github.com/theQRL/go-zond@v0.1.1/zond/fetcher/tx_fetcher.go (about) 1 // Copyright 2019 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package fetcher 18 19 import ( 20 "bytes" 21 "errors" 22 "fmt" 23 mrand "math/rand" 24 "sort" 25 "time" 26 27 mapset "github.com/deckarep/golang-set/v2" 28 "github.com/theQRL/go-zond/common" 29 "github.com/theQRL/go-zond/common/mclock" 30 "github.com/theQRL/go-zond/core/txpool" 31 "github.com/theQRL/go-zond/core/types" 32 "github.com/theQRL/go-zond/log" 33 "github.com/theQRL/go-zond/metrics" 34 ) 35 36 const ( 37 // maxTxAnnounces is the maximum number of unique transaction a peer 38 // can announce in a short time. 39 maxTxAnnounces = 4096 40 41 // maxTxRetrievals is the maximum transaction number can be fetched in one 42 // request. The rationale to pick 256 is: 43 // - In zond protocol, the softResponseLimit is 2MB. Nowadays according to 44 // Etherscan the average transaction size is around 200B, so in theory 45 // we can include lots of transaction in a single protocol packet. 46 // - However the maximum size of a single transaction is raised to 128KB, 47 // so pick a middle value here to ensure we can maximize the efficiency 48 // of the retrieval and response size overflow won't happen in most cases. 49 maxTxRetrievals = 256 50 51 // maxTxUnderpricedSetSize is the size of the underpriced transaction set that 52 // is used to track recent transactions that have been dropped so we don't 53 // re-request them. 54 maxTxUnderpricedSetSize = 32768 55 56 // txArriveTimeout is the time allowance before an announced transaction is 57 // explicitly requested. 58 txArriveTimeout = 500 * time.Millisecond 59 60 // txGatherSlack is the interval used to collate almost-expired announces 61 // with network fetches. 62 txGatherSlack = 100 * time.Millisecond 63 ) 64 65 var ( 66 // txFetchTimeout is the maximum allotted time to return an explicitly 67 // requested transaction. 68 txFetchTimeout = 5 * time.Second 69 ) 70 71 var ( 72 txAnnounceInMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/announces/in", nil) 73 txAnnounceKnownMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/announces/known", nil) 74 txAnnounceUnderpricedMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/announces/underpriced", nil) 75 txAnnounceDOSMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/announces/dos", nil) 76 77 txBroadcastInMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/broadcasts/in", nil) 78 txBroadcastKnownMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/broadcasts/known", nil) 79 txBroadcastUnderpricedMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/broadcasts/underpriced", nil) 80 txBroadcastOtherRejectMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/broadcasts/otherreject", nil) 81 82 txRequestOutMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/request/out", nil) 83 txRequestFailMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/request/fail", nil) 84 txRequestDoneMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/request/done", nil) 85 txRequestTimeoutMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/request/timeout", nil) 86 87 txReplyInMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/replies/in", nil) 88 txReplyKnownMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/replies/known", nil) 89 txReplyUnderpricedMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/replies/underpriced", nil) 90 txReplyOtherRejectMeter = metrics.NewRegisteredMeter("zond/fetcher/transaction/replies/otherreject", nil) 91 92 txFetcherWaitingPeers = metrics.NewRegisteredGauge("zond/fetcher/transaction/waiting/peers", nil) 93 txFetcherWaitingHashes = metrics.NewRegisteredGauge("zond/fetcher/transaction/waiting/hashes", nil) 94 txFetcherQueueingPeers = metrics.NewRegisteredGauge("zond/fetcher/transaction/queueing/peers", nil) 95 txFetcherQueueingHashes = metrics.NewRegisteredGauge("zond/fetcher/transaction/queueing/hashes", nil) 96 txFetcherFetchingPeers = metrics.NewRegisteredGauge("zond/fetcher/transaction/fetching/peers", nil) 97 txFetcherFetchingHashes = metrics.NewRegisteredGauge("zond/fetcher/transaction/fetching/hashes", nil) 98 ) 99 100 // txAnnounce is the notification of the availability of a batch 101 // of new transactions in the network. 102 type txAnnounce struct { 103 origin string // Identifier of the peer originating the notification 104 hashes []common.Hash // Batch of transaction hashes being announced 105 } 106 107 // txRequest represents an in-flight transaction retrieval request destined to 108 // a specific peers. 109 type txRequest struct { 110 hashes []common.Hash // Transactions having been requested 111 stolen map[common.Hash]struct{} // Deliveries by someone else (don't re-request) 112 time mclock.AbsTime // Timestamp of the request 113 } 114 115 // txDelivery is the notification that a batch of transactions have been added 116 // to the pool and should be untracked. 117 type txDelivery struct { 118 origin string // Identifier of the peer originating the notification 119 hashes []common.Hash // Batch of transaction hashes having been delivered 120 direct bool // Whether this is a direct reply or a broadcast 121 } 122 123 // txDrop is the notification that a peer has disconnected. 124 type txDrop struct { 125 peer string 126 } 127 128 // TxFetcher is responsible for retrieving new transaction based on announcements. 129 // 130 // The fetcher operates in 3 stages: 131 // - Transactions that are newly discovered are moved into a wait list. 132 // - After ~500ms passes, transactions from the wait list that have not been 133 // broadcast to us in whole are moved into a queueing area. 134 // - When a connected peer doesn't have in-flight retrieval requests, any 135 // transaction queued up (and announced by the peer) are allocated to the 136 // peer and moved into a fetching status until it's fulfilled or fails. 137 // 138 // The invariants of the fetcher are: 139 // - Each tracked transaction (hash) must only be present in one of the 140 // three stages. This ensures that the fetcher operates akin to a finite 141 // state automata and there's do data leak. 142 // - Each peer that announced transactions may be scheduled retrievals, but 143 // only ever one concurrently. This ensures we can immediately know what is 144 // missing from a reply and reschedule it. 145 type TxFetcher struct { 146 notify chan *txAnnounce 147 cleanup chan *txDelivery 148 drop chan *txDrop 149 quit chan struct{} 150 151 underpriced mapset.Set[common.Hash] // Transactions discarded as too cheap (don't re-fetch) 152 153 // Stage 1: Waiting lists for newly discovered transactions that might be 154 // broadcast without needing explicit request/reply round trips. 155 waitlist map[common.Hash]map[string]struct{} // Transactions waiting for an potential broadcast 156 waittime map[common.Hash]mclock.AbsTime // Timestamps when transactions were added to the waitlist 157 waitslots map[string]map[common.Hash]struct{} // Waiting announcements grouped by peer (DoS protection) 158 159 // Stage 2: Queue of transactions that waiting to be allocated to some peer 160 // to be retrieved directly. 161 announces map[string]map[common.Hash]struct{} // Set of announced transactions, grouped by origin peer 162 announced map[common.Hash]map[string]struct{} // Set of download locations, grouped by transaction hash 163 164 // Stage 3: Set of transactions currently being retrieved, some which may be 165 // fulfilled and some rescheduled. Note, this step shares 'announces' from the 166 // previous stage to avoid having to duplicate (need it for DoS checks). 167 fetching map[common.Hash]string // Transaction set currently being retrieved 168 requests map[string]*txRequest // In-flight transaction retrievals 169 alternates map[common.Hash]map[string]struct{} // In-flight transaction alternate origins if retrieval fails 170 171 // Callbacks 172 hasTx func(common.Hash) bool // Retrieves a tx from the local txpool 173 addTxs func([]*types.Transaction) []error // Insert a batch of transactions into local txpool 174 fetchTxs func(string, []common.Hash) error // Retrieves a set of txs from a remote peer 175 176 step chan struct{} // Notification channel when the fetcher loop iterates 177 clock mclock.Clock // Time wrapper to simulate in tests 178 rand *mrand.Rand // Randomizer to use in tests instead of map range loops (soft-random) 179 } 180 181 // NewTxFetcher creates a transaction fetcher to retrieve transaction 182 // based on hash announcements. 183 func NewTxFetcher(hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error) *TxFetcher { 184 return NewTxFetcherForTests(hasTx, addTxs, fetchTxs, mclock.System{}, nil) 185 } 186 187 // NewTxFetcherForTests is a testing method to mock out the realtime clock with 188 // a simulated version and the internal randomness with a deterministic one. 189 func NewTxFetcherForTests( 190 hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error, 191 clock mclock.Clock, rand *mrand.Rand) *TxFetcher { 192 return &TxFetcher{ 193 notify: make(chan *txAnnounce), 194 cleanup: make(chan *txDelivery), 195 drop: make(chan *txDrop), 196 quit: make(chan struct{}), 197 waitlist: make(map[common.Hash]map[string]struct{}), 198 waittime: make(map[common.Hash]mclock.AbsTime), 199 waitslots: make(map[string]map[common.Hash]struct{}), 200 announces: make(map[string]map[common.Hash]struct{}), 201 announced: make(map[common.Hash]map[string]struct{}), 202 fetching: make(map[common.Hash]string), 203 requests: make(map[string]*txRequest), 204 alternates: make(map[common.Hash]map[string]struct{}), 205 underpriced: mapset.NewSet[common.Hash](), 206 hasTx: hasTx, 207 addTxs: addTxs, 208 fetchTxs: fetchTxs, 209 clock: clock, 210 rand: rand, 211 } 212 } 213 214 // Notify announces the fetcher of the potential availability of a new batch of 215 // transactions in the network. 216 func (f *TxFetcher) Notify(peer string, hashes []common.Hash) error { 217 // Keep track of all the announced transactions 218 txAnnounceInMeter.Mark(int64(len(hashes))) 219 220 // Skip any transaction announcements that we already know of, or that we've 221 // previously marked as cheap and discarded. This check is of course racy, 222 // because multiple concurrent notifies will still manage to pass it, but it's 223 // still valuable to check here because it runs concurrent to the internal 224 // loop, so anything caught here is time saved internally. 225 var ( 226 unknowns = make([]common.Hash, 0, len(hashes)) 227 duplicate, underpriced int64 228 ) 229 for _, hash := range hashes { 230 switch { 231 case f.hasTx(hash): 232 duplicate++ 233 234 case f.underpriced.Contains(hash): 235 underpriced++ 236 237 default: 238 unknowns = append(unknowns, hash) 239 } 240 } 241 txAnnounceKnownMeter.Mark(duplicate) 242 txAnnounceUnderpricedMeter.Mark(underpriced) 243 244 // If anything's left to announce, push it into the internal loop 245 if len(unknowns) == 0 { 246 return nil 247 } 248 announce := &txAnnounce{ 249 origin: peer, 250 hashes: unknowns, 251 } 252 select { 253 case f.notify <- announce: 254 return nil 255 case <-f.quit: 256 return errTerminated 257 } 258 } 259 260 // Enqueue imports a batch of received transaction into the transaction pool 261 // and the fetcher. This method may be called by both transaction broadcasts and 262 // direct request replies. The differentiation is important so the fetcher can 263 // re-schedule missing transactions as soon as possible. 264 func (f *TxFetcher) Enqueue(peer string, txs []*types.Transaction, direct bool) error { 265 var ( 266 inMeter = txReplyInMeter 267 knownMeter = txReplyKnownMeter 268 underpricedMeter = txReplyUnderpricedMeter 269 otherRejectMeter = txReplyOtherRejectMeter 270 ) 271 if !direct { 272 inMeter = txBroadcastInMeter 273 knownMeter = txBroadcastKnownMeter 274 underpricedMeter = txBroadcastUnderpricedMeter 275 otherRejectMeter = txBroadcastOtherRejectMeter 276 } 277 // Keep track of all the propagated transactions 278 inMeter.Mark(int64(len(txs))) 279 280 // Push all the transactions into the pool, tracking underpriced ones to avoid 281 // re-requesting them and dropping the peer in case of malicious transfers. 282 var ( 283 added = make([]common.Hash, 0, len(txs)) 284 ) 285 // proceed in batches 286 for i := 0; i < len(txs); i += 128 { 287 end := i + 128 288 if end > len(txs) { 289 end = len(txs) 290 } 291 var ( 292 duplicate int64 293 underpriced int64 294 otherreject int64 295 ) 296 batch := txs[i:end] 297 298 for j, err := range f.addTxs(batch) { 299 // Track the transaction hash if the price is too low for us. 300 // Avoid re-request this transaction when we receive another 301 // announcement. 302 if errors.Is(err, txpool.ErrUnderpriced) || errors.Is(err, txpool.ErrReplaceUnderpriced) { 303 for f.underpriced.Cardinality() >= maxTxUnderpricedSetSize { 304 f.underpriced.Pop() 305 } 306 f.underpriced.Add(batch[j].Hash()) 307 } 308 // Track a few interesting failure types 309 switch { 310 case err == nil: // Noop, but need to handle to not count these 311 312 case errors.Is(err, txpool.ErrAlreadyKnown): 313 duplicate++ 314 315 case errors.Is(err, txpool.ErrUnderpriced) || errors.Is(err, txpool.ErrReplaceUnderpriced): 316 underpriced++ 317 318 default: 319 otherreject++ 320 } 321 added = append(added, batch[j].Hash()) 322 } 323 knownMeter.Mark(duplicate) 324 underpricedMeter.Mark(underpriced) 325 otherRejectMeter.Mark(otherreject) 326 327 // If 'other reject' is >25% of the deliveries in any batch, sleep a bit. 328 if otherreject > 128/4 { 329 time.Sleep(200 * time.Millisecond) 330 log.Warn("Peer delivering stale transactions", "peer", peer, "rejected", otherreject) 331 } 332 } 333 select { 334 case f.cleanup <- &txDelivery{origin: peer, hashes: added, direct: direct}: 335 return nil 336 case <-f.quit: 337 return errTerminated 338 } 339 } 340 341 // Drop should be called when a peer disconnects. It cleans up all the internal 342 // data structures of the given node. 343 func (f *TxFetcher) Drop(peer string) error { 344 select { 345 case f.drop <- &txDrop{peer: peer}: 346 return nil 347 case <-f.quit: 348 return errTerminated 349 } 350 } 351 352 // Start boots up the announcement based synchroniser, accepting and processing 353 // hash notifications and block fetches until termination requested. 354 func (f *TxFetcher) Start() { 355 go f.loop() 356 } 357 358 // Stop terminates the announcement based synchroniser, canceling all pending 359 // operations. 360 func (f *TxFetcher) Stop() { 361 close(f.quit) 362 } 363 364 func (f *TxFetcher) loop() { 365 var ( 366 waitTimer = new(mclock.Timer) 367 timeoutTimer = new(mclock.Timer) 368 369 waitTrigger = make(chan struct{}, 1) 370 timeoutTrigger = make(chan struct{}, 1) 371 ) 372 for { 373 select { 374 case ann := <-f.notify: 375 // Drop part of the new announcements if there are too many accumulated. 376 // Note, we could but do not filter already known transactions here as 377 // the probability of something arriving between this call and the pre- 378 // filter outside is essentially zero. 379 used := len(f.waitslots[ann.origin]) + len(f.announces[ann.origin]) 380 if used >= maxTxAnnounces { 381 // This can happen if a set of transactions are requested but not 382 // all fulfilled, so the remainder are rescheduled without the cap 383 // check. Should be fine as the limit is in the thousands and the 384 // request size in the hundreds. 385 txAnnounceDOSMeter.Mark(int64(len(ann.hashes))) 386 break 387 } 388 want := used + len(ann.hashes) 389 if want > maxTxAnnounces { 390 txAnnounceDOSMeter.Mark(int64(want - maxTxAnnounces)) 391 ann.hashes = ann.hashes[:want-maxTxAnnounces] 392 } 393 // All is well, schedule the remainder of the transactions 394 idleWait := len(f.waittime) == 0 395 _, oldPeer := f.announces[ann.origin] 396 397 for _, hash := range ann.hashes { 398 // If the transaction is already downloading, add it to the list 399 // of possible alternates (in case the current retrieval fails) and 400 // also account it for the peer. 401 if f.alternates[hash] != nil { 402 f.alternates[hash][ann.origin] = struct{}{} 403 404 // Stage 2 and 3 share the set of origins per tx 405 if announces := f.announces[ann.origin]; announces != nil { 406 announces[hash] = struct{}{} 407 } else { 408 f.announces[ann.origin] = map[common.Hash]struct{}{hash: {}} 409 } 410 continue 411 } 412 // If the transaction is not downloading, but is already queued 413 // from a different peer, track it for the new peer too. 414 if f.announced[hash] != nil { 415 f.announced[hash][ann.origin] = struct{}{} 416 417 // Stage 2 and 3 share the set of origins per tx 418 if announces := f.announces[ann.origin]; announces != nil { 419 announces[hash] = struct{}{} 420 } else { 421 f.announces[ann.origin] = map[common.Hash]struct{}{hash: {}} 422 } 423 continue 424 } 425 // If the transaction is already known to the fetcher, but not 426 // yet downloading, add the peer as an alternate origin in the 427 // waiting list. 428 if f.waitlist[hash] != nil { 429 f.waitlist[hash][ann.origin] = struct{}{} 430 431 if waitslots := f.waitslots[ann.origin]; waitslots != nil { 432 waitslots[hash] = struct{}{} 433 } else { 434 f.waitslots[ann.origin] = map[common.Hash]struct{}{hash: {}} 435 } 436 continue 437 } 438 // Transaction unknown to the fetcher, insert it into the waiting list 439 f.waitlist[hash] = map[string]struct{}{ann.origin: {}} 440 f.waittime[hash] = f.clock.Now() 441 442 if waitslots := f.waitslots[ann.origin]; waitslots != nil { 443 waitslots[hash] = struct{}{} 444 } else { 445 f.waitslots[ann.origin] = map[common.Hash]struct{}{hash: {}} 446 } 447 } 448 // If a new item was added to the waitlist, schedule it into the fetcher 449 if idleWait && len(f.waittime) > 0 { 450 f.rescheduleWait(waitTimer, waitTrigger) 451 } 452 // If this peer is new and announced something already queued, maybe 453 // request transactions from them 454 if !oldPeer && len(f.announces[ann.origin]) > 0 { 455 f.scheduleFetches(timeoutTimer, timeoutTrigger, map[string]struct{}{ann.origin: {}}) 456 } 457 458 case <-waitTrigger: 459 // At least one transaction's waiting time ran out, push all expired 460 // ones into the retrieval queues 461 actives := make(map[string]struct{}) 462 for hash, instance := range f.waittime { 463 if time.Duration(f.clock.Now()-instance)+txGatherSlack > txArriveTimeout { 464 // Transaction expired without propagation, schedule for retrieval 465 if f.announced[hash] != nil { 466 panic("announce tracker already contains waitlist item") 467 } 468 f.announced[hash] = f.waitlist[hash] 469 for peer := range f.waitlist[hash] { 470 if announces := f.announces[peer]; announces != nil { 471 announces[hash] = struct{}{} 472 } else { 473 f.announces[peer] = map[common.Hash]struct{}{hash: {}} 474 } 475 delete(f.waitslots[peer], hash) 476 if len(f.waitslots[peer]) == 0 { 477 delete(f.waitslots, peer) 478 } 479 actives[peer] = struct{}{} 480 } 481 delete(f.waittime, hash) 482 delete(f.waitlist, hash) 483 } 484 } 485 // If transactions are still waiting for propagation, reschedule the wait timer 486 if len(f.waittime) > 0 { 487 f.rescheduleWait(waitTimer, waitTrigger) 488 } 489 // If any peers became active and are idle, request transactions from them 490 if len(actives) > 0 { 491 f.scheduleFetches(timeoutTimer, timeoutTrigger, actives) 492 } 493 494 case <-timeoutTrigger: 495 // Clean up any expired retrievals and avoid re-requesting them from the 496 // same peer (either overloaded or malicious, useless in both cases). We 497 // could also penalize (Drop), but there's nothing to gain, and if could 498 // possibly further increase the load on it. 499 for peer, req := range f.requests { 500 if time.Duration(f.clock.Now()-req.time)+txGatherSlack > txFetchTimeout { 501 txRequestTimeoutMeter.Mark(int64(len(req.hashes))) 502 503 // Reschedule all the not-yet-delivered fetches to alternate peers 504 for _, hash := range req.hashes { 505 // Skip rescheduling hashes already delivered by someone else 506 if req.stolen != nil { 507 if _, ok := req.stolen[hash]; ok { 508 continue 509 } 510 } 511 // Move the delivery back from fetching to queued 512 if _, ok := f.announced[hash]; ok { 513 panic("announced tracker already contains alternate item") 514 } 515 if f.alternates[hash] != nil { // nil if tx was broadcast during fetch 516 f.announced[hash] = f.alternates[hash] 517 } 518 delete(f.announced[hash], peer) 519 if len(f.announced[hash]) == 0 { 520 delete(f.announced, hash) 521 } 522 delete(f.announces[peer], hash) 523 delete(f.alternates, hash) 524 delete(f.fetching, hash) 525 } 526 if len(f.announces[peer]) == 0 { 527 delete(f.announces, peer) 528 } 529 // Keep track of the request as dangling, but never expire 530 f.requests[peer].hashes = nil 531 } 532 } 533 // Schedule a new transaction retrieval 534 f.scheduleFetches(timeoutTimer, timeoutTrigger, nil) 535 536 // No idea if we scheduled something or not, trigger the timer if needed 537 // TODO(karalabe): this is kind of lame, can't we dump it into scheduleFetches somehow? 538 f.rescheduleTimeout(timeoutTimer, timeoutTrigger) 539 540 case delivery := <-f.cleanup: 541 // Independent if the delivery was direct or broadcast, remove all 542 // traces of the hash from internal trackers 543 for _, hash := range delivery.hashes { 544 if _, ok := f.waitlist[hash]; ok { 545 for peer, txset := range f.waitslots { 546 delete(txset, hash) 547 if len(txset) == 0 { 548 delete(f.waitslots, peer) 549 } 550 } 551 delete(f.waitlist, hash) 552 delete(f.waittime, hash) 553 } else { 554 for peer, txset := range f.announces { 555 delete(txset, hash) 556 if len(txset) == 0 { 557 delete(f.announces, peer) 558 } 559 } 560 delete(f.announced, hash) 561 delete(f.alternates, hash) 562 563 // If a transaction currently being fetched from a different 564 // origin was delivered (delivery stolen), mark it so the 565 // actual delivery won't double schedule it. 566 if origin, ok := f.fetching[hash]; ok && (origin != delivery.origin || !delivery.direct) { 567 stolen := f.requests[origin].stolen 568 if stolen == nil { 569 f.requests[origin].stolen = make(map[common.Hash]struct{}) 570 stolen = f.requests[origin].stolen 571 } 572 stolen[hash] = struct{}{} 573 } 574 delete(f.fetching, hash) 575 } 576 } 577 // In case of a direct delivery, also reschedule anything missing 578 // from the original query 579 if delivery.direct { 580 // Mark the requesting successful (independent of individual status) 581 txRequestDoneMeter.Mark(int64(len(delivery.hashes))) 582 583 // Make sure something was pending, nuke it 584 req := f.requests[delivery.origin] 585 if req == nil { 586 log.Warn("Unexpected transaction delivery", "peer", delivery.origin) 587 break 588 } 589 delete(f.requests, delivery.origin) 590 591 // Anything not delivered should be re-scheduled (with or without 592 // this peer, depending on the response cutoff) 593 delivered := make(map[common.Hash]struct{}) 594 for _, hash := range delivery.hashes { 595 delivered[hash] = struct{}{} 596 } 597 cutoff := len(req.hashes) // If nothing is delivered, assume everything is missing, don't retry!!! 598 for i, hash := range req.hashes { 599 if _, ok := delivered[hash]; ok { 600 cutoff = i 601 } 602 } 603 // Reschedule missing hashes from alternates, not-fulfilled from alt+self 604 for i, hash := range req.hashes { 605 // Skip rescheduling hashes already delivered by someone else 606 if req.stolen != nil { 607 if _, ok := req.stolen[hash]; ok { 608 continue 609 } 610 } 611 if _, ok := delivered[hash]; !ok { 612 if i < cutoff { 613 delete(f.alternates[hash], delivery.origin) 614 delete(f.announces[delivery.origin], hash) 615 if len(f.announces[delivery.origin]) == 0 { 616 delete(f.announces, delivery.origin) 617 } 618 } 619 if len(f.alternates[hash]) > 0 { 620 if _, ok := f.announced[hash]; ok { 621 panic(fmt.Sprintf("announced tracker already contains alternate item: %v", f.announced[hash])) 622 } 623 f.announced[hash] = f.alternates[hash] 624 } 625 } 626 delete(f.alternates, hash) 627 delete(f.fetching, hash) 628 } 629 // Something was delivered, try to reschedule requests 630 f.scheduleFetches(timeoutTimer, timeoutTrigger, nil) // Partial delivery may enable others to deliver too 631 } 632 633 case drop := <-f.drop: 634 // A peer was dropped, remove all traces of it 635 if _, ok := f.waitslots[drop.peer]; ok { 636 for hash := range f.waitslots[drop.peer] { 637 delete(f.waitlist[hash], drop.peer) 638 if len(f.waitlist[hash]) == 0 { 639 delete(f.waitlist, hash) 640 delete(f.waittime, hash) 641 } 642 } 643 delete(f.waitslots, drop.peer) 644 if len(f.waitlist) > 0 { 645 f.rescheduleWait(waitTimer, waitTrigger) 646 } 647 } 648 // Clean up any active requests 649 var request *txRequest 650 if request = f.requests[drop.peer]; request != nil { 651 for _, hash := range request.hashes { 652 // Skip rescheduling hashes already delivered by someone else 653 if request.stolen != nil { 654 if _, ok := request.stolen[hash]; ok { 655 continue 656 } 657 } 658 // Undelivered hash, reschedule if there's an alternative origin available 659 delete(f.alternates[hash], drop.peer) 660 if len(f.alternates[hash]) == 0 { 661 delete(f.alternates, hash) 662 } else { 663 f.announced[hash] = f.alternates[hash] 664 delete(f.alternates, hash) 665 } 666 delete(f.fetching, hash) 667 } 668 delete(f.requests, drop.peer) 669 } 670 // Clean up general announcement tracking 671 if _, ok := f.announces[drop.peer]; ok { 672 for hash := range f.announces[drop.peer] { 673 delete(f.announced[hash], drop.peer) 674 if len(f.announced[hash]) == 0 { 675 delete(f.announced, hash) 676 } 677 } 678 delete(f.announces, drop.peer) 679 } 680 // If a request was cancelled, check if anything needs to be rescheduled 681 if request != nil { 682 f.scheduleFetches(timeoutTimer, timeoutTrigger, nil) 683 f.rescheduleTimeout(timeoutTimer, timeoutTrigger) 684 } 685 686 case <-f.quit: 687 return 688 } 689 // No idea what happened, but bump some sanity metrics 690 txFetcherWaitingPeers.Update(int64(len(f.waitslots))) 691 txFetcherWaitingHashes.Update(int64(len(f.waitlist))) 692 txFetcherQueueingPeers.Update(int64(len(f.announces) - len(f.requests))) 693 txFetcherQueueingHashes.Update(int64(len(f.announced))) 694 txFetcherFetchingPeers.Update(int64(len(f.requests))) 695 txFetcherFetchingHashes.Update(int64(len(f.fetching))) 696 697 // Loop did something, ping the step notifier if needed (tests) 698 if f.step != nil { 699 f.step <- struct{}{} 700 } 701 } 702 } 703 704 // rescheduleWait iterates over all the transactions currently in the waitlist 705 // and schedules the movement into the fetcher for the earliest. 706 // 707 // The method has a granularity of 'gatherSlack', since there's not much point in 708 // spinning over all the transactions just to maybe find one that should trigger 709 // a few ms earlier. 710 func (f *TxFetcher) rescheduleWait(timer *mclock.Timer, trigger chan struct{}) { 711 if *timer != nil { 712 (*timer).Stop() 713 } 714 now := f.clock.Now() 715 716 earliest := now 717 for _, instance := range f.waittime { 718 if earliest > instance { 719 earliest = instance 720 if txArriveTimeout-time.Duration(now-earliest) < gatherSlack { 721 break 722 } 723 } 724 } 725 *timer = f.clock.AfterFunc(txArriveTimeout-time.Duration(now-earliest), func() { 726 trigger <- struct{}{} 727 }) 728 } 729 730 // rescheduleTimeout iterates over all the transactions currently in flight and 731 // schedules a cleanup run when the first would trigger. 732 // 733 // The method has a granularity of 'gatherSlack', since there's not much point in 734 // spinning over all the transactions just to maybe find one that should trigger 735 // a few ms earlier. 736 // 737 // This method is a bit "flaky" "by design". In theory the timeout timer only ever 738 // should be rescheduled if some request is pending. In practice, a timeout will 739 // cause the timer to be rescheduled every 5 secs (until the peer comes through or 740 // disconnects). This is a limitation of the fetcher code because we don't trac 741 // pending requests and timed out requests separately. Without double tracking, if 742 // we simply didn't reschedule the timer on all-timeout then the timer would never 743 // be set again since len(request) > 0 => something's running. 744 func (f *TxFetcher) rescheduleTimeout(timer *mclock.Timer, trigger chan struct{}) { 745 if *timer != nil { 746 (*timer).Stop() 747 } 748 now := f.clock.Now() 749 750 earliest := now 751 for _, req := range f.requests { 752 // If this request already timed out, skip it altogether 753 if req.hashes == nil { 754 continue 755 } 756 if earliest > req.time { 757 earliest = req.time 758 if txFetchTimeout-time.Duration(now-earliest) < gatherSlack { 759 break 760 } 761 } 762 } 763 *timer = f.clock.AfterFunc(txFetchTimeout-time.Duration(now-earliest), func() { 764 trigger <- struct{}{} 765 }) 766 } 767 768 // scheduleFetches starts a batch of retrievals for all available idle peers. 769 func (f *TxFetcher) scheduleFetches(timer *mclock.Timer, timeout chan struct{}, whitelist map[string]struct{}) { 770 // Gather the set of peers we want to retrieve from (default to all) 771 actives := whitelist 772 if actives == nil { 773 actives = make(map[string]struct{}) 774 for peer := range f.announces { 775 actives[peer] = struct{}{} 776 } 777 } 778 if len(actives) == 0 { 779 return 780 } 781 // For each active peer, try to schedule some transaction fetches 782 idle := len(f.requests) == 0 783 784 f.forEachPeer(actives, func(peer string) { 785 if f.requests[peer] != nil { 786 return // continue in the for-each 787 } 788 if len(f.announces[peer]) == 0 { 789 return // continue in the for-each 790 } 791 hashes := make([]common.Hash, 0, maxTxRetrievals) 792 f.forEachHash(f.announces[peer], func(hash common.Hash) bool { 793 if _, ok := f.fetching[hash]; !ok { 794 // Mark the hash as fetching and stash away possible alternates 795 f.fetching[hash] = peer 796 797 if _, ok := f.alternates[hash]; ok { 798 panic(fmt.Sprintf("alternate tracker already contains fetching item: %v", f.alternates[hash])) 799 } 800 f.alternates[hash] = f.announced[hash] 801 delete(f.announced, hash) 802 803 // Accumulate the hash and stop if the limit was reached 804 hashes = append(hashes, hash) 805 if len(hashes) >= maxTxRetrievals { 806 return false // break in the for-each 807 } 808 } 809 return true // continue in the for-each 810 }) 811 // If any hashes were allocated, request them from the peer 812 if len(hashes) > 0 { 813 f.requests[peer] = &txRequest{hashes: hashes, time: f.clock.Now()} 814 txRequestOutMeter.Mark(int64(len(hashes))) 815 816 go func(peer string, hashes []common.Hash) { 817 // Try to fetch the transactions, but in case of a request 818 // failure (e.g. peer disconnected), reschedule the hashes. 819 if err := f.fetchTxs(peer, hashes); err != nil { 820 txRequestFailMeter.Mark(int64(len(hashes))) 821 f.Drop(peer) 822 } 823 }(peer, hashes) 824 } 825 }) 826 // If a new request was fired, schedule a timeout timer 827 if idle && len(f.requests) > 0 { 828 f.rescheduleTimeout(timer, timeout) 829 } 830 } 831 832 // forEachPeer does a range loop over a map of peers in production, but during 833 // testing it does a deterministic sorted random to allow reproducing issues. 834 func (f *TxFetcher) forEachPeer(peers map[string]struct{}, do func(peer string)) { 835 // If we're running production, use whatever Go's map gives us 836 if f.rand == nil { 837 for peer := range peers { 838 do(peer) 839 } 840 return 841 } 842 // We're running the test suite, make iteration deterministic 843 list := make([]string, 0, len(peers)) 844 for peer := range peers { 845 list = append(list, peer) 846 } 847 sort.Strings(list) 848 rotateStrings(list, f.rand.Intn(len(list))) 849 for _, peer := range list { 850 do(peer) 851 } 852 } 853 854 // forEachHash does a range loop over a map of hashes in production, but during 855 // testing it does a deterministic sorted random to allow reproducing issues. 856 func (f *TxFetcher) forEachHash(hashes map[common.Hash]struct{}, do func(hash common.Hash) bool) { 857 // If we're running production, use whatever Go's map gives us 858 if f.rand == nil { 859 for hash := range hashes { 860 if !do(hash) { 861 return 862 } 863 } 864 return 865 } 866 // We're running the test suite, make iteration deterministic 867 list := make([]common.Hash, 0, len(hashes)) 868 for hash := range hashes { 869 list = append(list, hash) 870 } 871 sortHashes(list) 872 rotateHashes(list, f.rand.Intn(len(list))) 873 for _, hash := range list { 874 if !do(hash) { 875 return 876 } 877 } 878 } 879 880 // rotateStrings rotates the contents of a slice by n steps. This method is only 881 // used in tests to simulate random map iteration but keep it deterministic. 882 func rotateStrings(slice []string, n int) { 883 orig := make([]string, len(slice)) 884 copy(orig, slice) 885 886 for i := 0; i < len(orig); i++ { 887 slice[i] = orig[(i+n)%len(orig)] 888 } 889 } 890 891 // sortHashes sorts a slice of hashes. This method is only used in tests in order 892 // to simulate random map iteration but keep it deterministic. 893 func sortHashes(slice []common.Hash) { 894 for i := 0; i < len(slice); i++ { 895 for j := i + 1; j < len(slice); j++ { 896 if bytes.Compare(slice[i][:], slice[j][:]) > 0 { 897 slice[i], slice[j] = slice[j], slice[i] 898 } 899 } 900 } 901 } 902 903 // rotateHashes rotates the contents of a slice by n steps. This method is only 904 // used in tests to simulate random map iteration but keep it deterministic. 905 func rotateHashes(slice []common.Hash, n int) { 906 orig := make([]common.Hash, len(slice)) 907 copy(orig, slice) 908 909 for i := 0; i < len(orig); i++ { 910 slice[i] = orig[(i+n)%len(orig)] 911 } 912 }