github.com/theQRL/go-zond@v0.1.1/crypto/secp256k1/libsecp256k1/sage/secp256k1.sage (about) 1 # Test libsecp256k1' group operation implementations using prover.sage 2 3 import sys 4 5 load("group_prover.sage") 6 load("weierstrass_prover.sage") 7 8 def formula_secp256k1_gej_double_var(a): 9 """libsecp256k1's secp256k1_gej_double_var, used by various addition functions""" 10 rz = a.Z * a.Y 11 rz = rz * 2 12 t1 = a.X^2 13 t1 = t1 * 3 14 t2 = t1^2 15 t3 = a.Y^2 16 t3 = t3 * 2 17 t4 = t3^2 18 t4 = t4 * 2 19 t3 = t3 * a.X 20 rx = t3 21 rx = rx * 4 22 rx = -rx 23 rx = rx + t2 24 t2 = -t2 25 t3 = t3 * 6 26 t3 = t3 + t2 27 ry = t1 * t3 28 t2 = -t4 29 ry = ry + t2 30 return jacobianpoint(rx, ry, rz) 31 32 def formula_secp256k1_gej_add_var(branch, a, b): 33 """libsecp256k1's secp256k1_gej_add_var""" 34 if branch == 0: 35 return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), b) 36 if branch == 1: 37 return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a) 38 z22 = b.Z^2 39 z12 = a.Z^2 40 u1 = a.X * z22 41 u2 = b.X * z12 42 s1 = a.Y * z22 43 s1 = s1 * b.Z 44 s2 = b.Y * z12 45 s2 = s2 * a.Z 46 h = -u1 47 h = h + u2 48 i = -s1 49 i = i + s2 50 if branch == 2: 51 r = formula_secp256k1_gej_double_var(a) 52 return (constraints(), constraints(zero={h : 'h=0', i : 'i=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}), r) 53 if branch == 3: 54 return (constraints(), constraints(zero={h : 'h=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={i : 'i!=0'}), point_at_infinity()) 55 i2 = i^2 56 h2 = h^2 57 h3 = h2 * h 58 h = h * b.Z 59 rz = a.Z * h 60 t = u1 * h2 61 rx = t 62 rx = rx * 2 63 rx = rx + h3 64 rx = -rx 65 rx = rx + i2 66 ry = -rx 67 ry = ry + t 68 ry = ry * i 69 h3 = h3 * s1 70 h3 = -h3 71 ry = ry + h3 72 return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz)) 73 74 def formula_secp256k1_gej_add_ge_var(branch, a, b): 75 """libsecp256k1's secp256k1_gej_add_ge_var, which assume bz==1""" 76 if branch == 0: 77 return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(nonzero={a.Infinity : 'a_infinite'}), b) 78 if branch == 1: 79 return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a) 80 z12 = a.Z^2 81 u1 = a.X 82 u2 = b.X * z12 83 s1 = a.Y 84 s2 = b.Y * z12 85 s2 = s2 * a.Z 86 h = -u1 87 h = h + u2 88 i = -s1 89 i = i + s2 90 if (branch == 2): 91 r = formula_secp256k1_gej_double_var(a) 92 return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r) 93 if (branch == 3): 94 return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity()) 95 i2 = i^2 96 h2 = h^2 97 h3 = h * h2 98 rz = a.Z * h 99 t = u1 * h2 100 rx = t 101 rx = rx * 2 102 rx = rx + h3 103 rx = -rx 104 rx = rx + i2 105 ry = -rx 106 ry = ry + t 107 ry = ry * i 108 h3 = h3 * s1 109 h3 = -h3 110 ry = ry + h3 111 return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz)) 112 113 def formula_secp256k1_gej_add_zinv_var(branch, a, b): 114 """libsecp256k1's secp256k1_gej_add_zinv_var""" 115 bzinv = b.Z^(-1) 116 if branch == 0: 117 return (constraints(), constraints(nonzero={b.Infinity : 'b_infinite'}), a) 118 if branch == 1: 119 bzinv2 = bzinv^2 120 bzinv3 = bzinv2 * bzinv 121 rx = b.X * bzinv2 122 ry = b.Y * bzinv3 123 rz = 1 124 return (constraints(), constraints(zero={b.Infinity : 'b_finite'}, nonzero={a.Infinity : 'a_infinite'}), jacobianpoint(rx, ry, rz)) 125 azz = a.Z * bzinv 126 z12 = azz^2 127 u1 = a.X 128 u2 = b.X * z12 129 s1 = a.Y 130 s2 = b.Y * z12 131 s2 = s2 * azz 132 h = -u1 133 h = h + u2 134 i = -s1 135 i = i + s2 136 if branch == 2: 137 r = formula_secp256k1_gej_double_var(a) 138 return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r) 139 if branch == 3: 140 return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity()) 141 i2 = i^2 142 h2 = h^2 143 h3 = h * h2 144 rz = a.Z 145 rz = rz * h 146 t = u1 * h2 147 rx = t 148 rx = rx * 2 149 rx = rx + h3 150 rx = -rx 151 rx = rx + i2 152 ry = -rx 153 ry = ry + t 154 ry = ry * i 155 h3 = h3 * s1 156 h3 = -h3 157 ry = ry + h3 158 return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz)) 159 160 def formula_secp256k1_gej_add_ge(branch, a, b): 161 """libsecp256k1's secp256k1_gej_add_ge""" 162 zeroes = {} 163 nonzeroes = {} 164 a_infinity = False 165 if (branch & 4) != 0: 166 nonzeroes.update({a.Infinity : 'a_infinite'}) 167 a_infinity = True 168 else: 169 zeroes.update({a.Infinity : 'a_finite'}) 170 zz = a.Z^2 171 u1 = a.X 172 u2 = b.X * zz 173 s1 = a.Y 174 s2 = b.Y * zz 175 s2 = s2 * a.Z 176 t = u1 177 t = t + u2 178 m = s1 179 m = m + s2 180 rr = t^2 181 m_alt = -u2 182 tt = u1 * m_alt 183 rr = rr + tt 184 degenerate = (branch & 3) == 3 185 if (branch & 1) != 0: 186 zeroes.update({m : 'm_zero'}) 187 else: 188 nonzeroes.update({m : 'm_nonzero'}) 189 if (branch & 2) != 0: 190 zeroes.update({rr : 'rr_zero'}) 191 else: 192 nonzeroes.update({rr : 'rr_nonzero'}) 193 rr_alt = s1 194 rr_alt = rr_alt * 2 195 m_alt = m_alt + u1 196 if not degenerate: 197 rr_alt = rr 198 m_alt = m 199 n = m_alt^2 200 q = n * t 201 n = n^2 202 if degenerate: 203 n = m 204 t = rr_alt^2 205 rz = a.Z * m_alt 206 infinity = False 207 if (branch & 8) != 0: 208 if not a_infinity: 209 infinity = True 210 zeroes.update({rz : 'r.z=0'}) 211 else: 212 nonzeroes.update({rz : 'r.z!=0'}) 213 rz = rz * 2 214 q = -q 215 t = t + q 216 rx = t 217 t = t * 2 218 t = t + q 219 t = t * rr_alt 220 t = t + n 221 ry = -t 222 rx = rx * 4 223 ry = ry * 4 224 if a_infinity: 225 rx = b.X 226 ry = b.Y 227 rz = 1 228 if infinity: 229 return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity()) 230 return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz)) 231 232 def formula_secp256k1_gej_add_ge_old(branch, a, b): 233 """libsecp256k1's old secp256k1_gej_add_ge, which fails when ay+by=0 but ax!=bx""" 234 a_infinity = (branch & 1) != 0 235 zero = {} 236 nonzero = {} 237 if a_infinity: 238 nonzero.update({a.Infinity : 'a_infinite'}) 239 else: 240 zero.update({a.Infinity : 'a_finite'}) 241 zz = a.Z^2 242 u1 = a.X 243 u2 = b.X * zz 244 s1 = a.Y 245 s2 = b.Y * zz 246 s2 = s2 * a.Z 247 z = a.Z 248 t = u1 249 t = t + u2 250 m = s1 251 m = m + s2 252 n = m^2 253 q = n * t 254 n = n^2 255 rr = t^2 256 t = u1 * u2 257 t = -t 258 rr = rr + t 259 t = rr^2 260 rz = m * z 261 infinity = False 262 if (branch & 2) != 0: 263 if not a_infinity: 264 infinity = True 265 else: 266 return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(nonzero={z : 'conflict_a'}, zero={z : 'conflict_b'}), point_at_infinity()) 267 zero.update({rz : 'r.z=0'}) 268 else: 269 nonzero.update({rz : 'r.z!=0'}) 270 rz = rz * (0 if a_infinity else 2) 271 rx = t 272 q = -q 273 rx = rx + q 274 q = q * 3 275 t = t * 2 276 t = t + q 277 t = t * rr 278 t = t + n 279 ry = -t 280 rx = rx * (0 if a_infinity else 4) 281 ry = ry * (0 if a_infinity else 4) 282 t = b.X 283 t = t * (1 if a_infinity else 0) 284 rx = rx + t 285 t = b.Y 286 t = t * (1 if a_infinity else 0) 287 ry = ry + t 288 t = (1 if a_infinity else 0) 289 rz = rz + t 290 if infinity: 291 return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), point_at_infinity()) 292 return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), jacobianpoint(rx, ry, rz)) 293 294 if __name__ == "__main__": 295 check_symbolic_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var) 296 check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var) 297 check_symbolic_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var) 298 check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge) 299 check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old) 300 301 if len(sys.argv) >= 2 and sys.argv[1] == "--exhaustive": 302 check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var, 43) 303 check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var, 43) 304 check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var, 43) 305 check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge, 43) 306 check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old, 43)