github.com/theQRL/go-zond@v0.2.1/core/txpool/legacypool/list.go (about) 1 // Copyright 2016 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package legacypool 18 19 import ( 20 "container/heap" 21 "math" 22 "math/big" 23 "slices" 24 "sort" 25 "sync" 26 "sync/atomic" 27 "time" 28 29 "github.com/theQRL/go-zond/common" 30 "github.com/theQRL/go-zond/core/types" 31 ) 32 33 // nonceHeap is a heap.Interface implementation over 64bit unsigned integers for 34 // retrieving sorted transactions from the possibly gapped future queue. 35 type nonceHeap []uint64 36 37 func (h nonceHeap) Len() int { return len(h) } 38 func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] } 39 func (h nonceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } 40 41 func (h *nonceHeap) Push(x interface{}) { 42 *h = append(*h, x.(uint64)) 43 } 44 45 func (h *nonceHeap) Pop() interface{} { 46 old := *h 47 n := len(old) 48 x := old[n-1] 49 old[n-1] = 0 50 *h = old[0 : n-1] 51 return x 52 } 53 54 // sortedMap is a nonce->transaction hash map with a heap based index to allow 55 // iterating over the contents in a nonce-incrementing way. 56 type sortedMap struct { 57 items map[uint64]*types.Transaction // Hash map storing the transaction data 58 index *nonceHeap // Heap of nonces of all the stored transactions (non-strict mode) 59 cache types.Transactions // Cache of the transactions already sorted 60 cacheMu sync.Mutex // Mutex covering the cache 61 } 62 63 // newSortedMap creates a new nonce-sorted transaction map. 64 func newSortedMap() *sortedMap { 65 return &sortedMap{ 66 items: make(map[uint64]*types.Transaction), 67 index: new(nonceHeap), 68 } 69 } 70 71 // Get retrieves the current transactions associated with the given nonce. 72 func (m *sortedMap) Get(nonce uint64) *types.Transaction { 73 return m.items[nonce] 74 } 75 76 // Put inserts a new transaction into the map, also updating the map's nonce 77 // index. If a transaction already exists with the same nonce, it's overwritten. 78 func (m *sortedMap) Put(tx *types.Transaction) { 79 nonce := tx.Nonce() 80 if m.items[nonce] == nil { 81 heap.Push(m.index, nonce) 82 } 83 m.cacheMu.Lock() 84 m.items[nonce], m.cache = tx, nil 85 m.cacheMu.Unlock() 86 } 87 88 // Forward removes all transactions from the map with a nonce lower than the 89 // provided threshold. Every removed transaction is returned for any post-removal 90 // maintenance. 91 func (m *sortedMap) Forward(threshold uint64) types.Transactions { 92 var removed types.Transactions 93 94 // Pop off heap items until the threshold is reached 95 for m.index.Len() > 0 && (*m.index)[0] < threshold { 96 nonce := heap.Pop(m.index).(uint64) 97 removed = append(removed, m.items[nonce]) 98 delete(m.items, nonce) 99 } 100 // If we had a cached order, shift the front 101 m.cacheMu.Lock() 102 if m.cache != nil { 103 m.cache = m.cache[len(removed):] 104 } 105 m.cacheMu.Unlock() 106 return removed 107 } 108 109 // Filter iterates over the list of transactions and removes all of them for which 110 // the specified function evaluates to true. 111 // Filter, as opposed to 'filter', re-initialises the heap after the operation is done. 112 // If you want to do several consecutive filterings, it's therefore better to first 113 // do a .filter(func1) followed by .Filter(func2) or reheap() 114 func (m *sortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions { 115 removed := m.filter(filter) 116 // If transactions were removed, the heap and cache are ruined 117 if len(removed) > 0 { 118 m.reheap() 119 } 120 return removed 121 } 122 123 func (m *sortedMap) reheap() { 124 *m.index = make([]uint64, 0, len(m.items)) 125 for nonce := range m.items { 126 *m.index = append(*m.index, nonce) 127 } 128 heap.Init(m.index) 129 m.cacheMu.Lock() 130 m.cache = nil 131 m.cacheMu.Unlock() 132 } 133 134 // filter is identical to Filter, but **does not** regenerate the heap. This method 135 // should only be used if followed immediately by a call to Filter or reheap() 136 func (m *sortedMap) filter(filter func(*types.Transaction) bool) types.Transactions { 137 var removed types.Transactions 138 139 // Collect all the transactions to filter out 140 for nonce, tx := range m.items { 141 if filter(tx) { 142 removed = append(removed, tx) 143 delete(m.items, nonce) 144 } 145 } 146 if len(removed) > 0 { 147 m.cacheMu.Lock() 148 m.cache = nil 149 m.cacheMu.Unlock() 150 } 151 return removed 152 } 153 154 // Cap places a hard limit on the number of items, returning all transactions 155 // exceeding that limit. 156 func (m *sortedMap) Cap(threshold int) types.Transactions { 157 // Short circuit if the number of items is under the limit 158 if len(m.items) <= threshold { 159 return nil 160 } 161 // Otherwise gather and drop the highest nonce'd transactions 162 var drops types.Transactions 163 164 slices.Sort(*m.index) 165 for size := len(m.items); size > threshold; size-- { 166 drops = append(drops, m.items[(*m.index)[size-1]]) 167 delete(m.items, (*m.index)[size-1]) 168 } 169 *m.index = (*m.index)[:threshold] 170 // The sorted m.index slice is still a valid heap, so there is no need to 171 // reheap after deleting tail items. 172 173 // If we had a cache, shift the back 174 m.cacheMu.Lock() 175 if m.cache != nil { 176 m.cache = m.cache[:len(m.cache)-len(drops)] 177 } 178 m.cacheMu.Unlock() 179 return drops 180 } 181 182 // Remove deletes a transaction from the maintained map, returning whether the 183 // transaction was found. 184 func (m *sortedMap) Remove(nonce uint64) bool { 185 // Short circuit if no transaction is present 186 _, ok := m.items[nonce] 187 if !ok { 188 return false 189 } 190 // Otherwise delete the transaction and fix the heap index 191 for i := 0; i < m.index.Len(); i++ { 192 if (*m.index)[i] == nonce { 193 heap.Remove(m.index, i) 194 break 195 } 196 } 197 delete(m.items, nonce) 198 m.cacheMu.Lock() 199 m.cache = nil 200 m.cacheMu.Unlock() 201 202 return true 203 } 204 205 // Ready retrieves a sequentially increasing list of transactions starting at the 206 // provided nonce that is ready for processing. The returned transactions will be 207 // removed from the list. 208 // 209 // Note, all transactions with nonces lower than start will also be returned to 210 // prevent getting into an invalid state. This is not something that should ever 211 // happen but better to be self correcting than failing! 212 func (m *sortedMap) Ready(start uint64) types.Transactions { 213 // Short circuit if no transactions are available 214 if m.index.Len() == 0 || (*m.index)[0] > start { 215 return nil 216 } 217 // Otherwise start accumulating incremental transactions 218 var ready types.Transactions 219 for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ { 220 ready = append(ready, m.items[next]) 221 delete(m.items, next) 222 heap.Pop(m.index) 223 } 224 m.cacheMu.Lock() 225 m.cache = nil 226 m.cacheMu.Unlock() 227 228 return ready 229 } 230 231 // Len returns the length of the transaction map. 232 func (m *sortedMap) Len() int { 233 return len(m.items) 234 } 235 236 func (m *sortedMap) flatten() types.Transactions { 237 m.cacheMu.Lock() 238 defer m.cacheMu.Unlock() 239 // If the sorting was not cached yet, create and cache it 240 if m.cache == nil { 241 m.cache = make(types.Transactions, 0, len(m.items)) 242 for _, tx := range m.items { 243 m.cache = append(m.cache, tx) 244 } 245 sort.Sort(types.TxByNonce(m.cache)) 246 } 247 return m.cache 248 } 249 250 // Flatten creates a nonce-sorted slice of transactions based on the loosely 251 // sorted internal representation. The result of the sorting is cached in case 252 // it's requested again before any modifications are made to the contents. 253 func (m *sortedMap) Flatten() types.Transactions { 254 cache := m.flatten() 255 // Copy the cache to prevent accidental modification 256 txs := make(types.Transactions, len(cache)) 257 copy(txs, cache) 258 return txs 259 } 260 261 // LastElement returns the last element of a flattened list, thus, the 262 // transaction with the highest nonce 263 func (m *sortedMap) LastElement() *types.Transaction { 264 cache := m.flatten() 265 return cache[len(cache)-1] 266 } 267 268 // list is a "list" of transactions belonging to an account, sorted by account 269 // nonce. The same type can be used both for storing contiguous transactions for 270 // the executable/pending queue; and for storing gapped transactions for the non- 271 // executable/future queue, with minor behavioral changes. 272 type list struct { 273 strict bool // Whether nonces are strictly continuous or not 274 txs *sortedMap // Heap indexed sorted hash map of the transactions 275 276 costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance) 277 gascap uint64 // Gas limit of the highest spending transaction (reset only if exceeds block limit) 278 totalcost *big.Int // Total cost of all transactions in the list 279 } 280 281 // newList create a new transaction list for maintaining nonce-indexable fast, 282 // gapped, sortable transaction lists. 283 func newList(strict bool) *list { 284 return &list{ 285 strict: strict, 286 txs: newSortedMap(), 287 costcap: new(big.Int), 288 totalcost: new(big.Int), 289 } 290 } 291 292 // Contains returns whether the list contains a transaction 293 // with the provided nonce. 294 func (l *list) Contains(nonce uint64) bool { 295 return l.txs.Get(nonce) != nil 296 } 297 298 // Add tries to insert a new transaction into the list, returning whether the 299 // transaction was accepted, and if yes, any previous transaction it replaced. 300 // 301 // If the new transaction is accepted into the list, the lists' cost and gas 302 // thresholds are also potentially updated. 303 func (l *list) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) { 304 // If there's an older better transaction, abort 305 old := l.txs.Get(tx.Nonce()) 306 if old != nil { 307 if old.GasFeeCapCmp(tx) >= 0 || old.GasTipCapCmp(tx) >= 0 { 308 return false, nil 309 } 310 // thresholdFeeCap = oldFC * (100 + priceBump) / 100 311 a := big.NewInt(100 + int64(priceBump)) 312 aFeeCap := new(big.Int).Mul(a, old.GasFeeCap()) 313 aTip := a.Mul(a, old.GasTipCap()) 314 315 // thresholdTip = oldTip * (100 + priceBump) / 100 316 b := big.NewInt(100) 317 thresholdFeeCap := aFeeCap.Div(aFeeCap, b) 318 thresholdTip := aTip.Div(aTip, b) 319 320 // We have to ensure that both the new fee cap and tip are higher than the 321 // old ones as well as checking the percentage threshold to ensure that 322 // this is accurate for low (Wei-level) gas price replacements. 323 if tx.GasFeeCapIntCmp(thresholdFeeCap) < 0 || tx.GasTipCapIntCmp(thresholdTip) < 0 { 324 return false, nil 325 } 326 // Old is being replaced, subtract old cost 327 l.subTotalCost([]*types.Transaction{old}) 328 } 329 // Add new tx cost to totalcost 330 l.totalcost.Add(l.totalcost, tx.Cost()) 331 // Otherwise overwrite the old transaction with the current one 332 l.txs.Put(tx) 333 if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 { 334 l.costcap = cost 335 } 336 if gas := tx.Gas(); l.gascap < gas { 337 l.gascap = gas 338 } 339 return true, old 340 } 341 342 // Forward removes all transactions from the list with a nonce lower than the 343 // provided threshold. Every removed transaction is returned for any post-removal 344 // maintenance. 345 func (l *list) Forward(threshold uint64) types.Transactions { 346 txs := l.txs.Forward(threshold) 347 l.subTotalCost(txs) 348 return txs 349 } 350 351 // Filter removes all transactions from the list with a cost or gas limit higher 352 // than the provided thresholds. Every removed transaction is returned for any 353 // post-removal maintenance. Strict-mode invalidated transactions are also 354 // returned. 355 // 356 // This method uses the cached costcap and gascap to quickly decide if there's even 357 // a point in calculating all the costs or if the balance covers all. If the threshold 358 // is lower than the costgas cap, the caps will be reset to a new high after removing 359 // the newly invalidated transactions. 360 func (l *list) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions, types.Transactions) { 361 // If all transactions are below the threshold, short circuit 362 if l.costcap.Cmp(costLimit) <= 0 && l.gascap <= gasLimit { 363 return nil, nil 364 } 365 l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds 366 l.gascap = gasLimit 367 368 // Filter out all the transactions above the account's funds 369 removed := l.txs.Filter(func(tx *types.Transaction) bool { 370 return tx.Gas() > gasLimit || tx.Cost().Cmp(costLimit) > 0 371 }) 372 373 if len(removed) == 0 { 374 return nil, nil 375 } 376 var invalids types.Transactions 377 // If the list was strict, filter anything above the lowest nonce 378 if l.strict { 379 lowest := uint64(math.MaxUint64) 380 for _, tx := range removed { 381 if nonce := tx.Nonce(); lowest > nonce { 382 lowest = nonce 383 } 384 } 385 invalids = l.txs.filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest }) 386 } 387 // Reset total cost 388 l.subTotalCost(removed) 389 l.subTotalCost(invalids) 390 l.txs.reheap() 391 return removed, invalids 392 } 393 394 // Cap places a hard limit on the number of items, returning all transactions 395 // exceeding that limit. 396 func (l *list) Cap(threshold int) types.Transactions { 397 txs := l.txs.Cap(threshold) 398 l.subTotalCost(txs) 399 return txs 400 } 401 402 // Remove deletes a transaction from the maintained list, returning whether the 403 // transaction was found, and also returning any transaction invalidated due to 404 // the deletion (strict mode only). 405 func (l *list) Remove(tx *types.Transaction) (bool, types.Transactions) { 406 // Remove the transaction from the set 407 nonce := tx.Nonce() 408 if removed := l.txs.Remove(nonce); !removed { 409 return false, nil 410 } 411 l.subTotalCost([]*types.Transaction{tx}) 412 // In strict mode, filter out non-executable transactions 413 if l.strict { 414 txs := l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce }) 415 l.subTotalCost(txs) 416 return true, txs 417 } 418 return true, nil 419 } 420 421 // Ready retrieves a sequentially increasing list of transactions starting at the 422 // provided nonce that is ready for processing. The returned transactions will be 423 // removed from the list. 424 // 425 // Note, all transactions with nonces lower than start will also be returned to 426 // prevent getting into an invalid state. This is not something that should ever 427 // happen but better to be self correcting than failing! 428 func (l *list) Ready(start uint64) types.Transactions { 429 txs := l.txs.Ready(start) 430 l.subTotalCost(txs) 431 return txs 432 } 433 434 // Len returns the length of the transaction list. 435 func (l *list) Len() int { 436 return l.txs.Len() 437 } 438 439 // Empty returns whether the list of transactions is empty or not. 440 func (l *list) Empty() bool { 441 return l.Len() == 0 442 } 443 444 // Flatten creates a nonce-sorted slice of transactions based on the loosely 445 // sorted internal representation. The result of the sorting is cached in case 446 // it's requested again before any modifications are made to the contents. 447 func (l *list) Flatten() types.Transactions { 448 return l.txs.Flatten() 449 } 450 451 // LastElement returns the last element of a flattened list, thus, the 452 // transaction with the highest nonce 453 func (l *list) LastElement() *types.Transaction { 454 return l.txs.LastElement() 455 } 456 457 // subTotalCost subtracts the cost of the given transactions from the 458 // total cost of all transactions. 459 func (l *list) subTotalCost(txs []*types.Transaction) { 460 for _, tx := range txs { 461 l.totalcost.Sub(l.totalcost, tx.Cost()) 462 } 463 } 464 465 // priceHeap is a heap.Interface implementation over transactions for retrieving 466 // price-sorted transactions to discard when the pool fills up. If baseFee is set 467 // then the heap is sorted based on the effective tip based on the given base fee. 468 // If baseFee is nil then the sorting is based on gasFeeCap. 469 type priceHeap struct { 470 baseFee *big.Int // heap should always be re-sorted after baseFee is changed 471 list []*types.Transaction 472 } 473 474 func (h *priceHeap) Len() int { return len(h.list) } 475 func (h *priceHeap) Swap(i, j int) { h.list[i], h.list[j] = h.list[j], h.list[i] } 476 477 func (h *priceHeap) Less(i, j int) bool { 478 switch h.cmp(h.list[i], h.list[j]) { 479 case -1: 480 return true 481 case 1: 482 return false 483 default: 484 return h.list[i].Nonce() > h.list[j].Nonce() 485 } 486 } 487 488 func (h *priceHeap) cmp(a, b *types.Transaction) int { 489 if h.baseFee != nil { 490 // Compare effective tips if baseFee is specified 491 if c := a.EffectiveGasTipCmp(b, h.baseFee); c != 0 { 492 return c 493 } 494 } 495 // Compare fee caps if baseFee is not specified or effective tips are equal 496 if c := a.GasFeeCapCmp(b); c != 0 { 497 return c 498 } 499 // Compare tips if effective tips and fee caps are equal 500 return a.GasTipCapCmp(b) 501 } 502 503 func (h *priceHeap) Push(x interface{}) { 504 tx := x.(*types.Transaction) 505 h.list = append(h.list, tx) 506 } 507 508 func (h *priceHeap) Pop() interface{} { 509 old := h.list 510 n := len(old) 511 x := old[n-1] 512 old[n-1] = nil 513 h.list = old[0 : n-1] 514 return x 515 } 516 517 // pricedList is a price-sorted heap to allow operating on transactions pool 518 // contents in a price-incrementing way. It's built upon the all transactions 519 // in txpool but only interested in the remote part. It means only remote transactions 520 // will be considered for tracking, sorting, eviction, etc. 521 // 522 // Two heaps are used for sorting: the urgent heap (based on effective tip in the next 523 // block) and the floating heap (based on gasFeeCap). Always the bigger heap is chosen for 524 // eviction. Transactions evicted from the urgent heap are first demoted into the floating heap. 525 // In some cases (during a congestion, when blocks are full) the urgent heap can provide 526 // better candidates for inclusion while in other cases (at the top of the baseFee peak) 527 // the floating heap is better. When baseFee is decreasing they behave similarly. 528 type pricedList struct { 529 // Number of stale price points to (re-heap trigger). 530 stales atomic.Int64 531 532 all *lookup // Pointer to the map of all transactions 533 urgent, floating priceHeap // Heaps of prices of all the stored **remote** transactions 534 reheapMu sync.Mutex // Mutex asserts that only one routine is reheaping the list 535 } 536 537 const ( 538 // urgentRatio : floatingRatio is the capacity ratio of the two queues 539 urgentRatio = 4 540 floatingRatio = 1 541 ) 542 543 // newPricedList creates a new price-sorted transaction heap. 544 func newPricedList(all *lookup) *pricedList { 545 return &pricedList{ 546 all: all, 547 } 548 } 549 550 // Put inserts a new transaction into the heap. 551 func (l *pricedList) Put(tx *types.Transaction, local bool) { 552 if local { 553 return 554 } 555 // Insert every new transaction to the urgent heap first; Discard will balance the heaps 556 heap.Push(&l.urgent, tx) 557 } 558 559 // Removed notifies the prices transaction list that an old transaction dropped 560 // from the pool. The list will just keep a counter of stale objects and update 561 // the heap if a large enough ratio of transactions go stale. 562 func (l *pricedList) Removed(count int) { 563 // Bump the stale counter, but exit if still too low (< 25%) 564 stales := l.stales.Add(int64(count)) 565 if int(stales) <= (len(l.urgent.list)+len(l.floating.list))/4 { 566 return 567 } 568 // Seems we've reached a critical number of stale transactions, reheap 569 l.Reheap() 570 } 571 572 // Underpriced checks whether a transaction is cheaper than (or as cheap as) the 573 // lowest priced (remote) transaction currently being tracked. 574 func (l *pricedList) Underpriced(tx *types.Transaction) bool { 575 // Note: with two queues, being underpriced is defined as being worse than the worst item 576 // in all non-empty queues if there is any. If both queues are empty then nothing is underpriced. 577 return (l.underpricedFor(&l.urgent, tx) || len(l.urgent.list) == 0) && 578 (l.underpricedFor(&l.floating, tx) || len(l.floating.list) == 0) && 579 (len(l.urgent.list) != 0 || len(l.floating.list) != 0) 580 } 581 582 // underpricedFor checks whether a transaction is cheaper than (or as cheap as) the 583 // lowest priced (remote) transaction in the given heap. 584 func (l *pricedList) underpricedFor(h *priceHeap, tx *types.Transaction) bool { 585 // Discard stale price points if found at the heap start 586 for len(h.list) > 0 { 587 head := h.list[0] 588 if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated 589 l.stales.Add(-1) 590 heap.Pop(h) 591 continue 592 } 593 break 594 } 595 // Check if the transaction is underpriced or not 596 if len(h.list) == 0 { 597 return false // There is no remote transaction at all. 598 } 599 // If the remote transaction is even cheaper than the 600 // cheapest one tracked locally, reject it. 601 return h.cmp(h.list[0], tx) >= 0 602 } 603 604 // Discard finds a number of most underpriced transactions, removes them from the 605 // priced list and returns them for further removal from the entire pool. 606 // If noPending is set to true, we will only consider the floating list 607 // 608 // Note local transaction won't be considered for eviction. 609 func (l *pricedList) Discard(slots int, force bool) (types.Transactions, bool) { 610 drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop 611 for slots > 0 { 612 if len(l.urgent.list)*floatingRatio > len(l.floating.list)*urgentRatio { 613 // Discard stale transactions if found during cleanup 614 tx := heap.Pop(&l.urgent).(*types.Transaction) 615 if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated 616 l.stales.Add(-1) 617 continue 618 } 619 // Non stale transaction found, move to floating heap 620 heap.Push(&l.floating, tx) 621 } else { 622 if len(l.floating.list) == 0 { 623 // Stop if both heaps are empty 624 break 625 } 626 // Discard stale transactions if found during cleanup 627 tx := heap.Pop(&l.floating).(*types.Transaction) 628 if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated 629 l.stales.Add(-1) 630 continue 631 } 632 // Non stale transaction found, discard it 633 drop = append(drop, tx) 634 slots -= numSlots(tx) 635 } 636 } 637 // If we still can't make enough room for the new transaction 638 if slots > 0 && !force { 639 for _, tx := range drop { 640 heap.Push(&l.urgent, tx) 641 } 642 return nil, false 643 } 644 return drop, true 645 } 646 647 // Reheap forcibly rebuilds the heap based on the current remote transaction set. 648 func (l *pricedList) Reheap() { 649 l.reheapMu.Lock() 650 defer l.reheapMu.Unlock() 651 start := time.Now() 652 l.stales.Store(0) 653 l.urgent.list = make([]*types.Transaction, 0, l.all.RemoteCount()) 654 l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool { 655 l.urgent.list = append(l.urgent.list, tx) 656 return true 657 }, false, true) // Only iterate remotes 658 heap.Init(&l.urgent) 659 660 // balance out the two heaps by moving the worse half of transactions into the 661 // floating heap 662 // Note: Discard would also do this before the first eviction but Reheap can do 663 // is more efficiently. Also, Underpriced would work suboptimally the first time 664 // if the floating queue was empty. 665 floatingCount := len(l.urgent.list) * floatingRatio / (urgentRatio + floatingRatio) 666 l.floating.list = make([]*types.Transaction, floatingCount) 667 for i := 0; i < floatingCount; i++ { 668 l.floating.list[i] = heap.Pop(&l.urgent).(*types.Transaction) 669 } 670 heap.Init(&l.floating) 671 reheapTimer.Update(time.Since(start)) 672 } 673 674 // SetBaseFee updates the base fee and triggers a re-heap. Note that Removed is not 675 // necessary to call right before SetBaseFee when processing a new block. 676 func (l *pricedList) SetBaseFee(baseFee *big.Int) { 677 l.urgent.baseFee = baseFee 678 l.Reheap() 679 }