github.com/theQRL/go-zond@v0.1.1/crypto/secp256k1/curve.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Copyright 2011 ThePiachu. All rights reserved. 3 // Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved. 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // * Redistributions of source code must retain the above copyright 10 // notice, this list of conditions and the following disclaimer. 11 // * Redistributions in binary form must reproduce the above 12 // copyright notice, this list of conditions and the following disclaimer 13 // in the documentation and/or other materials provided with the 14 // distribution. 15 // * Neither the name of Google Inc. nor the names of its 16 // contributors may be used to endorse or promote products derived from 17 // this software without specific prior written permission. 18 // * The name of ThePiachu may not be used to endorse or promote products 19 // derived from this software without specific prior written permission. 20 // 21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 33 package secp256k1 34 35 import ( 36 "crypto/elliptic" 37 "math/big" 38 ) 39 40 const ( 41 // number of bits in a big.Word 42 wordBits = 32 << (uint64(^big.Word(0)) >> 63) 43 // number of bytes in a big.Word 44 wordBytes = wordBits / 8 45 ) 46 47 // readBits encodes the absolute value of bigint as big-endian bytes. Callers 48 // must ensure that buf has enough space. If buf is too short the result will 49 // be incomplete. 50 func readBits(bigint *big.Int, buf []byte) { 51 i := len(buf) 52 for _, d := range bigint.Bits() { 53 for j := 0; j < wordBytes && i > 0; j++ { 54 i-- 55 buf[i] = byte(d) 56 d >>= 8 57 } 58 } 59 } 60 61 // This code is from https://github.com/ThePiachu/GoBit and implements 62 // several Koblitz elliptic curves over prime fields. 63 // 64 // The curve methods, internally, on Jacobian coordinates. For a given 65 // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, 66 // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come 67 // when the whole calculation can be performed within the transform 68 // (as in ScalarMult and ScalarBaseMult). But even for Add and Double, 69 // it's faster to apply and reverse the transform than to operate in 70 // affine coordinates. 71 72 // A BitCurve represents a Koblitz Curve with a=0. 73 // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html 74 type BitCurve struct { 75 P *big.Int // the order of the underlying field 76 N *big.Int // the order of the base point 77 B *big.Int // the constant of the BitCurve equation 78 Gx, Gy *big.Int // (x,y) of the base point 79 BitSize int // the size of the underlying field 80 } 81 82 func (BitCurve *BitCurve) Params() *elliptic.CurveParams { 83 return &elliptic.CurveParams{ 84 P: BitCurve.P, 85 N: BitCurve.N, 86 B: BitCurve.B, 87 Gx: BitCurve.Gx, 88 Gy: BitCurve.Gy, 89 BitSize: BitCurve.BitSize, 90 } 91 } 92 93 // IsOnCurve returns true if the given (x,y) lies on the BitCurve. 94 func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { 95 // y² = x³ + b 96 y2 := new(big.Int).Mul(y, y) //y² 97 y2.Mod(y2, BitCurve.P) //y²%P 98 99 x3 := new(big.Int).Mul(x, x) //x² 100 x3.Mul(x3, x) //x³ 101 102 x3.Add(x3, BitCurve.B) //x³+B 103 x3.Mod(x3, BitCurve.P) //(x³+B)%P 104 105 return x3.Cmp(y2) == 0 106 } 107 108 // affineFromJacobian reverses the Jacobian transform. See the comment at the 109 // top of the file. 110 func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { 111 if z.Sign() == 0 { 112 return new(big.Int), new(big.Int) 113 } 114 115 zinv := new(big.Int).ModInverse(z, BitCurve.P) 116 zinvsq := new(big.Int).Mul(zinv, zinv) 117 118 xOut = new(big.Int).Mul(x, zinvsq) 119 xOut.Mod(xOut, BitCurve.P) 120 zinvsq.Mul(zinvsq, zinv) 121 yOut = new(big.Int).Mul(y, zinvsq) 122 yOut.Mod(yOut, BitCurve.P) 123 return 124 } 125 126 // Add returns the sum of (x1,y1) and (x2,y2) 127 func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { 128 // If one point is at infinity, return the other point. 129 // Adding the point at infinity to any point will preserve the other point. 130 if x1.Sign() == 0 && y1.Sign() == 0 { 131 return x2, y2 132 } 133 if x2.Sign() == 0 && y2.Sign() == 0 { 134 return x1, y1 135 } 136 z := new(big.Int).SetInt64(1) 137 if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 { 138 return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z)) 139 } 140 return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) 141 } 142 143 // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and 144 // (x2, y2, z2) and returns their sum, also in Jacobian form. 145 func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { 146 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl 147 z1z1 := new(big.Int).Mul(z1, z1) 148 z1z1.Mod(z1z1, BitCurve.P) 149 z2z2 := new(big.Int).Mul(z2, z2) 150 z2z2.Mod(z2z2, BitCurve.P) 151 152 u1 := new(big.Int).Mul(x1, z2z2) 153 u1.Mod(u1, BitCurve.P) 154 u2 := new(big.Int).Mul(x2, z1z1) 155 u2.Mod(u2, BitCurve.P) 156 h := new(big.Int).Sub(u2, u1) 157 if h.Sign() == -1 { 158 h.Add(h, BitCurve.P) 159 } 160 i := new(big.Int).Lsh(h, 1) 161 i.Mul(i, i) 162 j := new(big.Int).Mul(h, i) 163 164 s1 := new(big.Int).Mul(y1, z2) 165 s1.Mul(s1, z2z2) 166 s1.Mod(s1, BitCurve.P) 167 s2 := new(big.Int).Mul(y2, z1) 168 s2.Mul(s2, z1z1) 169 s2.Mod(s2, BitCurve.P) 170 r := new(big.Int).Sub(s2, s1) 171 if r.Sign() == -1 { 172 r.Add(r, BitCurve.P) 173 } 174 r.Lsh(r, 1) 175 v := new(big.Int).Mul(u1, i) 176 177 x3 := new(big.Int).Set(r) 178 x3.Mul(x3, x3) 179 x3.Sub(x3, j) 180 x3.Sub(x3, v) 181 x3.Sub(x3, v) 182 x3.Mod(x3, BitCurve.P) 183 184 y3 := new(big.Int).Set(r) 185 v.Sub(v, x3) 186 y3.Mul(y3, v) 187 s1.Mul(s1, j) 188 s1.Lsh(s1, 1) 189 y3.Sub(y3, s1) 190 y3.Mod(y3, BitCurve.P) 191 192 z3 := new(big.Int).Add(z1, z2) 193 z3.Mul(z3, z3) 194 z3.Sub(z3, z1z1) 195 if z3.Sign() == -1 { 196 z3.Add(z3, BitCurve.P) 197 } 198 z3.Sub(z3, z2z2) 199 if z3.Sign() == -1 { 200 z3.Add(z3, BitCurve.P) 201 } 202 z3.Mul(z3, h) 203 z3.Mod(z3, BitCurve.P) 204 205 return x3, y3, z3 206 } 207 208 // Double returns 2*(x,y) 209 func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { 210 z1 := new(big.Int).SetInt64(1) 211 return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) 212 } 213 214 // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and 215 // returns its double, also in Jacobian form. 216 func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { 217 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l 218 219 a := new(big.Int).Mul(x, x) //X1² 220 b := new(big.Int).Mul(y, y) //Y1² 221 c := new(big.Int).Mul(b, b) //B² 222 223 d := new(big.Int).Add(x, b) //X1+B 224 d.Mul(d, d) //(X1+B)² 225 d.Sub(d, a) //(X1+B)²-A 226 d.Sub(d, c) //(X1+B)²-A-C 227 d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) 228 229 e := new(big.Int).Mul(big.NewInt(3), a) //3*A 230 f := new(big.Int).Mul(e, e) //E² 231 232 x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D 233 x3.Sub(f, x3) //F-2*D 234 x3.Mod(x3, BitCurve.P) 235 236 y3 := new(big.Int).Sub(d, x3) //D-X3 237 y3.Mul(e, y3) //E*(D-X3) 238 y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C 239 y3.Mod(y3, BitCurve.P) 240 241 z3 := new(big.Int).Mul(y, z) //Y1*Z1 242 z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 243 z3.Mod(z3, BitCurve.P) 244 245 return x3, y3, z3 246 } 247 248 // ScalarBaseMult returns k*G, where G is the base point of the group and k is 249 // an integer in big-endian form. 250 func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { 251 return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) 252 } 253 254 // Marshal converts a point into the form specified in section 4.3.6 of ANSI 255 // X9.62. 256 func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { 257 byteLen := (BitCurve.BitSize + 7) >> 3 258 ret := make([]byte, 1+2*byteLen) 259 ret[0] = 4 // uncompressed point flag 260 readBits(x, ret[1:1+byteLen]) 261 readBits(y, ret[1+byteLen:]) 262 return ret 263 } 264 265 // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On 266 // error, x = nil. 267 func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { 268 byteLen := (BitCurve.BitSize + 7) >> 3 269 if len(data) != 1+2*byteLen { 270 return 271 } 272 if data[0] != 4 { // uncompressed form 273 return 274 } 275 x = new(big.Int).SetBytes(data[1 : 1+byteLen]) 276 y = new(big.Int).SetBytes(data[1+byteLen:]) 277 return 278 } 279 280 var theCurve = new(BitCurve) 281 282 func init() { 283 // See SEC 2 section 2.7.1 284 // curve parameters taken from: 285 // http://www.secg.org/sec2-v2.pdf 286 theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0) 287 theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0) 288 theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0) 289 theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0) 290 theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0) 291 theCurve.BitSize = 256 292 } 293 294 // S256 returns a BitCurve which implements secp256k1. 295 func S256() *BitCurve { 296 return theCurve 297 }