github.com/tidwall/go@v0.0.0-20170415222209-6694a6888b7d/doc/go_spec.html (about)

     1  <!--{
     2  	"Title": "The Go Programming Language Specification",
     3  	"Subtitle": "Version of April 12, 2017",
     4  	"Path": "/ref/spec"
     5  }-->
     6  
     7  <h2 id="Introduction">Introduction</h2>
     8  
     9  <p>
    10  This is a reference manual for the Go programming language. For
    11  more information and other documents, see <a href="/">golang.org</a>.
    12  </p>
    13  
    14  <p>
    15  Go is a general-purpose language designed with systems programming
    16  in mind. It is strongly typed and garbage-collected and has explicit
    17  support for concurrent programming.  Programs are constructed from
    18  <i>packages</i>, whose properties allow efficient management of
    19  dependencies. The existing implementations use a traditional
    20  compile/link model to generate executable binaries.
    21  </p>
    22  
    23  <p>
    24  The grammar is compact and regular, allowing for easy analysis by
    25  automatic tools such as integrated development environments.
    26  </p>
    27  
    28  <h2 id="Notation">Notation</h2>
    29  <p>
    30  The syntax is specified using Extended Backus-Naur Form (EBNF):
    31  </p>
    32  
    33  <pre class="grammar">
    34  Production  = production_name "=" [ Expression ] "." .
    35  Expression  = Alternative { "|" Alternative } .
    36  Alternative = Term { Term } .
    37  Term        = production_name | token [ "…" token ] | Group | Option | Repetition .
    38  Group       = "(" Expression ")" .
    39  Option      = "[" Expression "]" .
    40  Repetition  = "{" Expression "}" .
    41  </pre>
    42  
    43  <p>
    44  Productions are expressions constructed from terms and the following
    45  operators, in increasing precedence:
    46  </p>
    47  <pre class="grammar">
    48  |   alternation
    49  ()  grouping
    50  []  option (0 or 1 times)
    51  {}  repetition (0 to n times)
    52  </pre>
    53  
    54  <p>
    55  Lower-case production names are used to identify lexical tokens.
    56  Non-terminals are in CamelCase. Lexical tokens are enclosed in
    57  double quotes <code>""</code> or back quotes <code>``</code>.
    58  </p>
    59  
    60  <p>
    61  The form <code>a … b</code> represents the set of characters from
    62  <code>a</code> through <code>b</code> as alternatives. The horizontal
    63  ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various
    64  enumerations or code snippets that are not further specified. The character <code>…</code>
    65  (as opposed to the three characters <code>...</code>) is not a token of the Go
    66  language.
    67  </p>
    68  
    69  <h2 id="Source_code_representation">Source code representation</h2>
    70  
    71  <p>
    72  Source code is Unicode text encoded in
    73  <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
    74  canonicalized, so a single accented code point is distinct from the
    75  same character constructed from combining an accent and a letter;
    76  those are treated as two code points.  For simplicity, this document
    77  will use the unqualified term <i>character</i> to refer to a Unicode code point
    78  in the source text.
    79  </p>
    80  <p>
    81  Each code point is distinct; for instance, upper and lower case letters
    82  are different characters.
    83  </p>
    84  <p>
    85  Implementation restriction: For compatibility with other tools, a
    86  compiler may disallow the NUL character (U+0000) in the source text.
    87  </p>
    88  <p>
    89  Implementation restriction: For compatibility with other tools, a
    90  compiler may ignore a UTF-8-encoded byte order mark
    91  (U+FEFF) if it is the first Unicode code point in the source text.
    92  A byte order mark may be disallowed anywhere else in the source.
    93  </p>
    94  
    95  <h3 id="Characters">Characters</h3>
    96  
    97  <p>
    98  The following terms are used to denote specific Unicode character classes:
    99  </p>
   100  <pre class="ebnf">
   101  newline        = /* the Unicode code point U+000A */ .
   102  unicode_char   = /* an arbitrary Unicode code point except newline */ .
   103  unicode_letter = /* a Unicode code point classified as "Letter" */ .
   104  unicode_digit  = /* a Unicode code point classified as "Number, decimal digit" */ .
   105  </pre>
   106  
   107  <p>
   108  In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>,
   109  Section 4.5 "General Category" defines a set of character categories.
   110  Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo
   111  as Unicode letters, and those in the Number category Nd as Unicode digits.
   112  </p>
   113  
   114  <h3 id="Letters_and_digits">Letters and digits</h3>
   115  
   116  <p>
   117  The underscore character <code>_</code> (U+005F) is considered a letter.
   118  </p>
   119  <pre class="ebnf">
   120  letter        = unicode_letter | "_" .
   121  decimal_digit = "0" … "9" .
   122  octal_digit   = "0" … "7" .
   123  hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
   124  </pre>
   125  
   126  <h2 id="Lexical_elements">Lexical elements</h2>
   127  
   128  <h3 id="Comments">Comments</h3>
   129  
   130  <p>
   131  Comments serve as program documentation. There are two forms:
   132  </p>
   133  
   134  <ol>
   135  <li>
   136  <i>Line comments</i> start with the character sequence <code>//</code>
   137  and stop at the end of the line.
   138  </li>
   139  <li>
   140  <i>General comments</i> start with the character sequence <code>/*</code>
   141  and stop with the first subsequent character sequence <code>*/</code>.
   142  </li>
   143  </ol>
   144  
   145  <p>
   146  A comment cannot start inside a <a href="#Rune_literals">rune</a> or
   147  <a href="#String_literals">string literal</a>, or inside a comment.
   148  A general comment containing no newlines acts like a space.
   149  Any other comment acts like a newline.
   150  </p>
   151  
   152  <h3 id="Tokens">Tokens</h3>
   153  
   154  <p>
   155  Tokens form the vocabulary of the Go language.
   156  There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
   157  and punctuation</i>, and <i>literals</i>.  <i>White space</i>, formed from
   158  spaces (U+0020), horizontal tabs (U+0009),
   159  carriage returns (U+000D), and newlines (U+000A),
   160  is ignored except as it separates tokens
   161  that would otherwise combine into a single token. Also, a newline or end of file
   162  may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
   163  While breaking the input into tokens,
   164  the next token is the longest sequence of characters that form a
   165  valid token.
   166  </p>
   167  
   168  <h3 id="Semicolons">Semicolons</h3>
   169  
   170  <p>
   171  The formal grammar uses semicolons <code>";"</code> as terminators in
   172  a number of productions. Go programs may omit most of these semicolons
   173  using the following two rules:
   174  </p>
   175  
   176  <ol>
   177  <li>
   178  When the input is broken into tokens, a semicolon is automatically inserted
   179  into the token stream immediately after a line's final token if that token is
   180  <ul>
   181  	<li>an
   182  	    <a href="#Identifiers">identifier</a>
   183  	</li>
   184  
   185  	<li>an
   186  	    <a href="#Integer_literals">integer</a>,
   187  	    <a href="#Floating-point_literals">floating-point</a>,
   188  	    <a href="#Imaginary_literals">imaginary</a>,
   189  	    <a href="#Rune_literals">rune</a>, or
   190  	    <a href="#String_literals">string</a> literal
   191  	</li>
   192  
   193  	<li>one of the <a href="#Keywords">keywords</a>
   194  	    <code>break</code>,
   195  	    <code>continue</code>,
   196  	    <code>fallthrough</code>, or
   197  	    <code>return</code>
   198  	</li>
   199  
   200  	<li>one of the <a href="#Operators_and_punctuation">operators and punctuation</a>
   201  	    <code>++</code>,
   202  	    <code>--</code>,
   203  	    <code>)</code>,
   204  	    <code>]</code>, or
   205  	    <code>}</code>
   206  	</li>
   207  </ul>
   208  </li>
   209  
   210  <li>
   211  To allow complex statements to occupy a single line, a semicolon
   212  may be omitted before a closing <code>")"</code> or <code>"}"</code>.
   213  </li>
   214  </ol>
   215  
   216  <p>
   217  To reflect idiomatic use, code examples in this document elide semicolons
   218  using these rules.
   219  </p>
   220  
   221  
   222  <h3 id="Identifiers">Identifiers</h3>
   223  
   224  <p>
   225  Identifiers name program entities such as variables and types.
   226  An identifier is a sequence of one or more letters and digits.
   227  The first character in an identifier must be a letter.
   228  </p>
   229  <pre class="ebnf">
   230  identifier = letter { letter | unicode_digit } .
   231  </pre>
   232  <pre>
   233  a
   234  _x9
   235  ThisVariableIsExported
   236  αβ
   237  </pre>
   238  
   239  <p>
   240  Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
   241  </p>
   242  
   243  
   244  <h3 id="Keywords">Keywords</h3>
   245  
   246  <p>
   247  The following keywords are reserved and may not be used as identifiers.
   248  </p>
   249  <pre class="grammar">
   250  break        default      func         interface    select
   251  case         defer        go           map          struct
   252  chan         else         goto         package      switch
   253  const        fallthrough  if           range        type
   254  continue     for          import       return       var
   255  </pre>
   256  
   257  <h3 id="Operators_and_punctuation">Operators and punctuation</h3>
   258  
   259  <p>
   260  The following character sequences represent <a href="#Operators">operators</a>
   261  (including <a href="#assign_op">assignment operators</a>) and punctuation:
   262  </p>
   263  <pre class="grammar">
   264  +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
   265  -    |     -=    |=     ||    &lt;     &lt;=    [    ]
   266  *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
   267  /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
   268  %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
   269       &amp;^          &amp;^=
   270  </pre>
   271  
   272  <h3 id="Integer_literals">Integer literals</h3>
   273  
   274  <p>
   275  An integer literal is a sequence of digits representing an
   276  <a href="#Constants">integer constant</a>.
   277  An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
   278  <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
   279  <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
   280  </p>
   281  <pre class="ebnf">
   282  int_lit     = decimal_lit | octal_lit | hex_lit .
   283  decimal_lit = ( "1" … "9" ) { decimal_digit } .
   284  octal_lit   = "0" { octal_digit } .
   285  hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
   286  </pre>
   287  
   288  <pre>
   289  42
   290  0600
   291  0xBadFace
   292  170141183460469231731687303715884105727
   293  </pre>
   294  
   295  <h3 id="Floating-point_literals">Floating-point literals</h3>
   296  <p>
   297  A floating-point literal is a decimal representation of a
   298  <a href="#Constants">floating-point constant</a>.
   299  It has an integer part, a decimal point, a fractional part,
   300  and an exponent part.  The integer and fractional part comprise
   301  decimal digits; the exponent part is an <code>e</code> or <code>E</code>
   302  followed by an optionally signed decimal exponent.  One of the
   303  integer part or the fractional part may be elided; one of the decimal
   304  point or the exponent may be elided.
   305  </p>
   306  <pre class="ebnf">
   307  float_lit = decimals "." [ decimals ] [ exponent ] |
   308              decimals exponent |
   309              "." decimals [ exponent ] .
   310  decimals  = decimal_digit { decimal_digit } .
   311  exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
   312  </pre>
   313  
   314  <pre>
   315  0.
   316  72.40
   317  072.40  // == 72.40
   318  2.71828
   319  1.e+0
   320  6.67428e-11
   321  1E6
   322  .25
   323  .12345E+5
   324  </pre>
   325  
   326  <h3 id="Imaginary_literals">Imaginary literals</h3>
   327  <p>
   328  An imaginary literal is a decimal representation of the imaginary part of a
   329  <a href="#Constants">complex constant</a>.
   330  It consists of a
   331  <a href="#Floating-point_literals">floating-point literal</a>
   332  or decimal integer followed
   333  by the lower-case letter <code>i</code>.
   334  </p>
   335  <pre class="ebnf">
   336  imaginary_lit = (decimals | float_lit) "i" .
   337  </pre>
   338  
   339  <pre>
   340  0i
   341  011i  // == 11i
   342  0.i
   343  2.71828i
   344  1.e+0i
   345  6.67428e-11i
   346  1E6i
   347  .25i
   348  .12345E+5i
   349  </pre>
   350  
   351  
   352  <h3 id="Rune_literals">Rune literals</h3>
   353  
   354  <p>
   355  A rune literal represents a <a href="#Constants">rune constant</a>,
   356  an integer value identifying a Unicode code point.
   357  A rune literal is expressed as one or more characters enclosed in single quotes,
   358  as in <code>'x'</code> or <code>'\n'</code>.
   359  Within the quotes, any character may appear except newline and unescaped single
   360  quote. A single quoted character represents the Unicode value
   361  of the character itself,
   362  while multi-character sequences beginning with a backslash encode
   363  values in various formats.
   364  </p>
   365  <p>
   366  The simplest form represents the single character within the quotes;
   367  since Go source text is Unicode characters encoded in UTF-8, multiple
   368  UTF-8-encoded bytes may represent a single integer value.  For
   369  instance, the literal <code>'a'</code> holds a single byte representing
   370  a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
   371  <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
   372  a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
   373  </p>
   374  <p>
   375  Several backslash escapes allow arbitrary values to be encoded as
   376  ASCII text.  There are four ways to represent the integer value
   377  as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
   378  digits; <code>\u</code> followed by exactly four hexadecimal digits;
   379  <code>\U</code> followed by exactly eight hexadecimal digits, and a
   380  plain backslash <code>\</code> followed by exactly three octal digits.
   381  In each case the value of the literal is the value represented by
   382  the digits in the corresponding base.
   383  </p>
   384  <p>
   385  Although these representations all result in an integer, they have
   386  different valid ranges.  Octal escapes must represent a value between
   387  0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
   388  by construction. The escapes <code>\u</code> and <code>\U</code>
   389  represent Unicode code points so within them some values are illegal,
   390  in particular those above <code>0x10FFFF</code> and surrogate halves.
   391  </p>
   392  <p>
   393  After a backslash, certain single-character escapes represent special values:
   394  </p>
   395  <pre class="grammar">
   396  \a   U+0007 alert or bell
   397  \b   U+0008 backspace
   398  \f   U+000C form feed
   399  \n   U+000A line feed or newline
   400  \r   U+000D carriage return
   401  \t   U+0009 horizontal tab
   402  \v   U+000b vertical tab
   403  \\   U+005c backslash
   404  \'   U+0027 single quote  (valid escape only within rune literals)
   405  \"   U+0022 double quote  (valid escape only within string literals)
   406  </pre>
   407  <p>
   408  All other sequences starting with a backslash are illegal inside rune literals.
   409  </p>
   410  <pre class="ebnf">
   411  rune_lit         = "'" ( unicode_value | byte_value ) "'" .
   412  unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
   413  byte_value       = octal_byte_value | hex_byte_value .
   414  octal_byte_value = `\` octal_digit octal_digit octal_digit .
   415  hex_byte_value   = `\` "x" hex_digit hex_digit .
   416  little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
   417  big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
   418                             hex_digit hex_digit hex_digit hex_digit .
   419  escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
   420  </pre>
   421  
   422  <pre>
   423  'a'
   424  'ä'
   425  '本'
   426  '\t'
   427  '\000'
   428  '\007'
   429  '\377'
   430  '\x07'
   431  '\xff'
   432  '\u12e4'
   433  '\U00101234'
   434  '\''         // rune literal containing single quote character
   435  'aa'         // illegal: too many characters
   436  '\xa'        // illegal: too few hexadecimal digits
   437  '\0'         // illegal: too few octal digits
   438  '\uDFFF'     // illegal: surrogate half
   439  '\U00110000' // illegal: invalid Unicode code point
   440  </pre>
   441  
   442  
   443  <h3 id="String_literals">String literals</h3>
   444  
   445  <p>
   446  A string literal represents a <a href="#Constants">string constant</a>
   447  obtained from concatenating a sequence of characters. There are two forms:
   448  raw string literals and interpreted string literals.
   449  </p>
   450  <p>
   451  Raw string literals are character sequences between back quotes, as in
   452  <code>`foo`</code>.  Within the quotes, any character may appear except
   453  back quote. The value of a raw string literal is the
   454  string composed of the uninterpreted (implicitly UTF-8-encoded) characters
   455  between the quotes;
   456  in particular, backslashes have no special meaning and the string may
   457  contain newlines.
   458  Carriage return characters ('\r') inside raw string literals
   459  are discarded from the raw string value.
   460  </p>
   461  <p>
   462  Interpreted string literals are character sequences between double
   463  quotes, as in <code>&quot;bar&quot;</code>.
   464  Within the quotes, any character may appear except newline and unescaped double quote.
   465  The text between the quotes forms the
   466  value of the literal, with backslash escapes interpreted as they
   467  are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
   468  <code>\"</code> is legal), with the same restrictions.
   469  The three-digit octal (<code>\</code><i>nnn</i>)
   470  and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
   471  <i>bytes</i> of the resulting string; all other escapes represent
   472  the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
   473  Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
   474  a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
   475  <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
   476  the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
   477  U+00FF.
   478  </p>
   479  
   480  <pre class="ebnf">
   481  string_lit             = raw_string_lit | interpreted_string_lit .
   482  raw_string_lit         = "`" { unicode_char | newline } "`" .
   483  interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
   484  </pre>
   485  
   486  <pre>
   487  `abc`                // same as "abc"
   488  `\n
   489  \n`                  // same as "\\n\n\\n"
   490  "\n"
   491  "\""                 // same as `"`
   492  "Hello, world!\n"
   493  "日本語"
   494  "\u65e5本\U00008a9e"
   495  "\xff\u00FF"
   496  "\uD800"             // illegal: surrogate half
   497  "\U00110000"         // illegal: invalid Unicode code point
   498  </pre>
   499  
   500  <p>
   501  These examples all represent the same string:
   502  </p>
   503  
   504  <pre>
   505  "日本語"                                 // UTF-8 input text
   506  `日本語`                                 // UTF-8 input text as a raw literal
   507  "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
   508  "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
   509  "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
   510  </pre>
   511  
   512  <p>
   513  If the source code represents a character as two code points, such as
   514  a combining form involving an accent and a letter, the result will be
   515  an error if placed in a rune literal (it is not a single code
   516  point), and will appear as two code points if placed in a string
   517  literal.
   518  </p>
   519  
   520  
   521  <h2 id="Constants">Constants</h2>
   522  
   523  <p>There are <i>boolean constants</i>,
   524  <i>rune constants</i>,
   525  <i>integer constants</i>,
   526  <i>floating-point constants</i>, <i>complex constants</i>,
   527  and <i>string constants</i>. Rune, integer, floating-point,
   528  and complex constants are
   529  collectively called <i>numeric constants</i>.
   530  </p>
   531  
   532  <p>
   533  A constant value is represented by a
   534  <a href="#Rune_literals">rune</a>,
   535  <a href="#Integer_literals">integer</a>,
   536  <a href="#Floating-point_literals">floating-point</a>,
   537  <a href="#Imaginary_literals">imaginary</a>,
   538  or
   539  <a href="#String_literals">string</a> literal,
   540  an identifier denoting a constant,
   541  a <a href="#Constant_expressions">constant expression</a>,
   542  a <a href="#Conversions">conversion</a> with a result that is a constant, or
   543  the result value of some built-in functions such as
   544  <code>unsafe.Sizeof</code> applied to any value,
   545  <code>cap</code> or <code>len</code> applied to
   546  <a href="#Length_and_capacity">some expressions</a>,
   547  <code>real</code> and <code>imag</code> applied to a complex constant
   548  and <code>complex</code> applied to numeric constants.
   549  The boolean truth values are represented by the predeclared constants
   550  <code>true</code> and <code>false</code>. The predeclared identifier
   551  <a href="#Iota">iota</a> denotes an integer constant.
   552  </p>
   553  
   554  <p>
   555  In general, complex constants are a form of
   556  <a href="#Constant_expressions">constant expression</a>
   557  and are discussed in that section.
   558  </p>
   559  
   560  <p>
   561  Numeric constants represent exact values of arbitrary precision and do not overflow.
   562  Consequently, there are no constants denoting the IEEE-754 negative zero, infinity,
   563  and not-a-number values.
   564  </p>
   565  
   566  <p>
   567  Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
   568  Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
   569  and certain <a href="#Constant_expressions">constant expressions</a>
   570  containing only untyped constant operands are untyped.
   571  </p>
   572  
   573  <p>
   574  A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
   575  or <a href="#Conversions">conversion</a>, or implicitly when used in a
   576  <a href="#Variable_declarations">variable declaration</a> or an
   577  <a href="#Assignments">assignment</a> or as an
   578  operand in an <a href="#Expressions">expression</a>.
   579  It is an error if the constant value
   580  cannot be represented as a value of the respective type.
   581  For instance, <code>3.0</code> can be given any integer or any
   582  floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
   583  can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
   584  not <code>int32</code> or <code>string</code>.
   585  </p>
   586  
   587  <p>
   588  An untyped constant has a <i>default type</i> which is the type to which the
   589  constant is implicitly converted in contexts where a typed value is required,
   590  for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
   591  such as <code>i := 0</code> where there is no explicit type.
   592  The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
   593  <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
   594  respectively, depending on whether it is a boolean, rune, integer, floating-point,
   595  complex, or string constant.
   596  </p>
   597  
   598  <p>
   599  Implementation restriction: Although numeric constants have arbitrary
   600  precision in the language, a compiler may implement them using an
   601  internal representation with limited precision.  That said, every
   602  implementation must:
   603  </p>
   604  <ul>
   605  	<li>Represent integer constants with at least 256 bits.</li>
   606  
   607  	<li>Represent floating-point constants, including the parts of
   608  	    a complex constant, with a mantissa of at least 256 bits
   609  	    and a signed binary exponent of at least 16 bits.</li>
   610  
   611  	<li>Give an error if unable to represent an integer constant
   612  	    precisely.</li>
   613  
   614  	<li>Give an error if unable to represent a floating-point or
   615  	    complex constant due to overflow.</li>
   616  
   617  	<li>Round to the nearest representable constant if unable to
   618  	    represent a floating-point or complex constant due to limits
   619  	    on precision.</li>
   620  </ul>
   621  <p>
   622  These requirements apply both to literal constants and to the result
   623  of evaluating <a href="#Constant_expressions">constant
   624  expressions</a>.
   625  </p>
   626  
   627  <h2 id="Variables">Variables</h2>
   628  
   629  <p>
   630  A variable is a storage location for holding a <i>value</i>.
   631  The set of permissible values is determined by the
   632  variable's <i><a href="#Types">type</a></i>.
   633  </p>
   634  
   635  <p>
   636  A <a href="#Variable_declarations">variable declaration</a>
   637  or, for function parameters and results, the signature
   638  of a <a href="#Function_declarations">function declaration</a>
   639  or <a href="#Function_literals">function literal</a> reserves
   640  storage for a named variable.
   641  
   642  Calling the built-in function <a href="#Allocation"><code>new</code></a>
   643  or taking the address of a <a href="#Composite_literals">composite literal</a>
   644  allocates storage for a variable at run time.
   645  Such an anonymous variable is referred to via a (possibly implicit)
   646  <a href="#Address_operators">pointer indirection</a>.
   647  </p>
   648  
   649  <p>
   650  <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
   651  and <a href="#Struct_types">struct</a> types have elements and fields that may
   652  be <a href="#Address_operators">addressed</a> individually. Each such element
   653  acts like a variable.
   654  </p>
   655  
   656  <p>
   657  The <i>static type</i> (or just <i>type</i>) of a variable is the
   658  type given in its declaration, the type provided in the
   659  <code>new</code> call or composite literal, or the type of
   660  an element of a structured variable.
   661  Variables of interface type also have a distinct <i>dynamic type</i>,
   662  which is the concrete type of the value assigned to the variable at run time
   663  (unless the value is the predeclared identifier <code>nil</code>,
   664  which has no type).
   665  The dynamic type may vary during execution but values stored in interface
   666  variables are always <a href="#Assignability">assignable</a>
   667  to the static type of the variable.
   668  </p>
   669  
   670  <pre>
   671  var x interface{}  // x is nil and has static type interface{}
   672  var v *T           // v has value nil, static type *T
   673  x = 42             // x has value 42 and dynamic type int
   674  x = v              // x has value (*T)(nil) and dynamic type *T
   675  </pre>
   676  
   677  <p>
   678  A variable's value is retrieved by referring to the variable in an
   679  <a href="#Expressions">expression</a>; it is the most recent value
   680  <a href="#Assignments">assigned</a> to the variable.
   681  If a variable has not yet been assigned a value, its value is the
   682  <a href="#The_zero_value">zero value</a> for its type.
   683  </p>
   684  
   685  
   686  <h2 id="Types">Types</h2>
   687  
   688  <p>
   689  A type determines a set of values together with operations and methods specific
   690  to those values. A type may be denoted by a <i>type name</i>, if it has one,
   691  or specified using a <i>type literal</i>, which composes a type from existing types.
   692  </p>
   693  
   694  <pre class="ebnf">
   695  Type      = TypeName | TypeLit | "(" Type ")" .
   696  TypeName  = identifier | QualifiedIdent .
   697  TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
   698  	    SliceType | MapType | ChannelType .
   699  </pre>
   700  
   701  <p>
   702  Named instances of the boolean, numeric, and string types are
   703  <a href="#Predeclared_identifiers">predeclared</a>.
   704  Other named types are introduced with <a href="#Type_declarations">type declarations</a>.
   705  <i>Composite types</i>&mdash;array, struct, pointer, function,
   706  interface, slice, map, and channel types&mdash;may be constructed using
   707  type literals.
   708  </p>
   709  
   710  <p>
   711  Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
   712  is one of the predeclared boolean, numeric, or string types, or a type literal,
   713  the corresponding underlying
   714  type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
   715  is the underlying type of the type to which <code>T</code> refers in its
   716  <a href="#Type_declarations">type declaration</a>.
   717  </p>
   718  
   719  <pre>
   720  type (
   721  	A1 = string
   722  	A2 = A1
   723  )
   724  
   725  type (
   726  	B1 string
   727  	B2 B1
   728  	B3 []B1
   729  	B4 B3
   730  )
   731  </pre>
   732  
   733  <p>
   734  The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>,
   735  and <code>B2</code> is <code>string</code>.
   736  The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>.
   737  </p>
   738  
   739  <h3 id="Method_sets">Method sets</h3>
   740  <p>
   741  A type may have a <i>method set</i> associated with it.
   742  The method set of an <a href="#Interface_types">interface type</a> is its interface.
   743  The method set of any other type <code>T</code> consists of all
   744  <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
   745  The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
   746  is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
   747  (that is, it also contains the method set of <code>T</code>).
   748  Further rules apply to structs containing embedded fields, as described
   749  in the section on <a href="#Struct_types">struct types</a>.
   750  Any other type has an empty method set.
   751  In a method set, each method must have a
   752  <a href="#Uniqueness_of_identifiers">unique</a>
   753  non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
   754  </p>
   755  
   756  <p>
   757  The method set of a type determines the interfaces that the
   758  type <a href="#Interface_types">implements</a>
   759  and the methods that can be <a href="#Calls">called</a>
   760  using a receiver of that type.
   761  </p>
   762  
   763  <h3 id="Boolean_types">Boolean types</h3>
   764  
   765  <p>
   766  A <i>boolean type</i> represents the set of Boolean truth values
   767  denoted by the predeclared constants <code>true</code>
   768  and <code>false</code>. The predeclared boolean type is <code>bool</code>.
   769  </p>
   770  
   771  <h3 id="Numeric_types">Numeric types</h3>
   772  
   773  <p>
   774  A <i>numeric type</i> represents sets of integer or floating-point values.
   775  The predeclared architecture-independent numeric types are:
   776  </p>
   777  
   778  <pre class="grammar">
   779  uint8       the set of all unsigned  8-bit integers (0 to 255)
   780  uint16      the set of all unsigned 16-bit integers (0 to 65535)
   781  uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
   782  uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
   783  
   784  int8        the set of all signed  8-bit integers (-128 to 127)
   785  int16       the set of all signed 16-bit integers (-32768 to 32767)
   786  int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
   787  int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
   788  
   789  float32     the set of all IEEE-754 32-bit floating-point numbers
   790  float64     the set of all IEEE-754 64-bit floating-point numbers
   791  
   792  complex64   the set of all complex numbers with float32 real and imaginary parts
   793  complex128  the set of all complex numbers with float64 real and imaginary parts
   794  
   795  byte        alias for uint8
   796  rune        alias for int32
   797  </pre>
   798  
   799  <p>
   800  The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
   801  <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
   802  </p>
   803  
   804  <p>
   805  There is also a set of predeclared numeric types with implementation-specific sizes:
   806  </p>
   807  
   808  <pre class="grammar">
   809  uint     either 32 or 64 bits
   810  int      same size as uint
   811  uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
   812  </pre>
   813  
   814  <p>
   815  To avoid portability issues all numeric types are distinct except
   816  <code>byte</code>, which is an alias for <code>uint8</code>, and
   817  <code>rune</code>, which is an alias for <code>int32</code>.
   818  Conversions
   819  are required when different numeric types are mixed in an expression
   820  or assignment. For instance, <code>int32</code> and <code>int</code>
   821  are not the same type even though they may have the same size on a
   822  particular architecture.
   823  
   824  
   825  <h3 id="String_types">String types</h3>
   826  
   827  <p>
   828  A <i>string type</i> represents the set of string values.
   829  A string value is a (possibly empty) sequence of bytes.
   830  Strings are immutable: once created,
   831  it is impossible to change the contents of a string.
   832  The predeclared string type is <code>string</code>.
   833  </p>
   834  
   835  <p>
   836  The length of a string <code>s</code> (its size in bytes) can be discovered using
   837  the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   838  The length is a compile-time constant if the string is a constant.
   839  A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
   840  0 through <code>len(s)-1</code>.
   841  It is illegal to take the address of such an element; if
   842  <code>s[i]</code> is the <code>i</code>'th byte of a
   843  string, <code>&amp;s[i]</code> is invalid.
   844  </p>
   845  
   846  
   847  <h3 id="Array_types">Array types</h3>
   848  
   849  <p>
   850  An array is a numbered sequence of elements of a single
   851  type, called the element type.
   852  The number of elements is called the length and is never
   853  negative.
   854  </p>
   855  
   856  <pre class="ebnf">
   857  ArrayType   = "[" ArrayLength "]" ElementType .
   858  ArrayLength = Expression .
   859  ElementType = Type .
   860  </pre>
   861  
   862  <p>
   863  The length is part of the array's type; it must evaluate to a
   864  non-negative <a href="#Constants">constant</a> representable by a value
   865  of type <code>int</code>.
   866  The length of array <code>a</code> can be discovered
   867  using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   868  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   869  0 through <code>len(a)-1</code>.
   870  Array types are always one-dimensional but may be composed to form
   871  multi-dimensional types.
   872  </p>
   873  
   874  <pre>
   875  [32]byte
   876  [2*N] struct { x, y int32 }
   877  [1000]*float64
   878  [3][5]int
   879  [2][2][2]float64  // same as [2]([2]([2]float64))
   880  </pre>
   881  
   882  <h3 id="Slice_types">Slice types</h3>
   883  
   884  <p>
   885  A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
   886  provides access to a numbered sequence of elements from that array.
   887  A slice type denotes the set of all slices of arrays of its element type.
   888  The value of an uninitialized slice is <code>nil</code>.
   889  </p>
   890  
   891  <pre class="ebnf">
   892  SliceType = "[" "]" ElementType .
   893  </pre>
   894  
   895  <p>
   896  Like arrays, slices are indexable and have a length.  The length of a
   897  slice <code>s</code> can be discovered by the built-in function
   898  <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
   899  execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   900  0 through <code>len(s)-1</code>.  The slice index of a
   901  given element may be less than the index of the same element in the
   902  underlying array.
   903  </p>
   904  <p>
   905  A slice, once initialized, is always associated with an underlying
   906  array that holds its elements.  A slice therefore shares storage
   907  with its array and with other slices of the same array; by contrast,
   908  distinct arrays always represent distinct storage.
   909  </p>
   910  <p>
   911  The array underlying a slice may extend past the end of the slice.
   912  The <i>capacity</i> is a measure of that extent: it is the sum of
   913  the length of the slice and the length of the array beyond the slice;
   914  a slice of length up to that capacity can be created by
   915  <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
   916  The capacity of a slice <code>a</code> can be discovered using the
   917  built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
   918  </p>
   919  
   920  <p>
   921  A new, initialized slice value for a given element type <code>T</code> is
   922  made using the built-in function
   923  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   924  which takes a slice type
   925  and parameters specifying the length and optionally the capacity.
   926  A slice created with <code>make</code> always allocates a new, hidden array
   927  to which the returned slice value refers. That is, executing
   928  </p>
   929  
   930  <pre>
   931  make([]T, length, capacity)
   932  </pre>
   933  
   934  <p>
   935  produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
   936  it, so these two expressions are equivalent:
   937  </p>
   938  
   939  <pre>
   940  make([]int, 50, 100)
   941  new([100]int)[0:50]
   942  </pre>
   943  
   944  <p>
   945  Like arrays, slices are always one-dimensional but may be composed to construct
   946  higher-dimensional objects.
   947  With arrays of arrays, the inner arrays are, by construction, always the same length;
   948  however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
   949  Moreover, the inner slices must be initialized individually.
   950  </p>
   951  
   952  <h3 id="Struct_types">Struct types</h3>
   953  
   954  <p>
   955  A struct is a sequence of named elements, called fields, each of which has a
   956  name and a type. Field names may be specified explicitly (IdentifierList) or
   957  implicitly (EmbeddedField).
   958  Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
   959  be <a href="#Uniqueness_of_identifiers">unique</a>.
   960  </p>
   961  
   962  <pre class="ebnf">
   963  StructType    = "struct" "{" { FieldDecl ";" } "}" .
   964  FieldDecl     = (IdentifierList Type | EmbeddedField) [ Tag ] .
   965  EmbeddedField = [ "*" ] TypeName .
   966  Tag           = string_lit .
   967  </pre>
   968  
   969  <pre>
   970  // An empty struct.
   971  struct {}
   972  
   973  // A struct with 6 fields.
   974  struct {
   975  	x, y int
   976  	u float32
   977  	_ float32  // padding
   978  	A *[]int
   979  	F func()
   980  }
   981  </pre>
   982  
   983  <p>
   984  A field declared with a type but no explicit field name is called an <i>embedded field</i>.
   985  An embedded field must be specified as
   986  a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
   987  and <code>T</code> itself may not be
   988  a pointer type. The unqualified type name acts as the field name.
   989  </p>
   990  
   991  <pre>
   992  // A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4
   993  struct {
   994  	T1        // field name is T1
   995  	*T2       // field name is T2
   996  	P.T3      // field name is T3
   997  	*P.T4     // field name is T4
   998  	x, y int  // field names are x and y
   999  }
  1000  </pre>
  1001  
  1002  <p>
  1003  The following declaration is illegal because field names must be unique
  1004  in a struct type:
  1005  </p>
  1006  
  1007  <pre>
  1008  struct {
  1009  	T     // conflicts with embedded field *T and *P.T
  1010  	*T    // conflicts with embedded field T and *P.T
  1011  	*P.T  // conflicts with embedded field T and *T
  1012  }
  1013  </pre>
  1014  
  1015  <p>
  1016  A field or <a href="#Method_declarations">method</a> <code>f</code> of an
  1017  embedded field in a struct <code>x</code> is called <i>promoted</i> if
  1018  <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
  1019  that field or method <code>f</code>.
  1020  </p>
  1021  
  1022  <p>
  1023  Promoted fields act like ordinary fields
  1024  of a struct except that they cannot be used as field names in
  1025  <a href="#Composite_literals">composite literals</a> of the struct.
  1026  </p>
  1027  
  1028  <p>
  1029  Given a struct type <code>S</code> and a type named <code>T</code>,
  1030  promoted methods are included in the method set of the struct as follows:
  1031  </p>
  1032  <ul>
  1033  	<li>
  1034  	If <code>S</code> contains an embedded field <code>T</code>,
  1035  	the <a href="#Method_sets">method sets</a> of <code>S</code>
  1036  	and <code>*S</code> both include promoted methods with receiver
  1037  	<code>T</code>. The method set of <code>*S</code> also
  1038  	includes promoted methods with receiver <code>*T</code>.
  1039  	</li>
  1040  
  1041  	<li>
  1042  	If <code>S</code> contains an embedded field <code>*T</code>,
  1043  	the method sets of <code>S</code> and <code>*S</code> both
  1044  	include promoted methods with receiver <code>T</code> or
  1045  	<code>*T</code>.
  1046  	</li>
  1047  </ul>
  1048  
  1049  <p>
  1050  A field declaration may be followed by an optional string literal <i>tag</i>,
  1051  which becomes an attribute for all the fields in the corresponding
  1052  field declaration. An empty tag string is equivalent to an absent tag.
  1053  The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
  1054  and take part in <a href="#Type_identity">type identity</a> for structs
  1055  but are otherwise ignored.
  1056  </p>
  1057  
  1058  <pre>
  1059  struct {
  1060  	x, y float64 ""  // an empty tag string is like an absent tag
  1061  	name string  "any string is permitted as a tag"
  1062  	_    [4]byte "ceci n'est pas un champ de structure"
  1063  }
  1064  
  1065  // A struct corresponding to a TimeStamp protocol buffer.
  1066  // The tag strings define the protocol buffer field numbers;
  1067  // they follow the convention outlined by the reflect package.
  1068  struct {
  1069  	microsec  uint64 `protobuf:"1"`
  1070  	serverIP6 uint64 `protobuf:"2"`
  1071  }
  1072  </pre>
  1073  
  1074  <h3 id="Pointer_types">Pointer types</h3>
  1075  
  1076  <p>
  1077  A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
  1078  type, called the <i>base type</i> of the pointer.
  1079  The value of an uninitialized pointer is <code>nil</code>.
  1080  </p>
  1081  
  1082  <pre class="ebnf">
  1083  PointerType = "*" BaseType .
  1084  BaseType    = Type .
  1085  </pre>
  1086  
  1087  <pre>
  1088  *Point
  1089  *[4]int
  1090  </pre>
  1091  
  1092  <h3 id="Function_types">Function types</h3>
  1093  
  1094  <p>
  1095  A function type denotes the set of all functions with the same parameter
  1096  and result types. The value of an uninitialized variable of function type
  1097  is <code>nil</code>.
  1098  </p>
  1099  
  1100  <pre class="ebnf">
  1101  FunctionType   = "func" Signature .
  1102  Signature      = Parameters [ Result ] .
  1103  Result         = Parameters | Type .
  1104  Parameters     = "(" [ ParameterList [ "," ] ] ")" .
  1105  ParameterList  = ParameterDecl { "," ParameterDecl } .
  1106  ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
  1107  </pre>
  1108  
  1109  <p>
  1110  Within a list of parameters or results, the names (IdentifierList)
  1111  must either all be present or all be absent. If present, each name
  1112  stands for one item (parameter or result) of the specified type and
  1113  all non-<a href="#Blank_identifier">blank</a> names in the signature
  1114  must be <a href="#Uniqueness_of_identifiers">unique</a>.
  1115  If absent, each type stands for one item of that type.
  1116  Parameter and result
  1117  lists are always parenthesized except that if there is exactly
  1118  one unnamed result it may be written as an unparenthesized type.
  1119  </p>
  1120  
  1121  <p>
  1122  The final incoming parameter in a function signature may have
  1123  a type prefixed with <code>...</code>.
  1124  A function with such a parameter is called <i>variadic</i> and
  1125  may be invoked with zero or more arguments for that parameter.
  1126  </p>
  1127  
  1128  <pre>
  1129  func()
  1130  func(x int) int
  1131  func(a, _ int, z float32) bool
  1132  func(a, b int, z float32) (bool)
  1133  func(prefix string, values ...int)
  1134  func(a, b int, z float64, opt ...interface{}) (success bool)
  1135  func(int, int, float64) (float64, *[]int)
  1136  func(n int) func(p *T)
  1137  </pre>
  1138  
  1139  
  1140  <h3 id="Interface_types">Interface types</h3>
  1141  
  1142  <p>
  1143  An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
  1144  A variable of interface type can store a value of any type with a method set
  1145  that is any superset of the interface. Such a type is said to
  1146  <i>implement the interface</i>.
  1147  The value of an uninitialized variable of interface type is <code>nil</code>.
  1148  </p>
  1149  
  1150  <pre class="ebnf">
  1151  InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
  1152  MethodSpec         = MethodName Signature | InterfaceTypeName .
  1153  MethodName         = identifier .
  1154  InterfaceTypeName  = TypeName .
  1155  </pre>
  1156  
  1157  <p>
  1158  As with all method sets, in an interface type, each method must have a
  1159  <a href="#Uniqueness_of_identifiers">unique</a>
  1160  non-<a href="#Blank_identifier">blank</a> name.
  1161  </p>
  1162  
  1163  <pre>
  1164  // A simple File interface
  1165  interface {
  1166  	Read(b Buffer) bool
  1167  	Write(b Buffer) bool
  1168  	Close()
  1169  }
  1170  </pre>
  1171  
  1172  <p>
  1173  More than one type may implement an interface.
  1174  For instance, if two types <code>S1</code> and <code>S2</code>
  1175  have the method set
  1176  </p>
  1177  
  1178  <pre>
  1179  func (p T) Read(b Buffer) bool { return … }
  1180  func (p T) Write(b Buffer) bool { return … }
  1181  func (p T) Close() { … }
  1182  </pre>
  1183  
  1184  <p>
  1185  (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
  1186  then the <code>File</code> interface is implemented by both <code>S1</code> and
  1187  <code>S2</code>, regardless of what other methods
  1188  <code>S1</code> and <code>S2</code> may have or share.
  1189  </p>
  1190  
  1191  <p>
  1192  A type implements any interface comprising any subset of its methods
  1193  and may therefore implement several distinct interfaces. For
  1194  instance, all types implement the <i>empty interface</i>:
  1195  </p>
  1196  
  1197  <pre>
  1198  interface{}
  1199  </pre>
  1200  
  1201  <p>
  1202  Similarly, consider this interface specification,
  1203  which appears within a <a href="#Type_declarations">type declaration</a>
  1204  to define an interface called <code>Locker</code>:
  1205  </p>
  1206  
  1207  <pre>
  1208  type Locker interface {
  1209  	Lock()
  1210  	Unlock()
  1211  }
  1212  </pre>
  1213  
  1214  <p>
  1215  If <code>S1</code> and <code>S2</code> also implement
  1216  </p>
  1217  
  1218  <pre>
  1219  func (p T) Lock() { … }
  1220  func (p T) Unlock() { … }
  1221  </pre>
  1222  
  1223  <p>
  1224  they implement the <code>Locker</code> interface as well
  1225  as the <code>File</code> interface.
  1226  </p>
  1227  
  1228  <p>
  1229  An interface <code>T</code> may use a (possibly qualified) interface type
  1230  name <code>E</code> in place of a method specification. This is called
  1231  <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
  1232  all (exported and non-exported) methods of <code>E</code> to the interface
  1233  <code>T</code>.
  1234  </p>
  1235  
  1236  <pre>
  1237  type ReadWriter interface {
  1238  	Read(b Buffer) bool
  1239  	Write(b Buffer) bool
  1240  }
  1241  
  1242  type File interface {
  1243  	ReadWriter  // same as adding the methods of ReadWriter
  1244  	Locker      // same as adding the methods of Locker
  1245  	Close()
  1246  }
  1247  
  1248  type LockedFile interface {
  1249  	Locker
  1250  	File        // illegal: Lock, Unlock not unique
  1251  	Lock()      // illegal: Lock not unique
  1252  }
  1253  </pre>
  1254  
  1255  <p>
  1256  An interface type <code>T</code> may not embed itself
  1257  or any interface type that embeds <code>T</code>, recursively.
  1258  </p>
  1259  
  1260  <pre>
  1261  // illegal: Bad cannot embed itself
  1262  type Bad interface {
  1263  	Bad
  1264  }
  1265  
  1266  // illegal: Bad1 cannot embed itself using Bad2
  1267  type Bad1 interface {
  1268  	Bad2
  1269  }
  1270  type Bad2 interface {
  1271  	Bad1
  1272  }
  1273  </pre>
  1274  
  1275  <h3 id="Map_types">Map types</h3>
  1276  
  1277  <p>
  1278  A map is an unordered group of elements of one type, called the
  1279  element type, indexed by a set of unique <i>keys</i> of another type,
  1280  called the key type.
  1281  The value of an uninitialized map is <code>nil</code>.
  1282  </p>
  1283  
  1284  <pre class="ebnf">
  1285  MapType     = "map" "[" KeyType "]" ElementType .
  1286  KeyType     = Type .
  1287  </pre>
  1288  
  1289  <p>
  1290  The <a href="#Comparison_operators">comparison operators</a>
  1291  <code>==</code> and <code>!=</code> must be fully defined
  1292  for operands of the key type; thus the key type must not be a function, map, or
  1293  slice.
  1294  If the key type is an interface type, these
  1295  comparison operators must be defined for the dynamic key values;
  1296  failure will cause a <a href="#Run_time_panics">run-time panic</a>.
  1297  
  1298  </p>
  1299  
  1300  <pre>
  1301  map[string]int
  1302  map[*T]struct{ x, y float64 }
  1303  map[string]interface{}
  1304  </pre>
  1305  
  1306  <p>
  1307  The number of map elements is called its length.
  1308  For a map <code>m</code>, it can be discovered using the
  1309  built-in function <a href="#Length_and_capacity"><code>len</code></a>
  1310  and may change during execution. Elements may be added during execution
  1311  using <a href="#Assignments">assignments</a> and retrieved with
  1312  <a href="#Index_expressions">index expressions</a>; they may be removed with the
  1313  <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
  1314  </p>
  1315  <p>
  1316  A new, empty map value is made using the built-in
  1317  function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1318  which takes the map type and an optional capacity hint as arguments:
  1319  </p>
  1320  
  1321  <pre>
  1322  make(map[string]int)
  1323  make(map[string]int, 100)
  1324  </pre>
  1325  
  1326  <p>
  1327  The initial capacity does not bound its size:
  1328  maps grow to accommodate the number of items
  1329  stored in them, with the exception of <code>nil</code> maps.
  1330  A <code>nil</code> map is equivalent to an empty map except that no elements
  1331  may be added.
  1332  
  1333  <h3 id="Channel_types">Channel types</h3>
  1334  
  1335  <p>
  1336  A channel provides a mechanism for
  1337  <a href="#Go_statements">concurrently executing functions</a>
  1338  to communicate by
  1339  <a href="#Send_statements">sending</a> and
  1340  <a href="#Receive_operator">receiving</a>
  1341  values of a specified element type.
  1342  The value of an uninitialized channel is <code>nil</code>.
  1343  </p>
  1344  
  1345  <pre class="ebnf">
  1346  ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
  1347  </pre>
  1348  
  1349  <p>
  1350  The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
  1351  <i>send</i> or <i>receive</i>. If no direction is given, the channel is
  1352  <i>bidirectional</i>.
  1353  A channel may be constrained only to send or only to receive by
  1354  <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
  1355  </p>
  1356  
  1357  <pre>
  1358  chan T          // can be used to send and receive values of type T
  1359  chan&lt;- float64  // can only be used to send float64s
  1360  &lt;-chan int      // can only be used to receive ints
  1361  </pre>
  1362  
  1363  <p>
  1364  The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
  1365  possible:
  1366  </p>
  1367  
  1368  <pre>
  1369  chan&lt;- chan int    // same as chan&lt;- (chan int)
  1370  chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
  1371  &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
  1372  chan (&lt;-chan int)
  1373  </pre>
  1374  
  1375  <p>
  1376  A new, initialized channel
  1377  value can be made using the built-in function
  1378  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1379  which takes the channel type and an optional <i>capacity</i> as arguments:
  1380  </p>
  1381  
  1382  <pre>
  1383  make(chan int, 100)
  1384  </pre>
  1385  
  1386  <p>
  1387  The capacity, in number of elements, sets the size of the buffer in the channel.
  1388  If the capacity is zero or absent, the channel is unbuffered and communication
  1389  succeeds only when both a sender and receiver are ready. Otherwise, the channel
  1390  is buffered and communication succeeds without blocking if the buffer
  1391  is not full (sends) or not empty (receives).
  1392  A <code>nil</code> channel is never ready for communication.
  1393  </p>
  1394  
  1395  <p>
  1396  A channel may be closed with the built-in function
  1397  <a href="#Close"><code>close</code></a>.
  1398  The multi-valued assignment form of the
  1399  <a href="#Receive_operator">receive operator</a>
  1400  reports whether a received value was sent before
  1401  the channel was closed.
  1402  </p>
  1403  
  1404  <p>
  1405  A single channel may be used in
  1406  <a href="#Send_statements">send statements</a>,
  1407  <a href="#Receive_operator">receive operations</a>,
  1408  and calls to the built-in functions
  1409  <a href="#Length_and_capacity"><code>cap</code></a> and
  1410  <a href="#Length_and_capacity"><code>len</code></a>
  1411  by any number of goroutines without further synchronization.
  1412  Channels act as first-in-first-out queues.
  1413  For example, if one goroutine sends values on a channel
  1414  and a second goroutine receives them, the values are
  1415  received in the order sent.
  1416  </p>
  1417  
  1418  <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
  1419  
  1420  <h3 id="Type_identity">Type identity</h3>
  1421  
  1422  <p>
  1423  Two types are either <i>identical</i> or <i>different</i>.
  1424  </p>
  1425  
  1426  <p>
  1427  A <a href="#Type_definitions">defined type</a> is always different from any other type.
  1428  Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are
  1429  structurally equivalent; that is, they have the same literal structure and corresponding
  1430  components have identical types. In detail:
  1431  </p>
  1432  
  1433  <ul>
  1434  	<li>Two array types are identical if they have identical element types and
  1435  	    the same array length.</li>
  1436  
  1437  	<li>Two slice types are identical if they have identical element types.</li>
  1438  
  1439  	<li>Two struct types are identical if they have the same sequence of fields,
  1440  	    and if corresponding fields have the same names, and identical types,
  1441  	    and identical tags.
  1442  	    <a href="#Exported_identifiers">Non-exported</a> field names from different
  1443  	    packages are always different.</li>
  1444  
  1445  	<li>Two pointer types are identical if they have identical base types.</li>
  1446  
  1447  	<li>Two function types are identical if they have the same number of parameters
  1448  	    and result values, corresponding parameter and result types are
  1449  	    identical, and either both functions are variadic or neither is.
  1450  	    Parameter and result names are not required to match.</li>
  1451  
  1452  	<li>Two interface types are identical if they have the same set of methods
  1453  	    with the same names and identical function types.
  1454  	    <a href="#Exported_identifiers">Non-exported</a> method names from different
  1455  	    packages are always different. The order of the methods is irrelevant.</li>
  1456  
  1457  	<li>Two map types are identical if they have identical key and value types.</li>
  1458  
  1459  	<li>Two channel types are identical if they have identical value types and
  1460  	    the same direction.</li>
  1461  </ul>
  1462  
  1463  <p>
  1464  Given the declarations
  1465  </p>
  1466  
  1467  <pre>
  1468  type (
  1469  	A0 = []string
  1470  	A1 = A0
  1471  	A2 = struct{ a, b int }
  1472  	A3 = int
  1473  	A4 = func(A3, float64) *A0
  1474  	A5 = func(x int, _ float64) *[]string
  1475  )
  1476  
  1477  type (
  1478  	B0 A0
  1479  	B1 []string
  1480  	B2 struct{ a, b int }
  1481  	B3 struct{ a, c int }
  1482  	B4 func(int, float64) *B0
  1483  	B5 func(x int, y float64) *A1
  1484  )
  1485  
  1486  type	C0 = B0
  1487  </pre>
  1488  
  1489  <p>
  1490  these types are identical:
  1491  </p>
  1492  
  1493  <pre>
  1494  A0, A1, and []string
  1495  A2 and struct{ a, b int }
  1496  A3 and int
  1497  A4, func(int, float64) *[]string, and A5
  1498  
  1499  B0, B0, and C0
  1500  []int and []int
  1501  struct{ a, b *T5 } and struct{ a, b *T5 }
  1502  func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5
  1503  </pre>
  1504  
  1505  <p>
  1506  <code>B0</code> and <code>B1</code> are different because they are new types
  1507  created by distinct <a href="#Type_definitions">type definitions</a>;
  1508  <code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code>
  1509  are different because <code>B0</code> is different from <code>[]string</code>.
  1510  </p>
  1511  
  1512  
  1513  <h3 id="Assignability">Assignability</h3>
  1514  
  1515  <p>
  1516  A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
  1517  ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
  1518  </p>
  1519  
  1520  <ul>
  1521  <li>
  1522  <code>x</code>'s type is identical to <code>T</code>.
  1523  </li>
  1524  <li>
  1525  <code>x</code>'s type <code>V</code> and <code>T</code> have identical
  1526  <a href="#Types">underlying types</a> and at least one of <code>V</code>
  1527  or <code>T</code> is not a <a href="#Type_definitions">defined</a> type.
  1528  </li>
  1529  <li>
  1530  <code>T</code> is an interface type and
  1531  <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
  1532  </li>
  1533  <li>
  1534  <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
  1535  <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
  1536  and at least one of <code>V</code> or <code>T</code> is not a defined type.
  1537  </li>
  1538  <li>
  1539  <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
  1540  is a pointer, function, slice, map, channel, or interface type.
  1541  </li>
  1542  <li>
  1543  <code>x</code> is an untyped <a href="#Constants">constant</a> representable
  1544  by a value of type <code>T</code>.
  1545  </li>
  1546  </ul>
  1547  
  1548  
  1549  <h2 id="Blocks">Blocks</h2>
  1550  
  1551  <p>
  1552  A <i>block</i> is a possibly empty sequence of declarations and statements
  1553  within matching brace brackets.
  1554  </p>
  1555  
  1556  <pre class="ebnf">
  1557  Block = "{" StatementList "}" .
  1558  StatementList = { Statement ";" } .
  1559  </pre>
  1560  
  1561  <p>
  1562  In addition to explicit blocks in the source code, there are implicit blocks:
  1563  </p>
  1564  
  1565  <ol>
  1566  	<li>The <i>universe block</i> encompasses all Go source text.</li>
  1567  
  1568  	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
  1569  	    Go source text for that package.</li>
  1570  
  1571  	<li>Each file has a <i>file block</i> containing all Go source text
  1572  	    in that file.</li>
  1573  
  1574  	<li>Each <a href="#If_statements">"if"</a>,
  1575  	    <a href="#For_statements">"for"</a>, and
  1576  	    <a href="#Switch_statements">"switch"</a>
  1577  	    statement is considered to be in its own implicit block.</li>
  1578  
  1579  	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
  1580  	    or <a href="#Select_statements">"select"</a> statement
  1581  	    acts as an implicit block.</li>
  1582  </ol>
  1583  
  1584  <p>
  1585  Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
  1586  </p>
  1587  
  1588  
  1589  <h2 id="Declarations_and_scope">Declarations and scope</h2>
  1590  
  1591  <p>
  1592  A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
  1593  <a href="#Constant_declarations">constant</a>,
  1594  <a href="#Type_declarations">type</a>,
  1595  <a href="#Variable_declarations">variable</a>,
  1596  <a href="#Function_declarations">function</a>,
  1597  <a href="#Labeled_statements">label</a>, or
  1598  <a href="#Import_declarations">package</a>.
  1599  Every identifier in a program must be declared.
  1600  No identifier may be declared twice in the same block, and
  1601  no identifier may be declared in both the file and package block.
  1602  </p>
  1603  
  1604  <p>
  1605  The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
  1606  in a declaration, but it does not introduce a binding and thus is not declared.
  1607  In the package block, the identifier <code>init</code> may only be used for
  1608  <a href="#Package_initialization"><code>init</code> function</a> declarations,
  1609  and like the blank identifier it does not introduce a new binding.
  1610  </p>
  1611  
  1612  <pre class="ebnf">
  1613  Declaration   = ConstDecl | TypeDecl | VarDecl .
  1614  TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
  1615  </pre>
  1616  
  1617  <p>
  1618  The <i>scope</i> of a declared identifier is the extent of source text in which
  1619  the identifier denotes the specified constant, type, variable, function, label, or package.
  1620  </p>
  1621  
  1622  <p>
  1623  Go is lexically scoped using <a href="#Blocks">blocks</a>:
  1624  </p>
  1625  
  1626  <ol>
  1627  	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
  1628  
  1629  	<li>The scope of an identifier denoting a constant, type, variable,
  1630  	    or function (but not method) declared at top level (outside any
  1631  	    function) is the package block.</li>
  1632  
  1633  	<li>The scope of the package name of an imported package is the file block
  1634  	    of the file containing the import declaration.</li>
  1635  
  1636  	<li>The scope of an identifier denoting a method receiver, function parameter,
  1637  	    or result variable is the function body.</li>
  1638  
  1639  	<li>The scope of a constant or variable identifier declared
  1640  	    inside a function begins at the end of the ConstSpec or VarSpec
  1641  	    (ShortVarDecl for short variable declarations)
  1642  	    and ends at the end of the innermost containing block.</li>
  1643  
  1644  	<li>The scope of a type identifier declared inside a function
  1645  	    begins at the identifier in the TypeSpec
  1646  	    and ends at the end of the innermost containing block.</li>
  1647  </ol>
  1648  
  1649  <p>
  1650  An identifier declared in a block may be redeclared in an inner block.
  1651  While the identifier of the inner declaration is in scope, it denotes
  1652  the entity declared by the inner declaration.
  1653  </p>
  1654  
  1655  <p>
  1656  The <a href="#Package_clause">package clause</a> is not a declaration; the package name
  1657  does not appear in any scope. Its purpose is to identify the files belonging
  1658  to the same <a href="#Packages">package</a> and to specify the default package name for import
  1659  declarations.
  1660  </p>
  1661  
  1662  
  1663  <h3 id="Label_scopes">Label scopes</h3>
  1664  
  1665  <p>
  1666  Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
  1667  used in the <a href="#Break_statements">"break"</a>,
  1668  <a href="#Continue_statements">"continue"</a>, and
  1669  <a href="#Goto_statements">"goto"</a> statements.
  1670  It is illegal to define a label that is never used.
  1671  In contrast to other identifiers, labels are not block scoped and do
  1672  not conflict with identifiers that are not labels. The scope of a label
  1673  is the body of the function in which it is declared and excludes
  1674  the body of any nested function.
  1675  </p>
  1676  
  1677  
  1678  <h3 id="Blank_identifier">Blank identifier</h3>
  1679  
  1680  <p>
  1681  The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
  1682  It serves as an anonymous placeholder instead of a regular (non-blank)
  1683  identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
  1684  as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
  1685  </p>
  1686  
  1687  
  1688  <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
  1689  
  1690  <p>
  1691  The following identifiers are implicitly declared in the
  1692  <a href="#Blocks">universe block</a>:
  1693  </p>
  1694  <pre class="grammar">
  1695  Types:
  1696  	bool byte complex64 complex128 error float32 float64
  1697  	int int8 int16 int32 int64 rune string
  1698  	uint uint8 uint16 uint32 uint64 uintptr
  1699  
  1700  Constants:
  1701  	true false iota
  1702  
  1703  Zero value:
  1704  	nil
  1705  
  1706  Functions:
  1707  	append cap close complex copy delete imag len
  1708  	make new panic print println real recover
  1709  </pre>
  1710  
  1711  
  1712  <h3 id="Exported_identifiers">Exported identifiers</h3>
  1713  
  1714  <p>
  1715  An identifier may be <i>exported</i> to permit access to it from another package.
  1716  An identifier is exported if both:
  1717  </p>
  1718  <ol>
  1719  	<li>the first character of the identifier's name is a Unicode upper case
  1720  	letter (Unicode class "Lu"); and</li>
  1721  	<li>the identifier is declared in the <a href="#Blocks">package block</a>
  1722  	or it is a <a href="#Struct_types">field name</a> or
  1723  	<a href="#MethodName">method name</a>.</li>
  1724  </ol>
  1725  <p>
  1726  All other identifiers are not exported.
  1727  </p>
  1728  
  1729  
  1730  <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
  1731  
  1732  <p>
  1733  Given a set of identifiers, an identifier is called <i>unique</i> if it is
  1734  <i>different</i> from every other in the set.
  1735  Two identifiers are different if they are spelled differently, or if they
  1736  appear in different <a href="#Packages">packages</a> and are not
  1737  <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
  1738  </p>
  1739  
  1740  <h3 id="Constant_declarations">Constant declarations</h3>
  1741  
  1742  <p>
  1743  A constant declaration binds a list of identifiers (the names of
  1744  the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
  1745  The number of identifiers must be equal
  1746  to the number of expressions, and the <i>n</i>th identifier on
  1747  the left is bound to the value of the <i>n</i>th expression on the
  1748  right.
  1749  </p>
  1750  
  1751  <pre class="ebnf">
  1752  ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
  1753  ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
  1754  
  1755  IdentifierList = identifier { "," identifier } .
  1756  ExpressionList = Expression { "," Expression } .
  1757  </pre>
  1758  
  1759  <p>
  1760  If the type is present, all constants take the type specified, and
  1761  the expressions must be <a href="#Assignability">assignable</a> to that type.
  1762  If the type is omitted, the constants take the
  1763  individual types of the corresponding expressions.
  1764  If the expression values are untyped <a href="#Constants">constants</a>,
  1765  the declared constants remain untyped and the constant identifiers
  1766  denote the constant values. For instance, if the expression is a
  1767  floating-point literal, the constant identifier denotes a floating-point
  1768  constant, even if the literal's fractional part is zero.
  1769  </p>
  1770  
  1771  <pre>
  1772  const Pi float64 = 3.14159265358979323846
  1773  const zero = 0.0         // untyped floating-point constant
  1774  const (
  1775  	size int64 = 1024
  1776  	eof        = -1  // untyped integer constant
  1777  )
  1778  const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
  1779  const u, v float32 = 0, 3    // u = 0.0, v = 3.0
  1780  </pre>
  1781  
  1782  <p>
  1783  Within a parenthesized <code>const</code> declaration list the
  1784  expression list may be omitted from any but the first declaration.
  1785  Such an empty list is equivalent to the textual substitution of the
  1786  first preceding non-empty expression list and its type if any.
  1787  Omitting the list of expressions is therefore equivalent to
  1788  repeating the previous list.  The number of identifiers must be equal
  1789  to the number of expressions in the previous list.
  1790  Together with the <a href="#Iota"><code>iota</code> constant generator</a>
  1791  this mechanism permits light-weight declaration of sequential values:
  1792  </p>
  1793  
  1794  <pre>
  1795  const (
  1796  	Sunday = iota
  1797  	Monday
  1798  	Tuesday
  1799  	Wednesday
  1800  	Thursday
  1801  	Friday
  1802  	Partyday
  1803  	numberOfDays  // this constant is not exported
  1804  )
  1805  </pre>
  1806  
  1807  
  1808  <h3 id="Iota">Iota</h3>
  1809  
  1810  <p>
  1811  Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
  1812  <code>iota</code> represents successive untyped integer <a href="#Constants">
  1813  constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
  1814  appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
  1815  It can be used to construct a set of related constants:
  1816  </p>
  1817  
  1818  <pre>
  1819  const ( // iota is reset to 0
  1820  	c0 = iota  // c0 == 0
  1821  	c1 = iota  // c1 == 1
  1822  	c2 = iota  // c2 == 2
  1823  )
  1824  
  1825  const ( // iota is reset to 0
  1826  	a = 1 &lt;&lt; iota  // a == 1
  1827  	b = 1 &lt;&lt; iota  // b == 2
  1828  	c = 3          // c == 3  (iota is not used but still incremented)
  1829  	d = 1 &lt;&lt; iota  // d == 8
  1830  )
  1831  
  1832  const ( // iota is reset to 0
  1833  	u         = iota * 42  // u == 0     (untyped integer constant)
  1834  	v float64 = iota * 42  // v == 42.0  (float64 constant)
  1835  	w         = iota * 42  // w == 84    (untyped integer constant)
  1836  )
  1837  
  1838  const x = iota  // x == 0  (iota has been reset)
  1839  const y = iota  // y == 0  (iota has been reset)
  1840  </pre>
  1841  
  1842  <p>
  1843  Within an ExpressionList, the value of each <code>iota</code> is the same because
  1844  it is only incremented after each ConstSpec:
  1845  </p>
  1846  
  1847  <pre>
  1848  const (
  1849  	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
  1850  	bit1, mask1                           // bit1 == 2, mask1 == 1
  1851  	_, _                                  // skips iota == 2
  1852  	bit3, mask3                           // bit3 == 8, mask3 == 7
  1853  )
  1854  </pre>
  1855  
  1856  <p>
  1857  This last example exploits the implicit repetition of the
  1858  last non-empty expression list.
  1859  </p>
  1860  
  1861  
  1862  <h3 id="Type_declarations">Type declarations</h3>
  1863  
  1864  <p>
  1865  A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>.
  1866  Type declarations come in two forms: alias declarations and type definitions.
  1867  <p>
  1868  
  1869  <pre class="ebnf">
  1870  TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
  1871  TypeSpec = AliasDecl | TypeDef .
  1872  </pre>
  1873  
  1874  <h4 id="Alias_declarations">Alias declarations</h4>
  1875  
  1876  <p>
  1877  An alias declaration binds an identifier to the given type.
  1878  </p>
  1879  
  1880  <pre class="ebnf">
  1881  AliasDecl = identifier "=" Type .
  1882  </pre>
  1883  
  1884  <p>
  1885  Within the <a href="#Declarations_and_scope">scope</a> of
  1886  the identifier, it serves as an <i>alias</i> for the type.
  1887  </p>
  1888  
  1889  <pre>
  1890  type (
  1891  	nodeList = []*Node  // nodeList and []*Node are identical types
  1892  	Polar    = polar    // Polar and polar denote identical types
  1893  )
  1894  </pre>
  1895  
  1896  
  1897  <h4 id="Type_definitions">Type definitions</h4>
  1898  
  1899  <p>
  1900  A type definition creates a new, distinct type with the same
  1901  <a href="#Types">underlying type</a> and operations as the given type,
  1902  and binds an identifier to it.
  1903  </p>
  1904  
  1905  <pre class="ebnf">
  1906  TypeDef = identifier Type .
  1907  </pre>
  1908  
  1909  <p>
  1910  The new type is called a <i>defined type</i>.
  1911  It is <a href="#Type_identity">different</a> from any other type,
  1912  including the type it is created from.
  1913  </p>
  1914  
  1915  <pre>
  1916  type (
  1917  	Point struct{ x, y float64 }  // Point and struct{ x, y float64 } are different types
  1918  	polar Point                   // polar and Point denote different types
  1919  )
  1920  
  1921  type TreeNode struct {
  1922  	left, right *TreeNode
  1923  	value *Comparable
  1924  }
  1925  
  1926  type Block interface {
  1927  	BlockSize() int
  1928  	Encrypt(src, dst []byte)
  1929  	Decrypt(src, dst []byte)
  1930  }
  1931  </pre>
  1932  
  1933  <p>
  1934  A defined type may have <a href="#Method_declarations">methods</a> associated with it.
  1935  It does not inherit any methods bound to the given type,
  1936  but the <a href="#Method_sets">method set</a>
  1937  of an interface type or of elements of a composite type remains unchanged:
  1938  </p>
  1939  
  1940  <pre>
  1941  // A Mutex is a data type with two methods, Lock and Unlock.
  1942  type Mutex struct         { /* Mutex fields */ }
  1943  func (m *Mutex) Lock()    { /* Lock implementation */ }
  1944  func (m *Mutex) Unlock()  { /* Unlock implementation */ }
  1945  
  1946  // NewMutex has the same composition as Mutex but its method set is empty.
  1947  type NewMutex Mutex
  1948  
  1949  // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
  1950  // but the method set of PtrMutex is empty.
  1951  type PtrMutex *Mutex
  1952  
  1953  // The method set of *PrintableMutex contains the methods
  1954  // Lock and Unlock bound to its embedded field Mutex.
  1955  type PrintableMutex struct {
  1956  	Mutex
  1957  }
  1958  
  1959  // MyBlock is an interface type that has the same method set as Block.
  1960  type MyBlock Block
  1961  </pre>
  1962  
  1963  <p>
  1964  Type definitions may be used to define different boolean, numeric,
  1965  or string types and associate methods with them:
  1966  </p>
  1967  
  1968  <pre>
  1969  type TimeZone int
  1970  
  1971  const (
  1972  	EST TimeZone = -(5 + iota)
  1973  	CST
  1974  	MST
  1975  	PST
  1976  )
  1977  
  1978  func (tz TimeZone) String() string {
  1979  	return fmt.Sprintf("GMT%+dh", tz)
  1980  }
  1981  </pre>
  1982  
  1983  
  1984  <h3 id="Variable_declarations">Variable declarations</h3>
  1985  
  1986  <p>
  1987  A variable declaration creates one or more <a href="#Variables">variables</a>,
  1988  binds corresponding identifiers to them, and gives each a type and an initial value.
  1989  </p>
  1990  
  1991  <pre class="ebnf">
  1992  VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
  1993  VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
  1994  </pre>
  1995  
  1996  <pre>
  1997  var i int
  1998  var U, V, W float64
  1999  var k = 0
  2000  var x, y float32 = -1, -2
  2001  var (
  2002  	i       int
  2003  	u, v, s = 2.0, 3.0, "bar"
  2004  )
  2005  var re, im = complexSqrt(-1)
  2006  var _, found = entries[name]  // map lookup; only interested in "found"
  2007  </pre>
  2008  
  2009  <p>
  2010  If a list of expressions is given, the variables are initialized
  2011  with the expressions following the rules for <a href="#Assignments">assignments</a>.
  2012  Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
  2013  </p>
  2014  
  2015  <p>
  2016  If a type is present, each variable is given that type.
  2017  Otherwise, each variable is given the type of the corresponding
  2018  initialization value in the assignment.
  2019  If that value is an untyped constant, it is first
  2020  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  2021  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  2022  The predeclared value <code>nil</code> cannot be used to initialize a variable
  2023  with no explicit type.
  2024  </p>
  2025  
  2026  <pre>
  2027  var d = math.Sin(0.5)  // d is float64
  2028  var i = 42             // i is int
  2029  var t, ok = x.(T)      // t is T, ok is bool
  2030  var n = nil            // illegal
  2031  </pre>
  2032  
  2033  <p>
  2034  Implementation restriction: A compiler may make it illegal to declare a variable
  2035  inside a <a href="#Function_declarations">function body</a> if the variable is
  2036  never used.
  2037  </p>
  2038  
  2039  <h3 id="Short_variable_declarations">Short variable declarations</h3>
  2040  
  2041  <p>
  2042  A <i>short variable declaration</i> uses the syntax:
  2043  </p>
  2044  
  2045  <pre class="ebnf">
  2046  ShortVarDecl = IdentifierList ":=" ExpressionList .
  2047  </pre>
  2048  
  2049  <p>
  2050  It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
  2051  with initializer expressions but no types:
  2052  </p>
  2053  
  2054  <pre class="grammar">
  2055  "var" IdentifierList = ExpressionList .
  2056  </pre>
  2057  
  2058  <pre>
  2059  i, j := 0, 10
  2060  f := func() int { return 7 }
  2061  ch := make(chan int)
  2062  r, w := os.Pipe(fd)  // os.Pipe() returns two values
  2063  _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
  2064  </pre>
  2065  
  2066  <p>
  2067  Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
  2068  variables provided they were originally declared earlier in the same block
  2069  (or the parameter lists if the block is the function body) with the same type,
  2070  and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
  2071  As a consequence, redeclaration can only appear in a multi-variable short declaration.
  2072  Redeclaration does not introduce a new variable; it just assigns a new value to the original.
  2073  </p>
  2074  
  2075  <pre>
  2076  field1, offset := nextField(str, 0)
  2077  field2, offset := nextField(str, offset)  // redeclares offset
  2078  a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
  2079  </pre>
  2080  
  2081  <p>
  2082  Short variable declarations may appear only inside functions.
  2083  In some contexts such as the initializers for
  2084  <a href="#If_statements">"if"</a>,
  2085  <a href="#For_statements">"for"</a>, or
  2086  <a href="#Switch_statements">"switch"</a> statements,
  2087  they can be used to declare local temporary variables.
  2088  </p>
  2089  
  2090  <h3 id="Function_declarations">Function declarations</h3>
  2091  
  2092  <p>
  2093  A function declaration binds an identifier, the <i>function name</i>,
  2094  to a function.
  2095  </p>
  2096  
  2097  <pre class="ebnf">
  2098  FunctionDecl = "func" FunctionName ( Function | Signature ) .
  2099  FunctionName = identifier .
  2100  Function     = Signature FunctionBody .
  2101  FunctionBody = Block .
  2102  </pre>
  2103  
  2104  <p>
  2105  If the function's <a href="#Function_types">signature</a> declares
  2106  result parameters, the function body's statement list must end in
  2107  a <a href="#Terminating_statements">terminating statement</a>.
  2108  </p>
  2109  
  2110  <pre>
  2111  func IndexRune(s string, r rune) int {
  2112  	for i, c := range s {
  2113  		if c == r {
  2114  			return i
  2115  		}
  2116  	}
  2117  	// invalid: missing return statement
  2118  }
  2119  </pre>
  2120  
  2121  <p>
  2122  A function declaration may omit the body. Such a declaration provides the
  2123  signature for a function implemented outside Go, such as an assembly routine.
  2124  </p>
  2125  
  2126  <pre>
  2127  func min(x int, y int) int {
  2128  	if x &lt; y {
  2129  		return x
  2130  	}
  2131  	return y
  2132  }
  2133  
  2134  func flushICache(begin, end uintptr)  // implemented externally
  2135  </pre>
  2136  
  2137  <h3 id="Method_declarations">Method declarations</h3>
  2138  
  2139  <p>
  2140  A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
  2141  A method declaration binds an identifier, the <i>method name</i>, to a method,
  2142  and associates the method with the receiver's <i>base type</i>.
  2143  </p>
  2144  
  2145  <pre class="ebnf">
  2146  MethodDecl = "func" Receiver MethodName ( Function | Signature ) .
  2147  Receiver   = Parameters .
  2148  </pre>
  2149  
  2150  <p>
  2151  The receiver is specified via an extra parameter section preceding the method
  2152  name. That parameter section must declare a single non-variadic parameter, the receiver.
  2153  Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
  2154  parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
  2155  the receiver <i>base type</i>; it must not be a pointer or interface type and
  2156  it must be <a href="#Type_definitions">defined</a> in the same package as the method.
  2157  The method is said to be <i>bound</i> to the base type and the method name
  2158  is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
  2159  or <code>*T</code>.
  2160  </p>
  2161  
  2162  <p>
  2163  A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
  2164  <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
  2165  If the receiver's value is not referenced inside the body of the method,
  2166  its identifier may be omitted in the declaration. The same applies in
  2167  general to parameters of functions and methods.
  2168  </p>
  2169  
  2170  <p>
  2171  For a base type, the non-blank names of methods bound to it must be unique.
  2172  If the base type is a <a href="#Struct_types">struct type</a>,
  2173  the non-blank method and field names must be distinct.
  2174  </p>
  2175  
  2176  <p>
  2177  Given type <code>Point</code>, the declarations
  2178  </p>
  2179  
  2180  <pre>
  2181  func (p *Point) Length() float64 {
  2182  	return math.Sqrt(p.x * p.x + p.y * p.y)
  2183  }
  2184  
  2185  func (p *Point) Scale(factor float64) {
  2186  	p.x *= factor
  2187  	p.y *= factor
  2188  }
  2189  </pre>
  2190  
  2191  <p>
  2192  bind the methods <code>Length</code> and <code>Scale</code>,
  2193  with receiver type <code>*Point</code>,
  2194  to the base type <code>Point</code>.
  2195  </p>
  2196  
  2197  <p>
  2198  The type of a method is the type of a function with the receiver as first
  2199  argument.  For instance, the method <code>Scale</code> has type
  2200  </p>
  2201  
  2202  <pre>
  2203  func(p *Point, factor float64)
  2204  </pre>
  2205  
  2206  <p>
  2207  However, a function declared this way is not a method.
  2208  </p>
  2209  
  2210  
  2211  <h2 id="Expressions">Expressions</h2>
  2212  
  2213  <p>
  2214  An expression specifies the computation of a value by applying
  2215  operators and functions to operands.
  2216  </p>
  2217  
  2218  <h3 id="Operands">Operands</h3>
  2219  
  2220  <p>
  2221  Operands denote the elementary values in an expression. An operand may be a
  2222  literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
  2223  non-<a href="#Blank_identifier">blank</a> identifier denoting a
  2224  <a href="#Constant_declarations">constant</a>,
  2225  <a href="#Variable_declarations">variable</a>, or
  2226  <a href="#Function_declarations">function</a>,
  2227  a <a href="#Method_expressions">method expression</a> yielding a function,
  2228  or a parenthesized expression.
  2229  </p>
  2230  
  2231  <p>
  2232  The <a href="#Blank_identifier">blank identifier</a> may appear as an
  2233  operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
  2234  </p>
  2235  
  2236  <pre class="ebnf">
  2237  Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
  2238  Literal     = BasicLit | CompositeLit | FunctionLit .
  2239  BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
  2240  OperandName = identifier | QualifiedIdent.
  2241  </pre>
  2242  
  2243  <h3 id="Qualified_identifiers">Qualified identifiers</h3>
  2244  
  2245  <p>
  2246  A qualified identifier is an identifier qualified with a package name prefix.
  2247  Both the package name and the identifier must not be
  2248  <a href="#Blank_identifier">blank</a>.
  2249  </p>
  2250  
  2251  <pre class="ebnf">
  2252  QualifiedIdent = PackageName "." identifier .
  2253  </pre>
  2254  
  2255  <p>
  2256  A qualified identifier accesses an identifier in a different package, which
  2257  must be <a href="#Import_declarations">imported</a>.
  2258  The identifier must be <a href="#Exported_identifiers">exported</a> and
  2259  declared in the <a href="#Blocks">package block</a> of that package.
  2260  </p>
  2261  
  2262  <pre>
  2263  math.Sin	// denotes the Sin function in package math
  2264  </pre>
  2265  
  2266  <h3 id="Composite_literals">Composite literals</h3>
  2267  
  2268  <p>
  2269  Composite literals construct values for structs, arrays, slices, and maps
  2270  and create a new value each time they are evaluated.
  2271  They consist of the type of the literal followed by a brace-bound list of elements.
  2272  Each element may optionally be preceded by a corresponding key.
  2273  </p>
  2274  
  2275  <pre class="ebnf">
  2276  CompositeLit  = LiteralType LiteralValue .
  2277  LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
  2278                  SliceType | MapType | TypeName .
  2279  LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
  2280  ElementList   = KeyedElement { "," KeyedElement } .
  2281  KeyedElement  = [ Key ":" ] Element .
  2282  Key           = FieldName | Expression | LiteralValue .
  2283  FieldName     = identifier .
  2284  Element       = Expression | LiteralValue .
  2285  </pre>
  2286  
  2287  <p>
  2288  The LiteralType's underlying type must be a struct, array, slice, or map type
  2289  (the grammar enforces this constraint except when the type is given
  2290  as a TypeName).
  2291  The types of the elements and keys must be <a href="#Assignability">assignable</a>
  2292  to the respective field, element, and key types of the literal type;
  2293  there is no additional conversion.
  2294  The key is interpreted as a field name for struct literals,
  2295  an index for array and slice literals, and a key for map literals.
  2296  For map literals, all elements must have a key. It is an error
  2297  to specify multiple elements with the same field name or
  2298  constant key value. For non-constant map keys, see the section on
  2299  <a href="#Order_of_evaluation">evaluation order</a>.
  2300  </p>
  2301  
  2302  <p>
  2303  For struct literals the following rules apply:
  2304  </p>
  2305  <ul>
  2306  	<li>A key must be a field name declared in the struct type.
  2307  	</li>
  2308  	<li>An element list that does not contain any keys must
  2309  	    list an element for each struct field in the
  2310  	    order in which the fields are declared.
  2311  	</li>
  2312  	<li>If any element has a key, every element must have a key.
  2313  	</li>
  2314  	<li>An element list that contains keys does not need to
  2315  	    have an element for each struct field. Omitted fields
  2316  	    get the zero value for that field.
  2317  	</li>
  2318  	<li>A literal may omit the element list; such a literal evaluates
  2319  	    to the zero value for its type.
  2320  	</li>
  2321  	<li>It is an error to specify an element for a non-exported
  2322  	    field of a struct belonging to a different package.
  2323  	</li>
  2324  </ul>
  2325  
  2326  <p>
  2327  Given the declarations
  2328  </p>
  2329  <pre>
  2330  type Point3D struct { x, y, z float64 }
  2331  type Line struct { p, q Point3D }
  2332  </pre>
  2333  
  2334  <p>
  2335  one may write
  2336  </p>
  2337  
  2338  <pre>
  2339  origin := Point3D{}                            // zero value for Point3D
  2340  line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
  2341  </pre>
  2342  
  2343  <p>
  2344  For array and slice literals the following rules apply:
  2345  </p>
  2346  <ul>
  2347  	<li>Each element has an associated integer index marking
  2348  	    its position in the array.
  2349  	</li>
  2350  	<li>An element with a key uses the key as its index. The
  2351  	    key must be a non-negative constant representable by
  2352  	    a value of type <code>int</code>; and if it is typed
  2353  	    it must be of integer type.
  2354  	</li>
  2355  	<li>An element without a key uses the previous element's index plus one.
  2356  	    If the first element has no key, its index is zero.
  2357  	</li>
  2358  </ul>
  2359  
  2360  <p>
  2361  <a href="#Address_operators">Taking the address</a> of a composite literal
  2362  generates a pointer to a unique <a href="#Variables">variable</a> initialized
  2363  with the literal's value.
  2364  </p>
  2365  <pre>
  2366  var pointer *Point3D = &amp;Point3D{y: 1000}
  2367  </pre>
  2368  
  2369  <p>
  2370  The length of an array literal is the length specified in the literal type.
  2371  If fewer elements than the length are provided in the literal, the missing
  2372  elements are set to the zero value for the array element type.
  2373  It is an error to provide elements with index values outside the index range
  2374  of the array. The notation <code>...</code> specifies an array length equal
  2375  to the maximum element index plus one.
  2376  </p>
  2377  
  2378  <pre>
  2379  buffer := [10]string{}             // len(buffer) == 10
  2380  intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
  2381  days := [...]string{"Sat", "Sun"}  // len(days) == 2
  2382  </pre>
  2383  
  2384  <p>
  2385  A slice literal describes the entire underlying array literal.
  2386  Thus the length and capacity of a slice literal are the maximum
  2387  element index plus one. A slice literal has the form
  2388  </p>
  2389  
  2390  <pre>
  2391  []T{x1, x2, … xn}
  2392  </pre>
  2393  
  2394  <p>
  2395  and is shorthand for a slice operation applied to an array:
  2396  </p>
  2397  
  2398  <pre>
  2399  tmp := [n]T{x1, x2, … xn}
  2400  tmp[0 : n]
  2401  </pre>
  2402  
  2403  <p>
  2404  Within a composite literal of array, slice, or map type <code>T</code>,
  2405  elements or map keys that are themselves composite literals may elide the respective
  2406  literal type if it is identical to the element or key type of <code>T</code>.
  2407  Similarly, elements or keys that are addresses of composite literals may elide
  2408  the <code>&amp;T</code> when the element or key type is <code>*T</code>.
  2409  </p>
  2410  
  2411  <pre>
  2412  [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
  2413  [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
  2414  [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
  2415  map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
  2416  map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
  2417  
  2418  type PPoint *Point
  2419  [2]*Point{{1.5, -3.5}, {}}          // same as [2]*Point{&amp;Point{1.5, -3.5}, &amp;Point{}}
  2420  [2]PPoint{{1.5, -3.5}, {}}          // same as [2]PPoint{PPoint(&amp;Point{1.5, -3.5}), PPoint(&amp;Point{})}
  2421  </pre>
  2422  
  2423  <p>
  2424  A parsing ambiguity arises when a composite literal using the
  2425  TypeName form of the LiteralType appears as an operand between the
  2426  <a href="#Keywords">keyword</a> and the opening brace of the block
  2427  of an "if", "for", or "switch" statement, and the composite literal
  2428  is not enclosed in parentheses, square brackets, or curly braces.
  2429  In this rare case, the opening brace of the literal is erroneously parsed
  2430  as the one introducing the block of statements. To resolve the ambiguity,
  2431  the composite literal must appear within parentheses.
  2432  </p>
  2433  
  2434  <pre>
  2435  if x == (T{a,b,c}[i]) { … }
  2436  if (x == T{a,b,c}[i]) { … }
  2437  </pre>
  2438  
  2439  <p>
  2440  Examples of valid array, slice, and map literals:
  2441  </p>
  2442  
  2443  <pre>
  2444  // list of prime numbers
  2445  primes := []int{2, 3, 5, 7, 9, 2147483647}
  2446  
  2447  // vowels[ch] is true if ch is a vowel
  2448  vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
  2449  
  2450  // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
  2451  filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
  2452  
  2453  // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
  2454  noteFrequency := map[string]float32{
  2455  	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
  2456  	"G0": 24.50, "A0": 27.50, "B0": 30.87,
  2457  }
  2458  </pre>
  2459  
  2460  
  2461  <h3 id="Function_literals">Function literals</h3>
  2462  
  2463  <p>
  2464  A function literal represents an anonymous <a href="#Function_declarations">function</a>.
  2465  </p>
  2466  
  2467  <pre class="ebnf">
  2468  FunctionLit = "func" Function .
  2469  </pre>
  2470  
  2471  <pre>
  2472  func(a, b int, z float64) bool { return a*b &lt; int(z) }
  2473  </pre>
  2474  
  2475  <p>
  2476  A function literal can be assigned to a variable or invoked directly.
  2477  </p>
  2478  
  2479  <pre>
  2480  f := func(x, y int) int { return x + y }
  2481  func(ch chan int) { ch &lt;- ACK }(replyChan)
  2482  </pre>
  2483  
  2484  <p>
  2485  Function literals are <i>closures</i>: they may refer to variables
  2486  defined in a surrounding function. Those variables are then shared between
  2487  the surrounding function and the function literal, and they survive as long
  2488  as they are accessible.
  2489  </p>
  2490  
  2491  
  2492  <h3 id="Primary_expressions">Primary expressions</h3>
  2493  
  2494  <p>
  2495  Primary expressions are the operands for unary and binary expressions.
  2496  </p>
  2497  
  2498  <pre class="ebnf">
  2499  PrimaryExpr =
  2500  	Operand |
  2501  	Conversion |
  2502  	PrimaryExpr Selector |
  2503  	PrimaryExpr Index |
  2504  	PrimaryExpr Slice |
  2505  	PrimaryExpr TypeAssertion |
  2506  	PrimaryExpr Arguments .
  2507  
  2508  Selector       = "." identifier .
  2509  Index          = "[" Expression "]" .
  2510  Slice          = "[" [ Expression ] ":" [ Expression ] "]" |
  2511                   "[" [ Expression ] ":" Expression ":" Expression "]" .
  2512  TypeAssertion  = "." "(" Type ")" .
  2513  Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
  2514  </pre>
  2515  
  2516  
  2517  <pre>
  2518  x
  2519  2
  2520  (s + ".txt")
  2521  f(3.1415, true)
  2522  Point{1, 2}
  2523  m["foo"]
  2524  s[i : j + 1]
  2525  obj.color
  2526  f.p[i].x()
  2527  </pre>
  2528  
  2529  
  2530  <h3 id="Selectors">Selectors</h3>
  2531  
  2532  <p>
  2533  For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
  2534  that is not a <a href="#Package_clause">package name</a>, the
  2535  <i>selector expression</i>
  2536  </p>
  2537  
  2538  <pre>
  2539  x.f
  2540  </pre>
  2541  
  2542  <p>
  2543  denotes the field or method <code>f</code> of the value <code>x</code>
  2544  (or sometimes <code>*x</code>; see below).
  2545  The identifier <code>f</code> is called the (field or method) <i>selector</i>;
  2546  it must not be the <a href="#Blank_identifier">blank identifier</a>.
  2547  The type of the selector expression is the type of <code>f</code>.
  2548  If <code>x</code> is a package name, see the section on
  2549  <a href="#Qualified_identifiers">qualified identifiers</a>.
  2550  </p>
  2551  
  2552  <p>
  2553  A selector <code>f</code> may denote a field or method <code>f</code> of
  2554  a type <code>T</code>, or it may refer
  2555  to a field or method <code>f</code> of a nested
  2556  <a href="#Struct_types">embedded field</a> of <code>T</code>.
  2557  The number of embedded fields traversed
  2558  to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
  2559  The depth of a field or method <code>f</code>
  2560  declared in <code>T</code> is zero.
  2561  The depth of a field or method <code>f</code> declared in
  2562  an embedded field <code>A</code> in <code>T</code> is the
  2563  depth of <code>f</code> in <code>A</code> plus one.
  2564  </p>
  2565  
  2566  <p>
  2567  The following rules apply to selectors:
  2568  </p>
  2569  
  2570  <ol>
  2571  <li>
  2572  For a value <code>x</code> of type <code>T</code> or <code>*T</code>
  2573  where <code>T</code> is not a pointer or interface type,
  2574  <code>x.f</code> denotes the field or method at the shallowest depth
  2575  in <code>T</code> where there
  2576  is such an <code>f</code>.
  2577  If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
  2578  with shallowest depth, the selector expression is illegal.
  2579  </li>
  2580  
  2581  <li>
  2582  For a value <code>x</code> of type <code>I</code> where <code>I</code>
  2583  is an interface type, <code>x.f</code> denotes the actual method with name
  2584  <code>f</code> of the dynamic value of <code>x</code>.
  2585  If there is no method with name <code>f</code> in the
  2586  <a href="#Method_sets">method set</a> of <code>I</code>, the selector
  2587  expression is illegal.
  2588  </li>
  2589  
  2590  <li>
  2591  As an exception, if the type of <code>x</code> is a named pointer type
  2592  and <code>(*x).f</code> is a valid selector expression denoting a field
  2593  (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
  2594  </li>
  2595  
  2596  <li>
  2597  In all other cases, <code>x.f</code> is illegal.
  2598  </li>
  2599  
  2600  <li>
  2601  If <code>x</code> is of pointer type and has the value
  2602  <code>nil</code> and <code>x.f</code> denotes a struct field,
  2603  assigning to or evaluating <code>x.f</code>
  2604  causes a <a href="#Run_time_panics">run-time panic</a>.
  2605  </li>
  2606  
  2607  <li>
  2608  If <code>x</code> is of interface type and has the value
  2609  <code>nil</code>, <a href="#Calls">calling</a> or
  2610  <a href="#Method_values">evaluating</a> the method <code>x.f</code>
  2611  causes a <a href="#Run_time_panics">run-time panic</a>.
  2612  </li>
  2613  </ol>
  2614  
  2615  <p>
  2616  For example, given the declarations:
  2617  </p>
  2618  
  2619  <pre>
  2620  type T0 struct {
  2621  	x int
  2622  }
  2623  
  2624  func (*T0) M0()
  2625  
  2626  type T1 struct {
  2627  	y int
  2628  }
  2629  
  2630  func (T1) M1()
  2631  
  2632  type T2 struct {
  2633  	z int
  2634  	T1
  2635  	*T0
  2636  }
  2637  
  2638  func (*T2) M2()
  2639  
  2640  type Q *T2
  2641  
  2642  var t T2     // with t.T0 != nil
  2643  var p *T2    // with p != nil and (*p).T0 != nil
  2644  var q Q = p
  2645  </pre>
  2646  
  2647  <p>
  2648  one may write:
  2649  </p>
  2650  
  2651  <pre>
  2652  t.z          // t.z
  2653  t.y          // t.T1.y
  2654  t.x          // (*t.T0).x
  2655  
  2656  p.z          // (*p).z
  2657  p.y          // (*p).T1.y
  2658  p.x          // (*(*p).T0).x
  2659  
  2660  q.x          // (*(*q).T0).x        (*q).x is a valid field selector
  2661  
  2662  p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
  2663  p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
  2664  p.M2()       // p.M2()              M2 expects *T2 receiver
  2665  t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
  2666  </pre>
  2667  
  2668  <p>
  2669  but the following is invalid:
  2670  </p>
  2671  
  2672  <pre>
  2673  q.M0()       // (*q).M0 is valid but not a field selector
  2674  </pre>
  2675  
  2676  
  2677  <h3 id="Method_expressions">Method expressions</h3>
  2678  
  2679  <p>
  2680  If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2681  <code>T.M</code> is a function that is callable as a regular function
  2682  with the same arguments as <code>M</code> prefixed by an additional
  2683  argument that is the receiver of the method.
  2684  </p>
  2685  
  2686  <pre class="ebnf">
  2687  MethodExpr    = ReceiverType "." MethodName .
  2688  ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
  2689  </pre>
  2690  
  2691  <p>
  2692  Consider a struct type <code>T</code> with two methods,
  2693  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2694  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2695  </p>
  2696  
  2697  <pre>
  2698  type T struct {
  2699  	a int
  2700  }
  2701  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2702  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2703  
  2704  var t T
  2705  </pre>
  2706  
  2707  <p>
  2708  The expression
  2709  </p>
  2710  
  2711  <pre>
  2712  T.Mv
  2713  </pre>
  2714  
  2715  <p>
  2716  yields a function equivalent to <code>Mv</code> but
  2717  with an explicit receiver as its first argument; it has signature
  2718  </p>
  2719  
  2720  <pre>
  2721  func(tv T, a int) int
  2722  </pre>
  2723  
  2724  <p>
  2725  That function may be called normally with an explicit receiver, so
  2726  these five invocations are equivalent:
  2727  </p>
  2728  
  2729  <pre>
  2730  t.Mv(7)
  2731  T.Mv(t, 7)
  2732  (T).Mv(t, 7)
  2733  f1 := T.Mv; f1(t, 7)
  2734  f2 := (T).Mv; f2(t, 7)
  2735  </pre>
  2736  
  2737  <p>
  2738  Similarly, the expression
  2739  </p>
  2740  
  2741  <pre>
  2742  (*T).Mp
  2743  </pre>
  2744  
  2745  <p>
  2746  yields a function value representing <code>Mp</code> with signature
  2747  </p>
  2748  
  2749  <pre>
  2750  func(tp *T, f float32) float32
  2751  </pre>
  2752  
  2753  <p>
  2754  For a method with a value receiver, one can derive a function
  2755  with an explicit pointer receiver, so
  2756  </p>
  2757  
  2758  <pre>
  2759  (*T).Mv
  2760  </pre>
  2761  
  2762  <p>
  2763  yields a function value representing <code>Mv</code> with signature
  2764  </p>
  2765  
  2766  <pre>
  2767  func(tv *T, a int) int
  2768  </pre>
  2769  
  2770  <p>
  2771  Such a function indirects through the receiver to create a value
  2772  to pass as the receiver to the underlying method;
  2773  the method does not overwrite the value whose address is passed in
  2774  the function call.
  2775  </p>
  2776  
  2777  <p>
  2778  The final case, a value-receiver function for a pointer-receiver method,
  2779  is illegal because pointer-receiver methods are not in the method set
  2780  of the value type.
  2781  </p>
  2782  
  2783  <p>
  2784  Function values derived from methods are called with function call syntax;
  2785  the receiver is provided as the first argument to the call.
  2786  That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
  2787  as <code>f(t, 7)</code> not <code>t.f(7)</code>.
  2788  To construct a function that binds the receiver, use a
  2789  <a href="#Function_literals">function literal</a> or
  2790  <a href="#Method_values">method value</a>.
  2791  </p>
  2792  
  2793  <p>
  2794  It is legal to derive a function value from a method of an interface type.
  2795  The resulting function takes an explicit receiver of that interface type.
  2796  </p>
  2797  
  2798  <h3 id="Method_values">Method values</h3>
  2799  
  2800  <p>
  2801  If the expression <code>x</code> has static type <code>T</code> and
  2802  <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2803  <code>x.M</code> is called a <i>method value</i>.
  2804  The method value <code>x.M</code> is a function value that is callable
  2805  with the same arguments as a method call of <code>x.M</code>.
  2806  The expression <code>x</code> is evaluated and saved during the evaluation of the
  2807  method value; the saved copy is then used as the receiver in any calls,
  2808  which may be executed later.
  2809  </p>
  2810  
  2811  <p>
  2812  The type <code>T</code> may be an interface or non-interface type.
  2813  </p>
  2814  
  2815  <p>
  2816  As in the discussion of <a href="#Method_expressions">method expressions</a> above,
  2817  consider a struct type <code>T</code> with two methods,
  2818  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2819  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2820  </p>
  2821  
  2822  <pre>
  2823  type T struct {
  2824  	a int
  2825  }
  2826  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2827  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2828  
  2829  var t T
  2830  var pt *T
  2831  func makeT() T
  2832  </pre>
  2833  
  2834  <p>
  2835  The expression
  2836  </p>
  2837  
  2838  <pre>
  2839  t.Mv
  2840  </pre>
  2841  
  2842  <p>
  2843  yields a function value of type
  2844  </p>
  2845  
  2846  <pre>
  2847  func(int) int
  2848  </pre>
  2849  
  2850  <p>
  2851  These two invocations are equivalent:
  2852  </p>
  2853  
  2854  <pre>
  2855  t.Mv(7)
  2856  f := t.Mv; f(7)
  2857  </pre>
  2858  
  2859  <p>
  2860  Similarly, the expression
  2861  </p>
  2862  
  2863  <pre>
  2864  pt.Mp
  2865  </pre>
  2866  
  2867  <p>
  2868  yields a function value of type
  2869  </p>
  2870  
  2871  <pre>
  2872  func(float32) float32
  2873  </pre>
  2874  
  2875  <p>
  2876  As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
  2877  using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
  2878  </p>
  2879  
  2880  <p>
  2881  As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
  2882  using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
  2883  </p>
  2884  
  2885  <pre>
  2886  f := t.Mv; f(7)   // like t.Mv(7)
  2887  f := pt.Mp; f(7)  // like pt.Mp(7)
  2888  f := pt.Mv; f(7)  // like (*pt).Mv(7)
  2889  f := t.Mp; f(7)   // like (&amp;t).Mp(7)
  2890  f := makeT().Mp   // invalid: result of makeT() is not addressable
  2891  </pre>
  2892  
  2893  <p>
  2894  Although the examples above use non-interface types, it is also legal to create a method value
  2895  from a value of interface type.
  2896  </p>
  2897  
  2898  <pre>
  2899  var i interface { M(int) } = myVal
  2900  f := i.M; f(7)  // like i.M(7)
  2901  </pre>
  2902  
  2903  
  2904  <h3 id="Index_expressions">Index expressions</h3>
  2905  
  2906  <p>
  2907  A primary expression of the form
  2908  </p>
  2909  
  2910  <pre>
  2911  a[x]
  2912  </pre>
  2913  
  2914  <p>
  2915  denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
  2916  The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
  2917  The following rules apply:
  2918  </p>
  2919  
  2920  <p>
  2921  If <code>a</code> is not a map:
  2922  </p>
  2923  <ul>
  2924  	<li>the index <code>x</code> must be of integer type or untyped;
  2925  	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
  2926  	    otherwise it is <i>out of range</i></li>
  2927  	<li>a <a href="#Constants">constant</a> index must be non-negative
  2928  	    and representable by a value of type <code>int</code>
  2929  </ul>
  2930  
  2931  <p>
  2932  For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
  2933  </p>
  2934  <ul>
  2935  	<li>a <a href="#Constants">constant</a> index must be in range</li>
  2936  	<li>if <code>x</code> is out of range at run time,
  2937  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2938  	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
  2939  	    <code>a[x]</code> is the element type of <code>A</code></li>
  2940  </ul>
  2941  
  2942  <p>
  2943  For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
  2944  </p>
  2945  <ul>
  2946  	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
  2947  </ul>
  2948  
  2949  <p>
  2950  For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
  2951  </p>
  2952  <ul>
  2953  	<li>if <code>x</code> is out of range at run time,
  2954  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2955  	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
  2956  	    <code>a[x]</code> is the element type of <code>S</code></li>
  2957  </ul>
  2958  
  2959  <p>
  2960  For <code>a</code> of <a href="#String_types">string type</a>:
  2961  </p>
  2962  <ul>
  2963  	<li>a <a href="#Constants">constant</a> index must be in range
  2964  	    if the string <code>a</code> is also constant</li>
  2965  	<li>if <code>x</code> is out of range at run time,
  2966  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2967  	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
  2968  	    <code>a[x]</code> is <code>byte</code></li>
  2969  	<li><code>a[x]</code> may not be assigned to</li>
  2970  </ul>
  2971  
  2972  <p>
  2973  For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
  2974  </p>
  2975  <ul>
  2976  	<li><code>x</code>'s type must be
  2977  	    <a href="#Assignability">assignable</a>
  2978  	    to the key type of <code>M</code></li>
  2979  	<li>if the map contains an entry with key <code>x</code>,
  2980  	    <code>a[x]</code> is the map value with key <code>x</code>
  2981  	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
  2982  	<li>if the map is <code>nil</code> or does not contain such an entry,
  2983  	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
  2984  	    for the value type of <code>M</code></li>
  2985  </ul>
  2986  
  2987  <p>
  2988  Otherwise <code>a[x]</code> is illegal.
  2989  </p>
  2990  
  2991  <p>
  2992  An index expression on a map <code>a</code> of type <code>map[K]V</code>
  2993  used in an <a href="#Assignments">assignment</a> or initialization of the special form
  2994  </p>
  2995  
  2996  <pre>
  2997  v, ok = a[x]
  2998  v, ok := a[x]
  2999  var v, ok = a[x]
  3000  var v, ok T = a[x]
  3001  </pre>
  3002  
  3003  <p>
  3004  yields an additional untyped boolean value. The value of <code>ok</code> is
  3005  <code>true</code> if the key <code>x</code> is present in the map, and
  3006  <code>false</code> otherwise.
  3007  </p>
  3008  
  3009  <p>
  3010  Assigning to an element of a <code>nil</code> map causes a
  3011  <a href="#Run_time_panics">run-time panic</a>.
  3012  </p>
  3013  
  3014  
  3015  <h3 id="Slice_expressions">Slice expressions</h3>
  3016  
  3017  <p>
  3018  Slice expressions construct a substring or slice from a string, array, pointer
  3019  to array, or slice. There are two variants: a simple form that specifies a low
  3020  and high bound, and a full form that also specifies a bound on the capacity.
  3021  </p>
  3022  
  3023  <h4>Simple slice expressions</h4>
  3024  
  3025  <p>
  3026  For a string, array, pointer to array, or slice <code>a</code>, the primary expression
  3027  </p>
  3028  
  3029  <pre>
  3030  a[low : high]
  3031  </pre>
  3032  
  3033  <p>
  3034  constructs a substring or slice. The <i>indices</i> <code>low</code> and
  3035  <code>high</code> select which elements of operand <code>a</code> appear
  3036  in the result. The result has indices starting at 0 and length equal to
  3037  <code>high</code>&nbsp;-&nbsp;<code>low</code>.
  3038  After slicing the array <code>a</code>
  3039  </p>
  3040  
  3041  <pre>
  3042  a := [5]int{1, 2, 3, 4, 5}
  3043  s := a[1:4]
  3044  </pre>
  3045  
  3046  <p>
  3047  the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
  3048  </p>
  3049  
  3050  <pre>
  3051  s[0] == 2
  3052  s[1] == 3
  3053  s[2] == 4
  3054  </pre>
  3055  
  3056  <p>
  3057  For convenience, any of the indices may be omitted. A missing <code>low</code>
  3058  index defaults to zero; a missing <code>high</code> index defaults to the length of the
  3059  sliced operand:
  3060  </p>
  3061  
  3062  <pre>
  3063  a[2:]  // same as a[2 : len(a)]
  3064  a[:3]  // same as a[0 : 3]
  3065  a[:]   // same as a[0 : len(a)]
  3066  </pre>
  3067  
  3068  <p>
  3069  If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
  3070  <code>(*a)[low : high]</code>.
  3071  </p>
  3072  
  3073  <p>
  3074  For arrays or strings, the indices are <i>in range</i> if
  3075  <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
  3076  otherwise they are <i>out of range</i>.
  3077  For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
  3078  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3079  <code>int</code>; for arrays or constant strings, constant indices must also be in range.
  3080  If both indices are constant, they must satisfy <code>low &lt;= high</code>.
  3081  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3082  </p>
  3083  
  3084  <p>
  3085  Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
  3086  the result of the slice operation is a non-constant value of the same type as the operand.
  3087  For untyped string operands the result is a non-constant value of type <code>string</code>.
  3088  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
  3089  and the result of the slice operation is a slice with the same element type as the array.
  3090  </p>
  3091  
  3092  <p>
  3093  If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
  3094  is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
  3095  operand.
  3096  </p>
  3097  
  3098  <h4>Full slice expressions</h4>
  3099  
  3100  <p>
  3101  For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
  3102  </p>
  3103  
  3104  <pre>
  3105  a[low : high : max]
  3106  </pre>
  3107  
  3108  <p>
  3109  constructs a slice of the same type, and with the same length and elements as the simple slice
  3110  expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
  3111  by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
  3112  After slicing the array <code>a</code>
  3113  </p>
  3114  
  3115  <pre>
  3116  a := [5]int{1, 2, 3, 4, 5}
  3117  t := a[1:3:5]
  3118  </pre>
  3119  
  3120  <p>
  3121  the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
  3122  </p>
  3123  
  3124  <pre>
  3125  t[0] == 2
  3126  t[1] == 3
  3127  </pre>
  3128  
  3129  <p>
  3130  As for simple slice expressions, if <code>a</code> is a pointer to an array,
  3131  <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
  3132  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
  3133  </p>
  3134  
  3135  <p>
  3136  The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
  3137  otherwise they are <i>out of range</i>.
  3138  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3139  <code>int</code>; for arrays, constant indices must also be in range.
  3140  If multiple indices are constant, the constants that are present must be in range relative to each
  3141  other.
  3142  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3143  </p>
  3144  
  3145  <h3 id="Type_assertions">Type assertions</h3>
  3146  
  3147  <p>
  3148  For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
  3149  and a type <code>T</code>, the primary expression
  3150  </p>
  3151  
  3152  <pre>
  3153  x.(T)
  3154  </pre>
  3155  
  3156  <p>
  3157  asserts that <code>x</code> is not <code>nil</code>
  3158  and that the value stored in <code>x</code> is of type <code>T</code>.
  3159  The notation <code>x.(T)</code> is called a <i>type assertion</i>.
  3160  </p>
  3161  <p>
  3162  More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
  3163  that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
  3164  to the type <code>T</code>.
  3165  In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
  3166  otherwise the type assertion is invalid since it is not possible for <code>x</code>
  3167  to store a value of type <code>T</code>.
  3168  If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
  3169  of <code>x</code> implements the interface <code>T</code>.
  3170  </p>
  3171  <p>
  3172  If the type assertion holds, the value of the expression is the value
  3173  stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
  3174  a <a href="#Run_time_panics">run-time panic</a> occurs.
  3175  In other words, even though the dynamic type of <code>x</code>
  3176  is known only at run time, the type of <code>x.(T)</code> is
  3177  known to be <code>T</code> in a correct program.
  3178  </p>
  3179  
  3180  <pre>
  3181  var x interface{} = 7          // x has dynamic type int and value 7
  3182  i := x.(int)                   // i has type int and value 7
  3183  
  3184  type I interface { m() }
  3185  
  3186  func f(y I) {
  3187  	s := y.(string)        // illegal: string does not implement I (missing method m)
  3188  	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader
  3189  	…
  3190  }
  3191  </pre>
  3192  
  3193  <p>
  3194  A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3195  </p>
  3196  
  3197  <pre>
  3198  v, ok = x.(T)
  3199  v, ok := x.(T)
  3200  var v, ok = x.(T)
  3201  var v, ok T1 = x.(T)
  3202  </pre>
  3203  
  3204  <p>
  3205  yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
  3206  if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
  3207  the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
  3208  No run-time panic occurs in this case.
  3209  </p>
  3210  
  3211  
  3212  <h3 id="Calls">Calls</h3>
  3213  
  3214  <p>
  3215  Given an expression <code>f</code> of function type
  3216  <code>F</code>,
  3217  </p>
  3218  
  3219  <pre>
  3220  f(a1, a2, … an)
  3221  </pre>
  3222  
  3223  <p>
  3224  calls <code>f</code> with arguments <code>a1, a2, … an</code>.
  3225  Except for one special case, arguments must be single-valued expressions
  3226  <a href="#Assignability">assignable</a> to the parameter types of
  3227  <code>F</code> and are evaluated before the function is called.
  3228  The type of the expression is the result type
  3229  of <code>F</code>.
  3230  A method invocation is similar but the method itself
  3231  is specified as a selector upon a value of the receiver type for
  3232  the method.
  3233  </p>
  3234  
  3235  <pre>
  3236  math.Atan2(x, y)  // function call
  3237  var pt *Point
  3238  pt.Scale(3.5)     // method call with receiver pt
  3239  </pre>
  3240  
  3241  <p>
  3242  In a function call, the function value and arguments are evaluated in
  3243  <a href="#Order_of_evaluation">the usual order</a>.
  3244  After they are evaluated, the parameters of the call are passed by value to the function
  3245  and the called function begins execution.
  3246  The return parameters of the function are passed by value
  3247  back to the calling function when the function returns.
  3248  </p>
  3249  
  3250  <p>
  3251  Calling a <code>nil</code> function value
  3252  causes a <a href="#Run_time_panics">run-time panic</a>.
  3253  </p>
  3254  
  3255  <p>
  3256  As a special case, if the return values of a function or method
  3257  <code>g</code> are equal in number and individually
  3258  assignable to the parameters of another function or method
  3259  <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
  3260  will invoke <code>f</code> after binding the return values of
  3261  <code>g</code> to the parameters of <code>f</code> in order.  The call
  3262  of <code>f</code> must contain no parameters other than the call of <code>g</code>,
  3263  and <code>g</code> must have at least one return value.
  3264  If <code>f</code> has a final <code>...</code> parameter, it is
  3265  assigned the return values of <code>g</code> that remain after
  3266  assignment of regular parameters.
  3267  </p>
  3268  
  3269  <pre>
  3270  func Split(s string, pos int) (string, string) {
  3271  	return s[0:pos], s[pos:]
  3272  }
  3273  
  3274  func Join(s, t string) string {
  3275  	return s + t
  3276  }
  3277  
  3278  if Join(Split(value, len(value)/2)) != value {
  3279  	log.Panic("test fails")
  3280  }
  3281  </pre>
  3282  
  3283  <p>
  3284  A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
  3285  of (the type of) <code>x</code> contains <code>m</code> and the
  3286  argument list can be assigned to the parameter list of <code>m</code>.
  3287  If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
  3288  set contains <code>m</code>, <code>x.m()</code> is shorthand
  3289  for <code>(&amp;x).m()</code>:
  3290  </p>
  3291  
  3292  <pre>
  3293  var p Point
  3294  p.Scale(3.5)
  3295  </pre>
  3296  
  3297  <p>
  3298  There is no distinct method type and there are no method literals.
  3299  </p>
  3300  
  3301  <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
  3302  
  3303  <p>
  3304  If <code>f</code> is <a href="#Function_types">variadic</a> with a final
  3305  parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
  3306  the type of <code>p</code> is equivalent to type <code>[]T</code>.
  3307  If <code>f</code> is invoked with no actual arguments for <code>p</code>,
  3308  the value passed to <code>p</code> is <code>nil</code>.
  3309  Otherwise, the value passed is a new slice
  3310  of type <code>[]T</code> with a new underlying array whose successive elements
  3311  are the actual arguments, which all must be <a href="#Assignability">assignable</a>
  3312  to <code>T</code>. The length and capacity of the slice is therefore
  3313  the number of arguments bound to <code>p</code> and may differ for each
  3314  call site.
  3315  </p>
  3316  
  3317  <p>
  3318  Given the function and calls
  3319  </p>
  3320  <pre>
  3321  func Greeting(prefix string, who ...string)
  3322  Greeting("nobody")
  3323  Greeting("hello:", "Joe", "Anna", "Eileen")
  3324  </pre>
  3325  
  3326  <p>
  3327  within <code>Greeting</code>, <code>who</code> will have the value
  3328  <code>nil</code> in the first call, and
  3329  <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
  3330  </p>
  3331  
  3332  <p>
  3333  If the final argument is assignable to a slice type <code>[]T</code>, it may be
  3334  passed unchanged as the value for a <code>...T</code> parameter if the argument
  3335  is followed by <code>...</code>. In this case no new slice is created.
  3336  </p>
  3337  
  3338  <p>
  3339  Given the slice <code>s</code> and call
  3340  </p>
  3341  
  3342  <pre>
  3343  s := []string{"James", "Jasmine"}
  3344  Greeting("goodbye:", s...)
  3345  </pre>
  3346  
  3347  <p>
  3348  within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
  3349  with the same underlying array.
  3350  </p>
  3351  
  3352  
  3353  <h3 id="Operators">Operators</h3>
  3354  
  3355  <p>
  3356  Operators combine operands into expressions.
  3357  </p>
  3358  
  3359  <pre class="ebnf">
  3360  Expression = UnaryExpr | Expression binary_op Expression .
  3361  UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
  3362  
  3363  binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
  3364  rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
  3365  add_op     = "+" | "-" | "|" | "^" .
  3366  mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
  3367  
  3368  unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
  3369  </pre>
  3370  
  3371  <p>
  3372  Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
  3373  For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
  3374  unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
  3375  For operations involving constants only, see the section on
  3376  <a href="#Constant_expressions">constant expressions</a>.
  3377  </p>
  3378  
  3379  <p>
  3380  Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
  3381  and the other operand is not, the constant is <a href="#Conversions">converted</a>
  3382  to the type of the other operand.
  3383  </p>
  3384  
  3385  <p>
  3386  The right operand in a shift expression must have unsigned integer type
  3387  or be an untyped constant that can be converted to unsigned integer type.
  3388  If the left operand of a non-constant shift expression is an untyped constant,
  3389  it is first converted to the type it would assume if the shift expression were
  3390  replaced by its left operand alone.
  3391  </p>
  3392  
  3393  <pre>
  3394  var s uint = 33
  3395  var i = 1&lt;&lt;s           // 1 has type int
  3396  var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
  3397  var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
  3398  var m int = 1.0&lt;&lt;s     // 1.0 has type int; m == 0 if ints are 32bits in size
  3399  var n = 1.0&lt;&lt;s == j    // 1.0 has type int32; n == true
  3400  var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
  3401  var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
  3402  var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
  3403  var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
  3404  var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
  3405  var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
  3406  var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
  3407  </pre>
  3408  
  3409  
  3410  <h4 id="Operator_precedence">Operator precedence</h4>
  3411  <p>
  3412  Unary operators have the highest precedence.
  3413  As the  <code>++</code> and <code>--</code> operators form
  3414  statements, not expressions, they fall
  3415  outside the operator hierarchy.
  3416  As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
  3417  <p>
  3418  There are five precedence levels for binary operators.
  3419  Multiplication operators bind strongest, followed by addition
  3420  operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
  3421  and finally <code>||</code> (logical OR):
  3422  </p>
  3423  
  3424  <pre class="grammar">
  3425  Precedence    Operator
  3426      5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
  3427      4             +  -  |  ^
  3428      3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
  3429      2             &amp;&amp;
  3430      1             ||
  3431  </pre>
  3432  
  3433  <p>
  3434  Binary operators of the same precedence associate from left to right.
  3435  For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
  3436  </p>
  3437  
  3438  <pre>
  3439  +x
  3440  23 + 3*x[i]
  3441  x &lt;= f()
  3442  ^a &gt;&gt; b
  3443  f() || g()
  3444  x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
  3445  </pre>
  3446  
  3447  
  3448  <h3 id="Arithmetic_operators">Arithmetic operators</h3>
  3449  <p>
  3450  Arithmetic operators apply to numeric values and yield a result of the same
  3451  type as the first operand. The four standard arithmetic operators (<code>+</code>,
  3452  <code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
  3453  floating-point, and complex types; <code>+</code> also applies to strings.
  3454  The bitwise logical and shift operators apply to integers only.
  3455  </p>
  3456  
  3457  <pre class="grammar">
  3458  +    sum                    integers, floats, complex values, strings
  3459  -    difference             integers, floats, complex values
  3460  *    product                integers, floats, complex values
  3461  /    quotient               integers, floats, complex values
  3462  %    remainder              integers
  3463  
  3464  &amp;    bitwise AND            integers
  3465  |    bitwise OR             integers
  3466  ^    bitwise XOR            integers
  3467  &amp;^   bit clear (AND NOT)    integers
  3468  
  3469  &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
  3470  &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
  3471  </pre>
  3472  
  3473  
  3474  <h4 id="Integer_operators">Integer operators</h4>
  3475  
  3476  <p>
  3477  For two integer values <code>x</code> and <code>y</code>, the integer quotient
  3478  <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
  3479  relationships:
  3480  </p>
  3481  
  3482  <pre>
  3483  x = q*y + r  and  |r| &lt; |y|
  3484  </pre>
  3485  
  3486  <p>
  3487  with <code>x / y</code> truncated towards zero
  3488  (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
  3489  </p>
  3490  
  3491  <pre>
  3492   x     y     x / y     x % y
  3493   5     3       1         2
  3494  -5     3      -1        -2
  3495   5    -3      -1         2
  3496  -5    -3       1        -2
  3497  </pre>
  3498  
  3499  <p>
  3500  As an exception to this rule, if the dividend <code>x</code> is the most
  3501  negative value for the int type of <code>x</code>, the quotient
  3502  <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
  3503  </p>
  3504  
  3505  <pre>
  3506  			 x, q
  3507  int8                     -128
  3508  int16                  -32768
  3509  int32             -2147483648
  3510  int64    -9223372036854775808
  3511  </pre>
  3512  
  3513  <p>
  3514  If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
  3515  If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3516  If the dividend is non-negative and the divisor is a constant power of 2,
  3517  the division may be replaced by a right shift, and computing the remainder may
  3518  be replaced by a bitwise AND operation:
  3519  </p>
  3520  
  3521  <pre>
  3522   x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
  3523   11      2         3         2          3
  3524  -11     -2        -3        -3          1
  3525  </pre>
  3526  
  3527  <p>
  3528  The shift operators shift the left operand by the shift count specified by the
  3529  right operand. They implement arithmetic shifts if the left operand is a signed
  3530  integer and logical shifts if it is an unsigned integer.
  3531  There is no upper limit on the shift count. Shifts behave
  3532  as if the left operand is shifted <code>n</code> times by 1 for a shift
  3533  count of <code>n</code>.
  3534  As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
  3535  and <code>x &gt;&gt; 1</code> is the same as
  3536  <code>x/2</code> but truncated towards negative infinity.
  3537  </p>
  3538  
  3539  <p>
  3540  For integer operands, the unary operators
  3541  <code>+</code>, <code>-</code>, and <code>^</code> are defined as
  3542  follows:
  3543  </p>
  3544  
  3545  <pre class="grammar">
  3546  +x                          is 0 + x
  3547  -x    negation              is 0 - x
  3548  ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
  3549                                        and  m = -1 for signed x
  3550  </pre>
  3551  
  3552  
  3553  <h4 id="Integer_overflow">Integer overflow</h4>
  3554  
  3555  <p>
  3556  For unsigned integer values, the operations <code>+</code>,
  3557  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
  3558  computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
  3559  the <a href="#Numeric_types">unsigned integer</a>'s type.
  3560  Loosely speaking, these unsigned integer operations
  3561  discard high bits upon overflow, and programs may rely on ``wrap around''.
  3562  </p>
  3563  <p>
  3564  For signed integers, the operations <code>+</code>,
  3565  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
  3566  overflow and the resulting value exists and is deterministically defined
  3567  by the signed integer representation, the operation, and its operands.
  3568  No exception is raised as a result of overflow. A
  3569  compiler may not optimize code under the assumption that overflow does
  3570  not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
  3571  </p>
  3572  
  3573  
  3574  <h4 id="Floating_point_operators">Floating-point operators</h4>
  3575  
  3576  <p>
  3577  For floating-point and complex numbers,
  3578  <code>+x</code> is the same as <code>x</code>,
  3579  while <code>-x</code> is the negation of <code>x</code>.
  3580  The result of a floating-point or complex division by zero is not specified beyond the
  3581  IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
  3582  occurs is implementation-specific.
  3583  </p>
  3584  
  3585  
  3586  <h4 id="String_concatenation">String concatenation</h4>
  3587  
  3588  <p>
  3589  Strings can be concatenated using the <code>+</code> operator
  3590  or the <code>+=</code> assignment operator:
  3591  </p>
  3592  
  3593  <pre>
  3594  s := "hi" + string(c)
  3595  s += " and good bye"
  3596  </pre>
  3597  
  3598  <p>
  3599  String addition creates a new string by concatenating the operands.
  3600  </p>
  3601  
  3602  
  3603  <h3 id="Comparison_operators">Comparison operators</h3>
  3604  
  3605  <p>
  3606  Comparison operators compare two operands and yield an untyped boolean value.
  3607  </p>
  3608  
  3609  <pre class="grammar">
  3610  ==    equal
  3611  !=    not equal
  3612  &lt;     less
  3613  &lt;=    less or equal
  3614  &gt;     greater
  3615  &gt;=    greater or equal
  3616  </pre>
  3617  
  3618  <p>
  3619  In any comparison, the first operand
  3620  must be <a href="#Assignability">assignable</a>
  3621  to the type of the second operand, or vice versa.
  3622  </p>
  3623  <p>
  3624  The equality operators <code>==</code> and <code>!=</code> apply
  3625  to operands that are <i>comparable</i>.
  3626  The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
  3627  apply to operands that are <i>ordered</i>.
  3628  These terms and the result of the comparisons are defined as follows:
  3629  </p>
  3630  
  3631  <ul>
  3632  	<li>
  3633  	Boolean values are comparable.
  3634  	Two boolean values are equal if they are either both
  3635  	<code>true</code> or both <code>false</code>.
  3636  	</li>
  3637  
  3638  	<li>
  3639  	Integer values are comparable and ordered, in the usual way.
  3640  	</li>
  3641  
  3642  	<li>
  3643  	Floating point values are comparable and ordered,
  3644  	as defined by the IEEE-754 standard.
  3645  	</li>
  3646  
  3647  	<li>
  3648  	Complex values are comparable.
  3649  	Two complex values <code>u</code> and <code>v</code> are
  3650  	equal if both <code>real(u) == real(v)</code> and
  3651  	<code>imag(u) == imag(v)</code>.
  3652  	</li>
  3653  
  3654  	<li>
  3655  	String values are comparable and ordered, lexically byte-wise.
  3656  	</li>
  3657  
  3658  	<li>
  3659  	Pointer values are comparable.
  3660  	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
  3661  	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
  3662  	</li>
  3663  
  3664  	<li>
  3665  	Channel values are comparable.
  3666  	Two channel values are equal if they were created by the same call to
  3667  	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
  3668  	or if both have value <code>nil</code>.
  3669  	</li>
  3670  
  3671  	<li>
  3672  	Interface values are comparable.
  3673  	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
  3674  	and equal dynamic values or if both have value <code>nil</code>.
  3675  	</li>
  3676  
  3677  	<li>
  3678  	A value <code>x</code> of non-interface type <code>X</code> and
  3679  	a value <code>t</code> of interface type <code>T</code> are comparable when values
  3680  	of type <code>X</code> are comparable and
  3681  	<code>X</code> implements <code>T</code>.
  3682  	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
  3683  	and <code>t</code>'s dynamic value is equal to <code>x</code>.
  3684  	</li>
  3685  
  3686  	<li>
  3687  	Struct values are comparable if all their fields are comparable.
  3688  	Two struct values are equal if their corresponding
  3689  	non-<a href="#Blank_identifier">blank</a> fields are equal.
  3690  	</li>
  3691  
  3692  	<li>
  3693  	Array values are comparable if values of the array element type are comparable.
  3694  	Two array values are equal if their corresponding elements are equal.
  3695  	</li>
  3696  </ul>
  3697  
  3698  <p>
  3699  A comparison of two interface values with identical dynamic types
  3700  causes a <a href="#Run_time_panics">run-time panic</a> if values
  3701  of that type are not comparable.  This behavior applies not only to direct interface
  3702  value comparisons but also when comparing arrays of interface values
  3703  or structs with interface-valued fields.
  3704  </p>
  3705  
  3706  <p>
  3707  Slice, map, and function values are not comparable.
  3708  However, as a special case, a slice, map, or function value may
  3709  be compared to the predeclared identifier <code>nil</code>.
  3710  Comparison of pointer, channel, and interface values to <code>nil</code>
  3711  is also allowed and follows from the general rules above.
  3712  </p>
  3713  
  3714  <pre>
  3715  const c = 3 &lt; 4            // c is the untyped boolean constant true
  3716  
  3717  type MyBool bool
  3718  var x, y int
  3719  var (
  3720  	// The result of a comparison is an untyped boolean.
  3721  	// The usual assignment rules apply.
  3722  	b3        = x == y // b3 has type bool
  3723  	b4 bool   = x == y // b4 has type bool
  3724  	b5 MyBool = x == y // b5 has type MyBool
  3725  )
  3726  </pre>
  3727  
  3728  <h3 id="Logical_operators">Logical operators</h3>
  3729  
  3730  <p>
  3731  Logical operators apply to <a href="#Boolean_types">boolean</a> values
  3732  and yield a result of the same type as the operands.
  3733  The right operand is evaluated conditionally.
  3734  </p>
  3735  
  3736  <pre class="grammar">
  3737  &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
  3738  ||    conditional OR     p || q  is  "if p then true else q"
  3739  !     NOT                !p      is  "not p"
  3740  </pre>
  3741  
  3742  
  3743  <h3 id="Address_operators">Address operators</h3>
  3744  
  3745  <p>
  3746  For an operand <code>x</code> of type <code>T</code>, the address operation
  3747  <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
  3748  The operand must be <i>addressable</i>,
  3749  that is, either a variable, pointer indirection, or slice indexing
  3750  operation; or a field selector of an addressable struct operand;
  3751  or an array indexing operation of an addressable array.
  3752  As an exception to the addressability requirement, <code>x</code> may also be a
  3753  (possibly parenthesized)
  3754  <a href="#Composite_literals">composite literal</a>.
  3755  If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
  3756  then the evaluation of <code>&amp;x</code> does too.
  3757  </p>
  3758  
  3759  <p>
  3760  For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
  3761  indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
  3762  to by <code>x</code>.
  3763  If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
  3764  will cause a <a href="#Run_time_panics">run-time panic</a>.
  3765  </p>
  3766  
  3767  <pre>
  3768  &amp;x
  3769  &amp;a[f(2)]
  3770  &amp;Point{2, 3}
  3771  *p
  3772  *pf(x)
  3773  
  3774  var x *int = nil
  3775  *x   // causes a run-time panic
  3776  &amp;*x  // causes a run-time panic
  3777  </pre>
  3778  
  3779  
  3780  <h3 id="Receive_operator">Receive operator</h3>
  3781  
  3782  <p>
  3783  For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
  3784  the value of the receive operation <code>&lt;-ch</code> is the value received
  3785  from the channel <code>ch</code>. The channel direction must permit receive operations,
  3786  and the type of the receive operation is the element type of the channel.
  3787  The expression blocks until a value is available.
  3788  Receiving from a <code>nil</code> channel blocks forever.
  3789  A receive operation on a <a href="#Close">closed</a> channel can always proceed
  3790  immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
  3791  after any previously sent values have been received.
  3792  </p>
  3793  
  3794  <pre>
  3795  v1 := &lt;-ch
  3796  v2 = &lt;-ch
  3797  f(&lt;-ch)
  3798  &lt;-strobe  // wait until clock pulse and discard received value
  3799  </pre>
  3800  
  3801  <p>
  3802  A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3803  </p>
  3804  
  3805  <pre>
  3806  x, ok = &lt;-ch
  3807  x, ok := &lt;-ch
  3808  var x, ok = &lt;-ch
  3809  var x, ok T = &lt;-ch
  3810  </pre>
  3811  
  3812  <p>
  3813  yields an additional untyped boolean result reporting whether the
  3814  communication succeeded. The value of <code>ok</code> is <code>true</code>
  3815  if the value received was delivered by a successful send operation to the
  3816  channel, or <code>false</code> if it is a zero value generated because the
  3817  channel is closed and empty.
  3818  </p>
  3819  
  3820  
  3821  <h3 id="Conversions">Conversions</h3>
  3822  
  3823  <p>
  3824  Conversions are expressions of the form <code>T(x)</code>
  3825  where <code>T</code> is a type and <code>x</code> is an expression
  3826  that can be converted to type <code>T</code>.
  3827  </p>
  3828  
  3829  <pre class="ebnf">
  3830  Conversion = Type "(" Expression [ "," ] ")" .
  3831  </pre>
  3832  
  3833  <p>
  3834  If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
  3835  or if the type starts with the keyword <code>func</code>
  3836  and has no result list, it must be parenthesized when
  3837  necessary to avoid ambiguity:
  3838  </p>
  3839  
  3840  <pre>
  3841  *Point(p)        // same as *(Point(p))
  3842  (*Point)(p)      // p is converted to *Point
  3843  &lt;-chan int(c)    // same as &lt;-(chan int(c))
  3844  (&lt;-chan int)(c)  // c is converted to &lt;-chan int
  3845  func()(x)        // function signature func() x
  3846  (func())(x)      // x is converted to func()
  3847  (func() int)(x)  // x is converted to func() int
  3848  func() int(x)    // x is converted to func() int (unambiguous)
  3849  </pre>
  3850  
  3851  <p>
  3852  A <a href="#Constants">constant</a> value <code>x</code> can be converted to
  3853  type <code>T</code> in any of these cases:
  3854  </p>
  3855  
  3856  <ul>
  3857  	<li>
  3858  	<code>x</code> is representable by a value of type <code>T</code>.
  3859  	</li>
  3860  	<li>
  3861  	<code>x</code> is a floating-point constant,
  3862  	<code>T</code> is a floating-point type,
  3863  	and <code>x</code> is representable by a value
  3864  	of type <code>T</code> after rounding using
  3865  	IEEE 754 round-to-even rules, but with an IEEE <code>-0.0</code>
  3866  	further rounded to an unsigned <code>0.0</code>.
  3867  	The constant <code>T(x)</code> is the rounded value.
  3868  	</li>
  3869  	<li>
  3870  	<code>x</code> is an integer constant and <code>T</code> is a
  3871  	<a href="#String_types">string type</a>.
  3872  	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
  3873  	as for non-constant <code>x</code> applies in this case.
  3874  	</li>
  3875  </ul>
  3876  
  3877  <p>
  3878  Converting a constant yields a typed constant as result.
  3879  </p>
  3880  
  3881  <pre>
  3882  uint(iota)               // iota value of type uint
  3883  float32(2.718281828)     // 2.718281828 of type float32
  3884  complex128(1)            // 1.0 + 0.0i of type complex128
  3885  float32(0.49999999)      // 0.5 of type float32
  3886  float64(-1e-1000)        // 0.0 of type float64
  3887  string('x')              // "x" of type string
  3888  string(0x266c)           // "♬" of type string
  3889  MyString("foo" + "bar")  // "foobar" of type MyString
  3890  string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
  3891  (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
  3892  int(1.2)                 // illegal: 1.2 cannot be represented as an int
  3893  string(65.0)             // illegal: 65.0 is not an integer constant
  3894  </pre>
  3895  
  3896  <p>
  3897  A non-constant value <code>x</code> can be converted to type <code>T</code>
  3898  in any of these cases:
  3899  </p>
  3900  
  3901  <ul>
  3902  	<li>
  3903  	<code>x</code> is <a href="#Assignability">assignable</a>
  3904  	to <code>T</code>.
  3905  	</li>
  3906  	<li>
  3907  	ignoring struct tags (see below),
  3908  	<code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a>
  3909  	<a href="#Types">underlying types</a>.
  3910  	</li>
  3911  	<li>
  3912  	ignoring struct tags (see below),
  3913  	<code>x</code>'s type and <code>T</code> are pointer types
  3914  	that are not <a href="#Type_definitions">defined types</a>,
  3915  	and their pointer base types have identical underlying types.
  3916  	</li>
  3917  	<li>
  3918  	<code>x</code>'s type and <code>T</code> are both integer or floating
  3919  	point types.
  3920  	</li>
  3921  	<li>
  3922  	<code>x</code>'s type and <code>T</code> are both complex types.
  3923  	</li>
  3924  	<li>
  3925  	<code>x</code> is an integer or a slice of bytes or runes
  3926  	and <code>T</code> is a string type.
  3927  	</li>
  3928  	<li>
  3929  	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
  3930  	</li>
  3931  </ul>
  3932  
  3933  <p>
  3934  <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types
  3935  for identity for the purpose of conversion:
  3936  </p>
  3937  
  3938  <pre>
  3939  type Person struct {
  3940  	Name    string
  3941  	Address *struct {
  3942  		Street string
  3943  		City   string
  3944  	}
  3945  }
  3946  
  3947  var data *struct {
  3948  	Name    string `json:"name"`
  3949  	Address *struct {
  3950  		Street string `json:"street"`
  3951  		City   string `json:"city"`
  3952  	} `json:"address"`
  3953  }
  3954  
  3955  var person = (*Person)(data)  // ignoring tags, the underlying types are identical
  3956  </pre>
  3957  
  3958  <p>
  3959  Specific rules apply to (non-constant) conversions between numeric types or
  3960  to and from a string type.
  3961  These conversions may change the representation of <code>x</code>
  3962  and incur a run-time cost.
  3963  All other conversions only change the type but not the representation
  3964  of <code>x</code>.
  3965  </p>
  3966  
  3967  <p>
  3968  There is no linguistic mechanism to convert between pointers and integers.
  3969  The package <a href="#Package_unsafe"><code>unsafe</code></a>
  3970  implements this functionality under
  3971  restricted circumstances.
  3972  </p>
  3973  
  3974  <h4>Conversions between numeric types</h4>
  3975  
  3976  <p>
  3977  For the conversion of non-constant numeric values, the following rules apply:
  3978  </p>
  3979  
  3980  <ol>
  3981  <li>
  3982  When converting between integer types, if the value is a signed integer, it is
  3983  sign extended to implicit infinite precision; otherwise it is zero extended.
  3984  It is then truncated to fit in the result type's size.
  3985  For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
  3986  The conversion always yields a valid value; there is no indication of overflow.
  3987  </li>
  3988  <li>
  3989  When converting a floating-point number to an integer, the fraction is discarded
  3990  (truncation towards zero).
  3991  </li>
  3992  <li>
  3993  When converting an integer or floating-point number to a floating-point type,
  3994  or a complex number to another complex type, the result value is rounded
  3995  to the precision specified by the destination type.
  3996  For instance, the value of a variable <code>x</code> of type <code>float32</code>
  3997  may be stored using additional precision beyond that of an IEEE-754 32-bit number,
  3998  but float32(x) represents the result of rounding <code>x</code>'s value to
  3999  32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
  4000  of precision, but <code>float32(x + 0.1)</code> does not.
  4001  </li>
  4002  </ol>
  4003  
  4004  <p>
  4005  In all non-constant conversions involving floating-point or complex values,
  4006  if the result type cannot represent the value the conversion
  4007  succeeds but the result value is implementation-dependent.
  4008  </p>
  4009  
  4010  <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
  4011  
  4012  <ol>
  4013  <li>
  4014  Converting a signed or unsigned integer value to a string type yields a
  4015  string containing the UTF-8 representation of the integer. Values outside
  4016  the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
  4017  
  4018  <pre>
  4019  string('a')       // "a"
  4020  string(-1)        // "\ufffd" == "\xef\xbf\xbd"
  4021  string(0xf8)      // "\u00f8" == "ø" == "\xc3\xb8"
  4022  type MyString string
  4023  MyString(0x65e5)  // "\u65e5" == "日" == "\xe6\x97\xa5"
  4024  </pre>
  4025  </li>
  4026  
  4027  <li>
  4028  Converting a slice of bytes to a string type yields
  4029  a string whose successive bytes are the elements of the slice.
  4030  
  4031  <pre>
  4032  string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
  4033  string([]byte{})                                     // ""
  4034  string([]byte(nil))                                  // ""
  4035  
  4036  type MyBytes []byte
  4037  string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
  4038  </pre>
  4039  </li>
  4040  
  4041  <li>
  4042  Converting a slice of runes to a string type yields
  4043  a string that is the concatenation of the individual rune values
  4044  converted to strings.
  4045  
  4046  <pre>
  4047  string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4048  string([]rune{})                         // ""
  4049  string([]rune(nil))                      // ""
  4050  
  4051  type MyRunes []rune
  4052  string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4053  </pre>
  4054  </li>
  4055  
  4056  <li>
  4057  Converting a value of a string type to a slice of bytes type
  4058  yields a slice whose successive elements are the bytes of the string.
  4059  
  4060  <pre>
  4061  []byte("hellø")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4062  []byte("")        // []byte{}
  4063  
  4064  MyBytes("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4065  </pre>
  4066  </li>
  4067  
  4068  <li>
  4069  Converting a value of a string type to a slice of runes type
  4070  yields a slice containing the individual Unicode code points of the string.
  4071  
  4072  <pre>
  4073  []rune(MyString("白鵬翔"))  // []rune{0x767d, 0x9d6c, 0x7fd4}
  4074  []rune("")                 // []rune{}
  4075  
  4076  MyRunes("白鵬翔")           // []rune{0x767d, 0x9d6c, 0x7fd4}
  4077  </pre>
  4078  </li>
  4079  </ol>
  4080  
  4081  
  4082  <h3 id="Constant_expressions">Constant expressions</h3>
  4083  
  4084  <p>
  4085  Constant expressions may contain only <a href="#Constants">constant</a>
  4086  operands and are evaluated at compile time.
  4087  </p>
  4088  
  4089  <p>
  4090  Untyped boolean, numeric, and string constants may be used as operands
  4091  wherever it is legal to use an operand of boolean, numeric, or string type,
  4092  respectively.
  4093  Except for shift operations, if the operands of a binary operation are
  4094  different kinds of untyped constants, the operation and, for non-boolean operations, the result use
  4095  the kind that appears later in this list: integer, rune, floating-point, complex.
  4096  For example, an untyped integer constant divided by an
  4097  untyped complex constant yields an untyped complex constant.
  4098  </p>
  4099  
  4100  <p>
  4101  A constant <a href="#Comparison_operators">comparison</a> always yields
  4102  an untyped boolean constant.  If the left operand of a constant
  4103  <a href="#Operators">shift expression</a> is an untyped constant, the
  4104  result is an integer constant; otherwise it is a constant of the same
  4105  type as the left operand, which must be of
  4106  <a href="#Numeric_types">integer type</a>.
  4107  Applying all other operators to untyped constants results in an untyped
  4108  constant of the same kind (that is, a boolean, integer, floating-point,
  4109  complex, or string constant).
  4110  </p>
  4111  
  4112  <pre>
  4113  const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
  4114  const b = 15 / 4           // b == 3     (untyped integer constant)
  4115  const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
  4116  const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
  4117  const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
  4118  const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
  4119  const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
  4120  const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
  4121  const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
  4122  const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
  4123  const j = true             // j == true  (untyped boolean constant)
  4124  const k = 'w' + 1          // k == 'x'   (untyped rune constant)
  4125  const l = "hi"             // l == "hi"  (untyped string constant)
  4126  const m = string(k)        // m == "x"   (type string)
  4127  const Σ = 1 - 0.707i       //            (untyped complex constant)
  4128  const Δ = Σ + 2.0e-4       //            (untyped complex constant)
  4129  const Φ = iota*1i - 1/1i   //            (untyped complex constant)
  4130  </pre>
  4131  
  4132  <p>
  4133  Applying the built-in function <code>complex</code> to untyped
  4134  integer, rune, or floating-point constants yields
  4135  an untyped complex constant.
  4136  </p>
  4137  
  4138  <pre>
  4139  const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
  4140  const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
  4141  </pre>
  4142  
  4143  <p>
  4144  Constant expressions are always evaluated exactly; intermediate values and the
  4145  constants themselves may require precision significantly larger than supported
  4146  by any predeclared type in the language. The following are legal declarations:
  4147  </p>
  4148  
  4149  <pre>
  4150  const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
  4151  const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
  4152  </pre>
  4153  
  4154  <p>
  4155  The divisor of a constant division or remainder operation must not be zero:
  4156  </p>
  4157  
  4158  <pre>
  4159  3.14 / 0.0   // illegal: division by zero
  4160  </pre>
  4161  
  4162  <p>
  4163  The values of <i>typed</i> constants must always be accurately representable as values
  4164  of the constant type. The following constant expressions are illegal:
  4165  </p>
  4166  
  4167  <pre>
  4168  uint(-1)     // -1 cannot be represented as a uint
  4169  int(3.14)    // 3.14 cannot be represented as an int
  4170  int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
  4171  Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
  4172  Four * 100   // product 400 cannot be represented as an int8 (type of Four)
  4173  </pre>
  4174  
  4175  <p>
  4176  The mask used by the unary bitwise complement operator <code>^</code> matches
  4177  the rule for non-constants: the mask is all 1s for unsigned constants
  4178  and -1 for signed and untyped constants.
  4179  </p>
  4180  
  4181  <pre>
  4182  ^1         // untyped integer constant, equal to -2
  4183  uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
  4184  ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
  4185  int8(^1)   // same as int8(-2)
  4186  ^int8(1)   // same as -1 ^ int8(1) = -2
  4187  </pre>
  4188  
  4189  <p>
  4190  Implementation restriction: A compiler may use rounding while
  4191  computing untyped floating-point or complex constant expressions; see
  4192  the implementation restriction in the section
  4193  on <a href="#Constants">constants</a>.  This rounding may cause a
  4194  floating-point constant expression to be invalid in an integer
  4195  context, even if it would be integral when calculated using infinite
  4196  precision, and vice versa.
  4197  </p>
  4198  
  4199  
  4200  <h3 id="Order_of_evaluation">Order of evaluation</h3>
  4201  
  4202  <p>
  4203  At package level, <a href="#Package_initialization">initialization dependencies</a>
  4204  determine the evaluation order of individual initialization expressions in
  4205  <a href="#Variable_declarations">variable declarations</a>.
  4206  Otherwise, when evaluating the <a href="#Operands">operands</a> of an
  4207  expression, assignment, or
  4208  <a href="#Return_statements">return statement</a>,
  4209  all function calls, method calls, and
  4210  communication operations are evaluated in lexical left-to-right
  4211  order.
  4212  </p>
  4213  
  4214  <p>
  4215  For example, in the (function-local) assignment
  4216  </p>
  4217  <pre>
  4218  y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
  4219  </pre>
  4220  <p>
  4221  the function calls and communication happen in the order
  4222  <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
  4223  <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
  4224  However, the order of those events compared to the evaluation
  4225  and indexing of <code>x</code> and the evaluation
  4226  of <code>y</code> is not specified.
  4227  </p>
  4228  
  4229  <pre>
  4230  a := 1
  4231  f := func() int { a++; return a }
  4232  x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
  4233  m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
  4234  n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
  4235  </pre>
  4236  
  4237  <p>
  4238  At package level, initialization dependencies override the left-to-right rule
  4239  for individual initialization expressions, but not for operands within each
  4240  expression:
  4241  </p>
  4242  
  4243  <pre>
  4244  var a, b, c = f() + v(), g(), sqr(u()) + v()
  4245  
  4246  func f() int        { return c }
  4247  func g() int        { return a }
  4248  func sqr(x int) int { return x*x }
  4249  
  4250  // functions u and v are independent of all other variables and functions
  4251  </pre>
  4252  
  4253  <p>
  4254  The function calls happen in the order
  4255  <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
  4256  <code>f()</code>, <code>v()</code>, and <code>g()</code>.
  4257  </p>
  4258  
  4259  <p>
  4260  Floating-point operations within a single expression are evaluated according to
  4261  the associativity of the operators.  Explicit parentheses affect the evaluation
  4262  by overriding the default associativity.
  4263  In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
  4264  is performed before adding <code>x</code>.
  4265  </p>
  4266  
  4267  <h2 id="Statements">Statements</h2>
  4268  
  4269  <p>
  4270  Statements control execution.
  4271  </p>
  4272  
  4273  <pre class="ebnf">
  4274  Statement =
  4275  	Declaration | LabeledStmt | SimpleStmt |
  4276  	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
  4277  	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
  4278  	DeferStmt .
  4279  
  4280  SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
  4281  </pre>
  4282  
  4283  <h3 id="Terminating_statements">Terminating statements</h3>
  4284  
  4285  <p>
  4286  A terminating statement is one of the following:
  4287  </p>
  4288  
  4289  <ol>
  4290  <li>
  4291  	A <a href="#Return_statements">"return"</a> or
  4292      	<a href="#Goto_statements">"goto"</a> statement.
  4293  	<!-- ul below only for regular layout -->
  4294  	<ul> </ul>
  4295  </li>
  4296  
  4297  <li>
  4298  	A call to the built-in function
  4299  	<a href="#Handling_panics"><code>panic</code></a>.
  4300  	<!-- ul below only for regular layout -->
  4301  	<ul> </ul>
  4302  </li>
  4303  
  4304  <li>
  4305  	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
  4306  	<!-- ul below only for regular layout -->
  4307  	<ul> </ul>
  4308  </li>
  4309  
  4310  <li>
  4311  	An <a href="#If_statements">"if" statement</a> in which:
  4312  	<ul>
  4313  	<li>the "else" branch is present, and</li>
  4314  	<li>both branches are terminating statements.</li>
  4315  	</ul>
  4316  </li>
  4317  
  4318  <li>
  4319  	A <a href="#For_statements">"for" statement</a> in which:
  4320  	<ul>
  4321  	<li>there are no "break" statements referring to the "for" statement, and</li>
  4322  	<li>the loop condition is absent.</li>
  4323  	</ul>
  4324  </li>
  4325  
  4326  <li>
  4327  	A <a href="#Switch_statements">"switch" statement</a> in which:
  4328  	<ul>
  4329  	<li>there are no "break" statements referring to the "switch" statement,</li>
  4330  	<li>there is a default case, and</li>
  4331  	<li>the statement lists in each case, including the default, end in a terminating
  4332  	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
  4333  	    statement</a>.</li>
  4334  	</ul>
  4335  </li>
  4336  
  4337  <li>
  4338  	A <a href="#Select_statements">"select" statement</a> in which:
  4339  	<ul>
  4340  	<li>there are no "break" statements referring to the "select" statement, and</li>
  4341  	<li>the statement lists in each case, including the default if present,
  4342  	    end in a terminating statement.</li>
  4343  	</ul>
  4344  </li>
  4345  
  4346  <li>
  4347  	A <a href="#Labeled_statements">labeled statement</a> labeling
  4348  	a terminating statement.
  4349  </li>
  4350  </ol>
  4351  
  4352  <p>
  4353  All other statements are not terminating.
  4354  </p>
  4355  
  4356  <p>
  4357  A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
  4358  is not empty and its final non-empty statement is terminating.
  4359  </p>
  4360  
  4361  
  4362  <h3 id="Empty_statements">Empty statements</h3>
  4363  
  4364  <p>
  4365  The empty statement does nothing.
  4366  </p>
  4367  
  4368  <pre class="ebnf">
  4369  EmptyStmt = .
  4370  </pre>
  4371  
  4372  
  4373  <h3 id="Labeled_statements">Labeled statements</h3>
  4374  
  4375  <p>
  4376  A labeled statement may be the target of a <code>goto</code>,
  4377  <code>break</code> or <code>continue</code> statement.
  4378  </p>
  4379  
  4380  <pre class="ebnf">
  4381  LabeledStmt = Label ":" Statement .
  4382  Label       = identifier .
  4383  </pre>
  4384  
  4385  <pre>
  4386  Error: log.Panic("error encountered")
  4387  </pre>
  4388  
  4389  
  4390  <h3 id="Expression_statements">Expression statements</h3>
  4391  
  4392  <p>
  4393  With the exception of specific built-in functions,
  4394  function and method <a href="#Calls">calls</a> and
  4395  <a href="#Receive_operator">receive operations</a>
  4396  can appear in statement context. Such statements may be parenthesized.
  4397  </p>
  4398  
  4399  <pre class="ebnf">
  4400  ExpressionStmt = Expression .
  4401  </pre>
  4402  
  4403  <p>
  4404  The following built-in functions are not permitted in statement context:
  4405  </p>
  4406  
  4407  <pre>
  4408  append cap complex imag len make new real
  4409  unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
  4410  </pre>
  4411  
  4412  <pre>
  4413  h(x+y)
  4414  f.Close()
  4415  &lt;-ch
  4416  (&lt;-ch)
  4417  len("foo")  // illegal if len is the built-in function
  4418  </pre>
  4419  
  4420  
  4421  <h3 id="Send_statements">Send statements</h3>
  4422  
  4423  <p>
  4424  A send statement sends a value on a channel.
  4425  The channel expression must be of <a href="#Channel_types">channel type</a>,
  4426  the channel direction must permit send operations,
  4427  and the type of the value to be sent must be <a href="#Assignability">assignable</a>
  4428  to the channel's element type.
  4429  </p>
  4430  
  4431  <pre class="ebnf">
  4432  SendStmt = Channel "&lt;-" Expression .
  4433  Channel  = Expression .
  4434  </pre>
  4435  
  4436  <p>
  4437  Both the channel and the value expression are evaluated before communication
  4438  begins. Communication blocks until the send can proceed.
  4439  A send on an unbuffered channel can proceed if a receiver is ready.
  4440  A send on a buffered channel can proceed if there is room in the buffer.
  4441  A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
  4442  A send on a <code>nil</code> channel blocks forever.
  4443  </p>
  4444  
  4445  <pre>
  4446  ch &lt;- 3  // send value 3 to channel ch
  4447  </pre>
  4448  
  4449  
  4450  <h3 id="IncDec_statements">IncDec statements</h3>
  4451  
  4452  <p>
  4453  The "++" and "--" statements increment or decrement their operands
  4454  by the untyped <a href="#Constants">constant</a> <code>1</code>.
  4455  As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
  4456  or a map index expression.
  4457  </p>
  4458  
  4459  <pre class="ebnf">
  4460  IncDecStmt = Expression ( "++" | "--" ) .
  4461  </pre>
  4462  
  4463  <p>
  4464  The following <a href="#Assignments">assignment statements</a> are semantically
  4465  equivalent:
  4466  </p>
  4467  
  4468  <pre class="grammar">
  4469  IncDec statement    Assignment
  4470  x++                 x += 1
  4471  x--                 x -= 1
  4472  </pre>
  4473  
  4474  
  4475  <h3 id="Assignments">Assignments</h3>
  4476  
  4477  <pre class="ebnf">
  4478  Assignment = ExpressionList assign_op ExpressionList .
  4479  
  4480  assign_op = [ add_op | mul_op ] "=" .
  4481  </pre>
  4482  
  4483  <p>
  4484  Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
  4485  a map index expression, or (for <code>=</code> assignments only) the
  4486  <a href="#Blank_identifier">blank identifier</a>.
  4487  Operands may be parenthesized.
  4488  </p>
  4489  
  4490  <pre>
  4491  x = 1
  4492  *p = f()
  4493  a[i] = 23
  4494  (k) = &lt;-ch  // same as: k = &lt;-ch
  4495  </pre>
  4496  
  4497  <p>
  4498  An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
  4499  <code>y</code> where <i>op</i> is a binary <a href="#Arithmetic_operators">arithmetic operator</a>
  4500  is equivalent to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
  4501  <code>(y)</code> but evaluates <code>x</code>
  4502  only once.  The <i>op</i><code>=</code> construct is a single token.
  4503  In assignment operations, both the left- and right-hand expression lists
  4504  must contain exactly one single-valued expression, and the left-hand
  4505  expression must not be the blank identifier.
  4506  </p>
  4507  
  4508  <pre>
  4509  a[i] &lt;&lt;= 2
  4510  i &amp;^= 1&lt;&lt;n
  4511  </pre>
  4512  
  4513  <p>
  4514  A tuple assignment assigns the individual elements of a multi-valued
  4515  operation to a list of variables.  There are two forms.  In the
  4516  first, the right hand operand is a single multi-valued expression
  4517  such as a function call, a <a href="#Channel_types">channel</a> or
  4518  <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
  4519  The number of operands on the left
  4520  hand side must match the number of values.  For instance, if
  4521  <code>f</code> is a function returning two values,
  4522  </p>
  4523  
  4524  <pre>
  4525  x, y = f()
  4526  </pre>
  4527  
  4528  <p>
  4529  assigns the first value to <code>x</code> and the second to <code>y</code>.
  4530  In the second form, the number of operands on the left must equal the number
  4531  of expressions on the right, each of which must be single-valued, and the
  4532  <i>n</i>th expression on the right is assigned to the <i>n</i>th
  4533  operand on the left:
  4534  </p>
  4535  
  4536  <pre>
  4537  one, two, three = '一', '二', '三'
  4538  </pre>
  4539  
  4540  <p>
  4541  The <a href="#Blank_identifier">blank identifier</a> provides a way to
  4542  ignore right-hand side values in an assignment:
  4543  </p>
  4544  
  4545  <pre>
  4546  _ = x       // evaluate x but ignore it
  4547  x, _ = f()  // evaluate f() but ignore second result value
  4548  </pre>
  4549  
  4550  <p>
  4551  The assignment proceeds in two phases.
  4552  First, the operands of <a href="#Index_expressions">index expressions</a>
  4553  and <a href="#Address_operators">pointer indirections</a>
  4554  (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
  4555  on the left and the expressions on the right are all
  4556  <a href="#Order_of_evaluation">evaluated in the usual order</a>.
  4557  Second, the assignments are carried out in left-to-right order.
  4558  </p>
  4559  
  4560  <pre>
  4561  a, b = b, a  // exchange a and b
  4562  
  4563  x := []int{1, 2, 3}
  4564  i := 0
  4565  i, x[i] = 1, 2  // set i = 1, x[0] = 2
  4566  
  4567  i = 0
  4568  x[i], i = 2, 1  // set x[0] = 2, i = 1
  4569  
  4570  x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
  4571  
  4572  x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
  4573  
  4574  type Point struct { x, y int }
  4575  var p *Point
  4576  x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
  4577  
  4578  i = 2
  4579  x = []int{3, 5, 7}
  4580  for i, x[i] = range x {  // set i, x[2] = 0, x[0]
  4581  	break
  4582  }
  4583  // after this loop, i == 0 and x == []int{3, 5, 3}
  4584  </pre>
  4585  
  4586  <p>
  4587  In assignments, each value must be <a href="#Assignability">assignable</a>
  4588  to the type of the operand to which it is assigned, with the following special cases:
  4589  </p>
  4590  
  4591  <ol>
  4592  <li>
  4593  	Any typed value may be assigned to the blank identifier.
  4594  </li>
  4595  
  4596  <li>
  4597  	If an untyped constant
  4598  	is assigned to a variable of interface type or the blank identifier,
  4599  	the constant is first <a href="#Conversions">converted</a> to its
  4600  	 <a href="#Constants">default type</a>.
  4601  </li>
  4602  
  4603  <li>
  4604  	If an untyped boolean value is assigned to a variable of interface type or
  4605  	the blank identifier, it is first converted to type <code>bool</code>.
  4606  </li>
  4607  </ol>
  4608  
  4609  <h3 id="If_statements">If statements</h3>
  4610  
  4611  <p>
  4612  "If" statements specify the conditional execution of two branches
  4613  according to the value of a boolean expression.  If the expression
  4614  evaluates to true, the "if" branch is executed, otherwise, if
  4615  present, the "else" branch is executed.
  4616  </p>
  4617  
  4618  <pre class="ebnf">
  4619  IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
  4620  </pre>
  4621  
  4622  <pre>
  4623  if x &gt; max {
  4624  	x = max
  4625  }
  4626  </pre>
  4627  
  4628  <p>
  4629  The expression may be preceded by a simple statement, which
  4630  executes before the expression is evaluated.
  4631  </p>
  4632  
  4633  <pre>
  4634  if x := f(); x &lt; y {
  4635  	return x
  4636  } else if x &gt; z {
  4637  	return z
  4638  } else {
  4639  	return y
  4640  }
  4641  </pre>
  4642  
  4643  
  4644  <h3 id="Switch_statements">Switch statements</h3>
  4645  
  4646  <p>
  4647  "Switch" statements provide multi-way execution.
  4648  An expression or type specifier is compared to the "cases"
  4649  inside the "switch" to determine which branch
  4650  to execute.
  4651  </p>
  4652  
  4653  <pre class="ebnf">
  4654  SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
  4655  </pre>
  4656  
  4657  <p>
  4658  There are two forms: expression switches and type switches.
  4659  In an expression switch, the cases contain expressions that are compared
  4660  against the value of the switch expression.
  4661  In a type switch, the cases contain types that are compared against the
  4662  type of a specially annotated switch expression.
  4663  The switch expression is evaluated exactly once in a switch statement.
  4664  </p>
  4665  
  4666  <h4 id="Expression_switches">Expression switches</h4>
  4667  
  4668  <p>
  4669  In an expression switch,
  4670  the switch expression is evaluated and
  4671  the case expressions, which need not be constants,
  4672  are evaluated left-to-right and top-to-bottom; the first one that equals the
  4673  switch expression
  4674  triggers execution of the statements of the associated case;
  4675  the other cases are skipped.
  4676  If no case matches and there is a "default" case,
  4677  its statements are executed.
  4678  There can be at most one default case and it may appear anywhere in the
  4679  "switch" statement.
  4680  A missing switch expression is equivalent to the boolean value
  4681  <code>true</code>.
  4682  </p>
  4683  
  4684  <pre class="ebnf">
  4685  ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
  4686  ExprCaseClause = ExprSwitchCase ":" StatementList .
  4687  ExprSwitchCase = "case" ExpressionList | "default" .
  4688  </pre>
  4689  
  4690  <p>
  4691  If the switch expression evaluates to an untyped constant, it is first
  4692  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  4693  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  4694  The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
  4695  </p>
  4696  
  4697  <p>
  4698  If a case expression is untyped, it is first <a href="#Conversions">converted</a>
  4699  to the type of the switch expression.
  4700  For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
  4701  of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
  4702  </p>
  4703  
  4704  <p>
  4705  In other words, the switch expression is treated as if it were used to declare and
  4706  initialize a temporary variable <code>t</code> without explicit type; it is that
  4707  value of <code>t</code> against which each case expression <code>x</code> is tested
  4708  for equality.
  4709  </p>
  4710  
  4711  <p>
  4712  In a case or default clause, the last non-empty statement
  4713  may be a (possibly <a href="#Labeled_statements">labeled</a>)
  4714  <a href="#Fallthrough_statements">"fallthrough" statement</a> to
  4715  indicate that control should flow from the end of this clause to
  4716  the first statement of the next clause.
  4717  Otherwise control flows to the end of the "switch" statement.
  4718  A "fallthrough" statement may appear as the last statement of all
  4719  but the last clause of an expression switch.
  4720  </p>
  4721  
  4722  <p>
  4723  The switch expression may be preceded by a simple statement, which
  4724  executes before the expression is evaluated.
  4725  </p>
  4726  
  4727  <pre>
  4728  switch tag {
  4729  default: s3()
  4730  case 0, 1, 2, 3: s1()
  4731  case 4, 5, 6, 7: s2()
  4732  }
  4733  
  4734  switch x := f(); {  // missing switch expression means "true"
  4735  case x &lt; 0: return -x
  4736  default: return x
  4737  }
  4738  
  4739  switch {
  4740  case x &lt; y: f1()
  4741  case x &lt; z: f2()
  4742  case x == 4: f3()
  4743  }
  4744  </pre>
  4745  
  4746  <p>
  4747  Implementation restriction: A compiler may disallow multiple case
  4748  expressions evaluating to the same constant.
  4749  For instance, the current compilers disallow duplicate integer,
  4750  floating point, or string constants in case expressions.
  4751  </p>
  4752  
  4753  <h4 id="Type_switches">Type switches</h4>
  4754  
  4755  <p>
  4756  A type switch compares types rather than values. It is otherwise similar
  4757  to an expression switch. It is marked by a special switch expression that
  4758  has the form of a <a href="#Type_assertions">type assertion</a>
  4759  using the reserved word <code>type</code> rather than an actual type:
  4760  </p>
  4761  
  4762  <pre>
  4763  switch x.(type) {
  4764  // cases
  4765  }
  4766  </pre>
  4767  
  4768  <p>
  4769  Cases then match actual types <code>T</code> against the dynamic type of the
  4770  expression <code>x</code>. As with type assertions, <code>x</code> must be of
  4771  <a href="#Interface_types">interface type</a>, and each non-interface type
  4772  <code>T</code> listed in a case must implement the type of <code>x</code>.
  4773  The types listed in the cases of a type switch must all be
  4774  <a href="#Type_identity">different</a>.
  4775  </p>
  4776  
  4777  <pre class="ebnf">
  4778  TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
  4779  TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
  4780  TypeCaseClause  = TypeSwitchCase ":" StatementList .
  4781  TypeSwitchCase  = "case" TypeList | "default" .
  4782  TypeList        = Type { "," Type } .
  4783  </pre>
  4784  
  4785  <p>
  4786  The TypeSwitchGuard may include a
  4787  <a href="#Short_variable_declarations">short variable declaration</a>.
  4788  When that form is used, the variable is declared at the end of the
  4789  TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause.
  4790  In clauses with a case listing exactly one type, the variable
  4791  has that type; otherwise, the variable has the type of the expression
  4792  in the TypeSwitchGuard.
  4793  </p>
  4794  
  4795  <p>
  4796  The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
  4797  that case is used when the expression in the TypeSwitchGuard
  4798  is a <code>nil</code> interface value.
  4799  There may be at most one <code>nil</code> case.
  4800  </p>
  4801  
  4802  <p>
  4803  Given an expression <code>x</code> of type <code>interface{}</code>,
  4804  the following type switch:
  4805  </p>
  4806  
  4807  <pre>
  4808  switch i := x.(type) {
  4809  case nil:
  4810  	printString("x is nil")                // type of i is type of x (interface{})
  4811  case int:
  4812  	printInt(i)                            // type of i is int
  4813  case float64:
  4814  	printFloat64(i)                        // type of i is float64
  4815  case func(int) float64:
  4816  	printFunction(i)                       // type of i is func(int) float64
  4817  case bool, string:
  4818  	printString("type is bool or string")  // type of i is type of x (interface{})
  4819  default:
  4820  	printString("don't know the type")     // type of i is type of x (interface{})
  4821  }
  4822  </pre>
  4823  
  4824  <p>
  4825  could be rewritten:
  4826  </p>
  4827  
  4828  <pre>
  4829  v := x  // x is evaluated exactly once
  4830  if v == nil {
  4831  	i := v                                 // type of i is type of x (interface{})
  4832  	printString("x is nil")
  4833  } else if i, isInt := v.(int); isInt {
  4834  	printInt(i)                            // type of i is int
  4835  } else if i, isFloat64 := v.(float64); isFloat64 {
  4836  	printFloat64(i)                        // type of i is float64
  4837  } else if i, isFunc := v.(func(int) float64); isFunc {
  4838  	printFunction(i)                       // type of i is func(int) float64
  4839  } else {
  4840  	_, isBool := v.(bool)
  4841  	_, isString := v.(string)
  4842  	if isBool || isString {
  4843  		i := v                         // type of i is type of x (interface{})
  4844  		printString("type is bool or string")
  4845  	} else {
  4846  		i := v                         // type of i is type of x (interface{})
  4847  		printString("don't know the type")
  4848  	}
  4849  }
  4850  </pre>
  4851  
  4852  <p>
  4853  The type switch guard may be preceded by a simple statement, which
  4854  executes before the guard is evaluated.
  4855  </p>
  4856  
  4857  <p>
  4858  The "fallthrough" statement is not permitted in a type switch.
  4859  </p>
  4860  
  4861  <h3 id="For_statements">For statements</h3>
  4862  
  4863  <p>
  4864  A "for" statement specifies repeated execution of a block. There are three forms:
  4865  The iteration may be controlled by a single condition, a "for" clause, or a "range" clause.
  4866  </p>
  4867  
  4868  <pre class="ebnf">
  4869  ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
  4870  Condition = Expression .
  4871  </pre>
  4872  
  4873  <h4 id="For_condition">For statements with single condition</h4>
  4874  
  4875  <p>
  4876  In its simplest form, a "for" statement specifies the repeated execution of
  4877  a block as long as a boolean condition evaluates to true.
  4878  The condition is evaluated before each iteration.
  4879  If the condition is absent, it is equivalent to the boolean value
  4880  <code>true</code>.
  4881  </p>
  4882  
  4883  <pre>
  4884  for a &lt; b {
  4885  	a *= 2
  4886  }
  4887  </pre>
  4888  
  4889  <h4 id="For_clause">For statements with <code>for</code> clause</h4>
  4890  
  4891  <p>
  4892  A "for" statement with a ForClause is also controlled by its condition, but
  4893  additionally it may specify an <i>init</i>
  4894  and a <i>post</i> statement, such as an assignment,
  4895  an increment or decrement statement. The init statement may be a
  4896  <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
  4897  Variables declared by the init statement are re-used in each iteration.
  4898  </p>
  4899  
  4900  <pre class="ebnf">
  4901  ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
  4902  InitStmt = SimpleStmt .
  4903  PostStmt = SimpleStmt .
  4904  </pre>
  4905  
  4906  <pre>
  4907  for i := 0; i &lt; 10; i++ {
  4908  	f(i)
  4909  }
  4910  </pre>
  4911  
  4912  <p>
  4913  If non-empty, the init statement is executed once before evaluating the
  4914  condition for the first iteration;
  4915  the post statement is executed after each execution of the block (and
  4916  only if the block was executed).
  4917  Any element of the ForClause may be empty but the
  4918  <a href="#Semicolons">semicolons</a> are
  4919  required unless there is only a condition.
  4920  If the condition is absent, it is equivalent to the boolean value
  4921  <code>true</code>.
  4922  </p>
  4923  
  4924  <pre>
  4925  for cond { S() }    is the same as    for ; cond ; { S() }
  4926  for      { S() }    is the same as    for true     { S() }
  4927  </pre>
  4928  
  4929  <h4 id="For_range">For statements with <code>range</code> clause</h4>
  4930  
  4931  <p>
  4932  A "for" statement with a "range" clause
  4933  iterates through all entries of an array, slice, string or map,
  4934  or values received on a channel. For each entry it assigns <i>iteration values</i>
  4935  to corresponding <i>iteration variables</i> if present and then executes the block.
  4936  </p>
  4937  
  4938  <pre class="ebnf">
  4939  RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
  4940  </pre>
  4941  
  4942  <p>
  4943  The expression on the right in the "range" clause is called the <i>range expression</i>,
  4944  which may be an array, pointer to an array, slice, string, map, or channel permitting
  4945  <a href="#Receive_operator">receive operations</a>.
  4946  As with an assignment, if present the operands on the left must be
  4947  <a href="#Address_operators">addressable</a> or map index expressions; they
  4948  denote the iteration variables. If the range expression is a channel, at most
  4949  one iteration variable is permitted, otherwise there may be up to two.
  4950  If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
  4951  the range clause is equivalent to the same clause without that identifier.
  4952  </p>
  4953  
  4954  <p>
  4955  The range expression is evaluated once before beginning the loop,
  4956  with one exception: if the range expression is an array or a pointer to an array
  4957  and at most one iteration variable is present, only the range expression's
  4958  length is evaluated; if that length is constant,
  4959  <a href="#Length_and_capacity">by definition</a>
  4960  the range expression itself will not be evaluated.
  4961  </p>
  4962  
  4963  <p>
  4964  Function calls on the left are evaluated once per iteration.
  4965  For each iteration, iteration values are produced as follows
  4966  if the respective iteration variables are present:
  4967  </p>
  4968  
  4969  <pre class="grammar">
  4970  Range expression                          1st value          2nd value
  4971  
  4972  array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
  4973  string          s  string type            index    i  int    see below  rune
  4974  map             m  map[K]V                key      k  K      m[k]       V
  4975  channel         c  chan E, &lt;-chan E       element  e  E
  4976  </pre>
  4977  
  4978  <ol>
  4979  <li>
  4980  For an array, pointer to array, or slice value <code>a</code>, the index iteration
  4981  values are produced in increasing order, starting at element index 0.
  4982  If at most one iteration variable is present, the range loop produces
  4983  iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
  4984  or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
  4985  </li>
  4986  
  4987  <li>
  4988  For a string value, the "range" clause iterates over the Unicode code points
  4989  in the string starting at byte index 0.  On successive iterations, the index value will be the
  4990  index of the first byte of successive UTF-8-encoded code points in the string,
  4991  and the second value, of type <code>rune</code>, will be the value of
  4992  the corresponding code point.  If the iteration encounters an invalid
  4993  UTF-8 sequence, the second value will be <code>0xFFFD</code>,
  4994  the Unicode replacement character, and the next iteration will advance
  4995  a single byte in the string.
  4996  </li>
  4997  
  4998  <li>
  4999  The iteration order over maps is not specified
  5000  and is not guaranteed to be the same from one iteration to the next.
  5001  If map entries that have not yet been reached are removed during iteration,
  5002  the corresponding iteration values will not be produced. If map entries are
  5003  created during iteration, that entry may be produced during the iteration or
  5004  may be skipped. The choice may vary for each entry created and from one
  5005  iteration to the next.
  5006  If the map is <code>nil</code>, the number of iterations is 0.
  5007  </li>
  5008  
  5009  <li>
  5010  For channels, the iteration values produced are the successive values sent on
  5011  the channel until the channel is <a href="#Close">closed</a>. If the channel
  5012  is <code>nil</code>, the range expression blocks forever.
  5013  </li>
  5014  </ol>
  5015  
  5016  <p>
  5017  The iteration values are assigned to the respective
  5018  iteration variables as in an <a href="#Assignments">assignment statement</a>.
  5019  </p>
  5020  
  5021  <p>
  5022  The iteration variables may be declared by the "range" clause using a form of
  5023  <a href="#Short_variable_declarations">short variable declaration</a>
  5024  (<code>:=</code>).
  5025  In this case their types are set to the types of the respective iteration values
  5026  and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
  5027  statement; they are re-used in each iteration.
  5028  If the iteration variables are declared outside the "for" statement,
  5029  after execution their values will be those of the last iteration.
  5030  </p>
  5031  
  5032  <pre>
  5033  var testdata *struct {
  5034  	a *[7]int
  5035  }
  5036  for i, _ := range testdata.a {
  5037  	// testdata.a is never evaluated; len(testdata.a) is constant
  5038  	// i ranges from 0 to 6
  5039  	f(i)
  5040  }
  5041  
  5042  var a [10]string
  5043  for i, s := range a {
  5044  	// type of i is int
  5045  	// type of s is string
  5046  	// s == a[i]
  5047  	g(i, s)
  5048  }
  5049  
  5050  var key string
  5051  var val interface {}  // value type of m is assignable to val
  5052  m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
  5053  for key, val = range m {
  5054  	h(key, val)
  5055  }
  5056  // key == last map key encountered in iteration
  5057  // val == map[key]
  5058  
  5059  var ch chan Work = producer()
  5060  for w := range ch {
  5061  	doWork(w)
  5062  }
  5063  
  5064  // empty a channel
  5065  for range ch {}
  5066  </pre>
  5067  
  5068  
  5069  <h3 id="Go_statements">Go statements</h3>
  5070  
  5071  <p>
  5072  A "go" statement starts the execution of a function call
  5073  as an independent concurrent thread of control, or <i>goroutine</i>,
  5074  within the same address space.
  5075  </p>
  5076  
  5077  <pre class="ebnf">
  5078  GoStmt = "go" Expression .
  5079  </pre>
  5080  
  5081  <p>
  5082  The expression must be a function or method call; it cannot be parenthesized.
  5083  Calls of built-in functions are restricted as for
  5084  <a href="#Expression_statements">expression statements</a>.
  5085  </p>
  5086  
  5087  <p>
  5088  The function value and parameters are
  5089  <a href="#Calls">evaluated as usual</a>
  5090  in the calling goroutine, but
  5091  unlike with a regular call, program execution does not wait
  5092  for the invoked function to complete.
  5093  Instead, the function begins executing independently
  5094  in a new goroutine.
  5095  When the function terminates, its goroutine also terminates.
  5096  If the function has any return values, they are discarded when the
  5097  function completes.
  5098  </p>
  5099  
  5100  <pre>
  5101  go Server()
  5102  go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
  5103  </pre>
  5104  
  5105  
  5106  <h3 id="Select_statements">Select statements</h3>
  5107  
  5108  <p>
  5109  A "select" statement chooses which of a set of possible
  5110  <a href="#Send_statements">send</a> or
  5111  <a href="#Receive_operator">receive</a>
  5112  operations will proceed.
  5113  It looks similar to a
  5114  <a href="#Switch_statements">"switch"</a> statement but with the
  5115  cases all referring to communication operations.
  5116  </p>
  5117  
  5118  <pre class="ebnf">
  5119  SelectStmt = "select" "{" { CommClause } "}" .
  5120  CommClause = CommCase ":" StatementList .
  5121  CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
  5122  RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
  5123  RecvExpr   = Expression .
  5124  </pre>
  5125  
  5126  <p>
  5127  A case with a RecvStmt may assign the result of a RecvExpr to one or
  5128  two variables, which may be declared using a
  5129  <a href="#Short_variable_declarations">short variable declaration</a>.
  5130  The RecvExpr must be a (possibly parenthesized) receive operation.
  5131  There can be at most one default case and it may appear anywhere
  5132  in the list of cases.
  5133  </p>
  5134  
  5135  <p>
  5136  Execution of a "select" statement proceeds in several steps:
  5137  </p>
  5138  
  5139  <ol>
  5140  <li>
  5141  For all the cases in the statement, the channel operands of receive operations
  5142  and the channel and right-hand-side expressions of send statements are
  5143  evaluated exactly once, in source order, upon entering the "select" statement.
  5144  The result is a set of channels to receive from or send to,
  5145  and the corresponding values to send.
  5146  Any side effects in that evaluation will occur irrespective of which (if any)
  5147  communication operation is selected to proceed.
  5148  Expressions on the left-hand side of a RecvStmt with a short variable declaration
  5149  or assignment are not yet evaluated.
  5150  </li>
  5151  
  5152  <li>
  5153  If one or more of the communications can proceed,
  5154  a single one that can proceed is chosen via a uniform pseudo-random selection.
  5155  Otherwise, if there is a default case, that case is chosen.
  5156  If there is no default case, the "select" statement blocks until
  5157  at least one of the communications can proceed.
  5158  </li>
  5159  
  5160  <li>
  5161  Unless the selected case is the default case, the respective communication
  5162  operation is executed.
  5163  </li>
  5164  
  5165  <li>
  5166  If the selected case is a RecvStmt with a short variable declaration or
  5167  an assignment, the left-hand side expressions are evaluated and the
  5168  received value (or values) are assigned.
  5169  </li>
  5170  
  5171  <li>
  5172  The statement list of the selected case is executed.
  5173  </li>
  5174  </ol>
  5175  
  5176  <p>
  5177  Since communication on <code>nil</code> channels can never proceed,
  5178  a select with only <code>nil</code> channels and no default case blocks forever.
  5179  </p>
  5180  
  5181  <pre>
  5182  var a []int
  5183  var c, c1, c2, c3, c4 chan int
  5184  var i1, i2 int
  5185  select {
  5186  case i1 = &lt;-c1:
  5187  	print("received ", i1, " from c1\n")
  5188  case c2 &lt;- i2:
  5189  	print("sent ", i2, " to c2\n")
  5190  case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
  5191  	if ok {
  5192  		print("received ", i3, " from c3\n")
  5193  	} else {
  5194  		print("c3 is closed\n")
  5195  	}
  5196  case a[f()] = &lt;-c4:
  5197  	// same as:
  5198  	// case t := &lt;-c4
  5199  	//	a[f()] = t
  5200  default:
  5201  	print("no communication\n")
  5202  }
  5203  
  5204  for {  // send random sequence of bits to c
  5205  	select {
  5206  	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
  5207  	case c &lt;- 1:
  5208  	}
  5209  }
  5210  
  5211  select {}  // block forever
  5212  </pre>
  5213  
  5214  
  5215  <h3 id="Return_statements">Return statements</h3>
  5216  
  5217  <p>
  5218  A "return" statement in a function <code>F</code> terminates the execution
  5219  of <code>F</code>, and optionally provides one or more result values.
  5220  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5221  are executed before <code>F</code> returns to its caller.
  5222  </p>
  5223  
  5224  <pre class="ebnf">
  5225  ReturnStmt = "return" [ ExpressionList ] .
  5226  </pre>
  5227  
  5228  <p>
  5229  In a function without a result type, a "return" statement must not
  5230  specify any result values.
  5231  </p>
  5232  <pre>
  5233  func noResult() {
  5234  	return
  5235  }
  5236  </pre>
  5237  
  5238  <p>
  5239  There are three ways to return values from a function with a result
  5240  type:
  5241  </p>
  5242  
  5243  <ol>
  5244  	<li>The return value or values may be explicitly listed
  5245  		in the "return" statement. Each expression must be single-valued
  5246  		and <a href="#Assignability">assignable</a>
  5247  		to the corresponding element of the function's result type.
  5248  <pre>
  5249  func simpleF() int {
  5250  	return 2
  5251  }
  5252  
  5253  func complexF1() (re float64, im float64) {
  5254  	return -7.0, -4.0
  5255  }
  5256  </pre>
  5257  	</li>
  5258  	<li>The expression list in the "return" statement may be a single
  5259  		call to a multi-valued function. The effect is as if each value
  5260  		returned from that function were assigned to a temporary
  5261  		variable with the type of the respective value, followed by a
  5262  		"return" statement listing these variables, at which point the
  5263  		rules of the previous case apply.
  5264  <pre>
  5265  func complexF2() (re float64, im float64) {
  5266  	return complexF1()
  5267  }
  5268  </pre>
  5269  	</li>
  5270  	<li>The expression list may be empty if the function's result
  5271  		type specifies names for its <a href="#Function_types">result parameters</a>.
  5272  		The result parameters act as ordinary local variables
  5273  		and the function may assign values to them as necessary.
  5274  		The "return" statement returns the values of these variables.
  5275  <pre>
  5276  func complexF3() (re float64, im float64) {
  5277  	re = 7.0
  5278  	im = 4.0
  5279  	return
  5280  }
  5281  
  5282  func (devnull) Write(p []byte) (n int, _ error) {
  5283  	n = len(p)
  5284  	return
  5285  }
  5286  </pre>
  5287  	</li>
  5288  </ol>
  5289  
  5290  <p>
  5291  Regardless of how they are declared, all the result values are initialized to
  5292  the <a href="#The_zero_value">zero values</a> for their type upon entry to the
  5293  function. A "return" statement that specifies results sets the result parameters before
  5294  any deferred functions are executed.
  5295  </p>
  5296  
  5297  <p>
  5298  Implementation restriction: A compiler may disallow an empty expression list
  5299  in a "return" statement if a different entity (constant, type, or variable)
  5300  with the same name as a result parameter is in
  5301  <a href="#Declarations_and_scope">scope</a> at the place of the return.
  5302  </p>
  5303  
  5304  <pre>
  5305  func f(n int) (res int, err error) {
  5306  	if _, err := f(n-1); err != nil {
  5307  		return  // invalid return statement: err is shadowed
  5308  	}
  5309  	return
  5310  }
  5311  </pre>
  5312  
  5313  <h3 id="Break_statements">Break statements</h3>
  5314  
  5315  <p>
  5316  A "break" statement terminates execution of the innermost
  5317  <a href="#For_statements">"for"</a>,
  5318  <a href="#Switch_statements">"switch"</a>, or
  5319  <a href="#Select_statements">"select"</a> statement
  5320  within the same function.
  5321  </p>
  5322  
  5323  <pre class="ebnf">
  5324  BreakStmt = "break" [ Label ] .
  5325  </pre>
  5326  
  5327  <p>
  5328  If there is a label, it must be that of an enclosing
  5329  "for", "switch", or "select" statement,
  5330  and that is the one whose execution terminates.
  5331  </p>
  5332  
  5333  <pre>
  5334  OuterLoop:
  5335  	for i = 0; i &lt; n; i++ {
  5336  		for j = 0; j &lt; m; j++ {
  5337  			switch a[i][j] {
  5338  			case nil:
  5339  				state = Error
  5340  				break OuterLoop
  5341  			case item:
  5342  				state = Found
  5343  				break OuterLoop
  5344  			}
  5345  		}
  5346  	}
  5347  </pre>
  5348  
  5349  <h3 id="Continue_statements">Continue statements</h3>
  5350  
  5351  <p>
  5352  A "continue" statement begins the next iteration of the
  5353  innermost <a href="#For_statements">"for" loop</a> at its post statement.
  5354  The "for" loop must be within the same function.
  5355  </p>
  5356  
  5357  <pre class="ebnf">
  5358  ContinueStmt = "continue" [ Label ] .
  5359  </pre>
  5360  
  5361  <p>
  5362  If there is a label, it must be that of an enclosing
  5363  "for" statement, and that is the one whose execution
  5364  advances.
  5365  </p>
  5366  
  5367  <pre>
  5368  RowLoop:
  5369  	for y, row := range rows {
  5370  		for x, data := range row {
  5371  			if data == endOfRow {
  5372  				continue RowLoop
  5373  			}
  5374  			row[x] = data + bias(x, y)
  5375  		}
  5376  	}
  5377  </pre>
  5378  
  5379  <h3 id="Goto_statements">Goto statements</h3>
  5380  
  5381  <p>
  5382  A "goto" statement transfers control to the statement with the corresponding label
  5383  within the same function.
  5384  </p>
  5385  
  5386  <pre class="ebnf">
  5387  GotoStmt = "goto" Label .
  5388  </pre>
  5389  
  5390  <pre>
  5391  goto Error
  5392  </pre>
  5393  
  5394  <p>
  5395  Executing the "goto" statement must not cause any variables to come into
  5396  <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
  5397  For instance, this example:
  5398  </p>
  5399  
  5400  <pre>
  5401  	goto L  // BAD
  5402  	v := 3
  5403  L:
  5404  </pre>
  5405  
  5406  <p>
  5407  is erroneous because the jump to label <code>L</code> skips
  5408  the creation of <code>v</code>.
  5409  </p>
  5410  
  5411  <p>
  5412  A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
  5413  For instance, this example:
  5414  </p>
  5415  
  5416  <pre>
  5417  if n%2 == 1 {
  5418  	goto L1
  5419  }
  5420  for n &gt; 0 {
  5421  	f()
  5422  	n--
  5423  L1:
  5424  	f()
  5425  	n--
  5426  }
  5427  </pre>
  5428  
  5429  <p>
  5430  is erroneous because the label <code>L1</code> is inside
  5431  the "for" statement's block but the <code>goto</code> is not.
  5432  </p>
  5433  
  5434  <h3 id="Fallthrough_statements">Fallthrough statements</h3>
  5435  
  5436  <p>
  5437  A "fallthrough" statement transfers control to the first statement of the
  5438  next case clause in an <a href="#Expression_switches">expression "switch" statement</a>.
  5439  It may be used only as the final non-empty statement in such a clause.
  5440  </p>
  5441  
  5442  <pre class="ebnf">
  5443  FallthroughStmt = "fallthrough" .
  5444  </pre>
  5445  
  5446  
  5447  <h3 id="Defer_statements">Defer statements</h3>
  5448  
  5449  <p>
  5450  A "defer" statement invokes a function whose execution is deferred
  5451  to the moment the surrounding function returns, either because the
  5452  surrounding function executed a <a href="#Return_statements">return statement</a>,
  5453  reached the end of its <a href="#Function_declarations">function body</a>,
  5454  or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
  5455  </p>
  5456  
  5457  <pre class="ebnf">
  5458  DeferStmt = "defer" Expression .
  5459  </pre>
  5460  
  5461  <p>
  5462  The expression must be a function or method call; it cannot be parenthesized.
  5463  Calls of built-in functions are restricted as for
  5464  <a href="#Expression_statements">expression statements</a>.
  5465  </p>
  5466  
  5467  <p>
  5468  Each time a "defer" statement
  5469  executes, the function value and parameters to the call are
  5470  <a href="#Calls">evaluated as usual</a>
  5471  and saved anew but the actual function is not invoked.
  5472  Instead, deferred functions are invoked immediately before
  5473  the surrounding function returns, in the reverse order
  5474  they were deferred.
  5475  If a deferred function value evaluates
  5476  to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
  5477  when the function is invoked, not when the "defer" statement is executed.
  5478  </p>
  5479  
  5480  <p>
  5481  For instance, if the deferred function is
  5482  a <a href="#Function_literals">function literal</a> and the surrounding
  5483  function has <a href="#Function_types">named result parameters</a> that
  5484  are in scope within the literal, the deferred function may access and modify
  5485  the result parameters before they are returned.
  5486  If the deferred function has any return values, they are discarded when
  5487  the function completes.
  5488  (See also the section on <a href="#Handling_panics">handling panics</a>.)
  5489  </p>
  5490  
  5491  <pre>
  5492  lock(l)
  5493  defer unlock(l)  // unlocking happens before surrounding function returns
  5494  
  5495  // prints 3 2 1 0 before surrounding function returns
  5496  for i := 0; i &lt;= 3; i++ {
  5497  	defer fmt.Print(i)
  5498  }
  5499  
  5500  // f returns 1
  5501  func f() (result int) {
  5502  	defer func() {
  5503  		result++
  5504  	}()
  5505  	return 0
  5506  }
  5507  </pre>
  5508  
  5509  <h2 id="Built-in_functions">Built-in functions</h2>
  5510  
  5511  <p>
  5512  Built-in functions are
  5513  <a href="#Predeclared_identifiers">predeclared</a>.
  5514  They are called like any other function but some of them
  5515  accept a type instead of an expression as the first argument.
  5516  </p>
  5517  
  5518  <p>
  5519  The built-in functions do not have standard Go types,
  5520  so they can only appear in <a href="#Calls">call expressions</a>;
  5521  they cannot be used as function values.
  5522  </p>
  5523  
  5524  <h3 id="Close">Close</h3>
  5525  
  5526  <p>
  5527  For a channel <code>c</code>, the built-in function <code>close(c)</code>
  5528  records that no more values will be sent on the channel.
  5529  It is an error if <code>c</code> is a receive-only channel.
  5530  Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
  5531  Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
  5532  After calling <code>close</code>, and after any previously
  5533  sent values have been received, receive operations will return
  5534  the zero value for the channel's type without blocking.
  5535  The multi-valued <a href="#Receive_operator">receive operation</a>
  5536  returns a received value along with an indication of whether the channel is closed.
  5537  </p>
  5538  
  5539  
  5540  <h3 id="Length_and_capacity">Length and capacity</h3>
  5541  
  5542  <p>
  5543  The built-in functions <code>len</code> and <code>cap</code> take arguments
  5544  of various types and return a result of type <code>int</code>.
  5545  The implementation guarantees that the result always fits into an <code>int</code>.
  5546  </p>
  5547  
  5548  <pre class="grammar">
  5549  Call      Argument type    Result
  5550  
  5551  len(s)    string type      string length in bytes
  5552            [n]T, *[n]T      array length (== n)
  5553            []T              slice length
  5554            map[K]T          map length (number of defined keys)
  5555            chan T           number of elements queued in channel buffer
  5556  
  5557  cap(s)    [n]T, *[n]T      array length (== n)
  5558            []T              slice capacity
  5559            chan T           channel buffer capacity
  5560  </pre>
  5561  
  5562  <p>
  5563  The capacity of a slice is the number of elements for which there is
  5564  space allocated in the underlying array.
  5565  At any time the following relationship holds:
  5566  </p>
  5567  
  5568  <pre>
  5569  0 &lt;= len(s) &lt;= cap(s)
  5570  </pre>
  5571  
  5572  <p>
  5573  The length of a <code>nil</code> slice, map or channel is 0.
  5574  The capacity of a <code>nil</code> slice or channel is 0.
  5575  </p>
  5576  
  5577  <p>
  5578  The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
  5579  <code>s</code> is a string constant. The expressions <code>len(s)</code> and
  5580  <code>cap(s)</code> are constants if the type of <code>s</code> is an array
  5581  or pointer to an array and the expression <code>s</code> does not contain
  5582  <a href="#Receive_operator">channel receives</a> or (non-constant)
  5583  <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
  5584  Otherwise, invocations of <code>len</code> and <code>cap</code> are not
  5585  constant and <code>s</code> is evaluated.
  5586  </p>
  5587  
  5588  <pre>
  5589  const (
  5590  	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
  5591  	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
  5592  	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
  5593  	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
  5594  	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
  5595  )
  5596  var z complex128
  5597  </pre>
  5598  
  5599  <h3 id="Allocation">Allocation</h3>
  5600  
  5601  <p>
  5602  The built-in function <code>new</code> takes a type <code>T</code>,
  5603  allocates storage for a <a href="#Variables">variable</a> of that type
  5604  at run time, and returns a value of type <code>*T</code>
  5605  <a href="#Pointer_types">pointing</a> to it.
  5606  The variable is initialized as described in the section on
  5607  <a href="#The_zero_value">initial values</a>.
  5608  </p>
  5609  
  5610  <pre class="grammar">
  5611  new(T)
  5612  </pre>
  5613  
  5614  <p>
  5615  For instance
  5616  </p>
  5617  
  5618  <pre>
  5619  type S struct { a int; b float64 }
  5620  new(S)
  5621  </pre>
  5622  
  5623  <p>
  5624  allocates storage for a variable of type <code>S</code>,
  5625  initializes it (<code>a=0</code>, <code>b=0.0</code>),
  5626  and returns a value of type <code>*S</code> containing the address
  5627  of the location.
  5628  </p>
  5629  
  5630  <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
  5631  
  5632  <p>
  5633  The built-in function <code>make</code> takes a type <code>T</code>,
  5634  which must be a slice, map or channel type,
  5635  optionally followed by a type-specific list of expressions.
  5636  It returns a value of type <code>T</code> (not <code>*T</code>).
  5637  The memory is initialized as described in the section on
  5638  <a href="#The_zero_value">initial values</a>.
  5639  </p>
  5640  
  5641  <pre class="grammar">
  5642  Call             Type T     Result
  5643  
  5644  make(T, n)       slice      slice of type T with length n and capacity n
  5645  make(T, n, m)    slice      slice of type T with length n and capacity m
  5646  
  5647  make(T)          map        map of type T
  5648  make(T, n)       map        map of type T with initial space for approximately n elements
  5649  
  5650  make(T)          channel    unbuffered channel of type T
  5651  make(T, n)       channel    buffered channel of type T, buffer size n
  5652  </pre>
  5653  
  5654  
  5655  <p>
  5656  The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
  5657  A <a href="#Constants">constant</a> size argument must be non-negative and
  5658  representable by a value of type <code>int</code>.
  5659  If both <code>n</code> and <code>m</code> are provided and are constant, then
  5660  <code>n</code> must be no larger than <code>m</code>.
  5661  If <code>n</code> is negative or larger than <code>m</code> at run time,
  5662  a <a href="#Run_time_panics">run-time panic</a> occurs.
  5663  </p>
  5664  
  5665  <pre>
  5666  s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
  5667  s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
  5668  s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
  5669  s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
  5670  c := make(chan int, 10)         // channel with a buffer size of 10
  5671  m := make(map[string]int, 100)  // map with initial space for approximately 100 elements
  5672  </pre>
  5673  
  5674  <p>
  5675  Calling <code>make</code> with a map type and size hint <code>n</code> will
  5676  create a map with initial space to hold <code>n</code> map elements.
  5677  The precise behavior is implementation-dependent.
  5678  </p>
  5679  
  5680  
  5681  <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
  5682  
  5683  <p>
  5684  The built-in functions <code>append</code> and <code>copy</code> assist in
  5685  common slice operations.
  5686  For both functions, the result is independent of whether the memory referenced
  5687  by the arguments overlaps.
  5688  </p>
  5689  
  5690  <p>
  5691  The <a href="#Function_types">variadic</a> function <code>append</code>
  5692  appends zero or more values <code>x</code>
  5693  to <code>s</code> of type <code>S</code>, which must be a slice type, and
  5694  returns the resulting slice, also of type <code>S</code>.
  5695  The values <code>x</code> are passed to a parameter of type <code>...T</code>
  5696  where <code>T</code> is the <a href="#Slice_types">element type</a> of
  5697  <code>S</code> and the respective
  5698  <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
  5699  As a special case, <code>append</code> also accepts a first argument
  5700  assignable to type <code>[]byte</code> with a second argument of
  5701  string type followed by <code>...</code>. This form appends the
  5702  bytes of the string.
  5703  </p>
  5704  
  5705  <pre class="grammar">
  5706  append(s S, x ...T) S  // T is the element type of S
  5707  </pre>
  5708  
  5709  <p>
  5710  If the capacity of <code>s</code> is not large enough to fit the additional
  5711  values, <code>append</code> allocates a new, sufficiently large underlying
  5712  array that fits both the existing slice elements and the additional values.
  5713  Otherwise, <code>append</code> re-uses the underlying array.
  5714  </p>
  5715  
  5716  <pre>
  5717  s0 := []int{0, 0}
  5718  s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
  5719  s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
  5720  s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
  5721  s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
  5722  
  5723  var t []interface{}
  5724  t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
  5725  
  5726  var b []byte
  5727  b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
  5728  </pre>
  5729  
  5730  <p>
  5731  The function <code>copy</code> copies slice elements from
  5732  a source <code>src</code> to a destination <code>dst</code> and returns the
  5733  number of elements copied.
  5734  Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
  5735  <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
  5736  The number of elements copied is the minimum of
  5737  <code>len(src)</code> and <code>len(dst)</code>.
  5738  As a special case, <code>copy</code> also accepts a destination argument assignable
  5739  to type <code>[]byte</code> with a source argument of a string type.
  5740  This form copies the bytes from the string into the byte slice.
  5741  </p>
  5742  
  5743  <pre class="grammar">
  5744  copy(dst, src []T) int
  5745  copy(dst []byte, src string) int
  5746  </pre>
  5747  
  5748  <p>
  5749  Examples:
  5750  </p>
  5751  
  5752  <pre>
  5753  var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
  5754  var s = make([]int, 6)
  5755  var b = make([]byte, 5)
  5756  n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
  5757  n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
  5758  n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
  5759  </pre>
  5760  
  5761  
  5762  <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
  5763  
  5764  <p>
  5765  The built-in function <code>delete</code> removes the element with key
  5766  <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
  5767  type of <code>k</code> must be <a href="#Assignability">assignable</a>
  5768  to the key type of <code>m</code>.
  5769  </p>
  5770  
  5771  <pre class="grammar">
  5772  delete(m, k)  // remove element m[k] from map m
  5773  </pre>
  5774  
  5775  <p>
  5776  If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
  5777  does not exist, <code>delete</code> is a no-op.
  5778  </p>
  5779  
  5780  
  5781  <h3 id="Complex_numbers">Manipulating complex numbers</h3>
  5782  
  5783  <p>
  5784  Three functions assemble and disassemble complex numbers.
  5785  The built-in function <code>complex</code> constructs a complex
  5786  value from a floating-point real and imaginary part, while
  5787  <code>real</code> and <code>imag</code>
  5788  extract the real and imaginary parts of a complex value.
  5789  </p>
  5790  
  5791  <pre class="grammar">
  5792  complex(realPart, imaginaryPart floatT) complexT
  5793  real(complexT) floatT
  5794  imag(complexT) floatT
  5795  </pre>
  5796  
  5797  <p>
  5798  The type of the arguments and return value correspond.
  5799  For <code>complex</code>, the two arguments must be of the same
  5800  floating-point type and the return type is the complex type
  5801  with the corresponding floating-point constituents:
  5802  <code>complex64</code> for <code>float32</code> arguments, and
  5803  <code>complex128</code> for <code>float64</code> arguments.
  5804  If one of the arguments evaluates to an untyped constant, it is first
  5805  <a href="#Conversions">converted</a> to the type of the other argument.
  5806  If both arguments evaluate to untyped constants, they must be non-complex
  5807  numbers or their imaginary parts must be zero, and the return value of
  5808  the function is an untyped complex constant.
  5809  </p>
  5810  
  5811  <p>
  5812  For <code>real</code> and <code>imag</code>, the argument must be
  5813  of complex type, and the return type is the corresponding floating-point
  5814  type: <code>float32</code> for a <code>complex64</code> argument, and
  5815  <code>float64</code> for a <code>complex128</code> argument.
  5816  If the argument evaluates to an untyped constant, it must be a number,
  5817  and the return value of the function is an untyped floating-point constant.
  5818  </p>
  5819  
  5820  <p>
  5821  The <code>real</code> and <code>imag</code> functions together form the inverse of
  5822  <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
  5823  <code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
  5824  </p>
  5825  
  5826  <p>
  5827  If the operands of these functions are all constants, the return
  5828  value is a constant.
  5829  </p>
  5830  
  5831  <pre>
  5832  var a = complex(2, -2)             // complex128
  5833  const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
  5834  x := float32(math.Cos(math.Pi/2))  // float32
  5835  var c64 = complex(5, -x)           // complex64
  5836  var s uint = complex(1, 0)         // untyped complex constant 1 + 0i can be converted to uint
  5837  _ = complex(1, 2&lt;&lt;s)               // illegal: 2 assumes floating-point type, cannot shift
  5838  var rl = real(c64)                 // float32
  5839  var im = imag(a)                   // float64
  5840  const c = imag(b)                  // untyped constant -1.4
  5841  _ = imag(3 &lt;&lt; s)                   // illegal: 3 assumes complex type, cannot shift
  5842  </pre>
  5843  
  5844  <h3 id="Handling_panics">Handling panics</h3>
  5845  
  5846  <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
  5847  assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
  5848  and program-defined error conditions.
  5849  </p>
  5850  
  5851  <pre class="grammar">
  5852  func panic(interface{})
  5853  func recover() interface{}
  5854  </pre>
  5855  
  5856  <p>
  5857  While executing a function <code>F</code>,
  5858  an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
  5859  terminates the execution of <code>F</code>.
  5860  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5861  are then executed as usual.
  5862  Next, any deferred functions run by <code>F's</code> caller are run,
  5863  and so on up to any deferred by the top-level function in the executing goroutine.
  5864  At that point, the program is terminated and the error
  5865  condition is reported, including the value of the argument to <code>panic</code>.
  5866  This termination sequence is called <i>panicking</i>.
  5867  </p>
  5868  
  5869  <pre>
  5870  panic(42)
  5871  panic("unreachable")
  5872  panic(Error("cannot parse"))
  5873  </pre>
  5874  
  5875  <p>
  5876  The <code>recover</code> function allows a program to manage behavior
  5877  of a panicking goroutine.
  5878  Suppose a function <code>G</code> defers a function <code>D</code> that calls
  5879  <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
  5880  is executing.
  5881  When the running of deferred functions reaches <code>D</code>,
  5882  the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
  5883  If <code>D</code> returns normally, without starting a new
  5884  <code>panic</code>, the panicking sequence stops. In that case,
  5885  the state of functions called between <code>G</code> and the call to <code>panic</code>
  5886  is discarded, and normal execution resumes.
  5887  Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
  5888  execution terminates by returning to its caller.
  5889  </p>
  5890  
  5891  <p>
  5892  The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
  5893  </p>
  5894  <ul>
  5895  <li>
  5896  <code>panic</code>'s argument was <code>nil</code>;
  5897  </li>
  5898  <li>
  5899  the goroutine is not panicking;
  5900  </li>
  5901  <li>
  5902  <code>recover</code> was not called directly by a deferred function.
  5903  </li>
  5904  </ul>
  5905  
  5906  <p>
  5907  The <code>protect</code> function in the example below invokes
  5908  the function argument <code>g</code> and protects callers from
  5909  run-time panics raised by <code>g</code>.
  5910  </p>
  5911  
  5912  <pre>
  5913  func protect(g func()) {
  5914  	defer func() {
  5915  		log.Println("done")  // Println executes normally even if there is a panic
  5916  		if x := recover(); x != nil {
  5917  			log.Printf("run time panic: %v", x)
  5918  		}
  5919  	}()
  5920  	log.Println("start")
  5921  	g()
  5922  }
  5923  </pre>
  5924  
  5925  
  5926  <h3 id="Bootstrapping">Bootstrapping</h3>
  5927  
  5928  <p>
  5929  Current implementations provide several built-in functions useful during
  5930  bootstrapping. These functions are documented for completeness but are not
  5931  guaranteed to stay in the language. They do not return a result.
  5932  </p>
  5933  
  5934  <pre class="grammar">
  5935  Function   Behavior
  5936  
  5937  print      prints all arguments; formatting of arguments is implementation-specific
  5938  println    like print but prints spaces between arguments and a newline at the end
  5939  </pre>
  5940  
  5941  
  5942  <h2 id="Packages">Packages</h2>
  5943  
  5944  <p>
  5945  Go programs are constructed by linking together <i>packages</i>.
  5946  A package in turn is constructed from one or more source files
  5947  that together declare constants, types, variables and functions
  5948  belonging to the package and which are accessible in all files
  5949  of the same package. Those elements may be
  5950  <a href="#Exported_identifiers">exported</a> and used in another package.
  5951  </p>
  5952  
  5953  <h3 id="Source_file_organization">Source file organization</h3>
  5954  
  5955  <p>
  5956  Each source file consists of a package clause defining the package
  5957  to which it belongs, followed by a possibly empty set of import
  5958  declarations that declare packages whose contents it wishes to use,
  5959  followed by a possibly empty set of declarations of functions,
  5960  types, variables, and constants.
  5961  </p>
  5962  
  5963  <pre class="ebnf">
  5964  SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
  5965  </pre>
  5966  
  5967  <h3 id="Package_clause">Package clause</h3>
  5968  
  5969  <p>
  5970  A package clause begins each source file and defines the package
  5971  to which the file belongs.
  5972  </p>
  5973  
  5974  <pre class="ebnf">
  5975  PackageClause  = "package" PackageName .
  5976  PackageName    = identifier .
  5977  </pre>
  5978  
  5979  <p>
  5980  The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
  5981  </p>
  5982  
  5983  <pre>
  5984  package math
  5985  </pre>
  5986  
  5987  <p>
  5988  A set of files sharing the same PackageName form the implementation of a package.
  5989  An implementation may require that all source files for a package inhabit the same directory.
  5990  </p>
  5991  
  5992  <h3 id="Import_declarations">Import declarations</h3>
  5993  
  5994  <p>
  5995  An import declaration states that the source file containing the declaration
  5996  depends on functionality of the <i>imported</i> package
  5997  (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
  5998  and enables access to <a href="#Exported_identifiers">exported</a> identifiers
  5999  of that package.
  6000  The import names an identifier (PackageName) to be used for access and an ImportPath
  6001  that specifies the package to be imported.
  6002  </p>
  6003  
  6004  <pre class="ebnf">
  6005  ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
  6006  ImportSpec       = [ "." | PackageName ] ImportPath .
  6007  ImportPath       = string_lit .
  6008  </pre>
  6009  
  6010  <p>
  6011  The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
  6012  to access exported identifiers of the package within the importing source file.
  6013  It is declared in the <a href="#Blocks">file block</a>.
  6014  If the PackageName is omitted, it defaults to the identifier specified in the
  6015  <a href="#Package_clause">package clause</a> of the imported package.
  6016  If an explicit period (<code>.</code>) appears instead of a name, all the
  6017  package's exported identifiers declared in that package's
  6018  <a href="#Blocks">package block</a> will be declared in the importing source
  6019  file's file block and must be accessed without a qualifier.
  6020  </p>
  6021  
  6022  <p>
  6023  The interpretation of the ImportPath is implementation-dependent but
  6024  it is typically a substring of the full file name of the compiled
  6025  package and may be relative to a repository of installed packages.
  6026  </p>
  6027  
  6028  <p>
  6029  Implementation restriction: A compiler may restrict ImportPaths to
  6030  non-empty strings using only characters belonging to
  6031  <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
  6032  L, M, N, P, and S general categories (the Graphic characters without
  6033  spaces) and may also exclude the characters
  6034  <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
  6035  and the Unicode replacement character U+FFFD.
  6036  </p>
  6037  
  6038  <p>
  6039  Assume we have compiled a package containing the package clause
  6040  <code>package math</code>, which exports function <code>Sin</code>, and
  6041  installed the compiled package in the file identified by
  6042  <code>"lib/math"</code>.
  6043  This table illustrates how <code>Sin</code> is accessed in files
  6044  that import the package after the
  6045  various types of import declaration.
  6046  </p>
  6047  
  6048  <pre class="grammar">
  6049  Import declaration          Local name of Sin
  6050  
  6051  import   "lib/math"         math.Sin
  6052  import m "lib/math"         m.Sin
  6053  import . "lib/math"         Sin
  6054  </pre>
  6055  
  6056  <p>
  6057  An import declaration declares a dependency relation between
  6058  the importing and imported package.
  6059  It is illegal for a package to import itself, directly or indirectly,
  6060  or to directly import a package without
  6061  referring to any of its exported identifiers. To import a package solely for
  6062  its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
  6063  identifier as explicit package name:
  6064  </p>
  6065  
  6066  <pre>
  6067  import _ "lib/math"
  6068  </pre>
  6069  
  6070  
  6071  <h3 id="An_example_package">An example package</h3>
  6072  
  6073  <p>
  6074  Here is a complete Go package that implements a concurrent prime sieve.
  6075  </p>
  6076  
  6077  <pre>
  6078  package main
  6079  
  6080  import "fmt"
  6081  
  6082  // Send the sequence 2, 3, 4, … to channel 'ch'.
  6083  func generate(ch chan&lt;- int) {
  6084  	for i := 2; ; i++ {
  6085  		ch &lt;- i  // Send 'i' to channel 'ch'.
  6086  	}
  6087  }
  6088  
  6089  // Copy the values from channel 'src' to channel 'dst',
  6090  // removing those divisible by 'prime'.
  6091  func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
  6092  	for i := range src {  // Loop over values received from 'src'.
  6093  		if i%prime != 0 {
  6094  			dst &lt;- i  // Send 'i' to channel 'dst'.
  6095  		}
  6096  	}
  6097  }
  6098  
  6099  // The prime sieve: Daisy-chain filter processes together.
  6100  func sieve() {
  6101  	ch := make(chan int)  // Create a new channel.
  6102  	go generate(ch)       // Start generate() as a subprocess.
  6103  	for {
  6104  		prime := &lt;-ch
  6105  		fmt.Print(prime, "\n")
  6106  		ch1 := make(chan int)
  6107  		go filter(ch, ch1, prime)
  6108  		ch = ch1
  6109  	}
  6110  }
  6111  
  6112  func main() {
  6113  	sieve()
  6114  }
  6115  </pre>
  6116  
  6117  <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
  6118  
  6119  <h3 id="The_zero_value">The zero value</h3>
  6120  <p>
  6121  When storage is allocated for a <a href="#Variables">variable</a>,
  6122  either through a declaration or a call of <code>new</code>, or when
  6123  a new value is created, either through a composite literal or a call
  6124  of <code>make</code>,
  6125  and no explicit initialization is provided, the variable or value is
  6126  given a default value.  Each element of such a variable or value is
  6127  set to the <i>zero value</i> for its type: <code>false</code> for booleans,
  6128  <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
  6129  for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
  6130  This initialization is done recursively, so for instance each element of an
  6131  array of structs will have its fields zeroed if no value is specified.
  6132  </p>
  6133  <p>
  6134  These two simple declarations are equivalent:
  6135  </p>
  6136  
  6137  <pre>
  6138  var i int
  6139  var i int = 0
  6140  </pre>
  6141  
  6142  <p>
  6143  After
  6144  </p>
  6145  
  6146  <pre>
  6147  type T struct { i int; f float64; next *T }
  6148  t := new(T)
  6149  </pre>
  6150  
  6151  <p>
  6152  the following holds:
  6153  </p>
  6154  
  6155  <pre>
  6156  t.i == 0
  6157  t.f == 0.0
  6158  t.next == nil
  6159  </pre>
  6160  
  6161  <p>
  6162  The same would also be true after
  6163  </p>
  6164  
  6165  <pre>
  6166  var t T
  6167  </pre>
  6168  
  6169  <h3 id="Package_initialization">Package initialization</h3>
  6170  
  6171  <p>
  6172  Within a package, package-level variables are initialized in
  6173  <i>declaration order</i> but after any of the variables
  6174  they <i>depend</i> on.
  6175  </p>
  6176  
  6177  <p>
  6178  More precisely, a package-level variable is considered <i>ready for
  6179  initialization</i> if it is not yet initialized and either has
  6180  no <a href="#Variable_declarations">initialization expression</a> or
  6181  its initialization expression has no dependencies on uninitialized variables.
  6182  Initialization proceeds by repeatedly initializing the next package-level
  6183  variable that is earliest in declaration order and ready for initialization,
  6184  until there are no variables ready for initialization.
  6185  </p>
  6186  
  6187  <p>
  6188  If any variables are still uninitialized when this
  6189  process ends, those variables are part of one or more initialization cycles,
  6190  and the program is not valid.
  6191  </p>
  6192  
  6193  <p>
  6194  The declaration order of variables declared in multiple files is determined
  6195  by the order in which the files are presented to the compiler: Variables
  6196  declared in the first file are declared before any of the variables declared
  6197  in the second file, and so on.
  6198  </p>
  6199  
  6200  <p>
  6201  Dependency analysis does not rely on the actual values of the
  6202  variables, only on lexical <i>references</i> to them in the source,
  6203  analyzed transitively. For instance, if a variable <code>x</code>'s
  6204  initialization expression refers to a function whose body refers to
  6205  variable <code>y</code> then <code>x</code> depends on <code>y</code>.
  6206  Specifically:
  6207  </p>
  6208  
  6209  <ul>
  6210  <li>
  6211  A reference to a variable or function is an identifier denoting that
  6212  variable or function.
  6213  </li>
  6214  
  6215  <li>
  6216  A reference to a method <code>m</code> is a
  6217  <a href="#Method_values">method value</a> or
  6218  <a href="#Method_expressions">method expression</a> of the form
  6219  <code>t.m</code>, where the (static) type of <code>t</code> is
  6220  not an interface type, and the method <code>m</code> is in the
  6221  <a href="#Method_sets">method set</a> of <code>t</code>.
  6222  It is immaterial whether the resulting function value
  6223  <code>t.m</code> is invoked.
  6224  </li>
  6225  
  6226  <li>
  6227  A variable, function, or method <code>x</code> depends on a variable
  6228  <code>y</code> if <code>x</code>'s initialization expression or body
  6229  (for functions and methods) contains a reference to <code>y</code>
  6230  or to a function or method that depends on <code>y</code>.
  6231  </li>
  6232  </ul>
  6233  
  6234  <p>
  6235  Dependency analysis is performed per package; only references referring
  6236  to variables, functions, and methods declared in the current package
  6237  are considered.
  6238  </p>
  6239  
  6240  <p>
  6241  For example, given the declarations
  6242  </p>
  6243  
  6244  <pre>
  6245  var (
  6246  	a = c + b
  6247  	b = f()
  6248  	c = f()
  6249  	d = 3
  6250  )
  6251  
  6252  func f() int {
  6253  	d++
  6254  	return d
  6255  }
  6256  </pre>
  6257  
  6258  <p>
  6259  the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
  6260  </p>
  6261  
  6262  <p>
  6263  Variables may also be initialized using functions named <code>init</code>
  6264  declared in the package block, with no arguments and no result parameters.
  6265  </p>
  6266  
  6267  <pre>
  6268  func init() { … }
  6269  </pre>
  6270  
  6271  <p>
  6272  Multiple such functions may be defined per package, even within a single
  6273  source file. In the package block, the <code>init</code> identifier can
  6274  be used only to declare <code>init</code> functions, yet the identifier
  6275  itself is not <a href="#Declarations_and_scope">declared</a>. Thus
  6276  <code>init</code> functions cannot be referred to from anywhere
  6277  in a program.
  6278  </p>
  6279  
  6280  <p>
  6281  A package with no imports is initialized by assigning initial values
  6282  to all its package-level variables followed by calling all <code>init</code>
  6283  functions in the order they appear in the source, possibly in multiple files,
  6284  as presented to the compiler.
  6285  If a package has imports, the imported packages are initialized
  6286  before initializing the package itself. If multiple packages import
  6287  a package, the imported package will be initialized only once.
  6288  The importing of packages, by construction, guarantees that there
  6289  can be no cyclic initialization dependencies.
  6290  </p>
  6291  
  6292  <p>
  6293  Package initialization&mdash;variable initialization and the invocation of
  6294  <code>init</code> functions&mdash;happens in a single goroutine,
  6295  sequentially, one package at a time.
  6296  An <code>init</code> function may launch other goroutines, which can run
  6297  concurrently with the initialization code. However, initialization
  6298  always sequences
  6299  the <code>init</code> functions: it will not invoke the next one
  6300  until the previous one has returned.
  6301  </p>
  6302  
  6303  <p>
  6304  To ensure reproducible initialization behavior, build systems are encouraged
  6305  to present multiple files belonging to the same package in lexical file name
  6306  order to a compiler.
  6307  </p>
  6308  
  6309  
  6310  <h3 id="Program_execution">Program execution</h3>
  6311  <p>
  6312  A complete program is created by linking a single, unimported package
  6313  called the <i>main package</i> with all the packages it imports, transitively.
  6314  The main package must
  6315  have package name <code>main</code> and
  6316  declare a function <code>main</code> that takes no
  6317  arguments and returns no value.
  6318  </p>
  6319  
  6320  <pre>
  6321  func main() { … }
  6322  </pre>
  6323  
  6324  <p>
  6325  Program execution begins by initializing the main package and then
  6326  invoking the function <code>main</code>.
  6327  When that function invocation returns, the program exits.
  6328  It does not wait for other (non-<code>main</code>) goroutines to complete.
  6329  </p>
  6330  
  6331  <h2 id="Errors">Errors</h2>
  6332  
  6333  <p>
  6334  The predeclared type <code>error</code> is defined as
  6335  </p>
  6336  
  6337  <pre>
  6338  type error interface {
  6339  	Error() string
  6340  }
  6341  </pre>
  6342  
  6343  <p>
  6344  It is the conventional interface for representing an error condition,
  6345  with the nil value representing no error.
  6346  For instance, a function to read data from a file might be defined:
  6347  </p>
  6348  
  6349  <pre>
  6350  func Read(f *File, b []byte) (n int, err error)
  6351  </pre>
  6352  
  6353  <h2 id="Run_time_panics">Run-time panics</h2>
  6354  
  6355  <p>
  6356  Execution errors such as attempting to index an array out
  6357  of bounds trigger a <i>run-time panic</i> equivalent to a call of
  6358  the built-in function <a href="#Handling_panics"><code>panic</code></a>
  6359  with a value of the implementation-defined interface type <code>runtime.Error</code>.
  6360  That type satisfies the predeclared interface type
  6361  <a href="#Errors"><code>error</code></a>.
  6362  The exact error values that
  6363  represent distinct run-time error conditions are unspecified.
  6364  </p>
  6365  
  6366  <pre>
  6367  package runtime
  6368  
  6369  type Error interface {
  6370  	error
  6371  	// and perhaps other methods
  6372  }
  6373  </pre>
  6374  
  6375  <h2 id="System_considerations">System considerations</h2>
  6376  
  6377  <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
  6378  
  6379  <p>
  6380  The built-in package <code>unsafe</code>, known to the compiler,
  6381  provides facilities for low-level programming including operations
  6382  that violate the type system. A package using <code>unsafe</code>
  6383  must be vetted manually for type safety and may not be portable.
  6384  The package provides the following interface:
  6385  </p>
  6386  
  6387  <pre class="grammar">
  6388  package unsafe
  6389  
  6390  type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
  6391  type Pointer *ArbitraryType
  6392  
  6393  func Alignof(variable ArbitraryType) uintptr
  6394  func Offsetof(selector ArbitraryType) uintptr
  6395  func Sizeof(variable ArbitraryType) uintptr
  6396  </pre>
  6397  
  6398  <p>
  6399  A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
  6400  value may not be <a href="#Address_operators">dereferenced</a>.
  6401  Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
  6402  a <code>Pointer</code> type and vice versa.
  6403  The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
  6404  </p>
  6405  
  6406  <pre>
  6407  var f float64
  6408  bits = *(*uint64)(unsafe.Pointer(&amp;f))
  6409  
  6410  type ptr unsafe.Pointer
  6411  bits = *(*uint64)(ptr(&amp;f))
  6412  
  6413  var p ptr = nil
  6414  </pre>
  6415  
  6416  <p>
  6417  The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
  6418  of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
  6419  as if <code>v</code> was declared via <code>var v = x</code>.
  6420  </p>
  6421  <p>
  6422  The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
  6423  <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
  6424  or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
  6425  If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
  6426  without pointer indirections through fields of the struct.
  6427  For a struct <code>s</code> with field <code>f</code>:
  6428  </p>
  6429  
  6430  <pre>
  6431  uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
  6432  </pre>
  6433  
  6434  <p>
  6435  Computer architectures may require memory addresses to be <i>aligned</i>;
  6436  that is, for addresses of a variable to be a multiple of a factor,
  6437  the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
  6438  takes an expression denoting a variable of any type and returns the
  6439  alignment of the (type of the) variable in bytes.  For a variable
  6440  <code>x</code>:
  6441  </p>
  6442  
  6443  <pre>
  6444  uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
  6445  </pre>
  6446  
  6447  <p>
  6448  Calls to <code>Alignof</code>, <code>Offsetof</code>, and
  6449  <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
  6450  </p>
  6451  
  6452  <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
  6453  
  6454  <p>
  6455  For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
  6456  </p>
  6457  
  6458  <pre class="grammar">
  6459  type                                 size in bytes
  6460  
  6461  byte, uint8, int8                     1
  6462  uint16, int16                         2
  6463  uint32, int32, float32                4
  6464  uint64, int64, float64, complex64     8
  6465  complex128                           16
  6466  </pre>
  6467  
  6468  <p>
  6469  The following minimal alignment properties are guaranteed:
  6470  </p>
  6471  <ol>
  6472  <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
  6473  </li>
  6474  
  6475  <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
  6476     all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
  6477  </li>
  6478  
  6479  <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
  6480  	the alignment of a variable of the array's element type.
  6481  </li>
  6482  </ol>
  6483  
  6484  <p>
  6485  A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
  6486  </p>