github.com/theQRL/go-zond@v0.1.1/crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage (about)

     1  # Prover implementation for Weierstrass curves of the form
     2  # y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws
     3  # operating on affine and Jacobian coordinates, including the point at infinity
     4  # represented by a 4th variable in coordinates.
     5  
     6  load("group_prover.sage")
     7  
     8  
     9  class affinepoint:
    10    def __init__(self, x, y, infinity=0):
    11      self.x = x
    12      self.y = y
    13      self.infinity = infinity
    14    def __str__(self):
    15      return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity)
    16  
    17  
    18  class jacobianpoint:
    19    def __init__(self, x, y, z, infinity=0):
    20      self.X = x
    21      self.Y = y
    22      self.Z = z
    23      self.Infinity = infinity
    24    def __str__(self):
    25      return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity)
    26  
    27  
    28  def point_at_infinity():
    29    return jacobianpoint(1, 1, 1, 1)
    30  
    31  
    32  def negate(p):
    33    if p.__class__ == affinepoint:
    34      return affinepoint(p.x, -p.y)
    35    if p.__class__ == jacobianpoint:
    36      return jacobianpoint(p.X, -p.Y, p.Z)
    37    assert(False)
    38  
    39  
    40  def on_weierstrass_curve(A, B, p):
    41    """Return a set of zero-expressions for an affine point to be on the curve"""
    42    return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'})
    43  
    44  
    45  def tangential_to_weierstrass_curve(A, B, p12, p3):
    46    """Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)"""
    47    return constraints(zero={
    48      (p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve'
    49    })
    50  
    51  
    52  def colinear(p1, p2, p3):
    53    """Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear"""
    54    return constraints(zero={
    55      (p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1',
    56      (p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2',
    57      (p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3'
    58    })
    59  
    60  
    61  def good_affine_point(p):
    62    return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'})
    63  
    64  
    65  def good_jacobian_point(p):
    66    return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'})
    67  
    68  
    69  def good_point(p):
    70    return constraints(nonzero={p.Z^6 : 'nonzero_X'})
    71  
    72  
    73  def finite(p, *affine_fns):
    74    con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'})
    75    if p.Z != 0:
    76      return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con)
    77    else:
    78      return con
    79  
    80  def infinite(p):
    81    return constraints(nonzero={p.Infinity : 'infinite_point'})
    82  
    83  
    84  def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC):
    85    """Check whether the passed set of coordinates is a valid Jacobian add, given assumptions"""
    86    assumeLaw = (good_affine_point(pa) +
    87                 good_affine_point(pb) +
    88                 good_jacobian_point(pA) +
    89                 good_jacobian_point(pB) +
    90                 on_weierstrass_curve(A, B, pa) +
    91                 on_weierstrass_curve(A, B, pb) +
    92                 finite(pA) +
    93                 finite(pB) +
    94                 constraints(nonzero={pa.x - pb.x : 'different_x'}))
    95    require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
    96               colinear(pa, pb, negate(pc))))
    97    return (assumeLaw, require)
    98  
    99  
   100  def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC):
   101    """Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions"""
   102    assumeLaw = (good_affine_point(pa) +
   103                 good_affine_point(pb) +
   104                 good_jacobian_point(pA) +
   105                 good_jacobian_point(pB) +
   106                 on_weierstrass_curve(A, B, pa) +
   107                 on_weierstrass_curve(A, B, pb) +
   108                 finite(pA) +
   109                 finite(pB) +
   110                 constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'}))
   111    require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
   112               tangential_to_weierstrass_curve(A, B, pa, negate(pc))))
   113    return (assumeLaw, require)
   114  
   115  
   116  def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC):
   117    assumeLaw = (good_affine_point(pa) +
   118                 good_affine_point(pb) +
   119                 good_jacobian_point(pA) +
   120                 good_jacobian_point(pB) +
   121                 on_weierstrass_curve(A, B, pa) +
   122                 on_weierstrass_curve(A, B, pb) +
   123                 finite(pA) +
   124                 finite(pB) +
   125                 constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'}))
   126    require = infinite(pC)
   127    return (assumeLaw, require)
   128  
   129  
   130  def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC):
   131    assumeLaw = (good_affine_point(pa) +
   132                 good_affine_point(pb) +
   133                 good_jacobian_point(pA) +
   134                 good_jacobian_point(pB) +
   135                 on_weierstrass_curve(A, B, pb) +
   136                 infinite(pA) +
   137                 finite(pB))
   138    require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'}))
   139    return (assumeLaw, require)
   140  
   141  
   142  def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC):
   143    assumeLaw = (good_affine_point(pa) +
   144                 good_affine_point(pb) +
   145                 good_jacobian_point(pA) +
   146                 good_jacobian_point(pB) +
   147                 on_weierstrass_curve(A, B, pa) +
   148                 infinite(pB) +
   149                 finite(pA))
   150    require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'}))
   151    return (assumeLaw, require)
   152  
   153  
   154  def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC):
   155    assumeLaw = (good_affine_point(pa) +
   156                 good_affine_point(pb) +
   157                 good_jacobian_point(pA) +
   158                 good_jacobian_point(pB) +
   159                 infinite(pA) +
   160                 infinite(pB))
   161    require = infinite(pC)
   162    return (assumeLaw, require)
   163  
   164  
   165  laws_jacobian_weierstrass = {
   166    'add': law_jacobian_weierstrass_add,
   167    'double': law_jacobian_weierstrass_double,
   168    'add_opposite': law_jacobian_weierstrass_add_opposites,
   169    'add_infinite_a': law_jacobian_weierstrass_add_infinite_a,
   170    'add_infinite_b': law_jacobian_weierstrass_add_infinite_b,
   171    'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab
   172  }
   173  
   174  
   175  def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
   176    """Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
   177    F = Integers(p)
   178    print "Formula %s on Z%i:" % (name, p)
   179    points = []
   180    for x in xrange(0, p):
   181      for y in xrange(0, p):
   182        point = affinepoint(F(x), F(y))
   183        r, e = concrete_verify(on_weierstrass_curve(A, B, point))
   184        if r:
   185          points.append(point)
   186  
   187    for za in xrange(1, p):
   188      for zb in xrange(1, p):
   189        for pa in points:
   190          for pb in points:
   191            for ia in xrange(2):
   192              for ib in xrange(2):
   193                pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
   194                pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
   195                for branch in xrange(0, branches):
   196                  assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
   197                  pC.X = F(pC.X)
   198                  pC.Y = F(pC.Y)
   199                  pC.Z = F(pC.Z)
   200                  pC.Infinity = F(pC.Infinity)
   201                  r, e = concrete_verify(assumeAssert + assumeBranch)
   202                  if r:
   203                    match = False
   204                    for key in laws_jacobian_weierstrass:
   205                      assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC)
   206                      r, e = concrete_verify(assumeLaw)
   207                      if r:
   208                        if match:
   209                          print "  multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity)
   210                        else:
   211                          match = True
   212                        r, e = concrete_verify(require)
   213                        if not r:
   214                          print "  failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e)
   215    print
   216  
   217  
   218  def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
   219    assumeLaw, require = f(A, B, pa, pb, pA, pB, pC)
   220    return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require)
   221  
   222  def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
   223    """Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically"""
   224    R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
   225    lift = lambda x: fastfrac(R,x)
   226    ax = lift(ax)
   227    ay = lift(ay)
   228    Az = lift(Az)
   229    bx = lift(bx)
   230    by = lift(by)
   231    Bz = lift(Bz)
   232    Ai = lift(Ai)
   233    Bi = lift(Bi)
   234  
   235    pa = affinepoint(ax, ay, Ai)
   236    pb = affinepoint(bx, by, Bi)
   237    pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai)
   238    pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi)
   239  
   240    res = {}
   241  
   242    for key in laws_jacobian_weierstrass:
   243      res[key] = []
   244  
   245    print ("Formula " + name + ":")
   246    count = 0
   247    for branch in xrange(branches):
   248      assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
   249      pC.X = lift(pC.X)
   250      pC.Y = lift(pC.Y)
   251      pC.Z = lift(pC.Z)
   252      pC.Infinity = lift(pC.Infinity)
   253  
   254      for key in laws_jacobian_weierstrass:
   255        res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch))
   256  
   257    for key in res:
   258      print "  %s:" % key
   259      val = res[key]
   260      for x in val:
   261        if x[0] is not None:
   262          print "    branch %i: %s" % (x[1], x[0])
   263  
   264    print