github.com/theQRL/go-zond@v0.1.1/trie/sync.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package trie 18 19 import ( 20 "errors" 21 "fmt" 22 "sync" 23 24 "github.com/theQRL/go-zond/common" 25 "github.com/theQRL/go-zond/common/prque" 26 "github.com/theQRL/go-zond/core/rawdb" 27 "github.com/theQRL/go-zond/core/types" 28 "github.com/theQRL/go-zond/zonddb" 29 "github.com/theQRL/go-zond/log" 30 ) 31 32 // ErrNotRequested is returned by the trie sync when it's requested to process a 33 // node it did not request. 34 var ErrNotRequested = errors.New("not requested") 35 36 // ErrAlreadyProcessed is returned by the trie sync when it's requested to process a 37 // node it already processed previously. 38 var ErrAlreadyProcessed = errors.New("already processed") 39 40 // maxFetchesPerDepth is the maximum number of pending trie nodes per depth. The 41 // role of this value is to limit the number of trie nodes that get expanded in 42 // memory if the node was configured with a significant number of peers. 43 const maxFetchesPerDepth = 16384 44 45 // SyncPath is a path tuple identifying a particular trie node either in a single 46 // trie (account) or a layered trie (account -> storage). 47 // 48 // Content wise the tuple either has 1 element if it addresses a node in a single 49 // trie or 2 elements if it addresses a node in a stacked trie. 50 // 51 // To support aiming arbitrary trie nodes, the path needs to support odd nibble 52 // lengths. To avoid transferring expanded hex form over the network, the last 53 // part of the tuple (which needs to index into the middle of a trie) is compact 54 // encoded. In case of a 2-tuple, the first item is always 32 bytes so that is 55 // simple binary encoded. 56 // 57 // Examples: 58 // - Path 0x9 -> {0x19} 59 // - Path 0x99 -> {0x0099} 60 // - Path 0x01234567890123456789012345678901012345678901234567890123456789019 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x19} 61 // - Path 0x012345678901234567890123456789010123456789012345678901234567890199 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x0099} 62 type SyncPath [][]byte 63 64 // NewSyncPath converts an expanded trie path from nibble form into a compact 65 // version that can be sent over the network. 66 func NewSyncPath(path []byte) SyncPath { 67 // If the hash is from the account trie, append a single item, if it 68 // is from a storage trie, append a tuple. Note, the length 64 is 69 // clashing between account leaf and storage root. It's fine though 70 // because having a trie node at 64 depth means a hash collision was 71 // found and we're long dead. 72 if len(path) < 64 { 73 return SyncPath{hexToCompact(path)} 74 } 75 return SyncPath{hexToKeybytes(path[:64]), hexToCompact(path[64:])} 76 } 77 78 // LeafCallback is a callback type invoked when a trie operation reaches a leaf 79 // node. 80 // 81 // The keys is a path tuple identifying a particular trie node either in a single 82 // trie (account) or a layered trie (account -> storage). Each key in the tuple 83 // is in the raw format(32 bytes). 84 // 85 // The path is a composite hexary path identifying the trie node. All the key 86 // bytes are converted to the hexary nibbles and composited with the parent path 87 // if the trie node is in a layered trie. 88 // 89 // It's used by state sync and commit to allow handling external references 90 // between account and storage tries. And also it's used in the state healing 91 // for extracting the raw states(leaf nodes) with corresponding paths. 92 type LeafCallback func(keys [][]byte, path []byte, leaf []byte, parent common.Hash, parentPath []byte) error 93 94 // nodeRequest represents a scheduled or already in-flight trie node retrieval request. 95 type nodeRequest struct { 96 hash common.Hash // Hash of the trie node to retrieve 97 path []byte // Merkle path leading to this node for prioritization 98 data []byte // Data content of the node, cached until all subtrees complete 99 100 parent *nodeRequest // Parent state node referencing this entry 101 deps int // Number of dependencies before allowed to commit this node 102 callback LeafCallback // Callback to invoke if a leaf node it reached on this branch 103 } 104 105 // codeRequest represents a scheduled or already in-flight bytecode retrieval request. 106 type codeRequest struct { 107 hash common.Hash // Hash of the contract bytecode to retrieve 108 path []byte // Merkle path leading to this node for prioritization 109 data []byte // Data content of the node, cached until all subtrees complete 110 parents []*nodeRequest // Parent state nodes referencing this entry (notify all upon completion) 111 } 112 113 // NodeSyncResult is a response with requested trie node along with its node path. 114 type NodeSyncResult struct { 115 Path string // Path of the originally unknown trie node 116 Data []byte // Data content of the retrieved trie node 117 } 118 119 // CodeSyncResult is a response with requested bytecode along with its hash. 120 type CodeSyncResult struct { 121 Hash common.Hash // Hash the originally unknown bytecode 122 Data []byte // Data content of the retrieved bytecode 123 } 124 125 // syncMemBatch is an in-memory buffer of successfully downloaded but not yet 126 // persisted data items. 127 type syncMemBatch struct { 128 nodes map[string][]byte // In-memory membatch of recently completed nodes 129 hashes map[string]common.Hash // Hashes of recently completed nodes 130 codes map[common.Hash][]byte // In-memory membatch of recently completed codes 131 size uint64 // Estimated batch-size of in-memory data. 132 } 133 134 // newSyncMemBatch allocates a new memory-buffer for not-yet persisted trie nodes. 135 func newSyncMemBatch() *syncMemBatch { 136 return &syncMemBatch{ 137 nodes: make(map[string][]byte), 138 hashes: make(map[string]common.Hash), 139 codes: make(map[common.Hash][]byte), 140 } 141 } 142 143 // hasNode reports the trie node with specific path is already cached. 144 func (batch *syncMemBatch) hasNode(path []byte) bool { 145 _, ok := batch.nodes[string(path)] 146 return ok 147 } 148 149 // hasCode reports the contract code with specific hash is already cached. 150 func (batch *syncMemBatch) hasCode(hash common.Hash) bool { 151 _, ok := batch.codes[hash] 152 return ok 153 } 154 155 // Sync is the main state trie synchronisation scheduler, which provides yet 156 // unknown trie hashes to retrieve, accepts node data associated with said hashes 157 // and reconstructs the trie step by step until all is done. 158 type Sync struct { 159 scheme string // Node scheme descriptor used in database. 160 database zonddb.KeyValueReader // Persistent database to check for existing entries 161 membatch *syncMemBatch // Memory buffer to avoid frequent database writes 162 nodeReqs map[string]*nodeRequest // Pending requests pertaining to a trie node path 163 codeReqs map[common.Hash]*codeRequest // Pending requests pertaining to a code hash 164 queue *prque.Prque[int64, any] // Priority queue with the pending requests 165 fetches map[int]int // Number of active fetches per trie node depth 166 } 167 168 // NewSync creates a new trie data download scheduler. 169 func NewSync(root common.Hash, database zonddb.KeyValueReader, callback LeafCallback, scheme string) *Sync { 170 ts := &Sync{ 171 scheme: scheme, 172 database: database, 173 membatch: newSyncMemBatch(), 174 nodeReqs: make(map[string]*nodeRequest), 175 codeReqs: make(map[common.Hash]*codeRequest), 176 queue: prque.New[int64, any](nil), // Ugh, can contain both string and hash, whyyy 177 fetches: make(map[int]int), 178 } 179 ts.AddSubTrie(root, nil, common.Hash{}, nil, callback) 180 return ts 181 } 182 183 // AddSubTrie registers a new trie to the sync code, rooted at the designated 184 // parent for completion tracking. The given path is a unique node path in 185 // hex format and contain all the parent path if it's layered trie node. 186 func (s *Sync) AddSubTrie(root common.Hash, path []byte, parent common.Hash, parentPath []byte, callback LeafCallback) { 187 // Short circuit if the trie is empty or already known 188 if root == types.EmptyRootHash { 189 return 190 } 191 if s.membatch.hasNode(path) { 192 return 193 } 194 owner, inner := ResolvePath(path) 195 if rawdb.HasTrieNode(s.database, owner, inner, root, s.scheme) { 196 return 197 } 198 // Assemble the new sub-trie sync request 199 req := &nodeRequest{ 200 hash: root, 201 path: path, 202 callback: callback, 203 } 204 // If this sub-trie has a designated parent, link them together 205 if parent != (common.Hash{}) { 206 ancestor := s.nodeReqs[string(parentPath)] 207 if ancestor == nil { 208 panic(fmt.Sprintf("sub-trie ancestor not found: %x", parent)) 209 } 210 ancestor.deps++ 211 req.parent = ancestor 212 } 213 s.scheduleNodeRequest(req) 214 } 215 216 // AddCodeEntry schedules the direct retrieval of a contract code that should not 217 // be interpreted as a trie node, but rather accepted and stored into the database 218 // as is. 219 func (s *Sync) AddCodeEntry(hash common.Hash, path []byte, parent common.Hash, parentPath []byte) { 220 // Short circuit if the entry is empty or already known 221 if hash == types.EmptyCodeHash { 222 return 223 } 224 if s.membatch.hasCode(hash) { 225 return 226 } 227 // If database says duplicate, the blob is present for sure. 228 // Note we only check the existence with new code scheme, snap 229 // sync is expected to run with a fresh new node. Even there 230 // exists the code with legacy format, fetch and store with 231 // new scheme anyway. 232 if rawdb.HasCodeWithPrefix(s.database, hash) { 233 return 234 } 235 // Assemble the new sub-trie sync request 236 req := &codeRequest{ 237 path: path, 238 hash: hash, 239 } 240 // If this sub-trie has a designated parent, link them together 241 if parent != (common.Hash{}) { 242 ancestor := s.nodeReqs[string(parentPath)] // the parent of codereq can ONLY be nodereq 243 if ancestor == nil { 244 panic(fmt.Sprintf("raw-entry ancestor not found: %x", parent)) 245 } 246 ancestor.deps++ 247 req.parents = append(req.parents, ancestor) 248 } 249 s.scheduleCodeRequest(req) 250 } 251 252 // Missing retrieves the known missing nodes from the trie for retrieval. To aid 253 // both zond/6x style fast sync and snap/1x style state sync, the paths of trie 254 // nodes are returned too, as well as separate hash list for codes. 255 func (s *Sync) Missing(max int) ([]string, []common.Hash, []common.Hash) { 256 var ( 257 nodePaths []string 258 nodeHashes []common.Hash 259 codeHashes []common.Hash 260 ) 261 for !s.queue.Empty() && (max == 0 || len(nodeHashes)+len(codeHashes) < max) { 262 // Retrieve the next item in line 263 item, prio := s.queue.Peek() 264 265 // If we have too many already-pending tasks for this depth, throttle 266 depth := int(prio >> 56) 267 if s.fetches[depth] > maxFetchesPerDepth { 268 break 269 } 270 // Item is allowed to be scheduled, add it to the task list 271 s.queue.Pop() 272 s.fetches[depth]++ 273 274 switch item := item.(type) { 275 case common.Hash: 276 codeHashes = append(codeHashes, item) 277 case string: 278 req, ok := s.nodeReqs[item] 279 if !ok { 280 log.Error("Missing node request", "path", item) 281 continue // System very wrong, shouldn't happen 282 } 283 nodePaths = append(nodePaths, item) 284 nodeHashes = append(nodeHashes, req.hash) 285 } 286 } 287 return nodePaths, nodeHashes, codeHashes 288 } 289 290 // ProcessCode injects the received data for requested item. Note it can 291 // happpen that the single response commits two pending requests(e.g. 292 // there are two requests one for code and one for node but the hash 293 // is same). In this case the second response for the same hash will 294 // be treated as "non-requested" item or "already-processed" item but 295 // there is no downside. 296 func (s *Sync) ProcessCode(result CodeSyncResult) error { 297 // If the code was not requested or it's already processed, bail out 298 req := s.codeReqs[result.Hash] 299 if req == nil { 300 return ErrNotRequested 301 } 302 if req.data != nil { 303 return ErrAlreadyProcessed 304 } 305 req.data = result.Data 306 return s.commitCodeRequest(req) 307 } 308 309 // ProcessNode injects the received data for requested item. Note it can 310 // happen that the single response commits two pending requests(e.g. 311 // there are two requests one for code and one for node but the hash 312 // is same). In this case the second response for the same hash will 313 // be treated as "non-requested" item or "already-processed" item but 314 // there is no downside. 315 func (s *Sync) ProcessNode(result NodeSyncResult) error { 316 // If the trie node was not requested or it's already processed, bail out 317 req := s.nodeReqs[result.Path] 318 if req == nil { 319 return ErrNotRequested 320 } 321 if req.data != nil { 322 return ErrAlreadyProcessed 323 } 324 // Decode the node data content and update the request 325 node, err := decodeNode(req.hash.Bytes(), result.Data) 326 if err != nil { 327 return err 328 } 329 req.data = result.Data 330 331 // Create and schedule a request for all the children nodes 332 requests, err := s.children(req, node) 333 if err != nil { 334 return err 335 } 336 if len(requests) == 0 && req.deps == 0 { 337 s.commitNodeRequest(req) 338 } else { 339 req.deps += len(requests) 340 for _, child := range requests { 341 s.scheduleNodeRequest(child) 342 } 343 } 344 return nil 345 } 346 347 // Commit flushes the data stored in the internal membatch out to persistent 348 // storage, returning any occurred error. 349 func (s *Sync) Commit(dbw zonddb.Batch) error { 350 // Dump the membatch into a database dbw 351 for path, value := range s.membatch.nodes { 352 owner, inner := ResolvePath([]byte(path)) 353 rawdb.WriteTrieNode(dbw, owner, inner, s.membatch.hashes[path], value, s.scheme) 354 } 355 for hash, value := range s.membatch.codes { 356 rawdb.WriteCode(dbw, hash, value) 357 } 358 // Drop the membatch data and return 359 s.membatch = newSyncMemBatch() 360 return nil 361 } 362 363 // MemSize returns an estimated size (in bytes) of the data held in the membatch. 364 func (s *Sync) MemSize() uint64 { 365 return s.membatch.size 366 } 367 368 // Pending returns the number of state entries currently pending for download. 369 func (s *Sync) Pending() int { 370 return len(s.nodeReqs) + len(s.codeReqs) 371 } 372 373 // schedule inserts a new state retrieval request into the fetch queue. If there 374 // is already a pending request for this node, the new request will be discarded 375 // and only a parent reference added to the old one. 376 func (s *Sync) scheduleNodeRequest(req *nodeRequest) { 377 s.nodeReqs[string(req.path)] = req 378 379 // Schedule the request for future retrieval. This queue is shared 380 // by both node requests and code requests. 381 prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents 382 for i := 0; i < 14 && i < len(req.path); i++ { 383 prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order 384 } 385 s.queue.Push(string(req.path), prio) 386 } 387 388 // schedule inserts a new state retrieval request into the fetch queue. If there 389 // is already a pending request for this node, the new request will be discarded 390 // and only a parent reference added to the old one. 391 func (s *Sync) scheduleCodeRequest(req *codeRequest) { 392 // If we're already requesting this node, add a new reference and stop 393 if old, ok := s.codeReqs[req.hash]; ok { 394 old.parents = append(old.parents, req.parents...) 395 return 396 } 397 s.codeReqs[req.hash] = req 398 399 // Schedule the request for future retrieval. This queue is shared 400 // by both node requests and code requests. 401 prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents 402 for i := 0; i < 14 && i < len(req.path); i++ { 403 prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order 404 } 405 s.queue.Push(req.hash, prio) 406 } 407 408 // children retrieves all the missing children of a state trie entry for future 409 // retrieval scheduling. 410 func (s *Sync) children(req *nodeRequest, object node) ([]*nodeRequest, error) { 411 // Gather all the children of the node, irrelevant whether known or not 412 type childNode struct { 413 path []byte 414 node node 415 } 416 var children []childNode 417 418 switch node := (object).(type) { 419 case *shortNode: 420 key := node.Key 421 if hasTerm(key) { 422 key = key[:len(key)-1] 423 } 424 children = []childNode{{ 425 node: node.Val, 426 path: append(append([]byte(nil), req.path...), key...), 427 }} 428 case *fullNode: 429 for i := 0; i < 17; i++ { 430 if node.Children[i] != nil { 431 children = append(children, childNode{ 432 node: node.Children[i], 433 path: append(append([]byte(nil), req.path...), byte(i)), 434 }) 435 } 436 } 437 default: 438 panic(fmt.Sprintf("unknown node: %+v", node)) 439 } 440 // Iterate over the children, and request all unknown ones 441 var ( 442 missing = make(chan *nodeRequest, len(children)) 443 pending sync.WaitGroup 444 ) 445 for _, child := range children { 446 // Notify any external watcher of a new key/value node 447 if req.callback != nil { 448 if node, ok := (child.node).(valueNode); ok { 449 var paths [][]byte 450 if len(child.path) == 2*common.HashLength { 451 paths = append(paths, hexToKeybytes(child.path)) 452 } else if len(child.path) == 4*common.HashLength { 453 paths = append(paths, hexToKeybytes(child.path[:2*common.HashLength])) 454 paths = append(paths, hexToKeybytes(child.path[2*common.HashLength:])) 455 } 456 if err := req.callback(paths, child.path, node, req.hash, req.path); err != nil { 457 return nil, err 458 } 459 } 460 } 461 // If the child references another node, resolve or schedule 462 if node, ok := (child.node).(hashNode); ok { 463 // Try to resolve the node from the local database 464 if s.membatch.hasNode(child.path) { 465 continue 466 } 467 // Check the presence of children concurrently 468 pending.Add(1) 469 go func(child childNode) { 470 defer pending.Done() 471 472 // If database says duplicate, then at least the trie node is present 473 // and we hold the assumption that it's NOT legacy contract code. 474 var ( 475 chash = common.BytesToHash(node) 476 owner, inner = ResolvePath(child.path) 477 ) 478 if rawdb.HasTrieNode(s.database, owner, inner, chash, s.scheme) { 479 return 480 } 481 // Locally unknown node, schedule for retrieval 482 missing <- &nodeRequest{ 483 path: child.path, 484 hash: chash, 485 parent: req, 486 callback: req.callback, 487 } 488 }(child) 489 } 490 } 491 pending.Wait() 492 493 requests := make([]*nodeRequest, 0, len(children)) 494 for done := false; !done; { 495 select { 496 case miss := <-missing: 497 requests = append(requests, miss) 498 default: 499 done = true 500 } 501 } 502 return requests, nil 503 } 504 505 // commit finalizes a retrieval request and stores it into the membatch. If any 506 // of the referencing parent requests complete due to this commit, they are also 507 // committed themselves. 508 func (s *Sync) commitNodeRequest(req *nodeRequest) error { 509 // Write the node content to the membatch 510 s.membatch.nodes[string(req.path)] = req.data 511 s.membatch.hashes[string(req.path)] = req.hash 512 // The size tracking refers to the db-batch, not the in-memory data. 513 // Therefore, we ignore the req.path, and account only for the hash+data 514 // which eventually is written to db. 515 s.membatch.size += common.HashLength + uint64(len(req.data)) 516 delete(s.nodeReqs, string(req.path)) 517 s.fetches[len(req.path)]-- 518 519 // Check parent for completion 520 if req.parent != nil { 521 req.parent.deps-- 522 if req.parent.deps == 0 { 523 if err := s.commitNodeRequest(req.parent); err != nil { 524 return err 525 } 526 } 527 } 528 return nil 529 } 530 531 // commit finalizes a retrieval request and stores it into the membatch. If any 532 // of the referencing parent requests complete due to this commit, they are also 533 // committed themselves. 534 func (s *Sync) commitCodeRequest(req *codeRequest) error { 535 // Write the node content to the membatch 536 s.membatch.codes[req.hash] = req.data 537 s.membatch.size += common.HashLength + uint64(len(req.data)) 538 delete(s.codeReqs, req.hash) 539 s.fetches[len(req.path)]-- 540 541 // Check all parents for completion 542 for _, parent := range req.parents { 543 parent.deps-- 544 if parent.deps == 0 { 545 if err := s.commitNodeRequest(parent); err != nil { 546 return err 547 } 548 } 549 } 550 return nil 551 } 552 553 // ResolvePath resolves the provided composite node path by separating the 554 // path in account trie if it's existent. 555 func ResolvePath(path []byte) (common.Hash, []byte) { 556 var owner common.Hash 557 if len(path) >= 2*common.HashLength { 558 owner = common.BytesToHash(hexToKeybytes(path[:2*common.HashLength])) 559 path = path[2*common.HashLength:] 560 } 561 return owner, path 562 }