github.com/theQRL/go-zond@v0.2.1/crypto/crypto.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package crypto 18 19 import ( 20 "bufio" 21 "crypto/ecdsa" 22 "crypto/elliptic" 23 "crypto/rand" 24 "encoding/hex" 25 "errors" 26 "fmt" 27 "hash" 28 "io" 29 "math/big" 30 "os" 31 32 "github.com/theQRL/go-qrllib/dilithium" 33 "github.com/theQRL/go-zond/common" 34 "github.com/theQRL/go-zond/common/math" 35 "github.com/theQRL/go-zond/rlp" 36 "golang.org/x/crypto/sha3" 37 ) 38 39 // SignatureLength indicates the byte length required to carry a signature with recovery id. 40 const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id 41 42 // RecoveryIDOffset points to the byte offset within the signature that contains the recovery id. 43 const RecoveryIDOffset = 64 44 45 // DigestLength sets the signature digest exact length 46 const DigestLength = 32 47 48 var ( 49 secp256k1N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16) 50 secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2)) 51 ) 52 53 var errInvalidPubkey = errors.New("invalid secp256k1 public key") 54 55 // EllipticCurve contains curve operations. 56 type EllipticCurve interface { 57 elliptic.Curve 58 59 // Point marshaling/unmarshaing. 60 Marshal(x, y *big.Int) []byte 61 Unmarshal(data []byte) (x, y *big.Int) 62 } 63 64 // KeccakState wraps sha3.state. In addition to the usual hash methods, it also supports 65 // Read to get a variable amount of data from the hash state. Read is faster than Sum 66 // because it doesn't copy the internal state, but also modifies the internal state. 67 type KeccakState interface { 68 hash.Hash 69 Read([]byte) (int, error) 70 } 71 72 // NewKeccakState creates a new KeccakState 73 func NewKeccakState() KeccakState { 74 return sha3.NewLegacyKeccak256().(KeccakState) 75 } 76 77 // HashData hashes the provided data using the KeccakState and returns a 32 byte hash 78 func HashData(kh KeccakState, data []byte) (h common.Hash) { 79 kh.Reset() 80 kh.Write(data) 81 kh.Read(h[:]) 82 return h 83 } 84 85 // Keccak256 calculates and returns the Keccak256 hash of the input data. 86 func Keccak256(data ...[]byte) []byte { 87 b := make([]byte, 32) 88 d := NewKeccakState() 89 for _, b := range data { 90 d.Write(b) 91 } 92 d.Read(b) 93 return b 94 } 95 96 // Keccak256Hash calculates and returns the Keccak256 hash of the input data, 97 // converting it to an internal Hash data structure. 98 func Keccak256Hash(data ...[]byte) (h common.Hash) { 99 d := NewKeccakState() 100 for _, b := range data { 101 d.Write(b) 102 } 103 d.Read(h[:]) 104 return h 105 } 106 107 // Keccak512 calculates and returns the Keccak512 hash of the input data. 108 func Keccak512(data ...[]byte) []byte { 109 d := sha3.NewLegacyKeccak512() 110 for _, b := range data { 111 d.Write(b) 112 } 113 return d.Sum(nil) 114 } 115 116 // CreateAddress creates a zond address given the bytes and the nonce 117 func CreateAddress(b common.Address, nonce uint64) common.Address { 118 data, _ := rlp.EncodeToBytes([]interface{}{b, nonce}) 119 return common.BytesToAddress(Keccak256(data)[12:]) 120 } 121 122 // CreateAddress2 creates a zond address given the address bytes, initial 123 // contract code hash and a salt. 124 func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address { 125 return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:]) 126 } 127 128 // ToECDSA creates a private key with the given D value. 129 func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) { 130 return toECDSA(d, true) 131 } 132 133 // ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost 134 // never be used unless you are sure the input is valid and want to avoid hitting 135 // errors due to bad origin encoding (0 prefixes cut off). 136 func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey { 137 priv, _ := toECDSA(d, false) 138 return priv 139 } 140 141 // toECDSA creates a private key with the given D value. The strict parameter 142 // controls whether the key's length should be enforced at the curve size or 143 // it can also accept legacy encodings (0 prefixes). 144 func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) { 145 priv := new(ecdsa.PrivateKey) 146 priv.PublicKey.Curve = S256() 147 if strict && 8*len(d) != priv.Params().BitSize { 148 return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize) 149 } 150 priv.D = new(big.Int).SetBytes(d) 151 152 // The priv.D must < N 153 if priv.D.Cmp(secp256k1N) >= 0 { 154 return nil, errors.New("invalid private key, >=N") 155 } 156 // The priv.D must not be zero or negative. 157 if priv.D.Sign() <= 0 { 158 return nil, errors.New("invalid private key, zero or negative") 159 } 160 161 priv.PublicKey.X, priv.PublicKey.Y = S256().ScalarBaseMult(d) 162 if priv.PublicKey.X == nil { 163 return nil, errors.New("invalid private key") 164 } 165 return priv, nil 166 } 167 168 // FromECDSA exports a private key into a binary dump. 169 func FromECDSA(priv *ecdsa.PrivateKey) []byte { 170 if priv == nil { 171 return nil 172 } 173 return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8) 174 } 175 176 // UnmarshalPubkey converts bytes to a secp256k1 public key. 177 func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) { 178 x, y := S256().Unmarshal(pub) 179 if x == nil { 180 return nil, errInvalidPubkey 181 } 182 return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil 183 } 184 185 func FromECDSAPub(pub *ecdsa.PublicKey) []byte { 186 if pub == nil || pub.X == nil || pub.Y == nil { 187 return nil 188 } 189 return S256().Marshal(pub.X, pub.Y) 190 } 191 192 // HexToECDSA parses a secp256k1 private key. 193 func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) { 194 b, err := hex.DecodeString(hexkey) 195 if byteErr, ok := err.(hex.InvalidByteError); ok { 196 return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr)) 197 } else if err != nil { 198 return nil, errors.New("invalid hex data for private key") 199 } 200 return ToECDSA(b) 201 } 202 203 // LoadECDSA loads a secp256k1 private key from the given file. 204 func LoadECDSA(file string) (*ecdsa.PrivateKey, error) { 205 fd, err := os.Open(file) 206 if err != nil { 207 return nil, err 208 } 209 defer fd.Close() 210 211 r := bufio.NewReader(fd) 212 buf := make([]byte, 64) 213 n, err := readASCII(buf, r) 214 if err != nil { 215 return nil, err 216 } else if n != len(buf) { 217 return nil, errors.New("key file too short, want 64 hex characters") 218 } 219 if err := checkKeyFileEnd(r); err != nil { 220 return nil, err 221 } 222 223 return HexToECDSA(string(buf)) 224 } 225 226 // readASCII reads into 'buf', stopping when the buffer is full or 227 // when a non-printable control character is encountered. 228 func readASCII(buf []byte, r *bufio.Reader) (n int, err error) { 229 for ; n < len(buf); n++ { 230 buf[n], err = r.ReadByte() 231 switch { 232 case err == io.EOF || buf[n] < '!': 233 return n, nil 234 case err != nil: 235 return n, err 236 } 237 } 238 return n, nil 239 } 240 241 // checkKeyFileEnd skips over additional newlines at the end of a key file. 242 func checkKeyFileEnd(r *bufio.Reader) error { 243 for i := 0; ; i++ { 244 b, err := r.ReadByte() 245 switch { 246 case err == io.EOF: 247 return nil 248 case err != nil: 249 return err 250 case b != '\n' && b != '\r': 251 return fmt.Errorf("invalid character %q at end of key file", b) 252 case i >= 2: 253 return errors.New("key file too long, want 64 hex characters") 254 } 255 } 256 } 257 258 // SaveECDSA saves a secp256k1 private key to the given file with 259 // restrictive permissions. The key data is saved hex-encoded. 260 func SaveECDSA(file string, key *ecdsa.PrivateKey) error { 261 k := hex.EncodeToString(FromECDSA(key)) 262 return os.WriteFile(file, []byte(k), 0600) 263 } 264 265 // GenerateKey generates a new private key. 266 func GenerateKey() (*ecdsa.PrivateKey, error) { 267 return ecdsa.GenerateKey(S256(), rand.Reader) 268 } 269 270 // GenerateDilihtiumKey generates a new private key. 271 func GenerateDilithiumKey() (*dilithium.Dilithium, error) { 272 return dilithium.New() 273 } 274 275 // ValidateSignatureValues verifies whether the signature values are valid with 276 // the given chain rules. The v value is assumed to be either 0 or 1. 277 func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool { 278 if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 { 279 return false 280 } 281 // reject upper range of s values (ECDSA malleability) 282 // see discussion in secp256k1/libsecp256k1/include/secp256k1.h 283 if homestead && s.Cmp(secp256k1halfN) > 0 { 284 return false 285 } 286 // Frontier: allow s to be in full N range 287 return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1) 288 } 289 290 func PubkeyToAddress(p ecdsa.PublicKey) common.Address { 291 pubBytes := FromECDSAPub(&p) 292 return common.BytesToAddress(Keccak256(pubBytes[1:])[12:]) 293 } 294 295 func zeroBytes(bytes []byte) { 296 clear(bytes) 297 }