github.com/theQRL/go-zond@v0.1.1/crypto/secp256k1/libsecp256k1/sage/secp256k1.sage (about)

     1  # Test libsecp256k1' group operation implementations using prover.sage
     2  
     3  import sys
     4  
     5  load("group_prover.sage")
     6  load("weierstrass_prover.sage")
     7  
     8  def formula_secp256k1_gej_double_var(a):
     9    """libsecp256k1's secp256k1_gej_double_var, used by various addition functions"""
    10    rz = a.Z * a.Y
    11    rz = rz * 2
    12    t1 = a.X^2
    13    t1 = t1 * 3
    14    t2 = t1^2
    15    t3 = a.Y^2
    16    t3 = t3 * 2
    17    t4 = t3^2
    18    t4 = t4 * 2
    19    t3 = t3 * a.X
    20    rx = t3
    21    rx = rx * 4
    22    rx = -rx
    23    rx = rx + t2
    24    t2 = -t2
    25    t3 = t3 * 6
    26    t3 = t3 + t2
    27    ry = t1 * t3
    28    t2 = -t4
    29    ry = ry + t2
    30    return jacobianpoint(rx, ry, rz)
    31  
    32  def formula_secp256k1_gej_add_var(branch, a, b):
    33    """libsecp256k1's secp256k1_gej_add_var"""
    34    if branch == 0:
    35      return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
    36    if branch == 1:
    37      return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
    38    z22 = b.Z^2
    39    z12 = a.Z^2
    40    u1 = a.X * z22
    41    u2 = b.X * z12
    42    s1 = a.Y * z22
    43    s1 = s1 * b.Z
    44    s2 = b.Y * z12
    45    s2 = s2 * a.Z
    46    h = -u1
    47    h = h + u2
    48    i = -s1
    49    i = i + s2
    50    if branch == 2:
    51      r = formula_secp256k1_gej_double_var(a)
    52      return (constraints(), constraints(zero={h : 'h=0', i : 'i=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}), r)
    53    if branch == 3:
    54      return (constraints(), constraints(zero={h : 'h=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={i : 'i!=0'}), point_at_infinity())
    55    i2 = i^2
    56    h2 = h^2
    57    h3 = h2 * h
    58    h = h * b.Z
    59    rz = a.Z * h
    60    t = u1 * h2
    61    rx = t
    62    rx = rx * 2
    63    rx = rx + h3
    64    rx = -rx
    65    rx = rx + i2
    66    ry = -rx
    67    ry = ry + t
    68    ry = ry * i
    69    h3 = h3 * s1
    70    h3 = -h3
    71    ry = ry + h3
    72    return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
    73  
    74  def formula_secp256k1_gej_add_ge_var(branch, a, b):
    75    """libsecp256k1's secp256k1_gej_add_ge_var, which assume bz==1"""
    76    if branch == 0:
    77      return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
    78    if branch == 1:
    79      return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
    80    z12 = a.Z^2
    81    u1 = a.X
    82    u2 = b.X * z12
    83    s1 = a.Y
    84    s2 = b.Y * z12
    85    s2 = s2 * a.Z
    86    h = -u1
    87    h = h + u2
    88    i = -s1
    89    i = i + s2
    90    if (branch == 2):
    91      r = formula_secp256k1_gej_double_var(a)
    92      return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
    93    if (branch == 3):
    94      return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
    95    i2 = i^2
    96    h2 = h^2
    97    h3 = h * h2
    98    rz = a.Z * h
    99    t = u1 * h2
   100    rx = t
   101    rx = rx * 2
   102    rx = rx + h3
   103    rx = -rx
   104    rx = rx + i2
   105    ry = -rx
   106    ry = ry + t
   107    ry = ry * i
   108    h3 = h3 * s1
   109    h3 = -h3
   110    ry = ry + h3
   111    return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
   112  
   113  def formula_secp256k1_gej_add_zinv_var(branch, a, b):
   114    """libsecp256k1's secp256k1_gej_add_zinv_var"""
   115    bzinv = b.Z^(-1)
   116    if branch == 0:
   117      return (constraints(), constraints(nonzero={b.Infinity : 'b_infinite'}), a)
   118    if branch == 1:
   119      bzinv2 = bzinv^2
   120      bzinv3 = bzinv2 * bzinv
   121      rx = b.X * bzinv2
   122      ry = b.Y * bzinv3
   123      rz = 1
   124      return (constraints(), constraints(zero={b.Infinity : 'b_finite'}, nonzero={a.Infinity : 'a_infinite'}), jacobianpoint(rx, ry, rz))
   125    azz = a.Z * bzinv
   126    z12 = azz^2
   127    u1 = a.X
   128    u2 = b.X * z12
   129    s1 = a.Y
   130    s2 = b.Y * z12
   131    s2 = s2 * azz
   132    h = -u1
   133    h = h + u2
   134    i = -s1
   135    i = i + s2
   136    if branch == 2:
   137      r = formula_secp256k1_gej_double_var(a)
   138      return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
   139    if branch == 3:
   140      return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
   141    i2 = i^2
   142    h2 = h^2
   143    h3 = h * h2
   144    rz = a.Z
   145    rz = rz * h
   146    t = u1 * h2
   147    rx = t
   148    rx = rx * 2
   149    rx = rx + h3
   150    rx = -rx
   151    rx = rx + i2
   152    ry = -rx
   153    ry = ry + t
   154    ry = ry * i
   155    h3 = h3 * s1
   156    h3 = -h3
   157    ry = ry + h3
   158    return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
   159  
   160  def formula_secp256k1_gej_add_ge(branch, a, b):
   161    """libsecp256k1's secp256k1_gej_add_ge"""
   162    zeroes = {}
   163    nonzeroes = {}
   164    a_infinity = False
   165    if (branch & 4) != 0:
   166      nonzeroes.update({a.Infinity : 'a_infinite'})
   167      a_infinity = True
   168    else:
   169      zeroes.update({a.Infinity : 'a_finite'})
   170    zz = a.Z^2
   171    u1 = a.X
   172    u2 = b.X * zz
   173    s1 = a.Y
   174    s2 = b.Y * zz
   175    s2 = s2 * a.Z
   176    t = u1
   177    t = t + u2
   178    m = s1
   179    m = m + s2
   180    rr = t^2
   181    m_alt = -u2
   182    tt = u1 * m_alt
   183    rr = rr + tt
   184    degenerate = (branch & 3) == 3
   185    if (branch & 1) != 0:
   186      zeroes.update({m : 'm_zero'})
   187    else:
   188      nonzeroes.update({m : 'm_nonzero'})
   189    if (branch & 2) != 0:
   190      zeroes.update({rr : 'rr_zero'})
   191    else:
   192      nonzeroes.update({rr : 'rr_nonzero'})
   193    rr_alt = s1
   194    rr_alt = rr_alt * 2
   195    m_alt = m_alt + u1
   196    if not degenerate:
   197      rr_alt = rr
   198      m_alt = m
   199    n = m_alt^2
   200    q = n * t
   201    n = n^2
   202    if degenerate:
   203      n = m
   204    t = rr_alt^2
   205    rz = a.Z * m_alt
   206    infinity = False
   207    if (branch & 8) != 0:
   208      if not a_infinity:
   209        infinity = True
   210      zeroes.update({rz : 'r.z=0'})
   211    else:
   212      nonzeroes.update({rz : 'r.z!=0'})
   213    rz = rz * 2
   214    q = -q
   215    t = t + q
   216    rx = t
   217    t = t * 2
   218    t = t + q
   219    t = t * rr_alt
   220    t = t + n
   221    ry = -t
   222    rx = rx * 4
   223    ry = ry * 4
   224    if a_infinity:
   225      rx = b.X
   226      ry = b.Y
   227      rz = 1
   228    if infinity:
   229      return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity())
   230    return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz))
   231  
   232  def formula_secp256k1_gej_add_ge_old(branch, a, b):
   233    """libsecp256k1's old secp256k1_gej_add_ge, which fails when ay+by=0 but ax!=bx"""
   234    a_infinity = (branch & 1) != 0
   235    zero = {}
   236    nonzero = {}
   237    if a_infinity:
   238      nonzero.update({a.Infinity : 'a_infinite'})
   239    else:
   240      zero.update({a.Infinity : 'a_finite'})
   241    zz = a.Z^2
   242    u1 = a.X
   243    u2 = b.X * zz
   244    s1 = a.Y
   245    s2 = b.Y * zz
   246    s2 = s2 * a.Z
   247    z = a.Z
   248    t = u1
   249    t = t + u2
   250    m = s1
   251    m = m + s2
   252    n = m^2
   253    q = n * t
   254    n = n^2
   255    rr = t^2
   256    t = u1 * u2
   257    t = -t
   258    rr = rr + t
   259    t = rr^2
   260    rz = m * z
   261    infinity = False
   262    if (branch & 2) != 0:
   263      if not a_infinity:
   264        infinity = True
   265      else:
   266        return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(nonzero={z : 'conflict_a'}, zero={z : 'conflict_b'}), point_at_infinity())
   267      zero.update({rz : 'r.z=0'})
   268    else:
   269      nonzero.update({rz : 'r.z!=0'})
   270    rz = rz * (0 if a_infinity else 2)
   271    rx = t
   272    q = -q
   273    rx = rx + q
   274    q = q * 3
   275    t = t * 2
   276    t = t + q
   277    t = t * rr
   278    t = t + n
   279    ry = -t
   280    rx = rx * (0 if a_infinity else 4)
   281    ry = ry * (0 if a_infinity else 4)
   282    t = b.X
   283    t = t * (1 if a_infinity else 0)
   284    rx = rx + t
   285    t = b.Y
   286    t = t * (1 if a_infinity else 0)
   287    ry = ry + t
   288    t = (1 if a_infinity else 0)
   289    rz = rz + t
   290    if infinity:
   291      return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), point_at_infinity())
   292    return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), jacobianpoint(rx, ry, rz))
   293  
   294  if __name__ == "__main__":
   295    check_symbolic_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var)
   296    check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var)
   297    check_symbolic_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var)
   298    check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge)
   299    check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old)
   300  
   301    if len(sys.argv) >= 2 and sys.argv[1] == "--exhaustive":
   302      check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var, 43)
   303      check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var, 43)
   304      check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var, 43)
   305      check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge, 43)
   306      check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old, 43)