   193  	p := &PointG2{}
   194  	return p.Set(&g2One)
   195  }
   196  
   197  // IsZero returns true if given point is equal to zero.
   198  func (g *G2) IsZero(p *PointG2) bool {
   199  	return p[2].isZero()
   200  }
   201  
   202  // Equal checks if given two G2 point is equal in their affine form.
   203  func (g *G2) Equal(p1, p2 *PointG2) bool {
   204  	if g.IsZero(p1) {
   205  		return g.IsZero(p2)
   206  	}
   207  	if g.IsZero(p2) {
   208  		return g.IsZero(p1)
   209  	}
   210  	t := g.t
   211  	g.f.square(t[0], &p1[2])
   212  	g.f.square(t[1], &p2[2])
   213  	g.f.mul(t[2], t[0], &p2[0])
   214  	g.f.mul(t[3], t[1], &p1[0])
   215  	g.f.mul(t[0], t[0], &p1[2])
   216  	g.f.mul(t[1], t[1], &p2[2])
   217  	g.f.mul(t[1], t[1], &p1[1])
   218  	g.f.mul(t[0], t[0], &p2[1])
   219  	return t[0].equal(t[1]) && t[2].equal(t[3])
   220  }
   221  
   222  // InCorrectSubgroup checks whether given point is in correct subgroup.
   223  func (g *G2) InCorrectSubgroup(p *PointG2) bool {
   224  	tmp := &PointG2{}
   225  	g.MulScalar(tmp, p, q)
   226  	return g.IsZero(tmp)
   227  }
   228  
   229  // IsOnCurve checks a G2 point is on curve.
   230  func (g *G2) IsOnCurve(p *PointG2) bool {
   231  	if g.IsZero(p) {
   232  		return true
   233  	}
   234  	t := g.t
   235  	g.f.square(t[0], &p[1])
   236  	g.f.square(t[1], &p[0])
   237  	g.f.mul(t[1], t[1], &p[0])
   238  	g.f.square(t[2], &p[2])
   239  	g.f.square(t[3], t[2])
   240  	g.f.mul(t[2], t[2], t[3])
   241  	g.f.mul(t[2], b2, t[2])
   242  	g.f.add(t[1], t[1], t[2])
   243  	return t[0].equal(t[1])
   244  }
   245  
   246  // IsAffine checks a G2 point whether it is in affine form.
   247  func (g *G2) IsAffine(p *PointG2) bool {
   248  	return p[2].isOne()
   249  }
   250  
   251  // Affine calculates affine form of given G2 point.
   252  func (g *G2) Affine(p *PointG2) *PointG2 {
   253  	if g.IsZero(p) {
   254  		return p
   255  	}
   256  	if !g.IsAffine(p) {
   257  		t := g.t
   258  		g.f.inverse(t[0], &p[2])
   259  		g.f.square(t[1], t[0])
   260  		g.f.mul(&p[0], &p[0], t[1])
   261  		g.f.mul(t[0], t[0], t[1])
   262  		g.f.mul(&p[1], &p[1], t[0])
   263  		p[2].one()
   264  	}
   265  	return p
   266  }
   267  
   268  // Add adds two G2 points p1, p2 and assigns the result to point at first argument.
   269  func (g *G2) Add(r, p1, p2 *PointG2) *PointG2 {
   270  	// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
   271  	if g.IsZero(p1) {
   272  		return r.Set(p2)
   273  	}
   274  	if g.IsZero(p2) {
   275  		return r.Set(p1)
   276  	}
   277  	t := g.t
   278  	g.f.square(t[7], &p1[2])
   279  	g.f.mul(t[1], &p2[0], t[7])
   280  	g.f.mul(t[2], &p1[2], t[7])
   281  	g.f.mul(t[0], &p2[1], t[2])
   282  	g.f.square(t[8], &p2[2])
   283  	g.f.mul(t[3], &p1[0], t[8])
   284  	g.f.mul(t[4], &p2[2], t[8])
   285  	g.f.mul(t[2], &p1[1], t[4])
   286  	if t[1].equal(t[3]) {
   287  		if t[0].equal(t[2]) {
   288  			return g.Double(r, p1)
   289  		}
   290  		return r.Zero()
   291  	}
   292  	g.f.sub(t[1], t[1], t[3])
   293  	g.f.double(t[4], t[1])
   294  	g.f.square(t[4], t[4])
   295  	g.f.mul(t[5], t[1], t[4])
   296  	g.f.sub(t[0], t[0], t[2])
   297  	g.f.double(t[0], t[0])
   298  	g.f.square(t[6], t[0])
   299  	g.f.sub(t[6], t[6], t[5])
   300  	g.f.mul(t[3], t[3], t[4])
   301  	g.f.double(t[4], t[3])
   302  	g.f.sub(&r[0], t[6], t[4])
   303  	g.f.sub(t[4], t[3], &r[0])
   304  	g.f.mul(t[6], t[2], t[5])
   305  	g.f.double(t[6], t[6])
   306  	g.f.mul(t[0], t[0], t[4])
   307  	g.f.sub(&r[1], t[0], t[6])
   308  	g.f.add(t[0], &p1[2], &p2[2])
   309  	g.f.square(t[0], t[0])
   310  	g.f.sub(t[0], t[0], t[7])
   311  	g.f.sub(t[0], t[0], t[8])
   312  	g.f.mul(&r[2], t[0], t[1])
   313  	return r
   314  }
   315  
   316  // Double doubles a G2 point p and assigns the result to the point at first argument.
   317  func (g *G2) Double(r, p *PointG2) *PointG2 {
   318  	// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
   319  	if g.IsZero(p) {
   320  		return r.Set(p)
   321  	}
   322  	t := g.t
   323  	g.f.square(t[0], &p[0])
   324  	g.f.square(t[1], &p[1])
   325  	g.f.square(t[2], t[1])
   326  	g.f.add(t[1], &p[0], t[1])
   327  	g.f.square(t[1], t[1])
   328  	g.f.sub(t[1], t[1], t[0])
   329  	g.f.sub(t[1], t[1], t[2])
   330  	g.f.double(t[1], t[1])
   331  	g.f.double(t[3], t[0])
   332  	g.f.add(t[0], t[3], t[0])
   333  	g.f.square(t[4], t[0])
   334  	g.f.double(t[3], t[1])
   335  	g.f.sub(&r[0], t[4], t[3])
   336  	g.f.sub(t[1], t[1], &r[0])
   337  	g.f.double(t[2], t[2])
   338  	g.f.double(t[2], t[2])
   339  	g.f.double(t[2], t[2])
   340  	g.f.mul(t[0], t[0], t[1])
   341  	g.f.sub(t[1], t[0], t[2])
   342  	g.f.mul(t[0], &p[1], &p[2])
   343  	r[1].set(t[1])
   344  	g.f.double(&r[2], t[0])
   345  	return r
   346  }
   347  
   348  // Neg negates a G2 point p and assigns the result to the point at first argument.
   349  func (g *G2) Neg(r, p *PointG2) *PointG2 {
   350  	r[0].set(&p[0])
   351  	g.f.neg(&r[1], &p[1])
   352  	r[2].set(&p[2])
   353  	return r
   354  }
   355  
   356  // Sub subtracts two G2 points p1, p2 and assigns the result to point at first argument.
   357  func (g *G2) Sub(c, a, b *PointG2) *PointG2 {
   358  	d := &PointG2{}
   359  	g.Neg(d, b)
   360  	g.Add(c, a, d)
   361  	return c
   362  }
   363  
   364  // MulScalar multiplies a point by given scalar value in big.Int and assigns the result to point at first argument.
   365  func (g *G2) MulScalar(c, p *PointG2, e *big.Int) *PointG2 {
   366  	q, n := &PointG2{}, &PointG2{}
   367  	n.Set(p)
   368  	l := e.BitLen()
   369  	for i := 0; i < l; i++ {
   370  		if e.Bit(i) == 1 {
   371  			g.Add(q, q, n)
   372  		}
   373  		g.Double(n, n)
   374  	}
   375  	return c.Set(q)
   376  }
   377  
   378  // ClearCofactor maps given a G2 point to correct subgroup
   379  func (g *G2) ClearCofactor(p *PointG2) {
   380  	g.MulScalar(p, p, cofactorEFFG2)
   381  }
   382  
   383  // MultiExp calculates multi exponentiation. Given pairs of G2 point and scalar values
   384  // (P_0, e_0), (P_1, e_1), ... (P_n, e_n) calculates r = e_0 * P_0 + e_1 * P_1 + ... + e_n * P_n
   385  // Length of points and scalars are expected to be equal, otherwise an error is returned.
   386  // Result is assigned to point at first argument.
   387  func (g *G2) MultiExp(r *PointG2, points []*PointG2, powers []*big.Int) (*PointG2, error) {
   388  	if len(points) != len(powers) {
   389  		return nil, errors.New("point and scalar vectors should be in same length")
   390  	}
   391  	var c uint32 = 3
   392  	if len(powers) >= 32 {
   393  		c = uint32(math.Ceil(math.Log10(float64(len(powers)))))
   394  	}
   395  	bucketSize, numBits := (1<<c)-1, uint32(g.Q().BitLen())
   396  	windows := make([]*PointG2, numBits/c+1)
   397  	bucket := make([]*PointG2, bucketSize)
   398  	acc, sum := g.New(), g.New()
   399  	for i := 0; i < bucketSize; i++ {
   400  		bucket[i] = g.New()
   401  	}
   402  	mask := (uint64(1) << c) - 1
   403  	j := 0
   404  	var cur uint32
   405  	for cur <= numBits {
   406  		acc.Zero()
   407  		bucket = make([]*PointG2, (1<<c)-1)
   408  		for i := 0; i < len(bucket); i++ {
   409  			bucket[i] = g.New()
   410  		}
   411  		for i := 0; i < len(powers); i++ {
   412  			s0 := powers[i].Uint64()
   413  			index := uint(s0 & mask)
   414  			if index != 0 {
   415  				g.Add(bucket[index-1], bucket[index-1], points[i])
   416  			}
   417  			powers[i] = new(big.Int).Rsh(powers[i], uint(c))
   418  		}
   419  		sum.Zero()
   420  		for i := len(bucket) - 1; i >= 0; i-- {
   421  			g.Add(sum, sum, bucket[i])
   422  			g.Add(acc, acc, sum)
   423  		}
   424  		windows[j] = g.New()
   425  		windows[j].Set(acc)
   426  		j++
   427  		cur += c
   428  	}
   429  	acc.Zero()
   430  	for i := len(windows) - 1; i >= 0; i-- {
   431  		for j := uint32(0); j < c; j++ {
   432  			g.Double(acc, acc)
   433  		}
   434  		g.Add(acc, acc, windows[i])
   435  	}
   436  	return r.Set(acc), nil
   437  }
   438  
   439  // MapToCurve given a byte slice returns a valid G2 point.
   440  // This mapping function implements the Simplified Shallue-van de Woestijne-Ulas method.
   441  // https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-05#section-6.6.2
   442  // Input byte slice should be a valid field element, otherwise an error is returned.
   443  func (g *G2) MapToCurve(in []byte) (*PointG2, error) {
   444  	fp2 := g.f
   445  	u, err := fp2.fromBytes(in)
   446  	if err != nil {
   447  		return nil, err
   448  	}
   449  	x, y := swuMapG2(fp2, u)
   450  	isogenyMapG2(fp2, x, y)
   451  	z := new(fe2).one()
   452  	q := &PointG2{*x, *y, *z}
   453  	g.ClearCofactor(q)
   454  	return g.Affine(q), nil
   455  }