github.com/theQRL/go-zond@v0.1.1/trie/proof.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"bytes"
    21  	"errors"
    22  	"fmt"
    23  
    24  	"github.com/theQRL/go-zond/common"
    25  	"github.com/theQRL/go-zond/zonddb"
    26  	"github.com/theQRL/go-zond/log"
    27  )
    28  
    29  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    30  // on the path to the value at key. The value itself is also included in the last
    31  // node and can be retrieved by verifying the proof.
    32  //
    33  // If the trie does not contain a value for key, the returned proof contains all
    34  // nodes of the longest existing prefix of the key (at least the root node), ending
    35  // with the node that proves the absence of the key.
    36  func (t *Trie) Prove(key []byte, proofDb zonddb.KeyValueWriter) error {
    37  	// Short circuit if the trie is already committed and not usable.
    38  	if t.committed {
    39  		return ErrCommitted
    40  	}
    41  	// Collect all nodes on the path to key.
    42  	var (
    43  		prefix []byte
    44  		nodes  []node
    45  		tn     = t.root
    46  	)
    47  	key = keybytesToHex(key)
    48  	for len(key) > 0 && tn != nil {
    49  		switch n := tn.(type) {
    50  		case *shortNode:
    51  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
    52  				// The trie doesn't contain the key.
    53  				tn = nil
    54  			} else {
    55  				tn = n.Val
    56  				prefix = append(prefix, n.Key...)
    57  				key = key[len(n.Key):]
    58  			}
    59  			nodes = append(nodes, n)
    60  		case *fullNode:
    61  			tn = n.Children[key[0]]
    62  			prefix = append(prefix, key[0])
    63  			key = key[1:]
    64  			nodes = append(nodes, n)
    65  		case hashNode:
    66  			// Retrieve the specified node from the underlying node reader.
    67  			// trie.resolveAndTrack is not used since in that function the
    68  			// loaded blob will be tracked, while it's not required here since
    69  			// all loaded nodes won't be linked to trie at all and track nodes
    70  			// may lead to out-of-memory issue.
    71  			blob, err := t.reader.node(prefix, common.BytesToHash(n))
    72  			if err != nil {
    73  				log.Error("Unhandled trie error in Trie.Prove", "err", err)
    74  				return err
    75  			}
    76  			// The raw-blob format nodes are loaded either from the
    77  			// clean cache or the database, they are all in their own
    78  			// copy and safe to use unsafe decoder.
    79  			tn = mustDecodeNodeUnsafe(n, blob)
    80  		default:
    81  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
    82  		}
    83  	}
    84  	hasher := newHasher(false)
    85  	defer returnHasherToPool(hasher)
    86  
    87  	for i, n := range nodes {
    88  		var hn node
    89  		n, hn = hasher.proofHash(n)
    90  		if hash, ok := hn.(hashNode); ok || i == 0 {
    91  			// If the node's database encoding is a hash (or is the
    92  			// root node), it becomes a proof element.
    93  			enc := nodeToBytes(n)
    94  			if !ok {
    95  				hash = hasher.hashData(enc)
    96  			}
    97  			proofDb.Put(hash, enc)
    98  		}
    99  	}
   100  	return nil
   101  }
   102  
   103  // Prove constructs a merkle proof for key. The result contains all encoded nodes
   104  // on the path to the value at key. The value itself is also included in the last
   105  // node and can be retrieved by verifying the proof.
   106  //
   107  // If the trie does not contain a value for key, the returned proof contains all
   108  // nodes of the longest existing prefix of the key (at least the root node), ending
   109  // with the node that proves the absence of the key.
   110  func (t *StateTrie) Prove(key []byte, proofDb zonddb.KeyValueWriter) error {
   111  	return t.trie.Prove(key, proofDb)
   112  }
   113  
   114  // VerifyProof checks merkle proofs. The given proof must contain the value for
   115  // key in a trie with the given root hash. VerifyProof returns an error if the
   116  // proof contains invalid trie nodes or the wrong value.
   117  func VerifyProof(rootHash common.Hash, key []byte, proofDb zonddb.KeyValueReader) (value []byte, err error) {
   118  	key = keybytesToHex(key)
   119  	wantHash := rootHash
   120  	for i := 0; ; i++ {
   121  		buf, _ := proofDb.Get(wantHash[:])
   122  		if buf == nil {
   123  			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash)
   124  		}
   125  		n, err := decodeNode(wantHash[:], buf)
   126  		if err != nil {
   127  			return nil, fmt.Errorf("bad proof node %d: %v", i, err)
   128  		}
   129  		keyrest, cld := get(n, key, true)
   130  		switch cld := cld.(type) {
   131  		case nil:
   132  			// The trie doesn't contain the key.
   133  			return nil, nil
   134  		case hashNode:
   135  			key = keyrest
   136  			copy(wantHash[:], cld)
   137  		case valueNode:
   138  			return cld, nil
   139  		}
   140  	}
   141  }
   142  
   143  // proofToPath converts a merkle proof to trie node path. The main purpose of
   144  // this function is recovering a node path from the merkle proof stream. All
   145  // necessary nodes will be resolved and leave the remaining as hashnode.
   146  //
   147  // The given edge proof is allowed to be an existent or non-existent proof.
   148  func proofToPath(rootHash common.Hash, root node, key []byte, proofDb zonddb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
   149  	// resolveNode retrieves and resolves trie node from merkle proof stream
   150  	resolveNode := func(hash common.Hash) (node, error) {
   151  		buf, _ := proofDb.Get(hash[:])
   152  		if buf == nil {
   153  			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
   154  		}
   155  		n, err := decodeNode(hash[:], buf)
   156  		if err != nil {
   157  			return nil, fmt.Errorf("bad proof node %v", err)
   158  		}
   159  		return n, err
   160  	}
   161  	// If the root node is empty, resolve it first.
   162  	// Root node must be included in the proof.
   163  	if root == nil {
   164  		n, err := resolveNode(rootHash)
   165  		if err != nil {
   166  			return nil, nil, err
   167  		}
   168  		root = n
   169  	}
   170  	var (
   171  		err           error
   172  		child, parent node
   173  		keyrest       []byte
   174  		valnode       []byte
   175  	)
   176  	key, parent = keybytesToHex(key), root
   177  	for {
   178  		keyrest, child = get(parent, key, false)
   179  		switch cld := child.(type) {
   180  		case nil:
   181  			// The trie doesn't contain the key. It's possible
   182  			// the proof is a non-existing proof, but at least
   183  			// we can prove all resolved nodes are correct, it's
   184  			// enough for us to prove range.
   185  			if allowNonExistent {
   186  				return root, nil, nil
   187  			}
   188  			return nil, nil, errors.New("the node is not contained in trie")
   189  		case *shortNode:
   190  			key, parent = keyrest, child // Already resolved
   191  			continue
   192  		case *fullNode:
   193  			key, parent = keyrest, child // Already resolved
   194  			continue
   195  		case hashNode:
   196  			child, err = resolveNode(common.BytesToHash(cld))
   197  			if err != nil {
   198  				return nil, nil, err
   199  			}
   200  		case valueNode:
   201  			valnode = cld
   202  		}
   203  		// Link the parent and child.
   204  		switch pnode := parent.(type) {
   205  		case *shortNode:
   206  			pnode.Val = child
   207  		case *fullNode:
   208  			pnode.Children[key[0]] = child
   209  		default:
   210  			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
   211  		}
   212  		if len(valnode) > 0 {
   213  			return root, valnode, nil // The whole path is resolved
   214  		}
   215  		key, parent = keyrest, child
   216  	}
   217  }
   218  
   219  // unsetInternal removes all internal node references(hashnode, embedded node).
   220  // It should be called after a trie is constructed with two edge paths. Also
   221  // the given boundary keys must be the one used to construct the edge paths.
   222  //
   223  // It's the key step for range proof. All visited nodes should be marked dirty
   224  // since the node content might be modified. Besides it can happen that some
   225  // fullnodes only have one child which is disallowed. But if the proof is valid,
   226  // the missing children will be filled, otherwise it will be thrown anyway.
   227  //
   228  // Note we have the assumption here the given boundary keys are different
   229  // and right is larger than left.
   230  func unsetInternal(n node, left []byte, right []byte) (bool, error) {
   231  	left, right = keybytesToHex(left), keybytesToHex(right)
   232  
   233  	// Step down to the fork point. There are two scenarios can happen:
   234  	// - the fork point is a shortnode: either the key of left proof or
   235  	//   right proof doesn't match with shortnode's key.
   236  	// - the fork point is a fullnode: both two edge proofs are allowed
   237  	//   to point to a non-existent key.
   238  	var (
   239  		pos    = 0
   240  		parent node
   241  
   242  		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
   243  		shortForkLeft, shortForkRight int
   244  	)
   245  findFork:
   246  	for {
   247  		switch rn := (n).(type) {
   248  		case *shortNode:
   249  			rn.flags = nodeFlag{dirty: true}
   250  
   251  			// If either the key of left proof or right proof doesn't match with
   252  			// shortnode, stop here and the forkpoint is the shortnode.
   253  			if len(left)-pos < len(rn.Key) {
   254  				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
   255  			} else {
   256  				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
   257  			}
   258  			if len(right)-pos < len(rn.Key) {
   259  				shortForkRight = bytes.Compare(right[pos:], rn.Key)
   260  			} else {
   261  				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
   262  			}
   263  			if shortForkLeft != 0 || shortForkRight != 0 {
   264  				break findFork
   265  			}
   266  			parent = n
   267  			n, pos = rn.Val, pos+len(rn.Key)
   268  		case *fullNode:
   269  			rn.flags = nodeFlag{dirty: true}
   270  
   271  			// If either the node pointed by left proof or right proof is nil,
   272  			// stop here and the forkpoint is the fullnode.
   273  			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
   274  			if leftnode == nil || rightnode == nil || leftnode != rightnode {
   275  				break findFork
   276  			}
   277  			parent = n
   278  			n, pos = rn.Children[left[pos]], pos+1
   279  		default:
   280  			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   281  		}
   282  	}
   283  	switch rn := n.(type) {
   284  	case *shortNode:
   285  		// There can have these five scenarios:
   286  		// - both proofs are less than the trie path => no valid range
   287  		// - both proofs are greater than the trie path => no valid range
   288  		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
   289  		// - left proof points to the shortnode, but right proof is greater
   290  		// - right proof points to the shortnode, but left proof is less
   291  		if shortForkLeft == -1 && shortForkRight == -1 {
   292  			return false, errors.New("empty range")
   293  		}
   294  		if shortForkLeft == 1 && shortForkRight == 1 {
   295  			return false, errors.New("empty range")
   296  		}
   297  		if shortForkLeft != 0 && shortForkRight != 0 {
   298  			// The fork point is root node, unset the entire trie
   299  			if parent == nil {
   300  				return true, nil
   301  			}
   302  			parent.(*fullNode).Children[left[pos-1]] = nil
   303  			return false, nil
   304  		}
   305  		// Only one proof points to non-existent key.
   306  		if shortForkRight != 0 {
   307  			if _, ok := rn.Val.(valueNode); ok {
   308  				// The fork point is root node, unset the entire trie
   309  				if parent == nil {
   310  					return true, nil
   311  				}
   312  				parent.(*fullNode).Children[left[pos-1]] = nil
   313  				return false, nil
   314  			}
   315  			return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false)
   316  		}
   317  		if shortForkLeft != 0 {
   318  			if _, ok := rn.Val.(valueNode); ok {
   319  				// The fork point is root node, unset the entire trie
   320  				if parent == nil {
   321  					return true, nil
   322  				}
   323  				parent.(*fullNode).Children[right[pos-1]] = nil
   324  				return false, nil
   325  			}
   326  			return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true)
   327  		}
   328  		return false, nil
   329  	case *fullNode:
   330  		// unset all internal nodes in the forkpoint
   331  		for i := left[pos] + 1; i < right[pos]; i++ {
   332  			rn.Children[i] = nil
   333  		}
   334  		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
   335  			return false, err
   336  		}
   337  		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
   338  			return false, err
   339  		}
   340  		return false, nil
   341  	default:
   342  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   343  	}
   344  }
   345  
   346  // unset removes all internal node references either the left most or right most.
   347  // It can meet these scenarios:
   348  //
   349  //   - The given path is existent in the trie, unset the associated nodes with the
   350  //     specific direction
   351  //   - The given path is non-existent in the trie
   352  //   - the fork point is a fullnode, the corresponding child pointed by path
   353  //     is nil, return
   354  //   - the fork point is a shortnode, the shortnode is included in the range,
   355  //     keep the entire branch and return.
   356  //   - the fork point is a shortnode, the shortnode is excluded in the range,
   357  //     unset the entire branch.
   358  func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
   359  	switch cld := child.(type) {
   360  	case *fullNode:
   361  		if removeLeft {
   362  			for i := 0; i < int(key[pos]); i++ {
   363  				cld.Children[i] = nil
   364  			}
   365  			cld.flags = nodeFlag{dirty: true}
   366  		} else {
   367  			for i := key[pos] + 1; i < 16; i++ {
   368  				cld.Children[i] = nil
   369  			}
   370  			cld.flags = nodeFlag{dirty: true}
   371  		}
   372  		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
   373  	case *shortNode:
   374  		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
   375  			// Find the fork point, it's an non-existent branch.
   376  			if removeLeft {
   377  				if bytes.Compare(cld.Key, key[pos:]) < 0 {
   378  					// The key of fork shortnode is less than the path
   379  					// (it belongs to the range), unset the entire
   380  					// branch. The parent must be a fullnode.
   381  					fn := parent.(*fullNode)
   382  					fn.Children[key[pos-1]] = nil
   383  				}
   384  				//else {
   385  				// The key of fork shortnode is greater than the
   386  				// path(it doesn't belong to the range), keep
   387  				// it with the cached hash available.
   388  				//}
   389  			} else {
   390  				if bytes.Compare(cld.Key, key[pos:]) > 0 {
   391  					// The key of fork shortnode is greater than the
   392  					// path(it belongs to the range), unset the entrie
   393  					// branch. The parent must be a fullnode.
   394  					fn := parent.(*fullNode)
   395  					fn.Children[key[pos-1]] = nil
   396  				}
   397  				//else {
   398  				// The key of fork shortnode is less than the
   399  				// path(it doesn't belong to the range), keep
   400  				// it with the cached hash available.
   401  				//}
   402  			}
   403  			return nil
   404  		}
   405  		if _, ok := cld.Val.(valueNode); ok {
   406  			fn := parent.(*fullNode)
   407  			fn.Children[key[pos-1]] = nil
   408  			return nil
   409  		}
   410  		cld.flags = nodeFlag{dirty: true}
   411  		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
   412  	case nil:
   413  		// If the node is nil, then it's a child of the fork point
   414  		// fullnode(it's a non-existent branch).
   415  		return nil
   416  	default:
   417  		panic("it shouldn't happen") // hashNode, valueNode
   418  	}
   419  }
   420  
   421  // hasRightElement returns the indicator whether there exists more elements
   422  // on the right side of the given path. The given path can point to an existent
   423  // key or a non-existent one. This function has the assumption that the whole
   424  // path should already be resolved.
   425  func hasRightElement(node node, key []byte) bool {
   426  	pos, key := 0, keybytesToHex(key)
   427  	for node != nil {
   428  		switch rn := node.(type) {
   429  		case *fullNode:
   430  			for i := key[pos] + 1; i < 16; i++ {
   431  				if rn.Children[i] != nil {
   432  					return true
   433  				}
   434  			}
   435  			node, pos = rn.Children[key[pos]], pos+1
   436  		case *shortNode:
   437  			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
   438  				return bytes.Compare(rn.Key, key[pos:]) > 0
   439  			}
   440  			node, pos = rn.Val, pos+len(rn.Key)
   441  		case valueNode:
   442  			return false // We have resolved the whole path
   443  		default:
   444  			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
   445  		}
   446  	}
   447  	return false
   448  }
   449  
   450  // VerifyRangeProof checks whether the given leaf nodes and edge proof
   451  // can prove the given trie leaves range is matched with the specific root.
   452  // Besides, the range should be consecutive (no gap inside) and monotonic
   453  // increasing.
   454  //
   455  // Note the given proof actually contains two edge proofs. Both of them can
   456  // be non-existent proofs. For example the first proof is for a non-existent
   457  // key 0x03, the last proof is for a non-existent key 0x10. The given batch
   458  // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
   459  // batch is valid.
   460  //
   461  // The firstKey is paired with firstProof, not necessarily the same as keys[0]
   462  // (unless firstProof is an existent proof). Similarly, lastKey and lastProof
   463  // are paired.
   464  //
   465  // Expect the normal case, this function can also be used to verify the following
   466  // range proofs:
   467  //
   468  //   - All elements proof. In this case the proof can be nil, but the range should
   469  //     be all the leaves in the trie.
   470  //
   471  //   - One element proof. In this case no matter the edge proof is a non-existent
   472  //     proof or not, we can always verify the correctness of the proof.
   473  //
   474  //   - Zero element proof. In this case a single non-existent proof is enough to prove.
   475  //     Besides, if there are still some other leaves available on the right side, then
   476  //     an error will be returned.
   477  //
   478  // Except returning the error to indicate the proof is valid or not, the function will
   479  // also return a flag to indicate whether there exists more accounts/slots in the trie.
   480  //
   481  // Note: This method does not verify that the proof is of minimal form. If the input
   482  // proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful'
   483  // data, then the proof will still be accepted.
   484  func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof zonddb.KeyValueReader) (bool, error) {
   485  	if len(keys) != len(values) {
   486  		return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
   487  	}
   488  	// Ensure the received batch is monotonic increasing and contains no deletions
   489  	for i := 0; i < len(keys)-1; i++ {
   490  		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
   491  			return false, errors.New("range is not monotonically increasing")
   492  		}
   493  	}
   494  	for _, value := range values {
   495  		if len(value) == 0 {
   496  			return false, errors.New("range contains deletion")
   497  		}
   498  	}
   499  	// Special case, there is no edge proof at all. The given range is expected
   500  	// to be the whole leaf-set in the trie.
   501  	if proof == nil {
   502  		tr := NewStackTrie(nil)
   503  		for index, key := range keys {
   504  			tr.Update(key, values[index])
   505  		}
   506  		if have, want := tr.Hash(), rootHash; have != want {
   507  			return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
   508  		}
   509  		return false, nil // No more elements
   510  	}
   511  	// Special case, there is a provided edge proof but zero key/value
   512  	// pairs, ensure there are no more accounts / slots in the trie.
   513  	if len(keys) == 0 {
   514  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
   515  		if err != nil {
   516  			return false, err
   517  		}
   518  		if val != nil || hasRightElement(root, firstKey) {
   519  			return false, errors.New("more entries available")
   520  		}
   521  		return false, nil
   522  	}
   523  	// Special case, there is only one element and two edge keys are same.
   524  	// In this case, we can't construct two edge paths. So handle it here.
   525  	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
   526  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
   527  		if err != nil {
   528  			return false, err
   529  		}
   530  		if !bytes.Equal(firstKey, keys[0]) {
   531  			return false, errors.New("correct proof but invalid key")
   532  		}
   533  		if !bytes.Equal(val, values[0]) {
   534  			return false, errors.New("correct proof but invalid data")
   535  		}
   536  		return hasRightElement(root, firstKey), nil
   537  	}
   538  	// Ok, in all other cases, we require two edge paths available.
   539  	// First check the validity of edge keys.
   540  	if bytes.Compare(firstKey, lastKey) >= 0 {
   541  		return false, errors.New("invalid edge keys")
   542  	}
   543  	// todo(rjl493456442) different length edge keys should be supported
   544  	if len(firstKey) != len(lastKey) {
   545  		return false, errors.New("inconsistent edge keys")
   546  	}
   547  	// Convert the edge proofs to edge trie paths. Then we can
   548  	// have the same tree architecture with the original one.
   549  	// For the first edge proof, non-existent proof is allowed.
   550  	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
   551  	if err != nil {
   552  		return false, err
   553  	}
   554  	// Pass the root node here, the second path will be merged
   555  	// with the first one. For the last edge proof, non-existent
   556  	// proof is also allowed.
   557  	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
   558  	if err != nil {
   559  		return false, err
   560  	}
   561  	// Remove all internal references. All the removed parts should
   562  	// be re-filled(or re-constructed) by the given leaves range.
   563  	empty, err := unsetInternal(root, firstKey, lastKey)
   564  	if err != nil {
   565  		return false, err
   566  	}
   567  	// Rebuild the trie with the leaf stream, the shape of trie
   568  	// should be same with the original one.
   569  	tr := &Trie{root: root, reader: newEmptyReader(), tracer: newTracer()}
   570  	if empty {
   571  		tr.root = nil
   572  	}
   573  	for index, key := range keys {
   574  		tr.Update(key, values[index])
   575  	}
   576  	if tr.Hash() != rootHash {
   577  		return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
   578  	}
   579  	return hasRightElement(tr.root, keys[len(keys)-1]), nil
   580  }
   581  
   582  // get returns the child of the given node. Return nil if the
   583  // node with specified key doesn't exist at all.
   584  //
   585  // There is an additional flag `skipResolved`. If it's set then
   586  // all resolved nodes won't be returned.
   587  func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
   588  	for {
   589  		switch n := tn.(type) {
   590  		case *shortNode:
   591  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
   592  				return nil, nil
   593  			}
   594  			tn = n.Val
   595  			key = key[len(n.Key):]
   596  			if !skipResolved {
   597  				return key, tn
   598  			}
   599  		case *fullNode:
   600  			tn = n.Children[key[0]]
   601  			key = key[1:]
   602  			if !skipResolved {
   603  				return key, tn
   604  			}
   605  		case hashNode:
   606  			return key, n
   607  		case nil:
   608  			return key, nil
   609  		case valueNode:
   610  			return nil, n
   611  		default:
   612  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
   613  		}
   614  	}
   615  }