github.com/theQRL/go-zond@v0.1.1/trie/stacktrie.go (about)

     1  // Copyright 2020 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"bufio"
    21  	"bytes"
    22  	"encoding/gob"
    23  	"errors"
    24  	"io"
    25  	"sync"
    26  
    27  	"github.com/theQRL/go-zond/common"
    28  	"github.com/theQRL/go-zond/core/types"
    29  	"github.com/theQRL/go-zond/log"
    30  )
    31  
    32  var ErrCommitDisabled = errors.New("no database for committing")
    33  
    34  var stPool = sync.Pool{
    35  	New: func() interface{} {
    36  		return NewStackTrie(nil)
    37  	},
    38  }
    39  
    40  // NodeWriteFunc is used to provide all information of a dirty node for committing
    41  // so that callers can flush nodes into database with desired scheme.
    42  type NodeWriteFunc = func(owner common.Hash, path []byte, hash common.Hash, blob []byte)
    43  
    44  func stackTrieFromPool(writeFn NodeWriteFunc, owner common.Hash) *StackTrie {
    45  	st := stPool.Get().(*StackTrie)
    46  	st.owner = owner
    47  	st.writeFn = writeFn
    48  	return st
    49  }
    50  
    51  func returnToPool(st *StackTrie) {
    52  	st.Reset()
    53  	stPool.Put(st)
    54  }
    55  
    56  // StackTrie is a trie implementation that expects keys to be inserted
    57  // in order. Once it determines that a subtree will no longer be inserted
    58  // into, it will hash it and free up the memory it uses.
    59  type StackTrie struct {
    60  	owner    common.Hash    // the owner of the trie
    61  	nodeType uint8          // node type (as in branch, ext, leaf)
    62  	val      []byte         // value contained by this node if it's a leaf
    63  	key      []byte         // key chunk covered by this (leaf|ext) node
    64  	children [16]*StackTrie // list of children (for branch and exts)
    65  	writeFn  NodeWriteFunc  // function for committing nodes, can be nil
    66  }
    67  
    68  // NewStackTrie allocates and initializes an empty trie.
    69  func NewStackTrie(writeFn NodeWriteFunc) *StackTrie {
    70  	return &StackTrie{
    71  		nodeType: emptyNode,
    72  		writeFn:  writeFn,
    73  	}
    74  }
    75  
    76  // NewStackTrieWithOwner allocates and initializes an empty trie, but with
    77  // the additional owner field.
    78  func NewStackTrieWithOwner(writeFn NodeWriteFunc, owner common.Hash) *StackTrie {
    79  	return &StackTrie{
    80  		owner:    owner,
    81  		nodeType: emptyNode,
    82  		writeFn:  writeFn,
    83  	}
    84  }
    85  
    86  // NewFromBinary initialises a serialized stacktrie with the given db.
    87  func NewFromBinary(data []byte, writeFn NodeWriteFunc) (*StackTrie, error) {
    88  	var st StackTrie
    89  	if err := st.UnmarshalBinary(data); err != nil {
    90  		return nil, err
    91  	}
    92  	// If a database is used, we need to recursively add it to every child
    93  	if writeFn != nil {
    94  		st.setWriter(writeFn)
    95  	}
    96  	return &st, nil
    97  }
    98  
    99  // MarshalBinary implements encoding.BinaryMarshaler
   100  func (st *StackTrie) MarshalBinary() (data []byte, err error) {
   101  	var (
   102  		b bytes.Buffer
   103  		w = bufio.NewWriter(&b)
   104  	)
   105  	if err := gob.NewEncoder(w).Encode(struct {
   106  		Owner    common.Hash
   107  		NodeType uint8
   108  		Val      []byte
   109  		Key      []byte
   110  	}{
   111  		st.owner,
   112  		st.nodeType,
   113  		st.val,
   114  		st.key,
   115  	}); err != nil {
   116  		return nil, err
   117  	}
   118  	for _, child := range st.children {
   119  		if child == nil {
   120  			w.WriteByte(0)
   121  			continue
   122  		}
   123  		w.WriteByte(1)
   124  		if childData, err := child.MarshalBinary(); err != nil {
   125  			return nil, err
   126  		} else {
   127  			w.Write(childData)
   128  		}
   129  	}
   130  	w.Flush()
   131  	return b.Bytes(), nil
   132  }
   133  
   134  // UnmarshalBinary implements encoding.BinaryUnmarshaler
   135  func (st *StackTrie) UnmarshalBinary(data []byte) error {
   136  	r := bytes.NewReader(data)
   137  	return st.unmarshalBinary(r)
   138  }
   139  
   140  func (st *StackTrie) unmarshalBinary(r io.Reader) error {
   141  	var dec struct {
   142  		Owner    common.Hash
   143  		NodeType uint8
   144  		Val      []byte
   145  		Key      []byte
   146  	}
   147  	if err := gob.NewDecoder(r).Decode(&dec); err != nil {
   148  		return err
   149  	}
   150  	st.owner = dec.Owner
   151  	st.nodeType = dec.NodeType
   152  	st.val = dec.Val
   153  	st.key = dec.Key
   154  
   155  	var hasChild = make([]byte, 1)
   156  	for i := range st.children {
   157  		if _, err := r.Read(hasChild); err != nil {
   158  			return err
   159  		} else if hasChild[0] == 0 {
   160  			continue
   161  		}
   162  		var child StackTrie
   163  		if err := child.unmarshalBinary(r); err != nil {
   164  			return err
   165  		}
   166  		st.children[i] = &child
   167  	}
   168  	return nil
   169  }
   170  
   171  func (st *StackTrie) setWriter(writeFn NodeWriteFunc) {
   172  	st.writeFn = writeFn
   173  	for _, child := range st.children {
   174  		if child != nil {
   175  			child.setWriter(writeFn)
   176  		}
   177  	}
   178  }
   179  
   180  func newLeaf(owner common.Hash, key, val []byte, writeFn NodeWriteFunc) *StackTrie {
   181  	st := stackTrieFromPool(writeFn, owner)
   182  	st.nodeType = leafNode
   183  	st.key = append(st.key, key...)
   184  	st.val = val
   185  	return st
   186  }
   187  
   188  func newExt(owner common.Hash, key []byte, child *StackTrie, writeFn NodeWriteFunc) *StackTrie {
   189  	st := stackTrieFromPool(writeFn, owner)
   190  	st.nodeType = extNode
   191  	st.key = append(st.key, key...)
   192  	st.children[0] = child
   193  	return st
   194  }
   195  
   196  // List all values that StackTrie#nodeType can hold
   197  const (
   198  	emptyNode = iota
   199  	branchNode
   200  	extNode
   201  	leafNode
   202  	hashedNode
   203  )
   204  
   205  // Update inserts a (key, value) pair into the stack trie.
   206  func (st *StackTrie) Update(key, value []byte) error {
   207  	k := keybytesToHex(key)
   208  	if len(value) == 0 {
   209  		panic("deletion not supported")
   210  	}
   211  	st.insert(k[:len(k)-1], value, nil)
   212  	return nil
   213  }
   214  
   215  // MustUpdate is a wrapper of Update and will omit any encountered error but
   216  // just print out an error message.
   217  func (st *StackTrie) MustUpdate(key, value []byte) {
   218  	if err := st.Update(key, value); err != nil {
   219  		log.Error("Unhandled trie error in StackTrie.Update", "err", err)
   220  	}
   221  }
   222  
   223  func (st *StackTrie) Reset() {
   224  	st.owner = common.Hash{}
   225  	st.writeFn = nil
   226  	st.key = st.key[:0]
   227  	st.val = nil
   228  	for i := range st.children {
   229  		st.children[i] = nil
   230  	}
   231  	st.nodeType = emptyNode
   232  }
   233  
   234  // Helper function that, given a full key, determines the index
   235  // at which the chunk pointed by st.keyOffset is different from
   236  // the same chunk in the full key.
   237  func (st *StackTrie) getDiffIndex(key []byte) int {
   238  	for idx, nibble := range st.key {
   239  		if nibble != key[idx] {
   240  			return idx
   241  		}
   242  	}
   243  	return len(st.key)
   244  }
   245  
   246  // Helper function to that inserts a (key, value) pair into
   247  // the trie.
   248  func (st *StackTrie) insert(key, value []byte, prefix []byte) {
   249  	switch st.nodeType {
   250  	case branchNode: /* Branch */
   251  		idx := int(key[0])
   252  
   253  		// Unresolve elder siblings
   254  		for i := idx - 1; i >= 0; i-- {
   255  			if st.children[i] != nil {
   256  				if st.children[i].nodeType != hashedNode {
   257  					st.children[i].hash(append(prefix, byte(i)))
   258  				}
   259  				break
   260  			}
   261  		}
   262  
   263  		// Add new child
   264  		if st.children[idx] == nil {
   265  			st.children[idx] = newLeaf(st.owner, key[1:], value, st.writeFn)
   266  		} else {
   267  			st.children[idx].insert(key[1:], value, append(prefix, key[0]))
   268  		}
   269  
   270  	case extNode: /* Ext */
   271  		// Compare both key chunks and see where they differ
   272  		diffidx := st.getDiffIndex(key)
   273  
   274  		// Check if chunks are identical. If so, recurse into
   275  		// the child node. Otherwise, the key has to be split
   276  		// into 1) an optional common prefix, 2) the fullnode
   277  		// representing the two differing path, and 3) a leaf
   278  		// for each of the differentiated subtrees.
   279  		if diffidx == len(st.key) {
   280  			// Ext key and key segment are identical, recurse into
   281  			// the child node.
   282  			st.children[0].insert(key[diffidx:], value, append(prefix, key[:diffidx]...))
   283  			return
   284  		}
   285  		// Save the original part. Depending if the break is
   286  		// at the extension's last byte or not, create an
   287  		// intermediate extension or use the extension's child
   288  		// node directly.
   289  		var n *StackTrie
   290  		if diffidx < len(st.key)-1 {
   291  			// Break on the non-last byte, insert an intermediate
   292  			// extension. The path prefix of the newly-inserted
   293  			// extension should also contain the different byte.
   294  			n = newExt(st.owner, st.key[diffidx+1:], st.children[0], st.writeFn)
   295  			n.hash(append(prefix, st.key[:diffidx+1]...))
   296  		} else {
   297  			// Break on the last byte, no need to insert
   298  			// an extension node: reuse the current node.
   299  			// The path prefix of the original part should
   300  			// still be same.
   301  			n = st.children[0]
   302  			n.hash(append(prefix, st.key...))
   303  		}
   304  		var p *StackTrie
   305  		if diffidx == 0 {
   306  			// the break is on the first byte, so
   307  			// the current node is converted into
   308  			// a branch node.
   309  			st.children[0] = nil
   310  			p = st
   311  			st.nodeType = branchNode
   312  		} else {
   313  			// the common prefix is at least one byte
   314  			// long, insert a new intermediate branch
   315  			// node.
   316  			st.children[0] = stackTrieFromPool(st.writeFn, st.owner)
   317  			st.children[0].nodeType = branchNode
   318  			p = st.children[0]
   319  		}
   320  		// Create a leaf for the inserted part
   321  		o := newLeaf(st.owner, key[diffidx+1:], value, st.writeFn)
   322  
   323  		// Insert both child leaves where they belong:
   324  		origIdx := st.key[diffidx]
   325  		newIdx := key[diffidx]
   326  		p.children[origIdx] = n
   327  		p.children[newIdx] = o
   328  		st.key = st.key[:diffidx]
   329  
   330  	case leafNode: /* Leaf */
   331  		// Compare both key chunks and see where they differ
   332  		diffidx := st.getDiffIndex(key)
   333  
   334  		// Overwriting a key isn't supported, which means that
   335  		// the current leaf is expected to be split into 1) an
   336  		// optional extension for the common prefix of these 2
   337  		// keys, 2) a fullnode selecting the path on which the
   338  		// keys differ, and 3) one leaf for the differentiated
   339  		// component of each key.
   340  		if diffidx >= len(st.key) {
   341  			panic("Trying to insert into existing key")
   342  		}
   343  
   344  		// Check if the split occurs at the first nibble of the
   345  		// chunk. In that case, no prefix extnode is necessary.
   346  		// Otherwise, create that
   347  		var p *StackTrie
   348  		if diffidx == 0 {
   349  			// Convert current leaf into a branch
   350  			st.nodeType = branchNode
   351  			p = st
   352  			st.children[0] = nil
   353  		} else {
   354  			// Convert current node into an ext,
   355  			// and insert a child branch node.
   356  			st.nodeType = extNode
   357  			st.children[0] = NewStackTrieWithOwner(st.writeFn, st.owner)
   358  			st.children[0].nodeType = branchNode
   359  			p = st.children[0]
   360  		}
   361  
   362  		// Create the two child leaves: one containing the original
   363  		// value and another containing the new value. The child leaf
   364  		// is hashed directly in order to free up some memory.
   365  		origIdx := st.key[diffidx]
   366  		p.children[origIdx] = newLeaf(st.owner, st.key[diffidx+1:], st.val, st.writeFn)
   367  		p.children[origIdx].hash(append(prefix, st.key[:diffidx+1]...))
   368  
   369  		newIdx := key[diffidx]
   370  		p.children[newIdx] = newLeaf(st.owner, key[diffidx+1:], value, st.writeFn)
   371  
   372  		// Finally, cut off the key part that has been passed
   373  		// over to the children.
   374  		st.key = st.key[:diffidx]
   375  		st.val = nil
   376  
   377  	case emptyNode: /* Empty */
   378  		st.nodeType = leafNode
   379  		st.key = key
   380  		st.val = value
   381  
   382  	case hashedNode:
   383  		panic("trying to insert into hash")
   384  
   385  	default:
   386  		panic("invalid type")
   387  	}
   388  }
   389  
   390  // hash converts st into a 'hashedNode', if possible. Possible outcomes:
   391  //
   392  // 1. The rlp-encoded value was >= 32 bytes:
   393  //   - Then the 32-byte `hash` will be accessible in `st.val`.
   394  //   - And the 'st.type' will be 'hashedNode'
   395  //
   396  // 2. The rlp-encoded value was < 32 bytes
   397  //   - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
   398  //   - And the 'st.type' will be 'hashedNode' AGAIN
   399  //
   400  // This method also sets 'st.type' to hashedNode, and clears 'st.key'.
   401  func (st *StackTrie) hash(path []byte) {
   402  	h := newHasher(false)
   403  	defer returnHasherToPool(h)
   404  
   405  	st.hashRec(h, path)
   406  }
   407  
   408  func (st *StackTrie) hashRec(hasher *hasher, path []byte) {
   409  	// The switch below sets this to the RLP-encoding of this node.
   410  	var encodedNode []byte
   411  
   412  	switch st.nodeType {
   413  	case hashedNode:
   414  		return
   415  
   416  	case emptyNode:
   417  		st.val = types.EmptyRootHash.Bytes()
   418  		st.key = st.key[:0]
   419  		st.nodeType = hashedNode
   420  		return
   421  
   422  	case branchNode:
   423  		var nodes fullNode
   424  		for i, child := range st.children {
   425  			if child == nil {
   426  				nodes.Children[i] = nilValueNode
   427  				continue
   428  			}
   429  			child.hashRec(hasher, append(path, byte(i)))
   430  			if len(child.val) < 32 {
   431  				nodes.Children[i] = rawNode(child.val)
   432  			} else {
   433  				nodes.Children[i] = hashNode(child.val)
   434  			}
   435  
   436  			// Release child back to pool.
   437  			st.children[i] = nil
   438  			returnToPool(child)
   439  		}
   440  
   441  		nodes.encode(hasher.encbuf)
   442  		encodedNode = hasher.encodedBytes()
   443  
   444  	case extNode:
   445  		st.children[0].hashRec(hasher, append(path, st.key...))
   446  
   447  		n := shortNode{Key: hexToCompactInPlace(st.key)}
   448  		if len(st.children[0].val) < 32 {
   449  			n.Val = rawNode(st.children[0].val)
   450  		} else {
   451  			n.Val = hashNode(st.children[0].val)
   452  		}
   453  
   454  		n.encode(hasher.encbuf)
   455  		encodedNode = hasher.encodedBytes()
   456  
   457  		// Release child back to pool.
   458  		returnToPool(st.children[0])
   459  		st.children[0] = nil
   460  
   461  	case leafNode:
   462  		st.key = append(st.key, byte(16))
   463  		n := shortNode{Key: hexToCompactInPlace(st.key), Val: valueNode(st.val)}
   464  
   465  		n.encode(hasher.encbuf)
   466  		encodedNode = hasher.encodedBytes()
   467  
   468  	default:
   469  		panic("invalid node type")
   470  	}
   471  
   472  	st.nodeType = hashedNode
   473  	st.key = st.key[:0]
   474  	if len(encodedNode) < 32 {
   475  		st.val = common.CopyBytes(encodedNode)
   476  		return
   477  	}
   478  
   479  	// Write the hash to the 'val'. We allocate a new val here to not mutate
   480  	// input values
   481  	st.val = hasher.hashData(encodedNode)
   482  	if st.writeFn != nil {
   483  		st.writeFn(st.owner, path, common.BytesToHash(st.val), encodedNode)
   484  	}
   485  }
   486  
   487  // Hash returns the hash of the current node.
   488  func (st *StackTrie) Hash() (h common.Hash) {
   489  	hasher := newHasher(false)
   490  	defer returnHasherToPool(hasher)
   491  
   492  	st.hashRec(hasher, nil)
   493  	if len(st.val) == 32 {
   494  		copy(h[:], st.val)
   495  		return h
   496  	}
   497  	// If the node's RLP isn't 32 bytes long, the node will not
   498  	// be hashed, and instead contain the  rlp-encoding of the
   499  	// node. For the top level node, we need to force the hashing.
   500  	hasher.sha.Reset()
   501  	hasher.sha.Write(st.val)
   502  	hasher.sha.Read(h[:])
   503  	return h
   504  }
   505  
   506  // Commit will firstly hash the entire trie if it's still not hashed
   507  // and then commit all nodes to the associated database. Actually most
   508  // of the trie nodes MAY have been committed already. The main purpose
   509  // here is to commit the root node.
   510  //
   511  // The associated database is expected, otherwise the whole commit
   512  // functionality should be disabled.
   513  func (st *StackTrie) Commit() (h common.Hash, err error) {
   514  	if st.writeFn == nil {
   515  		return common.Hash{}, ErrCommitDisabled
   516  	}
   517  	hasher := newHasher(false)
   518  	defer returnHasherToPool(hasher)
   519  
   520  	st.hashRec(hasher, nil)
   521  	if len(st.val) == 32 {
   522  		copy(h[:], st.val)
   523  		return h, nil
   524  	}
   525  	// If the node's RLP isn't 32 bytes long, the node will not
   526  	// be hashed (and committed), and instead contain the rlp-encoding of the
   527  	// node. For the top level node, we need to force the hashing+commit.
   528  	hasher.sha.Reset()
   529  	hasher.sha.Write(st.val)
   530  	hasher.sha.Read(h[:])
   531  
   532  	st.writeFn(st.owner, nil, h, st.val)
   533  	return h, nil
   534  }