github.com/theQRL/go-zond@v0.2.1/accounts/abi/type.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package abi 18 19 import ( 20 "errors" 21 "fmt" 22 "reflect" 23 "regexp" 24 "strconv" 25 "strings" 26 "unicode" 27 "unicode/utf8" 28 29 "github.com/theQRL/go-zond/common" 30 ) 31 32 // Type enumerator 33 const ( 34 IntTy byte = iota 35 UintTy 36 BoolTy 37 StringTy 38 SliceTy 39 ArrayTy 40 TupleTy 41 AddressTy 42 FixedBytesTy 43 BytesTy 44 HashTy 45 FixedPointTy 46 FunctionTy 47 ) 48 49 // Type is the reflection of the supported argument type. 50 type Type struct { 51 Elem *Type 52 Size int 53 T byte // Our own type checking 54 55 stringKind string // holds the unparsed string for deriving signatures 56 57 // Tuple relative fields 58 TupleRawName string // Raw struct name defined in source code, may be empty. 59 TupleElems []*Type // Type information of all tuple fields 60 TupleRawNames []string // Raw field name of all tuple fields 61 TupleType reflect.Type // Underlying struct of the tuple 62 } 63 64 var ( 65 // typeRegex parses the abi sub types 66 typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?") 67 ) 68 69 // NewType creates a new reflection type of abi type given in t. 70 func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) { 71 // check that array brackets are equal if they exist 72 if strings.Count(t, "[") != strings.Count(t, "]") { 73 return Type{}, errors.New("invalid arg type in abi") 74 } 75 typ.stringKind = t 76 77 // if there are brackets, get ready to go into slice/array mode and 78 // recursively create the type 79 if strings.Count(t, "[") != 0 { 80 // Note internalType can be empty here. 81 subInternal := internalType 82 if i := strings.LastIndex(internalType, "["); i != -1 { 83 subInternal = subInternal[:i] 84 } 85 // recursively embed the type 86 i := strings.LastIndex(t, "[") 87 embeddedType, err := NewType(t[:i], subInternal, components) 88 if err != nil { 89 return Type{}, err 90 } 91 // grab the last cell and create a type from there 92 sliced := t[i:] 93 // grab the slice size with regexp 94 re := regexp.MustCompile("[0-9]+") 95 intz := re.FindAllString(sliced, -1) 96 97 if len(intz) == 0 { 98 // is a slice 99 typ.T = SliceTy 100 typ.Elem = &embeddedType 101 typ.stringKind = embeddedType.stringKind + sliced 102 } else if len(intz) == 1 { 103 // is an array 104 typ.T = ArrayTy 105 typ.Elem = &embeddedType 106 typ.Size, err = strconv.Atoi(intz[0]) 107 if err != nil { 108 return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) 109 } 110 typ.stringKind = embeddedType.stringKind + sliced 111 } else { 112 return Type{}, errors.New("invalid formatting of array type") 113 } 114 return typ, err 115 } 116 // parse the type and size of the abi-type. 117 matches := typeRegex.FindAllStringSubmatch(t, -1) 118 if len(matches) == 0 { 119 return Type{}, fmt.Errorf("invalid type '%v'", t) 120 } 121 parsedType := matches[0] 122 123 // varSize is the size of the variable 124 var varSize int 125 if len(parsedType[3]) > 0 { 126 var err error 127 varSize, err = strconv.Atoi(parsedType[2]) 128 if err != nil { 129 return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) 130 } 131 } else { 132 if parsedType[0] == "uint" || parsedType[0] == "int" { 133 // this should fail because it means that there's something wrong with 134 // the abi type (the compiler should always format it to the size...always) 135 return Type{}, fmt.Errorf("unsupported arg type: %s", t) 136 } 137 } 138 // varType is the parsed abi type 139 switch varType := parsedType[1]; varType { 140 case "int": 141 typ.Size = varSize 142 typ.T = IntTy 143 case "uint": 144 typ.Size = varSize 145 typ.T = UintTy 146 case "bool": 147 typ.T = BoolTy 148 case "address": 149 typ.Size = 20 150 typ.T = AddressTy 151 case "string": 152 typ.T = StringTy 153 case "bytes": 154 if varSize == 0 { 155 typ.T = BytesTy 156 } else { 157 if varSize > 32 { 158 return Type{}, fmt.Errorf("unsupported arg type: %s", t) 159 } 160 typ.T = FixedBytesTy 161 typ.Size = varSize 162 } 163 case "tuple": 164 var ( 165 fields []reflect.StructField 166 elems []*Type 167 names []string 168 expression string // canonical parameter expression 169 used = make(map[string]bool) 170 ) 171 expression += "(" 172 for idx, c := range components { 173 cType, err := NewType(c.Type, c.InternalType, c.Components) 174 if err != nil { 175 return Type{}, err 176 } 177 name := ToCamelCase(c.Name) 178 if name == "" { 179 return Type{}, errors.New("abi: purely anonymous or underscored field is not supported") 180 } 181 fieldName := ResolveNameConflict(name, func(s string) bool { return used[s] }) 182 if err != nil { 183 return Type{}, err 184 } 185 used[fieldName] = true 186 if !isValidFieldName(fieldName) { 187 return Type{}, fmt.Errorf("field %d has invalid name", idx) 188 } 189 fields = append(fields, reflect.StructField{ 190 Name: fieldName, // reflect.StructOf will panic for any exported field. 191 Type: cType.GetType(), 192 Tag: reflect.StructTag("json:\"" + c.Name + "\""), 193 }) 194 elems = append(elems, &cType) 195 names = append(names, c.Name) 196 expression += cType.stringKind 197 if idx != len(components)-1 { 198 expression += "," 199 } 200 } 201 expression += ")" 202 203 typ.TupleType = reflect.StructOf(fields) 204 typ.TupleElems = elems 205 typ.TupleRawNames = names 206 typ.T = TupleTy 207 typ.stringKind = expression 208 209 const structPrefix = "struct " 210 // We can obtain the struct name user defined in 211 // the source code from "internalType" 212 if internalType != "" && strings.HasPrefix(internalType, structPrefix) { 213 // Foo.Bar type definition is not allowed in golang, 214 // convert the format to FooBar 215 typ.TupleRawName = strings.ReplaceAll(internalType[len(structPrefix):], ".", "") 216 } 217 218 case "function": 219 typ.T = FunctionTy 220 typ.Size = 24 221 default: 222 return Type{}, fmt.Errorf("unsupported arg type: %s", t) 223 } 224 225 return 226 } 227 228 // GetType returns the reflection type of the ABI type. 229 func (t Type) GetType() reflect.Type { 230 switch t.T { 231 case IntTy: 232 return reflectIntType(false, t.Size) 233 case UintTy: 234 return reflectIntType(true, t.Size) 235 case BoolTy: 236 return reflect.TypeOf(false) 237 case StringTy: 238 return reflect.TypeOf("") 239 case SliceTy: 240 return reflect.SliceOf(t.Elem.GetType()) 241 case ArrayTy: 242 return reflect.ArrayOf(t.Size, t.Elem.GetType()) 243 case TupleTy: 244 return t.TupleType 245 case AddressTy: 246 return reflect.TypeOf(common.Address{}) 247 case FixedBytesTy: 248 return reflect.ArrayOf(t.Size, reflect.TypeOf(byte(0))) 249 case BytesTy: 250 return reflect.SliceOf(reflect.TypeOf(byte(0))) 251 case HashTy: 252 // hashtype currently not used 253 return reflect.ArrayOf(32, reflect.TypeOf(byte(0))) 254 case FixedPointTy: 255 // fixedpoint type currently not used 256 return reflect.ArrayOf(32, reflect.TypeOf(byte(0))) 257 case FunctionTy: 258 return reflect.ArrayOf(24, reflect.TypeOf(byte(0))) 259 default: 260 panic("Invalid type") 261 } 262 } 263 264 // String implements Stringer. 265 func (t Type) String() (out string) { 266 return t.stringKind 267 } 268 269 func (t Type) pack(v reflect.Value) ([]byte, error) { 270 // dereference pointer first if it's a pointer 271 v = indirect(v) 272 if err := typeCheck(t, v); err != nil { 273 return nil, err 274 } 275 276 switch t.T { 277 case SliceTy, ArrayTy: 278 var ret []byte 279 280 if t.requiresLengthPrefix() { 281 // append length 282 ret = append(ret, packNum(reflect.ValueOf(v.Len()))...) 283 } 284 285 // calculate offset if any 286 offset := 0 287 offsetReq := isDynamicType(*t.Elem) 288 if offsetReq { 289 offset = getTypeSize(*t.Elem) * v.Len() 290 } 291 var tail []byte 292 for i := 0; i < v.Len(); i++ { 293 val, err := t.Elem.pack(v.Index(i)) 294 if err != nil { 295 return nil, err 296 } 297 if !offsetReq { 298 ret = append(ret, val...) 299 continue 300 } 301 ret = append(ret, packNum(reflect.ValueOf(offset))...) 302 offset += len(val) 303 tail = append(tail, val...) 304 } 305 return append(ret, tail...), nil 306 case TupleTy: 307 // (T1,...,Tk) for k >= 0 and any types T1, …, Tk 308 // enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k)) 309 // where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static 310 // type as 311 // head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string) 312 // and as 313 // head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1)))) 314 // tail(X(i)) = enc(X(i)) 315 // otherwise, i.e. if Ti is a dynamic type. 316 fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v) 317 if err != nil { 318 return nil, err 319 } 320 // Calculate prefix occupied size. 321 offset := 0 322 for _, elem := range t.TupleElems { 323 offset += getTypeSize(*elem) 324 } 325 var ret, tail []byte 326 for i, elem := range t.TupleElems { 327 field := v.FieldByName(fieldmap[t.TupleRawNames[i]]) 328 if !field.IsValid() { 329 return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i]) 330 } 331 val, err := elem.pack(field) 332 if err != nil { 333 return nil, err 334 } 335 if isDynamicType(*elem) { 336 ret = append(ret, packNum(reflect.ValueOf(offset))...) 337 tail = append(tail, val...) 338 offset += len(val) 339 } else { 340 ret = append(ret, val...) 341 } 342 } 343 return append(ret, tail...), nil 344 345 default: 346 return packElement(t, v) 347 } 348 } 349 350 // requiresLengthPrefix returns whether the type requires any sort of length 351 // prefixing. 352 func (t Type) requiresLengthPrefix() bool { 353 return t.T == StringTy || t.T == BytesTy || t.T == SliceTy 354 } 355 356 // isDynamicType returns true if the type is dynamic. 357 // The following types are called “dynamic”: 358 // * bytes 359 // * string 360 // * T[] for any T 361 // * T[k] for any dynamic T and any k >= 0 362 // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k 363 func isDynamicType(t Type) bool { 364 if t.T == TupleTy { 365 for _, elem := range t.TupleElems { 366 if isDynamicType(*elem) { 367 return true 368 } 369 } 370 return false 371 } 372 return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem)) 373 } 374 375 // getTypeSize returns the size that this type needs to occupy. 376 // We distinguish static and dynamic types. Static types are encoded in-place 377 // and dynamic types are encoded at a separately allocated location after the 378 // current block. 379 // So for a static variable, the size returned represents the size that the 380 // variable actually occupies. 381 // For a dynamic variable, the returned size is fixed 32 bytes, which is used 382 // to store the location reference for actual value storage. 383 func getTypeSize(t Type) int { 384 if t.T == ArrayTy && !isDynamicType(*t.Elem) { 385 // Recursively calculate type size if it is a nested array 386 if t.Elem.T == ArrayTy || t.Elem.T == TupleTy { 387 return t.Size * getTypeSize(*t.Elem) 388 } 389 return t.Size * 32 390 } else if t.T == TupleTy && !isDynamicType(t) { 391 total := 0 392 for _, elem := range t.TupleElems { 393 total += getTypeSize(*elem) 394 } 395 return total 396 } 397 return 32 398 } 399 400 // isLetter reports whether a given 'rune' is classified as a Letter. 401 // This method is copied from reflect/type.go 402 func isLetter(ch rune) bool { 403 return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= utf8.RuneSelf && unicode.IsLetter(ch) 404 } 405 406 // isValidFieldName checks if a string is a valid (struct) field name or not. 407 // 408 // According to the language spec, a field name should be an identifier. 409 // 410 // identifier = letter { letter | unicode_digit } . 411 // letter = unicode_letter | "_" . 412 // This method is copied from reflect/type.go 413 func isValidFieldName(fieldName string) bool { 414 for i, c := range fieldName { 415 if i == 0 && !isLetter(c) { 416 return false 417 } 418 419 if !(isLetter(c) || unicode.IsDigit(c)) { 420 return false 421 } 422 } 423 424 return len(fieldName) > 0 425 }