github.com/tidwall/go@v0.0.0-20170415222209-6694a6888b7d/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"encoding/binary"
    10  	"fmt"
    11  	"html"
    12  	"os"
    13  	"sort"
    14  
    15  	"cmd/compile/internal/ssa"
    16  	"cmd/compile/internal/types"
    17  	"cmd/internal/obj"
    18  	"cmd/internal/src"
    19  	"cmd/internal/sys"
    20  )
    21  
    22  var ssaConfig *ssa.Config
    23  var ssaCache *ssa.Cache
    24  
    25  func initssaconfig() {
    26  	types_ := ssa.Types{
    27  		Bool:       types.Types[TBOOL],
    28  		Int8:       types.Types[TINT8],
    29  		Int16:      types.Types[TINT16],
    30  		Int32:      types.Types[TINT32],
    31  		Int64:      types.Types[TINT64],
    32  		UInt8:      types.Types[TUINT8],
    33  		UInt16:     types.Types[TUINT16],
    34  		UInt32:     types.Types[TUINT32],
    35  		UInt64:     types.Types[TUINT64],
    36  		Float32:    types.Types[TFLOAT32],
    37  		Float64:    types.Types[TFLOAT64],
    38  		Int:        types.Types[TINT],
    39  		Uintptr:    types.Types[TUINTPTR],
    40  		String:     types.Types[TSTRING],
    41  		BytePtr:    types.NewPtr(types.Types[TUINT8]),
    42  		Int32Ptr:   types.NewPtr(types.Types[TINT32]),
    43  		UInt32Ptr:  types.NewPtr(types.Types[TUINT32]),
    44  		IntPtr:     types.NewPtr(types.Types[TINT]),
    45  		UintptrPtr: types.NewPtr(types.Types[TUINTPTR]),
    46  		Float32Ptr: types.NewPtr(types.Types[TFLOAT32]),
    47  		Float64Ptr: types.NewPtr(types.Types[TFLOAT64]),
    48  		BytePtrPtr: types.NewPtr(types.NewPtr(types.Types[TUINT8])),
    49  	}
    50  	// Generate a few pointer types that are uncommon in the frontend but common in the backend.
    51  	// Caching is disabled in the backend, so generating these here avoids allocations.
    52  	_ = types.NewPtr(types.Types[TINTER])                             // *interface{}
    53  	_ = types.NewPtr(types.NewPtr(types.Types[TSTRING]))              // **string
    54  	_ = types.NewPtr(types.NewPtr(types.Idealstring))                 // **string
    55  	_ = types.NewPtr(types.NewSlice(types.Types[TINTER]))             // *[]interface{}
    56  	_ = types.NewPtr(types.NewPtr(types.Bytetype))                    // **byte
    57  	_ = types.NewPtr(types.NewSlice(types.Bytetype))                  // *[]byte
    58  	_ = types.NewPtr(types.NewSlice(types.Types[TSTRING]))            // *[]string
    59  	_ = types.NewPtr(types.NewSlice(types.Idealstring))               // *[]string
    60  	_ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8
    61  	_ = types.NewPtr(types.Types[TINT16])                             // *int16
    62  	_ = types.NewPtr(types.Types[TINT64])                             // *int64
    63  	_ = types.NewPtr(types.Errortype)                                 // *error
    64  	types.NewPtrCacheEnabled = false
    65  	ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, types_, Ctxt, Debug['N'] == 0)
    66  	if thearch.LinkArch.Name == "386" {
    67  		ssaConfig.Set387(thearch.Use387)
    68  	}
    69  	ssaCache = new(ssa.Cache)
    70  
    71  	// Set up some runtime functions we'll need to call.
    72  	Newproc = Sysfunc("newproc")
    73  	Deferproc = Sysfunc("deferproc")
    74  	Deferreturn = Sysfunc("deferreturn")
    75  	Duffcopy = Sysfunc("duffcopy")
    76  	Duffzero = Sysfunc("duffzero")
    77  	panicindex = Sysfunc("panicindex")
    78  	panicslice = Sysfunc("panicslice")
    79  	panicdivide = Sysfunc("panicdivide")
    80  	growslice = Sysfunc("growslice")
    81  	panicdottypeE = Sysfunc("panicdottypeE")
    82  	panicdottypeI = Sysfunc("panicdottypeI")
    83  	panicnildottype = Sysfunc("panicnildottype")
    84  	assertE2I = Sysfunc("assertE2I")
    85  	assertE2I2 = Sysfunc("assertE2I2")
    86  	assertI2I = Sysfunc("assertI2I")
    87  	assertI2I2 = Sysfunc("assertI2I2")
    88  }
    89  
    90  // buildssa builds an SSA function.
    91  func buildssa(fn *Node) *ssa.Func {
    92  	name := fn.Func.Nname.Sym.Name
    93  	printssa := name == os.Getenv("GOSSAFUNC")
    94  	if printssa {
    95  		fmt.Println("generating SSA for", name)
    96  		dumplist("buildssa-enter", fn.Func.Enter)
    97  		dumplist("buildssa-body", fn.Nbody)
    98  		dumplist("buildssa-exit", fn.Func.Exit)
    99  	}
   100  
   101  	var s state
   102  	s.pushLine(fn.Pos)
   103  	defer s.popLine()
   104  
   105  	s.hasdefer = fn.Func.HasDefer()
   106  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
   107  		s.cgoUnsafeArgs = true
   108  	}
   109  
   110  	fe := ssafn{
   111  		curfn: fn,
   112  		log:   printssa,
   113  	}
   114  	s.curfn = fn
   115  
   116  	s.f = ssa.NewFunc(&fe)
   117  	s.config = ssaConfig
   118  	s.f.Config = ssaConfig
   119  	s.f.Cache = ssaCache
   120  	s.f.Cache.Reset()
   121  	s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name)
   122  	s.f.Name = name
   123  	if fn.Func.Pragma&Nosplit != 0 {
   124  		s.f.NoSplit = true
   125  	}
   126  	defer func() {
   127  		if s.f.WBPos.IsKnown() {
   128  			fn.Func.WBPos = s.f.WBPos
   129  		}
   130  	}()
   131  	s.exitCode = fn.Func.Exit
   132  	s.panics = map[funcLine]*ssa.Block{}
   133  
   134  	if name == os.Getenv("GOSSAFUNC") {
   135  		s.f.HTMLWriter = ssa.NewHTMLWriter("ssa.html", s.f.Frontend(), name)
   136  		// TODO: generate and print a mapping from nodes to values and blocks
   137  	}
   138  
   139  	// Allocate starting block
   140  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
   141  
   142  	// Allocate starting values
   143  	s.labels = map[string]*ssaLabel{}
   144  	s.labeledNodes = map[*Node]*ssaLabel{}
   145  	s.fwdVars = map[*Node]*ssa.Value{}
   146  	s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem)
   147  	s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
   148  	s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR])
   149  
   150  	s.startBlock(s.f.Entry)
   151  	s.vars[&memVar] = s.startmem
   152  
   153  	s.varsyms = map[*Node]interface{}{}
   154  
   155  	// Generate addresses of local declarations
   156  	s.decladdrs = map[*Node]*ssa.Value{}
   157  	for _, n := range fn.Func.Dcl {
   158  		switch n.Class {
   159  		case PPARAM, PPARAMOUT:
   160  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n})
   161  			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), aux, s.sp)
   162  			if n.Class == PPARAMOUT && s.canSSA(n) {
   163  				// Save ssa-able PPARAMOUT variables so we can
   164  				// store them back to the stack at the end of
   165  				// the function.
   166  				s.returns = append(s.returns, n)
   167  			}
   168  		case PAUTO:
   169  			// processed at each use, to prevent Addr coming
   170  			// before the decl.
   171  		case PAUTOHEAP:
   172  			// moved to heap - already handled by frontend
   173  		case PFUNC:
   174  			// local function - already handled by frontend
   175  		default:
   176  			s.Fatalf("local variable with class %s unimplemented", classnames[n.Class])
   177  		}
   178  	}
   179  
   180  	// Populate SSAable arguments.
   181  	for _, n := range fn.Func.Dcl {
   182  		if n.Class == PPARAM && s.canSSA(n) {
   183  			s.vars[n] = s.newValue0A(ssa.OpArg, n.Type, n)
   184  		}
   185  	}
   186  
   187  	// Convert the AST-based IR to the SSA-based IR
   188  	s.stmtList(fn.Func.Enter)
   189  	s.stmtList(fn.Nbody)
   190  
   191  	// fallthrough to exit
   192  	if s.curBlock != nil {
   193  		s.pushLine(fn.Func.Endlineno)
   194  		s.exit()
   195  		s.popLine()
   196  	}
   197  
   198  	s.insertPhis()
   199  
   200  	// Don't carry reference this around longer than necessary
   201  	s.exitCode = Nodes{}
   202  
   203  	// Main call to ssa package to compile function
   204  	ssa.Compile(s.f)
   205  	return s.f
   206  }
   207  
   208  type state struct {
   209  	// configuration (arch) information
   210  	config *ssa.Config
   211  
   212  	// function we're building
   213  	f *ssa.Func
   214  
   215  	// Node for function
   216  	curfn *Node
   217  
   218  	// labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f
   219  	labels       map[string]*ssaLabel
   220  	labeledNodes map[*Node]*ssaLabel
   221  
   222  	// Code that must precede any return
   223  	// (e.g., copying value of heap-escaped paramout back to true paramout)
   224  	exitCode Nodes
   225  
   226  	// unlabeled break and continue statement tracking
   227  	breakTo    *ssa.Block // current target for plain break statement
   228  	continueTo *ssa.Block // current target for plain continue statement
   229  
   230  	// current location where we're interpreting the AST
   231  	curBlock *ssa.Block
   232  
   233  	// variable assignments in the current block (map from variable symbol to ssa value)
   234  	// *Node is the unique identifier (an ONAME Node) for the variable.
   235  	// TODO: keep a single varnum map, then make all of these maps slices instead?
   236  	vars map[*Node]*ssa.Value
   237  
   238  	// fwdVars are variables that are used before they are defined in the current block.
   239  	// This map exists just to coalesce multiple references into a single FwdRef op.
   240  	// *Node is the unique identifier (an ONAME Node) for the variable.
   241  	fwdVars map[*Node]*ssa.Value
   242  
   243  	// all defined variables at the end of each block. Indexed by block ID.
   244  	defvars []map[*Node]*ssa.Value
   245  
   246  	// addresses of PPARAM and PPARAMOUT variables.
   247  	decladdrs map[*Node]*ssa.Value
   248  
   249  	// symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused.
   250  	varsyms map[*Node]interface{}
   251  
   252  	// starting values. Memory, stack pointer, and globals pointer
   253  	startmem *ssa.Value
   254  	sp       *ssa.Value
   255  	sb       *ssa.Value
   256  
   257  	// line number stack. The current line number is top of stack
   258  	line []src.XPos
   259  
   260  	// list of panic calls by function name and line number.
   261  	// Used to deduplicate panic calls.
   262  	panics map[funcLine]*ssa.Block
   263  
   264  	// list of PPARAMOUT (return) variables.
   265  	returns []*Node
   266  
   267  	cgoUnsafeArgs bool
   268  	hasdefer      bool // whether the function contains a defer statement
   269  }
   270  
   271  type funcLine struct {
   272  	f    *obj.LSym
   273  	line src.XPos
   274  }
   275  
   276  type ssaLabel struct {
   277  	target         *ssa.Block // block identified by this label
   278  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   279  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   280  }
   281  
   282  // label returns the label associated with sym, creating it if necessary.
   283  func (s *state) label(sym *types.Sym) *ssaLabel {
   284  	lab := s.labels[sym.Name]
   285  	if lab == nil {
   286  		lab = new(ssaLabel)
   287  		s.labels[sym.Name] = lab
   288  	}
   289  	return lab
   290  }
   291  
   292  func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) }
   293  func (s *state) Log() bool                            { return s.f.Log() }
   294  func (s *state) Fatalf(msg string, args ...interface{}) {
   295  	s.f.Frontend().Fatalf(s.peekPos(), msg, args...)
   296  }
   297  func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) }
   298  func (s *state) Debug_checknil() bool                                { return s.f.Frontend().Debug_checknil() }
   299  
   300  var (
   301  	// dummy node for the memory variable
   302  	memVar = Node{Op: ONAME, Class: Pxxx, Sym: &types.Sym{Name: "mem"}}
   303  
   304  	// dummy nodes for temporary variables
   305  	ptrVar    = Node{Op: ONAME, Class: Pxxx, Sym: &types.Sym{Name: "ptr"}}
   306  	lenVar    = Node{Op: ONAME, Class: Pxxx, Sym: &types.Sym{Name: "len"}}
   307  	newlenVar = Node{Op: ONAME, Class: Pxxx, Sym: &types.Sym{Name: "newlen"}}
   308  	capVar    = Node{Op: ONAME, Class: Pxxx, Sym: &types.Sym{Name: "cap"}}
   309  	typVar    = Node{Op: ONAME, Class: Pxxx, Sym: &types.Sym{Name: "typ"}}
   310  	okVar     = Node{Op: ONAME, Class: Pxxx, Sym: &types.Sym{Name: "ok"}}
   311  )
   312  
   313  // startBlock sets the current block we're generating code in to b.
   314  func (s *state) startBlock(b *ssa.Block) {
   315  	if s.curBlock != nil {
   316  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   317  	}
   318  	s.curBlock = b
   319  	s.vars = map[*Node]*ssa.Value{}
   320  	for n := range s.fwdVars {
   321  		delete(s.fwdVars, n)
   322  	}
   323  }
   324  
   325  // endBlock marks the end of generating code for the current block.
   326  // Returns the (former) current block. Returns nil if there is no current
   327  // block, i.e. if no code flows to the current execution point.
   328  func (s *state) endBlock() *ssa.Block {
   329  	b := s.curBlock
   330  	if b == nil {
   331  		return nil
   332  	}
   333  	for len(s.defvars) <= int(b.ID) {
   334  		s.defvars = append(s.defvars, nil)
   335  	}
   336  	s.defvars[b.ID] = s.vars
   337  	s.curBlock = nil
   338  	s.vars = nil
   339  	b.Pos = s.peekPos()
   340  	return b
   341  }
   342  
   343  // pushLine pushes a line number on the line number stack.
   344  func (s *state) pushLine(line src.XPos) {
   345  	if !line.IsKnown() {
   346  		// the frontend may emit node with line number missing,
   347  		// use the parent line number in this case.
   348  		line = s.peekPos()
   349  		if Debug['K'] != 0 {
   350  			Warn("buildssa: unknown position (line 0)")
   351  		}
   352  	}
   353  	s.line = append(s.line, line)
   354  }
   355  
   356  // popLine pops the top of the line number stack.
   357  func (s *state) popLine() {
   358  	s.line = s.line[:len(s.line)-1]
   359  }
   360  
   361  // peekPos peeks the top of the line number stack.
   362  func (s *state) peekPos() src.XPos {
   363  	return s.line[len(s.line)-1]
   364  }
   365  
   366  // newValue0 adds a new value with no arguments to the current block.
   367  func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   368  	return s.curBlock.NewValue0(s.peekPos(), op, t)
   369  }
   370  
   371  // newValue0A adds a new value with no arguments and an aux value to the current block.
   372  func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   373  	return s.curBlock.NewValue0A(s.peekPos(), op, t, aux)
   374  }
   375  
   376  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   377  func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   378  	return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint)
   379  }
   380  
   381  // newValue1 adds a new value with one argument to the current block.
   382  func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   383  	return s.curBlock.NewValue1(s.peekPos(), op, t, arg)
   384  }
   385  
   386  // newValue1A adds a new value with one argument and an aux value to the current block.
   387  func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   388  	return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
   389  }
   390  
   391  // newValue1I adds a new value with one argument and an auxint value to the current block.
   392  func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
   393  	return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg)
   394  }
   395  
   396  // newValue2 adds a new value with two arguments to the current block.
   397  func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   398  	return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1)
   399  }
   400  
   401  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   402  func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   403  	return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1)
   404  }
   405  
   406  // newValue3 adds a new value with three arguments to the current block.
   407  func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   408  	return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2)
   409  }
   410  
   411  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   412  func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   413  	return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   414  }
   415  
   416  // newValue3A adds a new value with three arguments and an aux value to the current block.
   417  func (s *state) newValue3A(op ssa.Op, t ssa.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   418  	return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   419  }
   420  
   421  // newValue4 adds a new value with four arguments to the current block.
   422  func (s *state) newValue4(op ssa.Op, t ssa.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
   423  	return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3)
   424  }
   425  
   426  // entryNewValue0 adds a new value with no arguments to the entry block.
   427  func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   428  	return s.f.Entry.NewValue0(s.peekPos(), op, t)
   429  }
   430  
   431  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   432  func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   433  	return s.f.Entry.NewValue0A(s.peekPos(), op, t, aux)
   434  }
   435  
   436  // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block.
   437  func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   438  	return s.f.Entry.NewValue0I(s.peekPos(), op, t, auxint)
   439  }
   440  
   441  // entryNewValue1 adds a new value with one argument to the entry block.
   442  func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   443  	return s.f.Entry.NewValue1(s.peekPos(), op, t, arg)
   444  }
   445  
   446  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   447  func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   448  	return s.f.Entry.NewValue1I(s.peekPos(), op, t, auxint, arg)
   449  }
   450  
   451  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   452  func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   453  	return s.f.Entry.NewValue1A(s.peekPos(), op, t, aux, arg)
   454  }
   455  
   456  // entryNewValue2 adds a new value with two arguments to the entry block.
   457  func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   458  	return s.f.Entry.NewValue2(s.peekPos(), op, t, arg0, arg1)
   459  }
   460  
   461  // const* routines add a new const value to the entry block.
   462  func (s *state) constSlice(t ssa.Type) *ssa.Value       { return s.f.ConstSlice(s.peekPos(), t) }
   463  func (s *state) constInterface(t ssa.Type) *ssa.Value   { return s.f.ConstInterface(s.peekPos(), t) }
   464  func (s *state) constNil(t ssa.Type) *ssa.Value         { return s.f.ConstNil(s.peekPos(), t) }
   465  func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekPos(), t) }
   466  func (s *state) constBool(c bool) *ssa.Value {
   467  	return s.f.ConstBool(s.peekPos(), types.Types[TBOOL], c)
   468  }
   469  func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value {
   470  	return s.f.ConstInt8(s.peekPos(), t, c)
   471  }
   472  func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value {
   473  	return s.f.ConstInt16(s.peekPos(), t, c)
   474  }
   475  func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value {
   476  	return s.f.ConstInt32(s.peekPos(), t, c)
   477  }
   478  func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value {
   479  	return s.f.ConstInt64(s.peekPos(), t, c)
   480  }
   481  func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value {
   482  	return s.f.ConstFloat32(s.peekPos(), t, c)
   483  }
   484  func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value {
   485  	return s.f.ConstFloat64(s.peekPos(), t, c)
   486  }
   487  func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
   488  	if s.config.IntSize == 8 {
   489  		return s.constInt64(t, c)
   490  	}
   491  	if int64(int32(c)) != c {
   492  		s.Fatalf("integer constant too big %d", c)
   493  	}
   494  	return s.constInt32(t, int32(c))
   495  }
   496  func (s *state) constOffPtrSP(t ssa.Type, c int64) *ssa.Value {
   497  	return s.f.ConstOffPtrSP(s.peekPos(), t, c, s.sp)
   498  }
   499  
   500  // stmtList converts the statement list n to SSA and adds it to s.
   501  func (s *state) stmtList(l Nodes) {
   502  	for _, n := range l.Slice() {
   503  		s.stmt(n)
   504  	}
   505  }
   506  
   507  // stmt converts the statement n to SSA and adds it to s.
   508  func (s *state) stmt(n *Node) {
   509  	s.pushLine(n.Pos)
   510  	defer s.popLine()
   511  
   512  	// If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere),
   513  	// then this code is dead. Stop here.
   514  	if s.curBlock == nil && n.Op != OLABEL {
   515  		return
   516  	}
   517  
   518  	s.stmtList(n.Ninit)
   519  	switch n.Op {
   520  
   521  	case OBLOCK:
   522  		s.stmtList(n.List)
   523  
   524  	// No-ops
   525  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   526  
   527  	// Expression statements
   528  	case OCALLFUNC:
   529  		if isIntrinsicCall(n) {
   530  			s.intrinsicCall(n)
   531  			return
   532  		}
   533  		fallthrough
   534  
   535  	case OCALLMETH, OCALLINTER:
   536  		s.call(n, callNormal)
   537  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC {
   538  			if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" ||
   539  				n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block") {
   540  				m := s.mem()
   541  				b := s.endBlock()
   542  				b.Kind = ssa.BlockExit
   543  				b.SetControl(m)
   544  				// TODO: never rewrite OPANIC to OCALLFUNC in the
   545  				// first place. Need to wait until all backends
   546  				// go through SSA.
   547  			}
   548  		}
   549  	case ODEFER:
   550  		s.call(n.Left, callDefer)
   551  	case OPROC:
   552  		s.call(n.Left, callGo)
   553  
   554  	case OAS2DOTTYPE:
   555  		res, resok := s.dottype(n.Rlist.First(), true)
   556  		deref := false
   557  		if !canSSAType(n.Rlist.First().Type) {
   558  			if res.Op != ssa.OpLoad {
   559  				s.Fatalf("dottype of non-load")
   560  			}
   561  			mem := s.mem()
   562  			if mem.Op == ssa.OpVarKill {
   563  				mem = mem.Args[0]
   564  			}
   565  			if res.Args[1] != mem {
   566  				s.Fatalf("memory no longer live from 2-result dottype load")
   567  			}
   568  			deref = true
   569  			res = res.Args[0]
   570  		}
   571  		s.assign(n.List.First(), res, deref, 0)
   572  		s.assign(n.List.Second(), resok, false, 0)
   573  		return
   574  
   575  	case OAS2FUNC:
   576  		// We come here only when it is an intrinsic call returning two values.
   577  		if !isIntrinsicCall(n.Rlist.First()) {
   578  			s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First())
   579  		}
   580  		v := s.intrinsicCall(n.Rlist.First())
   581  		v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v)
   582  		v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v)
   583  		s.assign(n.List.First(), v1, false, 0)
   584  		s.assign(n.List.Second(), v2, false, 0)
   585  		return
   586  
   587  	case ODCL:
   588  		if n.Left.Class == PAUTOHEAP {
   589  			Fatalf("DCL %v", n)
   590  		}
   591  
   592  	case OLABEL:
   593  		sym := n.Left.Sym
   594  		lab := s.label(sym)
   595  
   596  		// Associate label with its control flow node, if any
   597  		if ctl := n.labeledControl(); ctl != nil {
   598  			s.labeledNodes[ctl] = lab
   599  		}
   600  
   601  		// The label might already have a target block via a goto.
   602  		if lab.target == nil {
   603  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   604  		}
   605  
   606  		// Go to that label.
   607  		// (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.)
   608  		if s.curBlock != nil {
   609  			b := s.endBlock()
   610  			b.AddEdgeTo(lab.target)
   611  		}
   612  		s.startBlock(lab.target)
   613  
   614  	case OGOTO:
   615  		sym := n.Left.Sym
   616  
   617  		lab := s.label(sym)
   618  		if lab.target == nil {
   619  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   620  		}
   621  
   622  		b := s.endBlock()
   623  		b.AddEdgeTo(lab.target)
   624  
   625  	case OAS:
   626  		if n.Left == n.Right && n.Left.Op == ONAME {
   627  			// An x=x assignment. No point in doing anything
   628  			// here. In addition, skipping this assignment
   629  			// prevents generating:
   630  			//   VARDEF x
   631  			//   COPY x -> x
   632  			// which is bad because x is incorrectly considered
   633  			// dead before the vardef. See issue #14904.
   634  			return
   635  		}
   636  
   637  		var t *types.Type
   638  		if n.Right != nil {
   639  			t = n.Right.Type
   640  		} else {
   641  			t = n.Left.Type
   642  		}
   643  
   644  		// Evaluate RHS.
   645  		rhs := n.Right
   646  		if rhs != nil {
   647  			switch rhs.Op {
   648  			case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
   649  				// All literals with nonzero fields have already been
   650  				// rewritten during walk. Any that remain are just T{}
   651  				// or equivalents. Use the zero value.
   652  				if !iszero(rhs) {
   653  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   654  				}
   655  				rhs = nil
   656  			case OAPPEND:
   657  				// If we're writing the result of an append back to the same slice,
   658  				// handle it specially to avoid write barriers on the fast (non-growth) path.
   659  				// If the slice can be SSA'd, it'll be on the stack,
   660  				// so there will be no write barriers,
   661  				// so there's no need to attempt to prevent them.
   662  				if samesafeexpr(n.Left, rhs.List.First()) {
   663  					if !s.canSSA(n.Left) {
   664  						if Debug_append > 0 {
   665  							Warnl(n.Pos, "append: len-only update")
   666  						}
   667  						s.append(rhs, true)
   668  						return
   669  					} else {
   670  						if Debug_append > 0 { // replicating old diagnostic message
   671  							Warnl(n.Pos, "append: len-only update (in local slice)")
   672  						}
   673  					}
   674  				}
   675  			}
   676  		}
   677  		var r *ssa.Value
   678  		deref := !canSSAType(t)
   679  		if deref {
   680  			if rhs == nil {
   681  				r = nil // Signal assign to use OpZero.
   682  			} else {
   683  				r = s.addr(rhs, false)
   684  			}
   685  		} else {
   686  			if rhs == nil {
   687  				r = s.zeroVal(t)
   688  			} else {
   689  				r = s.expr(rhs)
   690  			}
   691  		}
   692  
   693  		var skip skipMask
   694  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   695  			// We're assigning a slicing operation back to its source.
   696  			// Don't write back fields we aren't changing. See issue #14855.
   697  			i, j, k := rhs.SliceBounds()
   698  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   699  				// [0:...] is the same as [:...]
   700  				i = nil
   701  			}
   702  			// TODO: detect defaults for len/cap also.
   703  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   704  			//    tmp = len(*p)
   705  			//    (*p)[:tmp]
   706  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   707  			//      j = nil
   708  			//}
   709  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   710  			//      k = nil
   711  			//}
   712  			if i == nil {
   713  				skip |= skipPtr
   714  				if j == nil {
   715  					skip |= skipLen
   716  				}
   717  				if k == nil {
   718  					skip |= skipCap
   719  				}
   720  			}
   721  		}
   722  
   723  		s.assign(n.Left, r, deref, skip)
   724  
   725  	case OIF:
   726  		bThen := s.f.NewBlock(ssa.BlockPlain)
   727  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   728  		var bElse *ssa.Block
   729  		if n.Rlist.Len() != 0 {
   730  			bElse = s.f.NewBlock(ssa.BlockPlain)
   731  			s.condBranch(n.Left, bThen, bElse, n.Likely)
   732  		} else {
   733  			s.condBranch(n.Left, bThen, bEnd, n.Likely)
   734  		}
   735  
   736  		s.startBlock(bThen)
   737  		s.stmtList(n.Nbody)
   738  		if b := s.endBlock(); b != nil {
   739  			b.AddEdgeTo(bEnd)
   740  		}
   741  
   742  		if n.Rlist.Len() != 0 {
   743  			s.startBlock(bElse)
   744  			s.stmtList(n.Rlist)
   745  			if b := s.endBlock(); b != nil {
   746  				b.AddEdgeTo(bEnd)
   747  			}
   748  		}
   749  		s.startBlock(bEnd)
   750  
   751  	case ORETURN:
   752  		s.stmtList(n.List)
   753  		s.exit()
   754  	case ORETJMP:
   755  		s.stmtList(n.List)
   756  		b := s.exit()
   757  		b.Kind = ssa.BlockRetJmp // override BlockRet
   758  		b.Aux = Linksym(n.Left.Sym)
   759  
   760  	case OCONTINUE, OBREAK:
   761  		var to *ssa.Block
   762  		if n.Left == nil {
   763  			// plain break/continue
   764  			switch n.Op {
   765  			case OCONTINUE:
   766  				to = s.continueTo
   767  			case OBREAK:
   768  				to = s.breakTo
   769  			}
   770  		} else {
   771  			// labeled break/continue; look up the target
   772  			sym := n.Left.Sym
   773  			lab := s.label(sym)
   774  			switch n.Op {
   775  			case OCONTINUE:
   776  				to = lab.continueTarget
   777  			case OBREAK:
   778  				to = lab.breakTarget
   779  			}
   780  		}
   781  
   782  		b := s.endBlock()
   783  		b.AddEdgeTo(to)
   784  
   785  	case OFOR, OFORUNTIL:
   786  		// OFOR: for Ninit; Left; Right { Nbody }
   787  		// For      = cond; body; incr
   788  		// Foruntil = body; incr; cond
   789  		bCond := s.f.NewBlock(ssa.BlockPlain)
   790  		bBody := s.f.NewBlock(ssa.BlockPlain)
   791  		bIncr := s.f.NewBlock(ssa.BlockPlain)
   792  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   793  
   794  		// first, jump to condition test (OFOR) or body (OFORUNTIL)
   795  		b := s.endBlock()
   796  		if n.Op == OFOR {
   797  			b.AddEdgeTo(bCond)
   798  			// generate code to test condition
   799  			s.startBlock(bCond)
   800  			if n.Left != nil {
   801  				s.condBranch(n.Left, bBody, bEnd, 1)
   802  			} else {
   803  				b := s.endBlock()
   804  				b.Kind = ssa.BlockPlain
   805  				b.AddEdgeTo(bBody)
   806  			}
   807  
   808  		} else {
   809  			b.AddEdgeTo(bBody)
   810  		}
   811  
   812  		// set up for continue/break in body
   813  		prevContinue := s.continueTo
   814  		prevBreak := s.breakTo
   815  		s.continueTo = bIncr
   816  		s.breakTo = bEnd
   817  		lab := s.labeledNodes[n]
   818  		if lab != nil {
   819  			// labeled for loop
   820  			lab.continueTarget = bIncr
   821  			lab.breakTarget = bEnd
   822  		}
   823  
   824  		// generate body
   825  		s.startBlock(bBody)
   826  		s.stmtList(n.Nbody)
   827  
   828  		// tear down continue/break
   829  		s.continueTo = prevContinue
   830  		s.breakTo = prevBreak
   831  		if lab != nil {
   832  			lab.continueTarget = nil
   833  			lab.breakTarget = nil
   834  		}
   835  
   836  		// done with body, goto incr
   837  		if b := s.endBlock(); b != nil {
   838  			b.AddEdgeTo(bIncr)
   839  		}
   840  
   841  		// generate incr
   842  		s.startBlock(bIncr)
   843  		if n.Right != nil {
   844  			s.stmt(n.Right)
   845  		}
   846  		if b := s.endBlock(); b != nil {
   847  			b.AddEdgeTo(bCond)
   848  		}
   849  
   850  		if n.Op == OFORUNTIL {
   851  			// generate code to test condition
   852  			s.startBlock(bCond)
   853  			if n.Left != nil {
   854  				s.condBranch(n.Left, bBody, bEnd, 1)
   855  			} else {
   856  				b := s.endBlock()
   857  				b.Kind = ssa.BlockPlain
   858  				b.AddEdgeTo(bBody)
   859  			}
   860  		}
   861  
   862  		s.startBlock(bEnd)
   863  
   864  	case OSWITCH, OSELECT:
   865  		// These have been mostly rewritten by the front end into their Nbody fields.
   866  		// Our main task is to correctly hook up any break statements.
   867  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   868  
   869  		prevBreak := s.breakTo
   870  		s.breakTo = bEnd
   871  		lab := s.labeledNodes[n]
   872  		if lab != nil {
   873  			// labeled
   874  			lab.breakTarget = bEnd
   875  		}
   876  
   877  		// generate body code
   878  		s.stmtList(n.Nbody)
   879  
   880  		s.breakTo = prevBreak
   881  		if lab != nil {
   882  			lab.breakTarget = nil
   883  		}
   884  
   885  		// walk adds explicit OBREAK nodes to the end of all reachable code paths.
   886  		// If we still have a current block here, then mark it unreachable.
   887  		if s.curBlock != nil {
   888  			m := s.mem()
   889  			b := s.endBlock()
   890  			b.Kind = ssa.BlockExit
   891  			b.SetControl(m)
   892  		}
   893  		s.startBlock(bEnd)
   894  
   895  	case OVARKILL:
   896  		// Insert a varkill op to record that a variable is no longer live.
   897  		// We only care about liveness info at call sites, so putting the
   898  		// varkill in the store chain is enough to keep it correctly ordered
   899  		// with respect to call ops.
   900  		if !s.canSSA(n.Left) {
   901  			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem())
   902  		}
   903  
   904  	case OVARLIVE:
   905  		// Insert a varlive op to record that a variable is still live.
   906  		if !n.Left.Addrtaken() {
   907  			s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left)
   908  		}
   909  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem())
   910  
   911  	case OCHECKNIL:
   912  		p := s.expr(n.Left)
   913  		s.nilCheck(p)
   914  
   915  	default:
   916  		s.Fatalf("unhandled stmt %v", n.Op)
   917  	}
   918  }
   919  
   920  // exit processes any code that needs to be generated just before returning.
   921  // It returns a BlockRet block that ends the control flow. Its control value
   922  // will be set to the final memory state.
   923  func (s *state) exit() *ssa.Block {
   924  	if s.hasdefer {
   925  		s.rtcall(Deferreturn, true, nil)
   926  	}
   927  
   928  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
   929  	// variables back to the stack.
   930  	s.stmtList(s.exitCode)
   931  
   932  	// Store SSAable PPARAMOUT variables back to stack locations.
   933  	for _, n := range s.returns {
   934  		addr := s.decladdrs[n]
   935  		val := s.variable(n, n.Type)
   936  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem())
   937  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, n.Type, addr, val, s.mem())
   938  		// TODO: if val is ever spilled, we'd like to use the
   939  		// PPARAMOUT slot for spilling it. That won't happen
   940  		// currently.
   941  	}
   942  
   943  	// Do actual return.
   944  	m := s.mem()
   945  	b := s.endBlock()
   946  	b.Kind = ssa.BlockRet
   947  	b.SetControl(m)
   948  	return b
   949  }
   950  
   951  type opAndType struct {
   952  	op    Op
   953  	etype types.EType
   954  }
   955  
   956  var opToSSA = map[opAndType]ssa.Op{
   957  	opAndType{OADD, TINT8}:    ssa.OpAdd8,
   958  	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
   959  	opAndType{OADD, TINT16}:   ssa.OpAdd16,
   960  	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
   961  	opAndType{OADD, TINT32}:   ssa.OpAdd32,
   962  	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
   963  	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
   964  	opAndType{OADD, TINT64}:   ssa.OpAdd64,
   965  	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
   966  	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
   967  	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
   968  	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
   969  
   970  	opAndType{OSUB, TINT8}:    ssa.OpSub8,
   971  	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
   972  	opAndType{OSUB, TINT16}:   ssa.OpSub16,
   973  	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
   974  	opAndType{OSUB, TINT32}:   ssa.OpSub32,
   975  	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
   976  	opAndType{OSUB, TINT64}:   ssa.OpSub64,
   977  	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
   978  	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
   979  	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
   980  
   981  	opAndType{ONOT, TBOOL}: ssa.OpNot,
   982  
   983  	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
   984  	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
   985  	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
   986  	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
   987  	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
   988  	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
   989  	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
   990  	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
   991  	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
   992  	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
   993  
   994  	opAndType{OCOM, TINT8}:   ssa.OpCom8,
   995  	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
   996  	opAndType{OCOM, TINT16}:  ssa.OpCom16,
   997  	opAndType{OCOM, TUINT16}: ssa.OpCom16,
   998  	opAndType{OCOM, TINT32}:  ssa.OpCom32,
   999  	opAndType{OCOM, TUINT32}: ssa.OpCom32,
  1000  	opAndType{OCOM, TINT64}:  ssa.OpCom64,
  1001  	opAndType{OCOM, TUINT64}: ssa.OpCom64,
  1002  
  1003  	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1004  	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1005  	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1006  	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1007  
  1008  	opAndType{OMUL, TINT8}:    ssa.OpMul8,
  1009  	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
  1010  	opAndType{OMUL, TINT16}:   ssa.OpMul16,
  1011  	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
  1012  	opAndType{OMUL, TINT32}:   ssa.OpMul32,
  1013  	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
  1014  	opAndType{OMUL, TINT64}:   ssa.OpMul64,
  1015  	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
  1016  	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
  1017  	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
  1018  
  1019  	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1020  	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1021  
  1022  	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
  1023  	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
  1024  	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
  1025  	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
  1026  	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
  1027  	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
  1028  	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
  1029  	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
  1030  
  1031  	opAndType{OMOD, TINT8}:   ssa.OpMod8,
  1032  	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
  1033  	opAndType{OMOD, TINT16}:  ssa.OpMod16,
  1034  	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
  1035  	opAndType{OMOD, TINT32}:  ssa.OpMod32,
  1036  	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
  1037  	opAndType{OMOD, TINT64}:  ssa.OpMod64,
  1038  	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
  1039  
  1040  	opAndType{OAND, TINT8}:   ssa.OpAnd8,
  1041  	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
  1042  	opAndType{OAND, TINT16}:  ssa.OpAnd16,
  1043  	opAndType{OAND, TUINT16}: ssa.OpAnd16,
  1044  	opAndType{OAND, TINT32}:  ssa.OpAnd32,
  1045  	opAndType{OAND, TUINT32}: ssa.OpAnd32,
  1046  	opAndType{OAND, TINT64}:  ssa.OpAnd64,
  1047  	opAndType{OAND, TUINT64}: ssa.OpAnd64,
  1048  
  1049  	opAndType{OOR, TINT8}:   ssa.OpOr8,
  1050  	opAndType{OOR, TUINT8}:  ssa.OpOr8,
  1051  	opAndType{OOR, TINT16}:  ssa.OpOr16,
  1052  	opAndType{OOR, TUINT16}: ssa.OpOr16,
  1053  	opAndType{OOR, TINT32}:  ssa.OpOr32,
  1054  	opAndType{OOR, TUINT32}: ssa.OpOr32,
  1055  	opAndType{OOR, TINT64}:  ssa.OpOr64,
  1056  	opAndType{OOR, TUINT64}: ssa.OpOr64,
  1057  
  1058  	opAndType{OXOR, TINT8}:   ssa.OpXor8,
  1059  	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
  1060  	opAndType{OXOR, TINT16}:  ssa.OpXor16,
  1061  	opAndType{OXOR, TUINT16}: ssa.OpXor16,
  1062  	opAndType{OXOR, TINT32}:  ssa.OpXor32,
  1063  	opAndType{OXOR, TUINT32}: ssa.OpXor32,
  1064  	opAndType{OXOR, TINT64}:  ssa.OpXor64,
  1065  	opAndType{OXOR, TUINT64}: ssa.OpXor64,
  1066  
  1067  	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
  1068  	opAndType{OEQ, TINT8}:      ssa.OpEq8,
  1069  	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
  1070  	opAndType{OEQ, TINT16}:     ssa.OpEq16,
  1071  	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
  1072  	opAndType{OEQ, TINT32}:     ssa.OpEq32,
  1073  	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
  1074  	opAndType{OEQ, TINT64}:     ssa.OpEq64,
  1075  	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
  1076  	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
  1077  	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
  1078  	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
  1079  	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
  1080  	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
  1081  	opAndType{OEQ, TPTR32}:     ssa.OpEqPtr,
  1082  	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
  1083  	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1084  	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1085  	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1086  	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1087  
  1088  	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
  1089  	opAndType{ONE, TINT8}:      ssa.OpNeq8,
  1090  	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
  1091  	opAndType{ONE, TINT16}:     ssa.OpNeq16,
  1092  	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
  1093  	opAndType{ONE, TINT32}:     ssa.OpNeq32,
  1094  	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
  1095  	opAndType{ONE, TINT64}:     ssa.OpNeq64,
  1096  	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
  1097  	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
  1098  	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
  1099  	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
  1100  	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
  1101  	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
  1102  	opAndType{ONE, TPTR32}:     ssa.OpNeqPtr,
  1103  	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
  1104  	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1105  	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1106  	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1107  	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1108  
  1109  	opAndType{OLT, TINT8}:    ssa.OpLess8,
  1110  	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
  1111  	opAndType{OLT, TINT16}:   ssa.OpLess16,
  1112  	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
  1113  	opAndType{OLT, TINT32}:   ssa.OpLess32,
  1114  	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
  1115  	opAndType{OLT, TINT64}:   ssa.OpLess64,
  1116  	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
  1117  	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
  1118  	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
  1119  
  1120  	opAndType{OGT, TINT8}:    ssa.OpGreater8,
  1121  	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
  1122  	opAndType{OGT, TINT16}:   ssa.OpGreater16,
  1123  	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
  1124  	opAndType{OGT, TINT32}:   ssa.OpGreater32,
  1125  	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
  1126  	opAndType{OGT, TINT64}:   ssa.OpGreater64,
  1127  	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
  1128  	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
  1129  	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
  1130  
  1131  	opAndType{OLE, TINT8}:    ssa.OpLeq8,
  1132  	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
  1133  	opAndType{OLE, TINT16}:   ssa.OpLeq16,
  1134  	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
  1135  	opAndType{OLE, TINT32}:   ssa.OpLeq32,
  1136  	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
  1137  	opAndType{OLE, TINT64}:   ssa.OpLeq64,
  1138  	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
  1139  	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
  1140  	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
  1141  
  1142  	opAndType{OGE, TINT8}:    ssa.OpGeq8,
  1143  	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
  1144  	opAndType{OGE, TINT16}:   ssa.OpGeq16,
  1145  	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
  1146  	opAndType{OGE, TINT32}:   ssa.OpGeq32,
  1147  	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
  1148  	opAndType{OGE, TINT64}:   ssa.OpGeq64,
  1149  	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
  1150  	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
  1151  	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
  1152  }
  1153  
  1154  func (s *state) concreteEtype(t *types.Type) types.EType {
  1155  	e := t.Etype
  1156  	switch e {
  1157  	default:
  1158  		return e
  1159  	case TINT:
  1160  		if s.config.IntSize == 8 {
  1161  			return TINT64
  1162  		}
  1163  		return TINT32
  1164  	case TUINT:
  1165  		if s.config.IntSize == 8 {
  1166  			return TUINT64
  1167  		}
  1168  		return TUINT32
  1169  	case TUINTPTR:
  1170  		if s.config.PtrSize == 8 {
  1171  			return TUINT64
  1172  		}
  1173  		return TUINT32
  1174  	}
  1175  }
  1176  
  1177  func (s *state) ssaOp(op Op, t *types.Type) ssa.Op {
  1178  	etype := s.concreteEtype(t)
  1179  	x, ok := opToSSA[opAndType{op, etype}]
  1180  	if !ok {
  1181  		s.Fatalf("unhandled binary op %v %s", op, etype)
  1182  	}
  1183  	return x
  1184  }
  1185  
  1186  func floatForComplex(t *types.Type) *types.Type {
  1187  	if t.Size() == 8 {
  1188  		return types.Types[TFLOAT32]
  1189  	} else {
  1190  		return types.Types[TFLOAT64]
  1191  	}
  1192  }
  1193  
  1194  type opAndTwoTypes struct {
  1195  	op     Op
  1196  	etype1 types.EType
  1197  	etype2 types.EType
  1198  }
  1199  
  1200  type twoTypes struct {
  1201  	etype1 types.EType
  1202  	etype2 types.EType
  1203  }
  1204  
  1205  type twoOpsAndType struct {
  1206  	op1              ssa.Op
  1207  	op2              ssa.Op
  1208  	intermediateType types.EType
  1209  }
  1210  
  1211  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1212  
  1213  	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1214  	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1215  	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1216  	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1217  
  1218  	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1219  	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1220  	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1221  	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1222  
  1223  	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1224  	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1225  	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1226  	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1227  
  1228  	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1229  	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1230  	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1231  	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1232  	// unsigned
  1233  	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1234  	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1235  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1236  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1237  
  1238  	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1239  	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1240  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1241  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1242  
  1243  	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1244  	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1245  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1246  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1247  
  1248  	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1249  	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1250  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1251  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1252  
  1253  	// float
  1254  	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1255  	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64},
  1256  	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32},
  1257  	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1258  }
  1259  
  1260  // this map is used only for 32-bit arch, and only includes the difference
  1261  // on 32-bit arch, don't use int64<->float conversion for uint32
  1262  var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
  1263  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
  1264  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
  1265  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
  1266  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
  1267  }
  1268  
  1269  // uint64<->float conversions, only on machines that have intructions for that
  1270  var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1271  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
  1272  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
  1273  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
  1274  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
  1275  }
  1276  
  1277  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1278  	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1279  	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1280  	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1281  	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1282  	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1283  	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1284  	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1285  	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1286  
  1287  	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1288  	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1289  	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1290  	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1291  	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1292  	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1293  	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1294  	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1295  
  1296  	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1297  	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1298  	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1299  	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1300  	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1301  	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1302  	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1303  	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1304  
  1305  	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1306  	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1307  	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1308  	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1309  	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1310  	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1311  	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1312  	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1313  
  1314  	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1315  	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1316  	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1317  	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1318  	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1319  	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1320  	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1321  	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1322  
  1323  	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1324  	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1325  	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1326  	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1327  	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1328  	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1329  	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1330  	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1331  
  1332  	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1333  	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1334  	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1335  	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1336  	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1337  	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1338  	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1339  	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1340  
  1341  	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1342  	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1343  	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1344  	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1345  	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1346  	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1347  	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1348  	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1349  }
  1350  
  1351  func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op {
  1352  	etype1 := s.concreteEtype(t)
  1353  	etype2 := s.concreteEtype(u)
  1354  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1355  	if !ok {
  1356  		s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
  1357  	}
  1358  	return x
  1359  }
  1360  
  1361  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1362  func (s *state) expr(n *Node) *ssa.Value {
  1363  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1364  		// ONAMEs and named OLITERALs have the line number
  1365  		// of the decl, not the use. See issue 14742.
  1366  		s.pushLine(n.Pos)
  1367  		defer s.popLine()
  1368  	}
  1369  
  1370  	s.stmtList(n.Ninit)
  1371  	switch n.Op {
  1372  	case OARRAYBYTESTRTMP:
  1373  		slice := s.expr(n.Left)
  1374  		ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  1375  		len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  1376  		return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  1377  	case OSTRARRAYBYTETMP:
  1378  		str := s.expr(n.Left)
  1379  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str)
  1380  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str)
  1381  		return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len)
  1382  	case OCFUNC:
  1383  		aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: Linksym(n.Left.Sym)})
  1384  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1385  	case ONAME:
  1386  		if n.Class == PFUNC {
  1387  			// "value" of a function is the address of the function's closure
  1388  			sym := Linksym(funcsym(n.Sym))
  1389  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: sym})
  1390  			return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), aux, s.sb)
  1391  		}
  1392  		if s.canSSA(n) {
  1393  			return s.variable(n, n.Type)
  1394  		}
  1395  		addr := s.addr(n, false)
  1396  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1397  	case OCLOSUREVAR:
  1398  		addr := s.addr(n, false)
  1399  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1400  	case OLITERAL:
  1401  		switch u := n.Val().U.(type) {
  1402  		case *Mpint:
  1403  			i := u.Int64()
  1404  			switch n.Type.Size() {
  1405  			case 1:
  1406  				return s.constInt8(n.Type, int8(i))
  1407  			case 2:
  1408  				return s.constInt16(n.Type, int16(i))
  1409  			case 4:
  1410  				return s.constInt32(n.Type, int32(i))
  1411  			case 8:
  1412  				return s.constInt64(n.Type, i)
  1413  			default:
  1414  				s.Fatalf("bad integer size %d", n.Type.Size())
  1415  				return nil
  1416  			}
  1417  		case string:
  1418  			if u == "" {
  1419  				return s.constEmptyString(n.Type)
  1420  			}
  1421  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1422  		case bool:
  1423  			return s.constBool(u)
  1424  		case *NilVal:
  1425  			t := n.Type
  1426  			switch {
  1427  			case t.IsSlice():
  1428  				return s.constSlice(t)
  1429  			case t.IsInterface():
  1430  				return s.constInterface(t)
  1431  			default:
  1432  				return s.constNil(t)
  1433  			}
  1434  		case *Mpflt:
  1435  			switch n.Type.Size() {
  1436  			case 4:
  1437  				return s.constFloat32(n.Type, u.Float32())
  1438  			case 8:
  1439  				return s.constFloat64(n.Type, u.Float64())
  1440  			default:
  1441  				s.Fatalf("bad float size %d", n.Type.Size())
  1442  				return nil
  1443  			}
  1444  		case *Mpcplx:
  1445  			r := &u.Real
  1446  			i := &u.Imag
  1447  			switch n.Type.Size() {
  1448  			case 8:
  1449  				pt := types.Types[TFLOAT32]
  1450  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1451  					s.constFloat32(pt, r.Float32()),
  1452  					s.constFloat32(pt, i.Float32()))
  1453  			case 16:
  1454  				pt := types.Types[TFLOAT64]
  1455  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1456  					s.constFloat64(pt, r.Float64()),
  1457  					s.constFloat64(pt, i.Float64()))
  1458  			default:
  1459  				s.Fatalf("bad float size %d", n.Type.Size())
  1460  				return nil
  1461  			}
  1462  
  1463  		default:
  1464  			s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
  1465  			return nil
  1466  		}
  1467  	case OCONVNOP:
  1468  		to := n.Type
  1469  		from := n.Left.Type
  1470  
  1471  		// Assume everything will work out, so set up our return value.
  1472  		// Anything interesting that happens from here is a fatal.
  1473  		x := s.expr(n.Left)
  1474  
  1475  		// Special case for not confusing GC and liveness.
  1476  		// We don't want pointers accidentally classified
  1477  		// as not-pointers or vice-versa because of copy
  1478  		// elision.
  1479  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1480  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1481  		}
  1482  
  1483  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1484  
  1485  		// CONVNOP closure
  1486  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1487  			return v
  1488  		}
  1489  
  1490  		// named <--> unnamed type or typed <--> untyped const
  1491  		if from.Etype == to.Etype {
  1492  			return v
  1493  		}
  1494  
  1495  		// unsafe.Pointer <--> *T
  1496  		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
  1497  			return v
  1498  		}
  1499  
  1500  		dowidth(from)
  1501  		dowidth(to)
  1502  		if from.Width != to.Width {
  1503  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1504  			return nil
  1505  		}
  1506  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1507  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1508  			return nil
  1509  		}
  1510  
  1511  		if instrumenting {
  1512  			// These appear to be fine, but they fail the
  1513  			// integer constraint below, so okay them here.
  1514  			// Sample non-integer conversion: map[string]string -> *uint8
  1515  			return v
  1516  		}
  1517  
  1518  		if etypesign(from.Etype) == 0 {
  1519  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1520  			return nil
  1521  		}
  1522  
  1523  		// integer, same width, same sign
  1524  		return v
  1525  
  1526  	case OCONV:
  1527  		x := s.expr(n.Left)
  1528  		ft := n.Left.Type // from type
  1529  		tt := n.Type      // to type
  1530  		if ft.IsBoolean() && tt.IsKind(TUINT8) {
  1531  			// Bool -> uint8 is generated internally when indexing into runtime.staticbyte.
  1532  			return s.newValue1(ssa.OpCopy, n.Type, x)
  1533  		}
  1534  		if ft.IsInteger() && tt.IsInteger() {
  1535  			var op ssa.Op
  1536  			if tt.Size() == ft.Size() {
  1537  				op = ssa.OpCopy
  1538  			} else if tt.Size() < ft.Size() {
  1539  				// truncation
  1540  				switch 10*ft.Size() + tt.Size() {
  1541  				case 21:
  1542  					op = ssa.OpTrunc16to8
  1543  				case 41:
  1544  					op = ssa.OpTrunc32to8
  1545  				case 42:
  1546  					op = ssa.OpTrunc32to16
  1547  				case 81:
  1548  					op = ssa.OpTrunc64to8
  1549  				case 82:
  1550  					op = ssa.OpTrunc64to16
  1551  				case 84:
  1552  					op = ssa.OpTrunc64to32
  1553  				default:
  1554  					s.Fatalf("weird integer truncation %v -> %v", ft, tt)
  1555  				}
  1556  			} else if ft.IsSigned() {
  1557  				// sign extension
  1558  				switch 10*ft.Size() + tt.Size() {
  1559  				case 12:
  1560  					op = ssa.OpSignExt8to16
  1561  				case 14:
  1562  					op = ssa.OpSignExt8to32
  1563  				case 18:
  1564  					op = ssa.OpSignExt8to64
  1565  				case 24:
  1566  					op = ssa.OpSignExt16to32
  1567  				case 28:
  1568  					op = ssa.OpSignExt16to64
  1569  				case 48:
  1570  					op = ssa.OpSignExt32to64
  1571  				default:
  1572  					s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
  1573  				}
  1574  			} else {
  1575  				// zero extension
  1576  				switch 10*ft.Size() + tt.Size() {
  1577  				case 12:
  1578  					op = ssa.OpZeroExt8to16
  1579  				case 14:
  1580  					op = ssa.OpZeroExt8to32
  1581  				case 18:
  1582  					op = ssa.OpZeroExt8to64
  1583  				case 24:
  1584  					op = ssa.OpZeroExt16to32
  1585  				case 28:
  1586  					op = ssa.OpZeroExt16to64
  1587  				case 48:
  1588  					op = ssa.OpZeroExt32to64
  1589  				default:
  1590  					s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
  1591  				}
  1592  			}
  1593  			return s.newValue1(op, n.Type, x)
  1594  		}
  1595  
  1596  		if ft.IsFloat() || tt.IsFloat() {
  1597  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1598  			if s.config.IntSize == 4 && thearch.LinkArch.Name != "amd64p32" && thearch.LinkArch.Family != sys.MIPS {
  1599  				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1600  					conv = conv1
  1601  				}
  1602  			}
  1603  			if thearch.LinkArch.Name == "arm64" {
  1604  				if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1605  					conv = conv1
  1606  				}
  1607  			}
  1608  
  1609  			if thearch.LinkArch.Family == sys.MIPS {
  1610  				if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
  1611  					// tt is float32 or float64, and ft is also unsigned
  1612  					if tt.Size() == 4 {
  1613  						return s.uint32Tofloat32(n, x, ft, tt)
  1614  					}
  1615  					if tt.Size() == 8 {
  1616  						return s.uint32Tofloat64(n, x, ft, tt)
  1617  					}
  1618  				} else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() {
  1619  					// ft is float32 or float64, and tt is unsigned integer
  1620  					if ft.Size() == 4 {
  1621  						return s.float32ToUint32(n, x, ft, tt)
  1622  					}
  1623  					if ft.Size() == 8 {
  1624  						return s.float64ToUint32(n, x, ft, tt)
  1625  					}
  1626  				}
  1627  			}
  1628  
  1629  			if !ok {
  1630  				s.Fatalf("weird float conversion %v -> %v", ft, tt)
  1631  			}
  1632  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1633  
  1634  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1635  				// normal case, not tripping over unsigned 64
  1636  				if op1 == ssa.OpCopy {
  1637  					if op2 == ssa.OpCopy {
  1638  						return x
  1639  					}
  1640  					return s.newValue1(op2, n.Type, x)
  1641  				}
  1642  				if op2 == ssa.OpCopy {
  1643  					return s.newValue1(op1, n.Type, x)
  1644  				}
  1645  				return s.newValue1(op2, n.Type, s.newValue1(op1, types.Types[it], x))
  1646  			}
  1647  			// Tricky 64-bit unsigned cases.
  1648  			if ft.IsInteger() {
  1649  				// tt is float32 or float64, and ft is also unsigned
  1650  				if tt.Size() == 4 {
  1651  					return s.uint64Tofloat32(n, x, ft, tt)
  1652  				}
  1653  				if tt.Size() == 8 {
  1654  					return s.uint64Tofloat64(n, x, ft, tt)
  1655  				}
  1656  				s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
  1657  			}
  1658  			// ft is float32 or float64, and tt is unsigned integer
  1659  			if ft.Size() == 4 {
  1660  				return s.float32ToUint64(n, x, ft, tt)
  1661  			}
  1662  			if ft.Size() == 8 {
  1663  				return s.float64ToUint64(n, x, ft, tt)
  1664  			}
  1665  			s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
  1666  			return nil
  1667  		}
  1668  
  1669  		if ft.IsComplex() && tt.IsComplex() {
  1670  			var op ssa.Op
  1671  			if ft.Size() == tt.Size() {
  1672  				switch ft.Size() {
  1673  				case 8:
  1674  					op = ssa.OpRound32F
  1675  				case 16:
  1676  					op = ssa.OpRound64F
  1677  				default:
  1678  					s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1679  				}
  1680  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1681  				op = ssa.OpCvt32Fto64F
  1682  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1683  				op = ssa.OpCvt64Fto32F
  1684  			} else {
  1685  				s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1686  			}
  1687  			ftp := floatForComplex(ft)
  1688  			ttp := floatForComplex(tt)
  1689  			return s.newValue2(ssa.OpComplexMake, tt,
  1690  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1691  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1692  		}
  1693  
  1694  		s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1695  		return nil
  1696  
  1697  	case ODOTTYPE:
  1698  		res, _ := s.dottype(n, false)
  1699  		return res
  1700  
  1701  	// binary ops
  1702  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1703  		a := s.expr(n.Left)
  1704  		b := s.expr(n.Right)
  1705  		if n.Left.Type.IsComplex() {
  1706  			pt := floatForComplex(n.Left.Type)
  1707  			op := s.ssaOp(OEQ, pt)
  1708  			r := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  1709  			i := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  1710  			c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i)
  1711  			switch n.Op {
  1712  			case OEQ:
  1713  				return c
  1714  			case ONE:
  1715  				return s.newValue1(ssa.OpNot, types.Types[TBOOL], c)
  1716  			default:
  1717  				s.Fatalf("ordered complex compare %v", n.Op)
  1718  			}
  1719  		}
  1720  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b)
  1721  	case OMUL:
  1722  		a := s.expr(n.Left)
  1723  		b := s.expr(n.Right)
  1724  		if n.Type.IsComplex() {
  1725  			mulop := ssa.OpMul64F
  1726  			addop := ssa.OpAdd64F
  1727  			subop := ssa.OpSub64F
  1728  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1729  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  1730  
  1731  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1732  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1733  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1734  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1735  
  1736  			if pt != wt { // Widen for calculation
  1737  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1738  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1739  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1740  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1741  			}
  1742  
  1743  			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1744  			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
  1745  
  1746  			if pt != wt { // Narrow to store back
  1747  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1748  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1749  			}
  1750  
  1751  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1752  		}
  1753  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1754  
  1755  	case ODIV:
  1756  		a := s.expr(n.Left)
  1757  		b := s.expr(n.Right)
  1758  		if n.Type.IsComplex() {
  1759  			// TODO this is not executed because the front-end substitutes a runtime call.
  1760  			// That probably ought to change; with modest optimization the widen/narrow
  1761  			// conversions could all be elided in larger expression trees.
  1762  			mulop := ssa.OpMul64F
  1763  			addop := ssa.OpAdd64F
  1764  			subop := ssa.OpSub64F
  1765  			divop := ssa.OpDiv64F
  1766  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1767  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  1768  
  1769  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1770  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1771  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1772  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1773  
  1774  			if pt != wt { // Widen for calculation
  1775  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1776  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1777  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1778  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1779  			}
  1780  
  1781  			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
  1782  			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1783  			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
  1784  
  1785  			// TODO not sure if this is best done in wide precision or narrow
  1786  			// Double-rounding might be an issue.
  1787  			// Note that the pre-SSA implementation does the entire calculation
  1788  			// in wide format, so wide is compatible.
  1789  			xreal = s.newValue2(divop, wt, xreal, denom)
  1790  			ximag = s.newValue2(divop, wt, ximag, denom)
  1791  
  1792  			if pt != wt { // Narrow to store back
  1793  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1794  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1795  			}
  1796  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1797  		}
  1798  		if n.Type.IsFloat() {
  1799  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1800  		}
  1801  		return s.intDivide(n, a, b)
  1802  	case OMOD:
  1803  		a := s.expr(n.Left)
  1804  		b := s.expr(n.Right)
  1805  		return s.intDivide(n, a, b)
  1806  	case OADD, OSUB:
  1807  		a := s.expr(n.Left)
  1808  		b := s.expr(n.Right)
  1809  		if n.Type.IsComplex() {
  1810  			pt := floatForComplex(n.Type)
  1811  			op := s.ssaOp(n.Op, pt)
  1812  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1813  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  1814  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  1815  		}
  1816  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1817  	case OAND, OOR, OXOR:
  1818  		a := s.expr(n.Left)
  1819  		b := s.expr(n.Right)
  1820  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1821  	case OLSH, ORSH:
  1822  		a := s.expr(n.Left)
  1823  		b := s.expr(n.Right)
  1824  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  1825  	case OANDAND, OOROR:
  1826  		// To implement OANDAND (and OOROR), we introduce a
  1827  		// new temporary variable to hold the result. The
  1828  		// variable is associated with the OANDAND node in the
  1829  		// s.vars table (normally variables are only
  1830  		// associated with ONAME nodes). We convert
  1831  		//     A && B
  1832  		// to
  1833  		//     var = A
  1834  		//     if var {
  1835  		//         var = B
  1836  		//     }
  1837  		// Using var in the subsequent block introduces the
  1838  		// necessary phi variable.
  1839  		el := s.expr(n.Left)
  1840  		s.vars[n] = el
  1841  
  1842  		b := s.endBlock()
  1843  		b.Kind = ssa.BlockIf
  1844  		b.SetControl(el)
  1845  		// In theory, we should set b.Likely here based on context.
  1846  		// However, gc only gives us likeliness hints
  1847  		// in a single place, for plain OIF statements,
  1848  		// and passing around context is finnicky, so don't bother for now.
  1849  
  1850  		bRight := s.f.NewBlock(ssa.BlockPlain)
  1851  		bResult := s.f.NewBlock(ssa.BlockPlain)
  1852  		if n.Op == OANDAND {
  1853  			b.AddEdgeTo(bRight)
  1854  			b.AddEdgeTo(bResult)
  1855  		} else if n.Op == OOROR {
  1856  			b.AddEdgeTo(bResult)
  1857  			b.AddEdgeTo(bRight)
  1858  		}
  1859  
  1860  		s.startBlock(bRight)
  1861  		er := s.expr(n.Right)
  1862  		s.vars[n] = er
  1863  
  1864  		b = s.endBlock()
  1865  		b.AddEdgeTo(bResult)
  1866  
  1867  		s.startBlock(bResult)
  1868  		return s.variable(n, types.Types[TBOOL])
  1869  	case OCOMPLEX:
  1870  		r := s.expr(n.Left)
  1871  		i := s.expr(n.Right)
  1872  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  1873  
  1874  	// unary ops
  1875  	case OMINUS:
  1876  		a := s.expr(n.Left)
  1877  		if n.Type.IsComplex() {
  1878  			tp := floatForComplex(n.Type)
  1879  			negop := s.ssaOp(n.Op, tp)
  1880  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1881  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  1882  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  1883  		}
  1884  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1885  	case ONOT, OCOM:
  1886  		a := s.expr(n.Left)
  1887  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1888  	case OIMAG, OREAL:
  1889  		a := s.expr(n.Left)
  1890  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  1891  	case OPLUS:
  1892  		return s.expr(n.Left)
  1893  
  1894  	case OADDR:
  1895  		return s.addr(n.Left, n.Bounded())
  1896  
  1897  	case OINDREGSP:
  1898  		addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset)
  1899  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1900  
  1901  	case OIND:
  1902  		p := s.exprPtr(n.Left, false, n.Pos)
  1903  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1904  
  1905  	case ODOT:
  1906  		t := n.Left.Type
  1907  		if canSSAType(t) {
  1908  			v := s.expr(n.Left)
  1909  			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  1910  		}
  1911  		if n.Left.Op == OSTRUCTLIT {
  1912  			// All literals with nonzero fields have already been
  1913  			// rewritten during walk. Any that remain are just T{}
  1914  			// or equivalents. Use the zero value.
  1915  			if !iszero(n.Left) {
  1916  				Fatalf("literal with nonzero value in SSA: %v", n.Left)
  1917  			}
  1918  			return s.zeroVal(n.Type)
  1919  		}
  1920  		p := s.addr(n, false)
  1921  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1922  
  1923  	case ODOTPTR:
  1924  		p := s.exprPtr(n.Left, false, n.Pos)
  1925  		p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p)
  1926  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1927  
  1928  	case OINDEX:
  1929  		switch {
  1930  		case n.Left.Type.IsString():
  1931  			if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) {
  1932  				// Replace "abc"[1] with 'b'.
  1933  				// Delayed until now because "abc"[1] is not an ideal constant.
  1934  				// See test/fixedbugs/issue11370.go.
  1935  				return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()])))
  1936  			}
  1937  			a := s.expr(n.Left)
  1938  			i := s.expr(n.Right)
  1939  			i = s.extendIndex(i, panicindex)
  1940  			if !n.Bounded() {
  1941  				len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a)
  1942  				s.boundsCheck(i, len)
  1943  			}
  1944  			ptrtyp := s.f.Config.Types.BytePtr
  1945  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  1946  			if Isconst(n.Right, CTINT) {
  1947  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  1948  			} else {
  1949  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  1950  			}
  1951  			return s.newValue2(ssa.OpLoad, types.Types[TUINT8], ptr, s.mem())
  1952  		case n.Left.Type.IsSlice():
  1953  			p := s.addr(n, false)
  1954  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  1955  		case n.Left.Type.IsArray():
  1956  			if bound := n.Left.Type.NumElem(); bound <= 1 {
  1957  				// SSA can handle arrays of length at most 1.
  1958  				a := s.expr(n.Left)
  1959  				i := s.expr(n.Right)
  1960  				if bound == 0 {
  1961  					// Bounds check will never succeed.  Might as well
  1962  					// use constants for the bounds check.
  1963  					z := s.constInt(types.Types[TINT], 0)
  1964  					s.boundsCheck(z, z)
  1965  					// The return value won't be live, return junk.
  1966  					return s.newValue0(ssa.OpUnknown, n.Type)
  1967  				}
  1968  				i = s.extendIndex(i, panicindex)
  1969  				if !n.Bounded() {
  1970  					s.boundsCheck(i, s.constInt(types.Types[TINT], bound))
  1971  				}
  1972  				return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a)
  1973  			}
  1974  			p := s.addr(n, false)
  1975  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  1976  		default:
  1977  			s.Fatalf("bad type for index %v", n.Left.Type)
  1978  			return nil
  1979  		}
  1980  
  1981  	case OLEN, OCAP:
  1982  		switch {
  1983  		case n.Left.Type.IsSlice():
  1984  			op := ssa.OpSliceLen
  1985  			if n.Op == OCAP {
  1986  				op = ssa.OpSliceCap
  1987  			}
  1988  			return s.newValue1(op, types.Types[TINT], s.expr(n.Left))
  1989  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  1990  			return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left))
  1991  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  1992  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  1993  		default: // array
  1994  			return s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  1995  		}
  1996  
  1997  	case OSPTR:
  1998  		a := s.expr(n.Left)
  1999  		if n.Left.Type.IsSlice() {
  2000  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  2001  		} else {
  2002  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  2003  		}
  2004  
  2005  	case OITAB:
  2006  		a := s.expr(n.Left)
  2007  		return s.newValue1(ssa.OpITab, n.Type, a)
  2008  
  2009  	case OIDATA:
  2010  		a := s.expr(n.Left)
  2011  		return s.newValue1(ssa.OpIData, n.Type, a)
  2012  
  2013  	case OEFACE:
  2014  		tab := s.expr(n.Left)
  2015  		data := s.expr(n.Right)
  2016  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2017  
  2018  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2019  		v := s.expr(n.Left)
  2020  		var i, j, k *ssa.Value
  2021  		low, high, max := n.SliceBounds()
  2022  		if low != nil {
  2023  			i = s.extendIndex(s.expr(low), panicslice)
  2024  		}
  2025  		if high != nil {
  2026  			j = s.extendIndex(s.expr(high), panicslice)
  2027  		}
  2028  		if max != nil {
  2029  			k = s.extendIndex(s.expr(max), panicslice)
  2030  		}
  2031  		p, l, c := s.slice(n.Left.Type, v, i, j, k)
  2032  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2033  
  2034  	case OSLICESTR:
  2035  		v := s.expr(n.Left)
  2036  		var i, j *ssa.Value
  2037  		low, high, _ := n.SliceBounds()
  2038  		if low != nil {
  2039  			i = s.extendIndex(s.expr(low), panicslice)
  2040  		}
  2041  		if high != nil {
  2042  			j = s.extendIndex(s.expr(high), panicslice)
  2043  		}
  2044  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
  2045  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2046  
  2047  	case OCALLFUNC:
  2048  		if isIntrinsicCall(n) {
  2049  			return s.intrinsicCall(n)
  2050  		}
  2051  		fallthrough
  2052  
  2053  	case OCALLINTER, OCALLMETH:
  2054  		a := s.call(n, callNormal)
  2055  		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
  2056  
  2057  	case OGETG:
  2058  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2059  
  2060  	case OAPPEND:
  2061  		return s.append(n, false)
  2062  
  2063  	case OSTRUCTLIT, OARRAYLIT:
  2064  		// All literals with nonzero fields have already been
  2065  		// rewritten during walk. Any that remain are just T{}
  2066  		// or equivalents. Use the zero value.
  2067  		if !iszero(n) {
  2068  			Fatalf("literal with nonzero value in SSA: %v", n)
  2069  		}
  2070  		return s.zeroVal(n.Type)
  2071  
  2072  	default:
  2073  		s.Fatalf("unhandled expr %v", n.Op)
  2074  		return nil
  2075  	}
  2076  }
  2077  
  2078  // append converts an OAPPEND node to SSA.
  2079  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2080  // adds it to s, and returns the Value.
  2081  // If inplace is true, it writes the result of the OAPPEND expression n
  2082  // back to the slice being appended to, and returns nil.
  2083  // inplace MUST be set to false if the slice can be SSA'd.
  2084  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2085  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2086  	//
  2087  	// ptr, len, cap := s
  2088  	// newlen := len + 3
  2089  	// if newlen > cap {
  2090  	//     ptr, len, cap = growslice(s, newlen)
  2091  	//     newlen = len + 3 // recalculate to avoid a spill
  2092  	// }
  2093  	// // with write barriers, if needed:
  2094  	// *(ptr+len) = e1
  2095  	// *(ptr+len+1) = e2
  2096  	// *(ptr+len+2) = e3
  2097  	// return makeslice(ptr, newlen, cap)
  2098  	//
  2099  	//
  2100  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2101  	//
  2102  	// a := &s
  2103  	// ptr, len, cap := s
  2104  	// newlen := len + 3
  2105  	// if newlen > cap {
  2106  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2107  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2108  	//    *a.cap = newcap // write before ptr to avoid a spill
  2109  	//    *a.ptr = newptr // with write barrier
  2110  	// }
  2111  	// newlen = len + 3 // recalculate to avoid a spill
  2112  	// *a.len = newlen
  2113  	// // with write barriers, if needed:
  2114  	// *(ptr+len) = e1
  2115  	// *(ptr+len+1) = e2
  2116  	// *(ptr+len+2) = e3
  2117  
  2118  	et := n.Type.Elem()
  2119  	pt := types.NewPtr(et)
  2120  
  2121  	// Evaluate slice
  2122  	sn := n.List.First() // the slice node is the first in the list
  2123  
  2124  	var slice, addr *ssa.Value
  2125  	if inplace {
  2126  		addr = s.addr(sn, false)
  2127  		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2128  	} else {
  2129  		slice = s.expr(sn)
  2130  	}
  2131  
  2132  	// Allocate new blocks
  2133  	grow := s.f.NewBlock(ssa.BlockPlain)
  2134  	assign := s.f.NewBlock(ssa.BlockPlain)
  2135  
  2136  	// Decide if we need to grow
  2137  	nargs := int64(n.List.Len() - 1)
  2138  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2139  	l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2140  	c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice)
  2141  	nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2142  
  2143  	cmp := s.newValue2(s.ssaOp(OGT, types.Types[TINT]), types.Types[TBOOL], nl, c)
  2144  	s.vars[&ptrVar] = p
  2145  
  2146  	if !inplace {
  2147  		s.vars[&newlenVar] = nl
  2148  		s.vars[&capVar] = c
  2149  	} else {
  2150  		s.vars[&lenVar] = l
  2151  	}
  2152  
  2153  	b := s.endBlock()
  2154  	b.Kind = ssa.BlockIf
  2155  	b.Likely = ssa.BranchUnlikely
  2156  	b.SetControl(cmp)
  2157  	b.AddEdgeTo(grow)
  2158  	b.AddEdgeTo(assign)
  2159  
  2160  	// Call growslice
  2161  	s.startBlock(grow)
  2162  	taddr := s.expr(n.Left)
  2163  	r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl)
  2164  
  2165  	if inplace {
  2166  		if sn.Op == ONAME {
  2167  			// Tell liveness we're about to build a new slice
  2168  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem())
  2169  		}
  2170  		capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_cap), addr)
  2171  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TINT], capaddr, r[2], s.mem())
  2172  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, pt, addr, r[0], s.mem())
  2173  		// load the value we just stored to avoid having to spill it
  2174  		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
  2175  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2176  	} else {
  2177  		s.vars[&ptrVar] = r[0]
  2178  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs))
  2179  		s.vars[&capVar] = r[2]
  2180  	}
  2181  
  2182  	b = s.endBlock()
  2183  	b.AddEdgeTo(assign)
  2184  
  2185  	// assign new elements to slots
  2186  	s.startBlock(assign)
  2187  
  2188  	if inplace {
  2189  		l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len
  2190  		nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2191  		lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_nel), addr)
  2192  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TINT], lenaddr, nl, s.mem())
  2193  	}
  2194  
  2195  	// Evaluate args
  2196  	type argRec struct {
  2197  		// if store is true, we're appending the value v.  If false, we're appending the
  2198  		// value at *v.
  2199  		v     *ssa.Value
  2200  		store bool
  2201  	}
  2202  	args := make([]argRec, 0, nargs)
  2203  	for _, n := range n.List.Slice()[1:] {
  2204  		if canSSAType(n.Type) {
  2205  			args = append(args, argRec{v: s.expr(n), store: true})
  2206  		} else {
  2207  			v := s.addr(n, false)
  2208  			args = append(args, argRec{v: v})
  2209  		}
  2210  	}
  2211  
  2212  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2213  	if !inplace {
  2214  		nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl
  2215  		c = s.variable(&capVar, types.Types[TINT])     // generates phi for cap
  2216  	}
  2217  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2218  	for i, arg := range args {
  2219  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i)))
  2220  		if arg.store {
  2221  			s.storeType(et, addr, arg.v, 0)
  2222  		} else {
  2223  			store := s.newValue3I(ssa.OpMove, ssa.TypeMem, et.Size(), addr, arg.v, s.mem())
  2224  			store.Aux = et
  2225  			s.vars[&memVar] = store
  2226  		}
  2227  	}
  2228  
  2229  	delete(s.vars, &ptrVar)
  2230  	if inplace {
  2231  		delete(s.vars, &lenVar)
  2232  		return nil
  2233  	}
  2234  	delete(s.vars, &newlenVar)
  2235  	delete(s.vars, &capVar)
  2236  	// make result
  2237  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2238  }
  2239  
  2240  // condBranch evaluates the boolean expression cond and branches to yes
  2241  // if cond is true and no if cond is false.
  2242  // This function is intended to handle && and || better than just calling
  2243  // s.expr(cond) and branching on the result.
  2244  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2245  	if cond.Op == OANDAND {
  2246  		mid := s.f.NewBlock(ssa.BlockPlain)
  2247  		s.stmtList(cond.Ninit)
  2248  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2249  		s.startBlock(mid)
  2250  		s.condBranch(cond.Right, yes, no, likely)
  2251  		return
  2252  		// Note: if likely==1, then both recursive calls pass 1.
  2253  		// If likely==-1, then we don't have enough information to decide
  2254  		// whether the first branch is likely or not. So we pass 0 for
  2255  		// the likeliness of the first branch.
  2256  		// TODO: have the frontend give us branch prediction hints for
  2257  		// OANDAND and OOROR nodes (if it ever has such info).
  2258  	}
  2259  	if cond.Op == OOROR {
  2260  		mid := s.f.NewBlock(ssa.BlockPlain)
  2261  		s.stmtList(cond.Ninit)
  2262  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2263  		s.startBlock(mid)
  2264  		s.condBranch(cond.Right, yes, no, likely)
  2265  		return
  2266  		// Note: if likely==-1, then both recursive calls pass -1.
  2267  		// If likely==1, then we don't have enough info to decide
  2268  		// the likelihood of the first branch.
  2269  	}
  2270  	if cond.Op == ONOT {
  2271  		s.stmtList(cond.Ninit)
  2272  		s.condBranch(cond.Left, no, yes, -likely)
  2273  		return
  2274  	}
  2275  	c := s.expr(cond)
  2276  	b := s.endBlock()
  2277  	b.Kind = ssa.BlockIf
  2278  	b.SetControl(c)
  2279  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2280  	b.AddEdgeTo(yes)
  2281  	b.AddEdgeTo(no)
  2282  }
  2283  
  2284  type skipMask uint8
  2285  
  2286  const (
  2287  	skipPtr skipMask = 1 << iota
  2288  	skipLen
  2289  	skipCap
  2290  )
  2291  
  2292  // assign does left = right.
  2293  // Right has already been evaluated to ssa, left has not.
  2294  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2295  // If deref is true and right == nil, just do left = 0.
  2296  // skip indicates assignments (at the top level) that can be avoided.
  2297  func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) {
  2298  	if left.Op == ONAME && isblank(left) {
  2299  		return
  2300  	}
  2301  	t := left.Type
  2302  	dowidth(t)
  2303  	if s.canSSA(left) {
  2304  		if deref {
  2305  			s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
  2306  		}
  2307  		if left.Op == ODOT {
  2308  			// We're assigning to a field of an ssa-able value.
  2309  			// We need to build a new structure with the new value for the
  2310  			// field we're assigning and the old values for the other fields.
  2311  			// For instance:
  2312  			//   type T struct {a, b, c int}
  2313  			//   var T x
  2314  			//   x.b = 5
  2315  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2316  
  2317  			// Grab information about the structure type.
  2318  			t := left.Left.Type
  2319  			nf := t.NumFields()
  2320  			idx := fieldIdx(left)
  2321  
  2322  			// Grab old value of structure.
  2323  			old := s.expr(left.Left)
  2324  
  2325  			// Make new structure.
  2326  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2327  
  2328  			// Add fields as args.
  2329  			for i := 0; i < nf; i++ {
  2330  				if i == idx {
  2331  					new.AddArg(right)
  2332  				} else {
  2333  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2334  				}
  2335  			}
  2336  
  2337  			// Recursively assign the new value we've made to the base of the dot op.
  2338  			s.assign(left.Left, new, false, 0)
  2339  			// TODO: do we need to update named values here?
  2340  			return
  2341  		}
  2342  		if left.Op == OINDEX && left.Left.Type.IsArray() {
  2343  			// We're assigning to an element of an ssa-able array.
  2344  			// a[i] = v
  2345  			t := left.Left.Type
  2346  			n := t.NumElem()
  2347  
  2348  			i := s.expr(left.Right) // index
  2349  			if n == 0 {
  2350  				// The bounds check must fail.  Might as well
  2351  				// ignore the actual index and just use zeros.
  2352  				z := s.constInt(types.Types[TINT], 0)
  2353  				s.boundsCheck(z, z)
  2354  				return
  2355  			}
  2356  			if n != 1 {
  2357  				s.Fatalf("assigning to non-1-length array")
  2358  			}
  2359  			// Rewrite to a = [1]{v}
  2360  			i = s.extendIndex(i, panicindex)
  2361  			s.boundsCheck(i, s.constInt(types.Types[TINT], 1))
  2362  			v := s.newValue1(ssa.OpArrayMake1, t, right)
  2363  			s.assign(left.Left, v, false, 0)
  2364  			return
  2365  		}
  2366  		// Update variable assignment.
  2367  		s.vars[left] = right
  2368  		s.addNamedValue(left, right)
  2369  		return
  2370  	}
  2371  	// Left is not ssa-able. Compute its address.
  2372  	addr := s.addr(left, false)
  2373  	if left.Op == ONAME && skip == 0 {
  2374  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem())
  2375  	}
  2376  	if isReflectHeaderDataField(left) {
  2377  		// Package unsafe's documentation says storing pointers into
  2378  		// reflect.SliceHeader and reflect.StringHeader's Data fields
  2379  		// is valid, even though they have type uintptr (#19168).
  2380  		// Mark it pointer type to signal the writebarrier pass to
  2381  		// insert a write barrier.
  2382  		t = types.Types[TUNSAFEPTR]
  2383  	}
  2384  	if deref {
  2385  		// Treat as a mem->mem move.
  2386  		var store *ssa.Value
  2387  		if right == nil {
  2388  			store = s.newValue2I(ssa.OpZero, ssa.TypeMem, t.Size(), addr, s.mem())
  2389  		} else {
  2390  			store = s.newValue3I(ssa.OpMove, ssa.TypeMem, t.Size(), addr, right, s.mem())
  2391  		}
  2392  		store.Aux = t
  2393  		s.vars[&memVar] = store
  2394  		return
  2395  	}
  2396  	// Treat as a store.
  2397  	s.storeType(t, addr, right, skip)
  2398  }
  2399  
  2400  // zeroVal returns the zero value for type t.
  2401  func (s *state) zeroVal(t *types.Type) *ssa.Value {
  2402  	switch {
  2403  	case t.IsInteger():
  2404  		switch t.Size() {
  2405  		case 1:
  2406  			return s.constInt8(t, 0)
  2407  		case 2:
  2408  			return s.constInt16(t, 0)
  2409  		case 4:
  2410  			return s.constInt32(t, 0)
  2411  		case 8:
  2412  			return s.constInt64(t, 0)
  2413  		default:
  2414  			s.Fatalf("bad sized integer type %v", t)
  2415  		}
  2416  	case t.IsFloat():
  2417  		switch t.Size() {
  2418  		case 4:
  2419  			return s.constFloat32(t, 0)
  2420  		case 8:
  2421  			return s.constFloat64(t, 0)
  2422  		default:
  2423  			s.Fatalf("bad sized float type %v", t)
  2424  		}
  2425  	case t.IsComplex():
  2426  		switch t.Size() {
  2427  		case 8:
  2428  			z := s.constFloat32(types.Types[TFLOAT32], 0)
  2429  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2430  		case 16:
  2431  			z := s.constFloat64(types.Types[TFLOAT64], 0)
  2432  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2433  		default:
  2434  			s.Fatalf("bad sized complex type %v", t)
  2435  		}
  2436  
  2437  	case t.IsString():
  2438  		return s.constEmptyString(t)
  2439  	case t.IsPtrShaped():
  2440  		return s.constNil(t)
  2441  	case t.IsBoolean():
  2442  		return s.constBool(false)
  2443  	case t.IsInterface():
  2444  		return s.constInterface(t)
  2445  	case t.IsSlice():
  2446  		return s.constSlice(t)
  2447  	case t.IsStruct():
  2448  		n := t.NumFields()
  2449  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2450  		for i := 0; i < n; i++ {
  2451  			v.AddArg(s.zeroVal(t.FieldType(i).(*types.Type)))
  2452  		}
  2453  		return v
  2454  	case t.IsArray():
  2455  		switch t.NumElem() {
  2456  		case 0:
  2457  			return s.entryNewValue0(ssa.OpArrayMake0, t)
  2458  		case 1:
  2459  			return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
  2460  		}
  2461  	}
  2462  	s.Fatalf("zero for type %v not implemented", t)
  2463  	return nil
  2464  }
  2465  
  2466  type callKind int8
  2467  
  2468  const (
  2469  	callNormal callKind = iota
  2470  	callDefer
  2471  	callGo
  2472  )
  2473  
  2474  var intrinsics map[intrinsicKey]intrinsicBuilder
  2475  
  2476  // An intrinsicBuilder converts a call node n into an ssa value that
  2477  // implements that call as an intrinsic. args is a list of arguments to the func.
  2478  type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value
  2479  
  2480  type intrinsicKey struct {
  2481  	arch *sys.Arch
  2482  	pkg  string
  2483  	fn   string
  2484  }
  2485  
  2486  func init() {
  2487  	intrinsics = map[intrinsicKey]intrinsicBuilder{}
  2488  
  2489  	var all []*sys.Arch
  2490  	var i4 []*sys.Arch
  2491  	var i8 []*sys.Arch
  2492  	var p4 []*sys.Arch
  2493  	var p8 []*sys.Arch
  2494  	for _, a := range sys.Archs {
  2495  		all = append(all, a)
  2496  		if a.IntSize == 4 {
  2497  			i4 = append(i4, a)
  2498  		} else {
  2499  			i8 = append(i8, a)
  2500  		}
  2501  		if a.PtrSize == 4 {
  2502  			p4 = append(p4, a)
  2503  		} else {
  2504  			p8 = append(p8, a)
  2505  		}
  2506  	}
  2507  
  2508  	// add adds the intrinsic b for pkg.fn for the given list of architectures.
  2509  	add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
  2510  		for _, a := range archs {
  2511  			intrinsics[intrinsicKey{a, pkg, fn}] = b
  2512  		}
  2513  	}
  2514  	// addF does the same as add but operates on architecture families.
  2515  	addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
  2516  		m := 0
  2517  		for _, f := range archFamilies {
  2518  			if f >= 32 {
  2519  				panic("too many architecture families")
  2520  			}
  2521  			m |= 1 << uint(f)
  2522  		}
  2523  		for _, a := range all {
  2524  			if m>>uint(a.Family)&1 != 0 {
  2525  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2526  			}
  2527  		}
  2528  	}
  2529  	// alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists.
  2530  	alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) {
  2531  		for _, a := range archs {
  2532  			if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok {
  2533  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2534  			}
  2535  		}
  2536  	}
  2537  
  2538  	/******** runtime ********/
  2539  	if !instrumenting {
  2540  		add("runtime", "slicebytetostringtmp",
  2541  			func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2542  				// Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes
  2543  				// for the backend instead of slicebytetostringtmp calls
  2544  				// when not instrumenting.
  2545  				slice := args[0]
  2546  				ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  2547  				len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2548  				return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  2549  			},
  2550  			all...)
  2551  	}
  2552  	add("runtime", "KeepAlive",
  2553  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2554  			data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0])
  2555  			s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, data, s.mem())
  2556  			return nil
  2557  		},
  2558  		all...)
  2559  
  2560  	/******** runtime/internal/sys ********/
  2561  	addF("runtime/internal/sys", "Ctz32",
  2562  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2563  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  2564  		},
  2565  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2566  	addF("runtime/internal/sys", "Ctz64",
  2567  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2568  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  2569  		},
  2570  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2571  	addF("runtime/internal/sys", "Bswap32",
  2572  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2573  			return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0])
  2574  		},
  2575  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2576  	addF("runtime/internal/sys", "Bswap64",
  2577  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2578  			return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0])
  2579  		},
  2580  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2581  
  2582  	/******** runtime/internal/atomic ********/
  2583  	addF("runtime/internal/atomic", "Load",
  2584  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2585  			v := s.newValue2(ssa.OpAtomicLoad32, ssa.MakeTuple(types.Types[TUINT32], ssa.TypeMem), args[0], s.mem())
  2586  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2587  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2588  		},
  2589  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2590  
  2591  	addF("runtime/internal/atomic", "Load64",
  2592  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2593  			v := s.newValue2(ssa.OpAtomicLoad64, ssa.MakeTuple(types.Types[TUINT64], ssa.TypeMem), args[0], s.mem())
  2594  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2595  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2596  		},
  2597  		sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64)
  2598  	addF("runtime/internal/atomic", "Loadp",
  2599  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2600  			v := s.newValue2(ssa.OpAtomicLoadPtr, ssa.MakeTuple(s.f.Config.Types.BytePtr, ssa.TypeMem), args[0], s.mem())
  2601  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2602  			return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v)
  2603  		},
  2604  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2605  
  2606  	addF("runtime/internal/atomic", "Store",
  2607  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2608  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, ssa.TypeMem, args[0], args[1], s.mem())
  2609  			return nil
  2610  		},
  2611  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2612  	addF("runtime/internal/atomic", "Store64",
  2613  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2614  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, ssa.TypeMem, args[0], args[1], s.mem())
  2615  			return nil
  2616  		},
  2617  		sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64)
  2618  	addF("runtime/internal/atomic", "StorepNoWB",
  2619  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2620  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, ssa.TypeMem, args[0], args[1], s.mem())
  2621  			return nil
  2622  		},
  2623  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS)
  2624  
  2625  	addF("runtime/internal/atomic", "Xchg",
  2626  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2627  			v := s.newValue3(ssa.OpAtomicExchange32, ssa.MakeTuple(types.Types[TUINT32], ssa.TypeMem), args[0], args[1], s.mem())
  2628  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2629  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2630  		},
  2631  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2632  	addF("runtime/internal/atomic", "Xchg64",
  2633  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2634  			v := s.newValue3(ssa.OpAtomicExchange64, ssa.MakeTuple(types.Types[TUINT64], ssa.TypeMem), args[0], args[1], s.mem())
  2635  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2636  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2637  		},
  2638  		sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64)
  2639  
  2640  	addF("runtime/internal/atomic", "Xadd",
  2641  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2642  			v := s.newValue3(ssa.OpAtomicAdd32, ssa.MakeTuple(types.Types[TUINT32], ssa.TypeMem), args[0], args[1], s.mem())
  2643  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2644  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2645  		},
  2646  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2647  	addF("runtime/internal/atomic", "Xadd64",
  2648  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2649  			v := s.newValue3(ssa.OpAtomicAdd64, ssa.MakeTuple(types.Types[TUINT64], ssa.TypeMem), args[0], args[1], s.mem())
  2650  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2651  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2652  		},
  2653  		sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64)
  2654  
  2655  	addF("runtime/internal/atomic", "Cas",
  2656  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2657  			v := s.newValue4(ssa.OpAtomicCompareAndSwap32, ssa.MakeTuple(types.Types[TBOOL], ssa.TypeMem), args[0], args[1], args[2], s.mem())
  2658  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2659  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  2660  		},
  2661  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64)
  2662  	addF("runtime/internal/atomic", "Cas64",
  2663  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2664  			v := s.newValue4(ssa.OpAtomicCompareAndSwap64, ssa.MakeTuple(types.Types[TBOOL], ssa.TypeMem), args[0], args[1], args[2], s.mem())
  2665  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2666  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  2667  		},
  2668  		sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64)
  2669  
  2670  	addF("runtime/internal/atomic", "And8",
  2671  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2672  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, ssa.TypeMem, args[0], args[1], s.mem())
  2673  			return nil
  2674  		},
  2675  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  2676  	addF("runtime/internal/atomic", "Or8",
  2677  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2678  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, ssa.TypeMem, args[0], args[1], s.mem())
  2679  			return nil
  2680  		},
  2681  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  2682  
  2683  	alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...)
  2684  	alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...)
  2685  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", i4...)
  2686  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", i8...)
  2687  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...)
  2688  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...)
  2689  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...)
  2690  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...)
  2691  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...)
  2692  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...)
  2693  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...)
  2694  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...)
  2695  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...)
  2696  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...)
  2697  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...)
  2698  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...)
  2699  
  2700  	/******** math ********/
  2701  	addF("math", "Sqrt",
  2702  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2703  			return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0])
  2704  		},
  2705  		sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X)
  2706  
  2707  	/******** math/bits ********/
  2708  	addF("math/bits", "TrailingZeros64",
  2709  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2710  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  2711  		},
  2712  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2713  	addF("math/bits", "TrailingZeros32",
  2714  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2715  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  2716  		},
  2717  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2718  	addF("math/bits", "TrailingZeros16",
  2719  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2720  			x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  2721  			c := s.constInt32(types.Types[TUINT32], 1<<16)
  2722  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  2723  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  2724  		},
  2725  		sys.ARM, sys.MIPS)
  2726  	addF("math/bits", "TrailingZeros16",
  2727  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2728  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  2729  			c := s.constInt64(types.Types[TUINT64], 1<<16)
  2730  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  2731  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  2732  		},
  2733  		sys.AMD64, sys.ARM64, sys.S390X)
  2734  	addF("math/bits", "TrailingZeros8",
  2735  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2736  			x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  2737  			c := s.constInt32(types.Types[TUINT32], 1<<8)
  2738  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  2739  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  2740  		},
  2741  		sys.ARM, sys.MIPS)
  2742  	addF("math/bits", "TrailingZeros8",
  2743  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2744  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  2745  			c := s.constInt64(types.Types[TUINT64], 1<<8)
  2746  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  2747  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  2748  		},
  2749  		sys.AMD64, sys.ARM64, sys.S390X)
  2750  	alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...)
  2751  	alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...)
  2752  	// ReverseBytes inlines correctly, no need to intrinsify it.
  2753  	// ReverseBytes16 lowers to a rotate, no need for anything special here.
  2754  	addF("math/bits", "Len64",
  2755  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2756  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  2757  		},
  2758  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2759  	addF("math/bits", "Len32",
  2760  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2761  			if s.config.IntSize == 4 {
  2762  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  2763  			}
  2764  			x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0])
  2765  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2766  		},
  2767  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2768  	addF("math/bits", "Len16",
  2769  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2770  			if s.config.IntSize == 4 {
  2771  				x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  2772  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  2773  			}
  2774  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  2775  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2776  		},
  2777  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2778  	// Note: disabled on AMD64 because the Go code is faster!
  2779  	addF("math/bits", "Len8",
  2780  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2781  			if s.config.IntSize == 4 {
  2782  				x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  2783  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  2784  			}
  2785  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  2786  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2787  		},
  2788  		sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2789  
  2790  	addF("math/bits", "Len",
  2791  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2792  			if s.config.IntSize == 4 {
  2793  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  2794  			}
  2795  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  2796  		},
  2797  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS)
  2798  	// LeadingZeros is handled because it trivially calls Len.
  2799  	addF("math/bits", "Reverse64",
  2800  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2801  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  2802  		},
  2803  		sys.ARM64)
  2804  	addF("math/bits", "Reverse32",
  2805  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2806  			return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  2807  		},
  2808  		sys.ARM64)
  2809  	addF("math/bits", "Reverse16",
  2810  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2811  			return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0])
  2812  		},
  2813  		sys.ARM64)
  2814  	addF("math/bits", "Reverse8",
  2815  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2816  			return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0])
  2817  		},
  2818  		sys.ARM64)
  2819  	addF("math/bits", "Reverse",
  2820  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2821  			if s.config.IntSize == 4 {
  2822  				return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  2823  			}
  2824  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  2825  		},
  2826  		sys.ARM64)
  2827  	makeOnesCount := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2828  		return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2829  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: Linksym(syslook("support_popcnt").Sym)})
  2830  			addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), aux, s.sb)
  2831  			v := s.newValue2(ssa.OpLoad, types.Types[TBOOL], addr, s.mem())
  2832  			b := s.endBlock()
  2833  			b.Kind = ssa.BlockIf
  2834  			b.SetControl(v)
  2835  			bTrue := s.f.NewBlock(ssa.BlockPlain)
  2836  			bFalse := s.f.NewBlock(ssa.BlockPlain)
  2837  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  2838  			b.AddEdgeTo(bTrue)
  2839  			b.AddEdgeTo(bFalse)
  2840  			b.Likely = ssa.BranchLikely // most machines have popcnt nowadays
  2841  
  2842  			// We have the intrinsic - use it directly.
  2843  			s.startBlock(bTrue)
  2844  			op := op64
  2845  			if s.config.IntSize == 4 {
  2846  				op = op32
  2847  			}
  2848  			s.vars[n] = s.newValue1(op, types.Types[TINT], args[0])
  2849  			s.endBlock().AddEdgeTo(bEnd)
  2850  
  2851  			// Call the pure Go version.
  2852  			s.startBlock(bFalse)
  2853  			a := s.call(n, callNormal)
  2854  			s.vars[n] = s.newValue2(ssa.OpLoad, types.Types[TINT], a, s.mem())
  2855  			s.endBlock().AddEdgeTo(bEnd)
  2856  
  2857  			// Merge results.
  2858  			s.startBlock(bEnd)
  2859  			return s.variable(n, types.Types[TINT])
  2860  		}
  2861  	}
  2862  	addF("math/bits", "OnesCount64",
  2863  		makeOnesCount(ssa.OpPopCount64, ssa.OpPopCount64),
  2864  		sys.AMD64)
  2865  	addF("math/bits", "OnesCount32",
  2866  		makeOnesCount(ssa.OpPopCount32, ssa.OpPopCount32),
  2867  		sys.AMD64)
  2868  	addF("math/bits", "OnesCount16",
  2869  		makeOnesCount(ssa.OpPopCount16, ssa.OpPopCount16),
  2870  		sys.AMD64)
  2871  	// Note: no OnesCount8, the Go implementation is faster - just a table load.
  2872  	addF("math/bits", "OnesCount",
  2873  		makeOnesCount(ssa.OpPopCount64, ssa.OpPopCount32),
  2874  		sys.AMD64)
  2875  
  2876  	/******** sync/atomic ********/
  2877  
  2878  	// Note: these are disabled by flag_race in findIntrinsic below.
  2879  	alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...)
  2880  	alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...)
  2881  	alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...)
  2882  	alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...)
  2883  	alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...)
  2884  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...)
  2885  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...)
  2886  
  2887  	alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...)
  2888  	alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...)
  2889  	// Note: not StorePointer, that needs a write barrier.  Same below for {CompareAnd}Swap.
  2890  	alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...)
  2891  	alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...)
  2892  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...)
  2893  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...)
  2894  
  2895  	alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...)
  2896  	alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...)
  2897  	alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...)
  2898  	alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...)
  2899  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...)
  2900  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...)
  2901  
  2902  	alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...)
  2903  	alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...)
  2904  	alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...)
  2905  	alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...)
  2906  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...)
  2907  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...)
  2908  
  2909  	alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...)
  2910  	alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...)
  2911  	alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...)
  2912  	alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...)
  2913  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...)
  2914  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...)
  2915  
  2916  	/******** math/big ********/
  2917  	add("math/big", "mulWW",
  2918  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2919  			return s.newValue2(ssa.OpMul64uhilo, ssa.MakeTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1])
  2920  		},
  2921  		sys.ArchAMD64)
  2922  	add("math/big", "divWW",
  2923  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2924  			return s.newValue3(ssa.OpDiv128u, ssa.MakeTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2])
  2925  		},
  2926  		sys.ArchAMD64)
  2927  }
  2928  
  2929  // findIntrinsic returns a function which builds the SSA equivalent of the
  2930  // function identified by the symbol sym.  If sym is not an intrinsic call, returns nil.
  2931  func findIntrinsic(sym *types.Sym) intrinsicBuilder {
  2932  	if ssa.IntrinsicsDisable {
  2933  		return nil
  2934  	}
  2935  	if sym == nil || sym.Pkg == nil {
  2936  		return nil
  2937  	}
  2938  	pkg := sym.Pkg.Path
  2939  	if sym.Pkg == localpkg {
  2940  		pkg = myimportpath
  2941  	}
  2942  	if flag_race && pkg == "sync/atomic" {
  2943  		// The race detector needs to be able to intercept these calls.
  2944  		// We can't intrinsify them.
  2945  		return nil
  2946  	}
  2947  	fn := sym.Name
  2948  	return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}]
  2949  }
  2950  
  2951  func isIntrinsicCall(n *Node) bool {
  2952  	if n == nil || n.Left == nil {
  2953  		return false
  2954  	}
  2955  	return findIntrinsic(n.Left.Sym) != nil
  2956  }
  2957  
  2958  // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
  2959  func (s *state) intrinsicCall(n *Node) *ssa.Value {
  2960  	v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n))
  2961  	if ssa.IntrinsicsDebug > 0 {
  2962  		x := v
  2963  		if x == nil {
  2964  			x = s.mem()
  2965  		}
  2966  		if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
  2967  			x = x.Args[0]
  2968  		}
  2969  		Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString())
  2970  	}
  2971  	return v
  2972  }
  2973  
  2974  type callArg struct {
  2975  	offset int64
  2976  	v      *ssa.Value
  2977  }
  2978  type byOffset []callArg
  2979  
  2980  func (x byOffset) Len() int      { return len(x) }
  2981  func (x byOffset) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  2982  func (x byOffset) Less(i, j int) bool {
  2983  	return x[i].offset < x[j].offset
  2984  }
  2985  
  2986  // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
  2987  func (s *state) intrinsicArgs(n *Node) []*ssa.Value {
  2988  	// This code is complicated because of how walk transforms calls. For a call node,
  2989  	// each entry in n.List is either an assignment to OINDREGSP which actually
  2990  	// stores an arg, or an assignment to a temporary which computes an arg
  2991  	// which is later assigned.
  2992  	// The args can also be out of order.
  2993  	// TODO: when walk goes away someday, this code can go away also.
  2994  	var args []callArg
  2995  	temps := map[*Node]*ssa.Value{}
  2996  	for _, a := range n.List.Slice() {
  2997  		if a.Op != OAS {
  2998  			s.Fatalf("non-assignment as a function argument %s", opnames[a.Op])
  2999  		}
  3000  		l, r := a.Left, a.Right
  3001  		switch l.Op {
  3002  		case ONAME:
  3003  			// Evaluate and store to "temporary".
  3004  			// Walk ensures these temporaries are dead outside of n.
  3005  			temps[l] = s.expr(r)
  3006  		case OINDREGSP:
  3007  			// Store a value to an argument slot.
  3008  			var v *ssa.Value
  3009  			if x, ok := temps[r]; ok {
  3010  				// This is a previously computed temporary.
  3011  				v = x
  3012  			} else {
  3013  				// This is an explicit value; evaluate it.
  3014  				v = s.expr(r)
  3015  			}
  3016  			args = append(args, callArg{l.Xoffset, v})
  3017  		default:
  3018  			s.Fatalf("function argument assignment target not allowed: %s", opnames[l.Op])
  3019  		}
  3020  	}
  3021  	sort.Sort(byOffset(args))
  3022  	res := make([]*ssa.Value, len(args))
  3023  	for i, a := range args {
  3024  		res[i] = a.v
  3025  	}
  3026  	return res
  3027  }
  3028  
  3029  // Calls the function n using the specified call type.
  3030  // Returns the address of the return value (or nil if none).
  3031  func (s *state) call(n *Node, k callKind) *ssa.Value {
  3032  	var sym *types.Sym     // target symbol (if static)
  3033  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  3034  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  3035  	var rcvr *ssa.Value    // receiver to set
  3036  	fn := n.Left
  3037  	switch n.Op {
  3038  	case OCALLFUNC:
  3039  		if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC {
  3040  			sym = fn.Sym
  3041  			break
  3042  		}
  3043  		closure = s.expr(fn)
  3044  	case OCALLMETH:
  3045  		if fn.Op != ODOTMETH {
  3046  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  3047  		}
  3048  		if k == callNormal {
  3049  			sym = fn.Sym
  3050  			break
  3051  		}
  3052  		// Make a name n2 for the function.
  3053  		// fn.Sym might be sync.(*Mutex).Unlock.
  3054  		// Make a PFUNC node out of that, then evaluate it.
  3055  		// We get back an SSA value representing &sync.(*Mutex).Unlock·f.
  3056  		// We can then pass that to defer or go.
  3057  		n2 := newnamel(fn.Pos, fn.Sym)
  3058  		n2.Name.Curfn = s.curfn
  3059  		n2.Class = PFUNC
  3060  		n2.Pos = fn.Pos
  3061  		n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it.
  3062  		closure = s.expr(n2)
  3063  		// Note: receiver is already assigned in n.List, so we don't
  3064  		// want to set it here.
  3065  	case OCALLINTER:
  3066  		if fn.Op != ODOTINTER {
  3067  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  3068  		}
  3069  		i := s.expr(fn.Left)
  3070  		itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i)
  3071  		if k != callNormal {
  3072  			s.nilCheck(itab)
  3073  		}
  3074  		itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  3075  		itab = s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab)
  3076  		if k == callNormal {
  3077  			codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], itab, s.mem())
  3078  		} else {
  3079  			closure = itab
  3080  		}
  3081  		rcvr = s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i)
  3082  	}
  3083  	dowidth(fn.Type)
  3084  	stksize := fn.Type.ArgWidth() // includes receiver
  3085  
  3086  	// Run all argument assignments. The arg slots have already
  3087  	// been offset by the appropriate amount (+2*widthptr for go/defer,
  3088  	// +widthptr for interface calls).
  3089  	// For OCALLMETH, the receiver is set in these statements.
  3090  	s.stmtList(n.List)
  3091  
  3092  	// Set receiver (for interface calls)
  3093  	if rcvr != nil {
  3094  		argStart := Ctxt.FixedFrameSize()
  3095  		if k != callNormal {
  3096  			argStart += int64(2 * Widthptr)
  3097  		}
  3098  		addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart)
  3099  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TUINTPTR], addr, rcvr, s.mem())
  3100  	}
  3101  
  3102  	// Defer/go args
  3103  	if k != callNormal {
  3104  		// Write argsize and closure (args to Newproc/Deferproc).
  3105  		argStart := Ctxt.FixedFrameSize()
  3106  		argsize := s.constInt32(types.Types[TUINT32], int32(stksize))
  3107  		addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart)
  3108  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TUINT32], addr, argsize, s.mem())
  3109  		addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr))
  3110  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TUINTPTR], addr, closure, s.mem())
  3111  		stksize += 2 * int64(Widthptr)
  3112  	}
  3113  
  3114  	// call target
  3115  	var call *ssa.Value
  3116  	switch {
  3117  	case k == callDefer:
  3118  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, Deferproc, s.mem())
  3119  	case k == callGo:
  3120  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, Newproc, s.mem())
  3121  	case closure != nil:
  3122  		codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], closure, s.mem())
  3123  		call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem())
  3124  	case codeptr != nil:
  3125  		call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem())
  3126  	case sym != nil:
  3127  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, Linksym(sym), s.mem())
  3128  	default:
  3129  		Fatalf("bad call type %v %v", n.Op, n)
  3130  	}
  3131  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  3132  	s.vars[&memVar] = call
  3133  
  3134  	// Finish block for defers
  3135  	if k == callDefer {
  3136  		b := s.endBlock()
  3137  		b.Kind = ssa.BlockDefer
  3138  		b.SetControl(call)
  3139  		bNext := s.f.NewBlock(ssa.BlockPlain)
  3140  		b.AddEdgeTo(bNext)
  3141  		// Add recover edge to exit code.
  3142  		r := s.f.NewBlock(ssa.BlockPlain)
  3143  		s.startBlock(r)
  3144  		s.exit()
  3145  		b.AddEdgeTo(r)
  3146  		b.Likely = ssa.BranchLikely
  3147  		s.startBlock(bNext)
  3148  	}
  3149  
  3150  	res := n.Left.Type.Results()
  3151  	if res.NumFields() == 0 || k != callNormal {
  3152  		// call has no return value. Continue with the next statement.
  3153  		return nil
  3154  	}
  3155  	fp := res.Field(0)
  3156  	return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize())
  3157  }
  3158  
  3159  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  3160  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  3161  func etypesign(e types.EType) int8 {
  3162  	switch e {
  3163  	case TINT8, TINT16, TINT32, TINT64, TINT:
  3164  		return -1
  3165  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  3166  		return +1
  3167  	}
  3168  	return 0
  3169  }
  3170  
  3171  // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node.
  3172  // This improves the effectiveness of cse by using the same Aux values for the
  3173  // same symbols.
  3174  func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} {
  3175  	switch sym.(type) {
  3176  	default:
  3177  		s.Fatalf("sym %v is of unknown type %T", sym, sym)
  3178  	case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol:
  3179  		// these are the only valid types
  3180  	}
  3181  
  3182  	if lsym, ok := s.varsyms[n]; ok {
  3183  		return lsym
  3184  	}
  3185  	s.varsyms[n] = sym
  3186  	return sym
  3187  }
  3188  
  3189  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  3190  // The value that the returned Value represents is guaranteed to be non-nil.
  3191  // If bounded is true then this address does not require a nil check for its operand
  3192  // even if that would otherwise be implied.
  3193  func (s *state) addr(n *Node, bounded bool) *ssa.Value {
  3194  	t := types.NewPtr(n.Type)
  3195  	switch n.Op {
  3196  	case ONAME:
  3197  		switch n.Class {
  3198  		case PEXTERN:
  3199  			// global variable
  3200  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: Linksym(n.Sym)})
  3201  			v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb)
  3202  			// TODO: Make OpAddr use AuxInt as well as Aux.
  3203  			if n.Xoffset != 0 {
  3204  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  3205  			}
  3206  			return v
  3207  		case PPARAM:
  3208  			// parameter slot
  3209  			v := s.decladdrs[n]
  3210  			if v != nil {
  3211  				return v
  3212  			}
  3213  			if n == nodfp {
  3214  				// Special arg that points to the frame pointer (Used by ORECOVER).
  3215  				aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n})
  3216  				return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp)
  3217  			}
  3218  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  3219  			return nil
  3220  		case PAUTO:
  3221  			aux := s.lookupSymbol(n, &ssa.AutoSymbol{Node: n})
  3222  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp)
  3223  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  3224  			// ensure that we reuse symbols for out parameters so
  3225  			// that cse works on their addresses
  3226  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n})
  3227  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp)
  3228  		default:
  3229  			s.Fatalf("variable address class %v not implemented", classnames[n.Class])
  3230  			return nil
  3231  		}
  3232  	case OINDREGSP:
  3233  		// indirect off REGSP
  3234  		// used for storing/loading arguments/returns to/from callees
  3235  		return s.constOffPtrSP(t, n.Xoffset)
  3236  	case OINDEX:
  3237  		if n.Left.Type.IsSlice() {
  3238  			a := s.expr(n.Left)
  3239  			i := s.expr(n.Right)
  3240  			i = s.extendIndex(i, panicindex)
  3241  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a)
  3242  			if !n.Bounded() {
  3243  				s.boundsCheck(i, len)
  3244  			}
  3245  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  3246  			return s.newValue2(ssa.OpPtrIndex, t, p, i)
  3247  		} else { // array
  3248  			a := s.addr(n.Left, bounded)
  3249  			i := s.expr(n.Right)
  3250  			i = s.extendIndex(i, panicindex)
  3251  			len := s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  3252  			if !n.Bounded() {
  3253  				s.boundsCheck(i, len)
  3254  			}
  3255  			return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i)
  3256  		}
  3257  	case OIND:
  3258  		return s.exprPtr(n.Left, bounded, n.Pos)
  3259  	case ODOT:
  3260  		p := s.addr(n.Left, bounded)
  3261  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3262  	case ODOTPTR:
  3263  		p := s.exprPtr(n.Left, bounded, n.Pos)
  3264  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3265  	case OCLOSUREVAR:
  3266  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  3267  			s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr))
  3268  	case OCONVNOP:
  3269  		addr := s.addr(n.Left, bounded)
  3270  		return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
  3271  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  3272  		return s.call(n, callNormal)
  3273  	case ODOTTYPE:
  3274  		v, _ := s.dottype(n, false)
  3275  		if v.Op != ssa.OpLoad {
  3276  			s.Fatalf("dottype of non-load")
  3277  		}
  3278  		if v.Args[1] != s.mem() {
  3279  			s.Fatalf("memory no longer live from dottype load")
  3280  		}
  3281  		return v.Args[0]
  3282  	default:
  3283  		s.Fatalf("unhandled addr %v", n.Op)
  3284  		return nil
  3285  	}
  3286  }
  3287  
  3288  // canSSA reports whether n is SSA-able.
  3289  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  3290  func (s *state) canSSA(n *Node) bool {
  3291  	if Debug['N'] != 0 {
  3292  		return false
  3293  	}
  3294  	for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) {
  3295  		n = n.Left
  3296  	}
  3297  	if n.Op != ONAME {
  3298  		return false
  3299  	}
  3300  	if n.Addrtaken() {
  3301  		return false
  3302  	}
  3303  	if n.isParamHeapCopy() {
  3304  		return false
  3305  	}
  3306  	if n.Class == PAUTOHEAP {
  3307  		Fatalf("canSSA of PAUTOHEAP %v", n)
  3308  	}
  3309  	switch n.Class {
  3310  	case PEXTERN:
  3311  		return false
  3312  	case PPARAMOUT:
  3313  		if s.hasdefer {
  3314  			// TODO: handle this case?  Named return values must be
  3315  			// in memory so that the deferred function can see them.
  3316  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  3317  			// Or maybe not, see issue 18860.  Even unnamed return values
  3318  			// must be written back so if a defer recovers, the caller can see them.
  3319  			return false
  3320  		}
  3321  		if s.cgoUnsafeArgs {
  3322  			// Cgo effectively takes the address of all result args,
  3323  			// but the compiler can't see that.
  3324  			return false
  3325  		}
  3326  	}
  3327  	if n.Class == PPARAM && n.Sym != nil && n.Sym.Name == ".this" {
  3328  		// wrappers generated by genwrapper need to update
  3329  		// the .this pointer in place.
  3330  		// TODO: treat as a PPARMOUT?
  3331  		return false
  3332  	}
  3333  	return canSSAType(n.Type)
  3334  	// TODO: try to make more variables SSAable?
  3335  }
  3336  
  3337  // canSSA reports whether variables of type t are SSA-able.
  3338  func canSSAType(t *types.Type) bool {
  3339  	dowidth(t)
  3340  	if t.Width > int64(4*Widthptr) {
  3341  		// 4*Widthptr is an arbitrary constant. We want it
  3342  		// to be at least 3*Widthptr so slices can be registerized.
  3343  		// Too big and we'll introduce too much register pressure.
  3344  		return false
  3345  	}
  3346  	switch t.Etype {
  3347  	case TARRAY:
  3348  		// We can't do larger arrays because dynamic indexing is
  3349  		// not supported on SSA variables.
  3350  		// TODO: allow if all indexes are constant.
  3351  		if t.NumElem() <= 1 {
  3352  			return canSSAType(t.Elem())
  3353  		}
  3354  		return false
  3355  	case TSTRUCT:
  3356  		if t.NumFields() > ssa.MaxStruct {
  3357  			return false
  3358  		}
  3359  		for _, t1 := range t.Fields().Slice() {
  3360  			if !canSSAType(t1.Type) {
  3361  				return false
  3362  			}
  3363  		}
  3364  		return true
  3365  	default:
  3366  		return true
  3367  	}
  3368  }
  3369  
  3370  // exprPtr evaluates n to a pointer and nil-checks it.
  3371  func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value {
  3372  	p := s.expr(n)
  3373  	if bounded || n.NonNil() {
  3374  		if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 {
  3375  			s.f.Warnl(lineno, "removed nil check")
  3376  		}
  3377  		return p
  3378  	}
  3379  	s.nilCheck(p)
  3380  	return p
  3381  }
  3382  
  3383  // nilCheck generates nil pointer checking code.
  3384  // Used only for automatically inserted nil checks,
  3385  // not for user code like 'x != nil'.
  3386  func (s *state) nilCheck(ptr *ssa.Value) {
  3387  	if disable_checknil != 0 {
  3388  		return
  3389  	}
  3390  	s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem())
  3391  }
  3392  
  3393  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  3394  // Starts a new block on return.
  3395  // idx is already converted to full int width.
  3396  func (s *state) boundsCheck(idx, len *ssa.Value) {
  3397  	if Debug['B'] != 0 {
  3398  		return
  3399  	}
  3400  
  3401  	// bounds check
  3402  	cmp := s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len)
  3403  	s.check(cmp, panicindex)
  3404  }
  3405  
  3406  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  3407  // Starts a new block on return.
  3408  // idx and len are already converted to full int width.
  3409  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  3410  	if Debug['B'] != 0 {
  3411  		return
  3412  	}
  3413  
  3414  	// bounds check
  3415  	cmp := s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len)
  3416  	s.check(cmp, panicslice)
  3417  }
  3418  
  3419  // If cmp (a bool) is false, panic using the given function.
  3420  func (s *state) check(cmp *ssa.Value, fn *obj.LSym) {
  3421  	b := s.endBlock()
  3422  	b.Kind = ssa.BlockIf
  3423  	b.SetControl(cmp)
  3424  	b.Likely = ssa.BranchLikely
  3425  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3426  	line := s.peekPos()
  3427  	bPanic := s.panics[funcLine{fn, line}]
  3428  	if bPanic == nil {
  3429  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  3430  		s.panics[funcLine{fn, line}] = bPanic
  3431  		s.startBlock(bPanic)
  3432  		// The panic call takes/returns memory to ensure that the right
  3433  		// memory state is observed if the panic happens.
  3434  		s.rtcall(fn, false, nil)
  3435  	}
  3436  	b.AddEdgeTo(bNext)
  3437  	b.AddEdgeTo(bPanic)
  3438  	s.startBlock(bNext)
  3439  }
  3440  
  3441  func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value {
  3442  	needcheck := true
  3443  	switch b.Op {
  3444  	case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
  3445  		if b.AuxInt != 0 {
  3446  			needcheck = false
  3447  		}
  3448  	}
  3449  	if needcheck {
  3450  		// do a size-appropriate check for zero
  3451  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type))
  3452  		s.check(cmp, panicdivide)
  3453  	}
  3454  	return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  3455  }
  3456  
  3457  // rtcall issues a call to the given runtime function fn with the listed args.
  3458  // Returns a slice of results of the given result types.
  3459  // The call is added to the end of the current block.
  3460  // If returns is false, the block is marked as an exit block.
  3461  func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value {
  3462  	// Write args to the stack
  3463  	off := Ctxt.FixedFrameSize()
  3464  	for _, arg := range args {
  3465  		t := arg.Type
  3466  		off = Rnd(off, t.Alignment())
  3467  		ptr := s.constOffPtrSP(t.PtrTo(), off)
  3468  		size := t.Size()
  3469  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, t, ptr, arg, s.mem())
  3470  		off += size
  3471  	}
  3472  	off = Rnd(off, int64(Widthptr))
  3473  	if thearch.LinkArch.Name == "amd64p32" {
  3474  		// amd64p32 wants 8-byte alignment of the start of the return values.
  3475  		off = Rnd(off, 8)
  3476  	}
  3477  
  3478  	// Issue call
  3479  	call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn, s.mem())
  3480  	s.vars[&memVar] = call
  3481  
  3482  	if !returns {
  3483  		// Finish block
  3484  		b := s.endBlock()
  3485  		b.Kind = ssa.BlockExit
  3486  		b.SetControl(call)
  3487  		call.AuxInt = off - Ctxt.FixedFrameSize()
  3488  		if len(results) > 0 {
  3489  			Fatalf("panic call can't have results")
  3490  		}
  3491  		return nil
  3492  	}
  3493  
  3494  	// Load results
  3495  	res := make([]*ssa.Value, len(results))
  3496  	for i, t := range results {
  3497  		off = Rnd(off, t.Alignment())
  3498  		ptr := s.constOffPtrSP(types.NewPtr(t), off)
  3499  		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
  3500  		off += t.Size()
  3501  	}
  3502  	off = Rnd(off, int64(Widthptr))
  3503  
  3504  	// Remember how much callee stack space we needed.
  3505  	call.AuxInt = off
  3506  
  3507  	return res
  3508  }
  3509  
  3510  // do *left = right for type t.
  3511  func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask) {
  3512  	if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) {
  3513  		// Known to not have write barrier. Store the whole type.
  3514  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, t, left, right, s.mem())
  3515  		return
  3516  	}
  3517  
  3518  	// store scalar fields first, so write barrier stores for
  3519  	// pointer fields can be grouped together, and scalar values
  3520  	// don't need to be live across the write barrier call.
  3521  	// TODO: if the writebarrier pass knows how to reorder stores,
  3522  	// we can do a single store here as long as skip==0.
  3523  	s.storeTypeScalars(t, left, right, skip)
  3524  	if skip&skipPtr == 0 && types.Haspointers(t) {
  3525  		s.storeTypePtrs(t, left, right)
  3526  	}
  3527  }
  3528  
  3529  // do *left = right for all scalar (non-pointer) parts of t.
  3530  func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) {
  3531  	switch {
  3532  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  3533  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, t, left, right, s.mem())
  3534  	case t.IsPtrShaped():
  3535  		// no scalar fields.
  3536  	case t.IsString():
  3537  		if skip&skipLen != 0 {
  3538  			return
  3539  		}
  3540  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right)
  3541  		lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.IntSize, left)
  3542  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TINT], lenAddr, len, s.mem())
  3543  	case t.IsSlice():
  3544  		if skip&skipLen == 0 {
  3545  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right)
  3546  			lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.IntSize, left)
  3547  			s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TINT], lenAddr, len, s.mem())
  3548  		}
  3549  		if skip&skipCap == 0 {
  3550  			cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right)
  3551  			capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.IntSize, left)
  3552  			s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TINT], capAddr, cap, s.mem())
  3553  		}
  3554  	case t.IsInterface():
  3555  		// itab field doesn't need a write barrier (even though it is a pointer).
  3556  		itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right)
  3557  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, types.Types[TUINTPTR], left, itab, s.mem())
  3558  	case t.IsStruct():
  3559  		n := t.NumFields()
  3560  		for i := 0; i < n; i++ {
  3561  			ft := t.FieldType(i)
  3562  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3563  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3564  			s.storeTypeScalars(ft.(*types.Type), addr, val, 0)
  3565  		}
  3566  	case t.IsArray() && t.NumElem() == 0:
  3567  		// nothing
  3568  	case t.IsArray() && t.NumElem() == 1:
  3569  		s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
  3570  	default:
  3571  		s.Fatalf("bad write barrier type %v", t)
  3572  	}
  3573  }
  3574  
  3575  // do *left = right for all pointer parts of t.
  3576  func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) {
  3577  	switch {
  3578  	case t.IsPtrShaped():
  3579  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, t, left, right, s.mem())
  3580  	case t.IsString():
  3581  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right)
  3582  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem())
  3583  	case t.IsSlice():
  3584  		ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, right)
  3585  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem())
  3586  	case t.IsInterface():
  3587  		// itab field is treated as a scalar.
  3588  		idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right)
  3589  		idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left)
  3590  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, ssa.TypeMem, s.f.Config.Types.BytePtr, idataAddr, idata, s.mem())
  3591  	case t.IsStruct():
  3592  		n := t.NumFields()
  3593  		for i := 0; i < n; i++ {
  3594  			ft := t.FieldType(i)
  3595  			if !types.Haspointers(ft.(*types.Type)) {
  3596  				continue
  3597  			}
  3598  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3599  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3600  			s.storeTypePtrs(ft.(*types.Type), addr, val)
  3601  		}
  3602  	case t.IsArray() && t.NumElem() == 0:
  3603  		// nothing
  3604  	case t.IsArray() && t.NumElem() == 1:
  3605  		s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
  3606  	default:
  3607  		s.Fatalf("bad write barrier type %v", t)
  3608  	}
  3609  }
  3610  
  3611  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  3612  // i,j,k may be nil, in which case they are set to their default value.
  3613  // t is a slice, ptr to array, or string type.
  3614  func (s *state) slice(t *types.Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
  3615  	var elemtype *types.Type
  3616  	var ptrtype *types.Type
  3617  	var ptr *ssa.Value
  3618  	var len *ssa.Value
  3619  	var cap *ssa.Value
  3620  	zero := s.constInt(types.Types[TINT], 0)
  3621  	switch {
  3622  	case t.IsSlice():
  3623  		elemtype = t.Elem()
  3624  		ptrtype = types.NewPtr(elemtype)
  3625  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  3626  		len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v)
  3627  		cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v)
  3628  	case t.IsString():
  3629  		elemtype = types.Types[TUINT8]
  3630  		ptrtype = types.NewPtr(elemtype)
  3631  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  3632  		len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v)
  3633  		cap = len
  3634  	case t.IsPtr():
  3635  		if !t.Elem().IsArray() {
  3636  			s.Fatalf("bad ptr to array in slice %v\n", t)
  3637  		}
  3638  		elemtype = t.Elem().Elem()
  3639  		ptrtype = types.NewPtr(elemtype)
  3640  		s.nilCheck(v)
  3641  		ptr = v
  3642  		len = s.constInt(types.Types[TINT], t.Elem().NumElem())
  3643  		cap = len
  3644  	default:
  3645  		s.Fatalf("bad type in slice %v\n", t)
  3646  	}
  3647  
  3648  	// Set default values
  3649  	if i == nil {
  3650  		i = zero
  3651  	}
  3652  	if j == nil {
  3653  		j = len
  3654  	}
  3655  	if k == nil {
  3656  		k = cap
  3657  	}
  3658  
  3659  	// Panic if slice indices are not in bounds.
  3660  	s.sliceBoundsCheck(i, j)
  3661  	if j != k {
  3662  		s.sliceBoundsCheck(j, k)
  3663  	}
  3664  	if k != cap {
  3665  		s.sliceBoundsCheck(k, cap)
  3666  	}
  3667  
  3668  	// Generate the following code assuming that indexes are in bounds.
  3669  	// The masking is to make sure that we don't generate a slice
  3670  	// that points to the next object in memory.
  3671  	// rlen = j - i
  3672  	// rcap = k - i
  3673  	// delta = i * elemsize
  3674  	// rptr = p + delta&mask(rcap)
  3675  	// result = (SliceMake rptr rlen rcap)
  3676  	// where mask(x) is 0 if x==0 and -1 if x>0.
  3677  	subOp := s.ssaOp(OSUB, types.Types[TINT])
  3678  	mulOp := s.ssaOp(OMUL, types.Types[TINT])
  3679  	andOp := s.ssaOp(OAND, types.Types[TINT])
  3680  	rlen := s.newValue2(subOp, types.Types[TINT], j, i)
  3681  	var rcap *ssa.Value
  3682  	switch {
  3683  	case t.IsString():
  3684  		// Capacity of the result is unimportant. However, we use
  3685  		// rcap to test if we've generated a zero-length slice.
  3686  		// Use length of strings for that.
  3687  		rcap = rlen
  3688  	case j == k:
  3689  		rcap = rlen
  3690  	default:
  3691  		rcap = s.newValue2(subOp, types.Types[TINT], k, i)
  3692  	}
  3693  
  3694  	var rptr *ssa.Value
  3695  	if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
  3696  		// No pointer arithmetic necessary.
  3697  		rptr = ptr
  3698  	} else {
  3699  		// delta = # of bytes to offset pointer by.
  3700  		delta := s.newValue2(mulOp, types.Types[TINT], i, s.constInt(types.Types[TINT], elemtype.Width))
  3701  		// If we're slicing to the point where the capacity is zero,
  3702  		// zero out the delta.
  3703  		mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap)
  3704  		delta = s.newValue2(andOp, types.Types[TINT], delta, mask)
  3705  		// Compute rptr = ptr + delta
  3706  		rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta)
  3707  	}
  3708  
  3709  	return rptr, rlen, rcap
  3710  }
  3711  
  3712  type u642fcvtTab struct {
  3713  	geq, cvt2F, and, rsh, or, add ssa.Op
  3714  	one                           func(*state, ssa.Type, int64) *ssa.Value
  3715  }
  3716  
  3717  var u64_f64 u642fcvtTab = u642fcvtTab{
  3718  	geq:   ssa.OpGeq64,
  3719  	cvt2F: ssa.OpCvt64to64F,
  3720  	and:   ssa.OpAnd64,
  3721  	rsh:   ssa.OpRsh64Ux64,
  3722  	or:    ssa.OpOr64,
  3723  	add:   ssa.OpAdd64F,
  3724  	one:   (*state).constInt64,
  3725  }
  3726  
  3727  var u64_f32 u642fcvtTab = u642fcvtTab{
  3728  	geq:   ssa.OpGeq64,
  3729  	cvt2F: ssa.OpCvt64to32F,
  3730  	and:   ssa.OpAnd64,
  3731  	rsh:   ssa.OpRsh64Ux64,
  3732  	or:    ssa.OpOr64,
  3733  	add:   ssa.OpAdd32F,
  3734  	one:   (*state).constInt64,
  3735  }
  3736  
  3737  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3738  	return s.uint64Tofloat(&u64_f64, n, x, ft, tt)
  3739  }
  3740  
  3741  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3742  	return s.uint64Tofloat(&u64_f32, n, x, ft, tt)
  3743  }
  3744  
  3745  func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3746  	// if x >= 0 {
  3747  	//    result = (floatY) x
  3748  	// } else {
  3749  	// 	  y = uintX(x) ; y = x & 1
  3750  	// 	  z = uintX(x) ; z = z >> 1
  3751  	// 	  z = z >> 1
  3752  	// 	  z = z | y
  3753  	// 	  result = floatY(z)
  3754  	// 	  result = result + result
  3755  	// }
  3756  	//
  3757  	// Code borrowed from old code generator.
  3758  	// What's going on: large 64-bit "unsigned" looks like
  3759  	// negative number to hardware's integer-to-float
  3760  	// conversion. However, because the mantissa is only
  3761  	// 63 bits, we don't need the LSB, so instead we do an
  3762  	// unsigned right shift (divide by two), convert, and
  3763  	// double. However, before we do that, we need to be
  3764  	// sure that we do not lose a "1" if that made the
  3765  	// difference in the resulting rounding. Therefore, we
  3766  	// preserve it, and OR (not ADD) it back in. The case
  3767  	// that matters is when the eleven discarded bits are
  3768  	// equal to 10000000001; that rounds up, and the 1 cannot
  3769  	// be lost else it would round down if the LSB of the
  3770  	// candidate mantissa is 0.
  3771  	cmp := s.newValue2(cvttab.geq, types.Types[TBOOL], x, s.zeroVal(ft))
  3772  	b := s.endBlock()
  3773  	b.Kind = ssa.BlockIf
  3774  	b.SetControl(cmp)
  3775  	b.Likely = ssa.BranchLikely
  3776  
  3777  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3778  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3779  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3780  
  3781  	b.AddEdgeTo(bThen)
  3782  	s.startBlock(bThen)
  3783  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  3784  	s.vars[n] = a0
  3785  	s.endBlock()
  3786  	bThen.AddEdgeTo(bAfter)
  3787  
  3788  	b.AddEdgeTo(bElse)
  3789  	s.startBlock(bElse)
  3790  	one := cvttab.one(s, ft, 1)
  3791  	y := s.newValue2(cvttab.and, ft, x, one)
  3792  	z := s.newValue2(cvttab.rsh, ft, x, one)
  3793  	z = s.newValue2(cvttab.or, ft, z, y)
  3794  	a := s.newValue1(cvttab.cvt2F, tt, z)
  3795  	a1 := s.newValue2(cvttab.add, tt, a, a)
  3796  	s.vars[n] = a1
  3797  	s.endBlock()
  3798  	bElse.AddEdgeTo(bAfter)
  3799  
  3800  	s.startBlock(bAfter)
  3801  	return s.variable(n, n.Type)
  3802  }
  3803  
  3804  type u322fcvtTab struct {
  3805  	cvtI2F, cvtF2F ssa.Op
  3806  }
  3807  
  3808  var u32_f64 u322fcvtTab = u322fcvtTab{
  3809  	cvtI2F: ssa.OpCvt32to64F,
  3810  	cvtF2F: ssa.OpCopy,
  3811  }
  3812  
  3813  var u32_f32 u322fcvtTab = u322fcvtTab{
  3814  	cvtI2F: ssa.OpCvt32to32F,
  3815  	cvtF2F: ssa.OpCvt64Fto32F,
  3816  }
  3817  
  3818  func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3819  	return s.uint32Tofloat(&u32_f64, n, x, ft, tt)
  3820  }
  3821  
  3822  func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3823  	return s.uint32Tofloat(&u32_f32, n, x, ft, tt)
  3824  }
  3825  
  3826  func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3827  	// if x >= 0 {
  3828  	// 	result = floatY(x)
  3829  	// } else {
  3830  	// 	result = floatY(float64(x) + (1<<32))
  3831  	// }
  3832  	cmp := s.newValue2(ssa.OpGeq32, types.Types[TBOOL], x, s.zeroVal(ft))
  3833  	b := s.endBlock()
  3834  	b.Kind = ssa.BlockIf
  3835  	b.SetControl(cmp)
  3836  	b.Likely = ssa.BranchLikely
  3837  
  3838  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3839  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3840  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3841  
  3842  	b.AddEdgeTo(bThen)
  3843  	s.startBlock(bThen)
  3844  	a0 := s.newValue1(cvttab.cvtI2F, tt, x)
  3845  	s.vars[n] = a0
  3846  	s.endBlock()
  3847  	bThen.AddEdgeTo(bAfter)
  3848  
  3849  	b.AddEdgeTo(bElse)
  3850  	s.startBlock(bElse)
  3851  	a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x)
  3852  	twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32))
  3853  	a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32)
  3854  	a3 := s.newValue1(cvttab.cvtF2F, tt, a2)
  3855  
  3856  	s.vars[n] = a3
  3857  	s.endBlock()
  3858  	bElse.AddEdgeTo(bAfter)
  3859  
  3860  	s.startBlock(bAfter)
  3861  	return s.variable(n, n.Type)
  3862  }
  3863  
  3864  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  3865  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  3866  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  3867  		s.Fatalf("node must be a map or a channel")
  3868  	}
  3869  	// if n == nil {
  3870  	//   return 0
  3871  	// } else {
  3872  	//   // len
  3873  	//   return *((*int)n)
  3874  	//   // cap
  3875  	//   return *(((*int)n)+1)
  3876  	// }
  3877  	lenType := n.Type
  3878  	nilValue := s.constNil(types.Types[TUINTPTR])
  3879  	cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue)
  3880  	b := s.endBlock()
  3881  	b.Kind = ssa.BlockIf
  3882  	b.SetControl(cmp)
  3883  	b.Likely = ssa.BranchUnlikely
  3884  
  3885  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3886  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3887  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3888  
  3889  	// length/capacity of a nil map/chan is zero
  3890  	b.AddEdgeTo(bThen)
  3891  	s.startBlock(bThen)
  3892  	s.vars[n] = s.zeroVal(lenType)
  3893  	s.endBlock()
  3894  	bThen.AddEdgeTo(bAfter)
  3895  
  3896  	b.AddEdgeTo(bElse)
  3897  	s.startBlock(bElse)
  3898  	if n.Op == OLEN {
  3899  		// length is stored in the first word for map/chan
  3900  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
  3901  	} else if n.Op == OCAP {
  3902  		// capacity is stored in the second word for chan
  3903  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  3904  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
  3905  	} else {
  3906  		s.Fatalf("op must be OLEN or OCAP")
  3907  	}
  3908  	s.endBlock()
  3909  	bElse.AddEdgeTo(bAfter)
  3910  
  3911  	s.startBlock(bAfter)
  3912  	return s.variable(n, lenType)
  3913  }
  3914  
  3915  type f2uCvtTab struct {
  3916  	ltf, cvt2U, subf, or ssa.Op
  3917  	floatValue           func(*state, ssa.Type, float64) *ssa.Value
  3918  	intValue             func(*state, ssa.Type, int64) *ssa.Value
  3919  	cutoff               uint64
  3920  }
  3921  
  3922  var f32_u64 f2uCvtTab = f2uCvtTab{
  3923  	ltf:        ssa.OpLess32F,
  3924  	cvt2U:      ssa.OpCvt32Fto64,
  3925  	subf:       ssa.OpSub32F,
  3926  	or:         ssa.OpOr64,
  3927  	floatValue: (*state).constFloat32,
  3928  	intValue:   (*state).constInt64,
  3929  	cutoff:     9223372036854775808,
  3930  }
  3931  
  3932  var f64_u64 f2uCvtTab = f2uCvtTab{
  3933  	ltf:        ssa.OpLess64F,
  3934  	cvt2U:      ssa.OpCvt64Fto64,
  3935  	subf:       ssa.OpSub64F,
  3936  	or:         ssa.OpOr64,
  3937  	floatValue: (*state).constFloat64,
  3938  	intValue:   (*state).constInt64,
  3939  	cutoff:     9223372036854775808,
  3940  }
  3941  
  3942  var f32_u32 f2uCvtTab = f2uCvtTab{
  3943  	ltf:        ssa.OpLess32F,
  3944  	cvt2U:      ssa.OpCvt32Fto32,
  3945  	subf:       ssa.OpSub32F,
  3946  	or:         ssa.OpOr32,
  3947  	floatValue: (*state).constFloat32,
  3948  	intValue:   func(s *state, t ssa.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  3949  	cutoff:     2147483648,
  3950  }
  3951  
  3952  var f64_u32 f2uCvtTab = f2uCvtTab{
  3953  	ltf:        ssa.OpLess64F,
  3954  	cvt2U:      ssa.OpCvt64Fto32,
  3955  	subf:       ssa.OpSub64F,
  3956  	or:         ssa.OpOr32,
  3957  	floatValue: (*state).constFloat64,
  3958  	intValue:   func(s *state, t ssa.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  3959  	cutoff:     2147483648,
  3960  }
  3961  
  3962  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3963  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  3964  }
  3965  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3966  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  3967  }
  3968  
  3969  func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3970  	return s.floatToUint(&f32_u32, n, x, ft, tt)
  3971  }
  3972  
  3973  func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3974  	return s.floatToUint(&f64_u32, n, x, ft, tt)
  3975  }
  3976  
  3977  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3978  	// cutoff:=1<<(intY_Size-1)
  3979  	// if x < floatX(cutoff) {
  3980  	// 	result = uintY(x)
  3981  	// } else {
  3982  	// 	y = x - floatX(cutoff)
  3983  	// 	z = uintY(y)
  3984  	// 	result = z | -(cutoff)
  3985  	// }
  3986  	cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff))
  3987  	cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff)
  3988  	b := s.endBlock()
  3989  	b.Kind = ssa.BlockIf
  3990  	b.SetControl(cmp)
  3991  	b.Likely = ssa.BranchLikely
  3992  
  3993  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3994  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3995  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3996  
  3997  	b.AddEdgeTo(bThen)
  3998  	s.startBlock(bThen)
  3999  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  4000  	s.vars[n] = a0
  4001  	s.endBlock()
  4002  	bThen.AddEdgeTo(bAfter)
  4003  
  4004  	b.AddEdgeTo(bElse)
  4005  	s.startBlock(bElse)
  4006  	y := s.newValue2(cvttab.subf, ft, x, cutoff)
  4007  	y = s.newValue1(cvttab.cvt2U, tt, y)
  4008  	z := cvttab.intValue(s, tt, int64(-cvttab.cutoff))
  4009  	a1 := s.newValue2(cvttab.or, tt, y, z)
  4010  	s.vars[n] = a1
  4011  	s.endBlock()
  4012  	bElse.AddEdgeTo(bAfter)
  4013  
  4014  	s.startBlock(bAfter)
  4015  	return s.variable(n, n.Type)
  4016  }
  4017  
  4018  // dottype generates SSA for a type assertion node.
  4019  // commaok indicates whether to panic or return a bool.
  4020  // If commaok is false, resok will be nil.
  4021  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  4022  	iface := s.expr(n.Left)   // input interface
  4023  	target := s.expr(n.Right) // target type
  4024  	byteptr := s.f.Config.Types.BytePtr
  4025  
  4026  	if n.Type.IsInterface() {
  4027  		if n.Type.IsEmptyInterface() {
  4028  			// Converting to an empty interface.
  4029  			// Input could be an empty or nonempty interface.
  4030  			if Debug_typeassert > 0 {
  4031  				Warnl(n.Pos, "type assertion inlined")
  4032  			}
  4033  
  4034  			// Get itab/type field from input.
  4035  			itab := s.newValue1(ssa.OpITab, byteptr, iface)
  4036  			// Conversion succeeds iff that field is not nil.
  4037  			cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr))
  4038  
  4039  			if n.Left.Type.IsEmptyInterface() && commaok {
  4040  				// Converting empty interface to empty interface with ,ok is just a nil check.
  4041  				return iface, cond
  4042  			}
  4043  
  4044  			// Branch on nilness.
  4045  			b := s.endBlock()
  4046  			b.Kind = ssa.BlockIf
  4047  			b.SetControl(cond)
  4048  			b.Likely = ssa.BranchLikely
  4049  			bOk := s.f.NewBlock(ssa.BlockPlain)
  4050  			bFail := s.f.NewBlock(ssa.BlockPlain)
  4051  			b.AddEdgeTo(bOk)
  4052  			b.AddEdgeTo(bFail)
  4053  
  4054  			if !commaok {
  4055  				// On failure, panic by calling panicnildottype.
  4056  				s.startBlock(bFail)
  4057  				s.rtcall(panicnildottype, false, nil, target)
  4058  
  4059  				// On success, return (perhaps modified) input interface.
  4060  				s.startBlock(bOk)
  4061  				if n.Left.Type.IsEmptyInterface() {
  4062  					res = iface // Use input interface unchanged.
  4063  					return
  4064  				}
  4065  				// Load type out of itab, build interface with existing idata.
  4066  				off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4067  				typ := s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  4068  				idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4069  				res = s.newValue2(ssa.OpIMake, n.Type, typ, idata)
  4070  				return
  4071  			}
  4072  
  4073  			s.startBlock(bOk)
  4074  			// nonempty -> empty
  4075  			// Need to load type from itab
  4076  			off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4077  			s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  4078  			s.endBlock()
  4079  
  4080  			// itab is nil, might as well use that as the nil result.
  4081  			s.startBlock(bFail)
  4082  			s.vars[&typVar] = itab
  4083  			s.endBlock()
  4084  
  4085  			// Merge point.
  4086  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  4087  			bOk.AddEdgeTo(bEnd)
  4088  			bFail.AddEdgeTo(bEnd)
  4089  			s.startBlock(bEnd)
  4090  			idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4091  			res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata)
  4092  			resok = cond
  4093  			delete(s.vars, &typVar)
  4094  			return
  4095  		}
  4096  		// converting to a nonempty interface needs a runtime call.
  4097  		if Debug_typeassert > 0 {
  4098  			Warnl(n.Pos, "type assertion not inlined")
  4099  		}
  4100  		if n.Left.Type.IsEmptyInterface() {
  4101  			if commaok {
  4102  				call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4103  				return call[0], call[1]
  4104  			}
  4105  			return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4106  		}
  4107  		if commaok {
  4108  			call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4109  			return call[0], call[1]
  4110  		}
  4111  		return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4112  	}
  4113  
  4114  	if Debug_typeassert > 0 {
  4115  		Warnl(n.Pos, "type assertion inlined")
  4116  	}
  4117  
  4118  	// Converting to a concrete type.
  4119  	direct := isdirectiface(n.Type)
  4120  	itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface
  4121  	if Debug_typeassert > 0 {
  4122  		Warnl(n.Pos, "type assertion inlined")
  4123  	}
  4124  	var targetITab *ssa.Value
  4125  	if n.Left.Type.IsEmptyInterface() {
  4126  		// Looking for pointer to target type.
  4127  		targetITab = target
  4128  	} else {
  4129  		// Looking for pointer to itab for target type and source interface.
  4130  		targetITab = s.expr(n.List.First())
  4131  	}
  4132  
  4133  	var tmp *Node       // temporary for use with large types
  4134  	var addr *ssa.Value // address of tmp
  4135  	if commaok && !canSSAType(n.Type) {
  4136  		// unSSAable type, use temporary.
  4137  		// TODO: get rid of some of these temporaries.
  4138  		tmp = tempAt(n.Pos, s.curfn, n.Type)
  4139  		addr = s.addr(tmp, false)
  4140  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem())
  4141  	}
  4142  
  4143  	cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab)
  4144  	b := s.endBlock()
  4145  	b.Kind = ssa.BlockIf
  4146  	b.SetControl(cond)
  4147  	b.Likely = ssa.BranchLikely
  4148  
  4149  	bOk := s.f.NewBlock(ssa.BlockPlain)
  4150  	bFail := s.f.NewBlock(ssa.BlockPlain)
  4151  	b.AddEdgeTo(bOk)
  4152  	b.AddEdgeTo(bFail)
  4153  
  4154  	if !commaok {
  4155  		// on failure, panic by calling panicdottype
  4156  		s.startBlock(bFail)
  4157  		taddr := s.expr(n.Right.Right)
  4158  		if n.Left.Type.IsEmptyInterface() {
  4159  			s.rtcall(panicdottypeE, false, nil, itab, target, taddr)
  4160  		} else {
  4161  			s.rtcall(panicdottypeI, false, nil, itab, target, taddr)
  4162  		}
  4163  
  4164  		// on success, return data from interface
  4165  		s.startBlock(bOk)
  4166  		if direct {
  4167  			return s.newValue1(ssa.OpIData, n.Type, iface), nil
  4168  		}
  4169  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4170  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()), nil
  4171  	}
  4172  
  4173  	// commaok is the more complicated case because we have
  4174  	// a control flow merge point.
  4175  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  4176  	// Note that we need a new valVar each time (unlike okVar where we can
  4177  	// reuse the variable) because it might have a different type every time.
  4178  	valVar := &Node{Op: ONAME, Class: Pxxx, Sym: &types.Sym{Name: "val"}}
  4179  
  4180  	// type assertion succeeded
  4181  	s.startBlock(bOk)
  4182  	if tmp == nil {
  4183  		if direct {
  4184  			s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  4185  		} else {
  4186  			p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4187  			s.vars[valVar] = s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  4188  		}
  4189  	} else {
  4190  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4191  		store := s.newValue3I(ssa.OpMove, ssa.TypeMem, n.Type.Size(), addr, p, s.mem())
  4192  		store.Aux = n.Type
  4193  		s.vars[&memVar] = store
  4194  	}
  4195  	s.vars[&okVar] = s.constBool(true)
  4196  	s.endBlock()
  4197  	bOk.AddEdgeTo(bEnd)
  4198  
  4199  	// type assertion failed
  4200  	s.startBlock(bFail)
  4201  	if tmp == nil {
  4202  		s.vars[valVar] = s.zeroVal(n.Type)
  4203  	} else {
  4204  		store := s.newValue2I(ssa.OpZero, ssa.TypeMem, n.Type.Size(), addr, s.mem())
  4205  		store.Aux = n.Type
  4206  		s.vars[&memVar] = store
  4207  	}
  4208  	s.vars[&okVar] = s.constBool(false)
  4209  	s.endBlock()
  4210  	bFail.AddEdgeTo(bEnd)
  4211  
  4212  	// merge point
  4213  	s.startBlock(bEnd)
  4214  	if tmp == nil {
  4215  		res = s.variable(valVar, n.Type)
  4216  		delete(s.vars, valVar)
  4217  	} else {
  4218  		res = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  4219  		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem())
  4220  	}
  4221  	resok = s.variable(&okVar, types.Types[TBOOL])
  4222  	delete(s.vars, &okVar)
  4223  	return res, resok
  4224  }
  4225  
  4226  // variable returns the value of a variable at the current location.
  4227  func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
  4228  	v := s.vars[name]
  4229  	if v != nil {
  4230  		return v
  4231  	}
  4232  	v = s.fwdVars[name]
  4233  	if v != nil {
  4234  		return v
  4235  	}
  4236  
  4237  	if s.curBlock == s.f.Entry {
  4238  		// No variable should be live at entry.
  4239  		s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v)
  4240  	}
  4241  	// Make a FwdRef, which records a value that's live on block input.
  4242  	// We'll find the matching definition as part of insertPhis.
  4243  	v = s.newValue0A(ssa.OpFwdRef, t, name)
  4244  	s.fwdVars[name] = v
  4245  	s.addNamedValue(name, v)
  4246  	return v
  4247  }
  4248  
  4249  func (s *state) mem() *ssa.Value {
  4250  	return s.variable(&memVar, ssa.TypeMem)
  4251  }
  4252  
  4253  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  4254  	if n.Class == Pxxx {
  4255  		// Don't track our dummy nodes (&memVar etc.).
  4256  		return
  4257  	}
  4258  	if n.IsAutoTmp() {
  4259  		// Don't track temporary variables.
  4260  		return
  4261  	}
  4262  	if n.Class == PPARAMOUT {
  4263  		// Don't track named output values.  This prevents return values
  4264  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  4265  		return
  4266  	}
  4267  	if n.Class == PAUTO && n.Xoffset != 0 {
  4268  		s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset)
  4269  	}
  4270  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  4271  	values, ok := s.f.NamedValues[loc]
  4272  	if !ok {
  4273  		s.f.Names = append(s.f.Names, loc)
  4274  	}
  4275  	s.f.NamedValues[loc] = append(values, v)
  4276  }
  4277  
  4278  // Branch is an unresolved branch.
  4279  type Branch struct {
  4280  	P *obj.Prog  // branch instruction
  4281  	B *ssa.Block // target
  4282  }
  4283  
  4284  // SSAGenState contains state needed during Prog generation.
  4285  type SSAGenState struct {
  4286  	pp *Progs
  4287  
  4288  	// Branches remembers all the branch instructions we've seen
  4289  	// and where they would like to go.
  4290  	Branches []Branch
  4291  
  4292  	// bstart remembers where each block starts (indexed by block ID)
  4293  	bstart []*obj.Prog
  4294  
  4295  	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
  4296  	SSEto387 map[int16]int16
  4297  	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
  4298  	ScratchFpMem *Node
  4299  
  4300  	maxarg int64 // largest frame size for arguments to calls made by the function
  4301  
  4302  	// Map from GC safe points to stack map index, generated by
  4303  	// liveness analysis.
  4304  	stackMapIndex map[*ssa.Value]int
  4305  }
  4306  
  4307  // Prog appends a new Prog.
  4308  func (s *SSAGenState) Prog(as obj.As) *obj.Prog {
  4309  	return s.pp.Prog(as)
  4310  }
  4311  
  4312  // Pc returns the current Prog.
  4313  func (s *SSAGenState) Pc() *obj.Prog {
  4314  	return s.pp.next
  4315  }
  4316  
  4317  // SetPos sets the current source position.
  4318  func (s *SSAGenState) SetPos(pos src.XPos) {
  4319  	s.pp.pos = pos
  4320  }
  4321  
  4322  // genssa appends entries to pp for each instruction in f.
  4323  func genssa(f *ssa.Func, pp *Progs) {
  4324  	var s SSAGenState
  4325  
  4326  	e := f.Frontend().(*ssafn)
  4327  
  4328  	// Generate GC bitmaps.
  4329  	gcargs := makefuncdatasym(pp, "gcargs·", obj.FUNCDATA_ArgsPointerMaps, e.curfn)
  4330  	gclocals := makefuncdatasym(pp, "gclocals·", obj.FUNCDATA_LocalsPointerMaps, e.curfn)
  4331  	s.stackMapIndex = liveness(e, f, gcargs, gclocals)
  4332  
  4333  	// Remember where each block starts.
  4334  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  4335  	s.pp = pp
  4336  	var valueProgs map[*obj.Prog]*ssa.Value
  4337  	var blockProgs map[*obj.Prog]*ssa.Block
  4338  	var logProgs = e.log
  4339  	if logProgs {
  4340  		valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  4341  		blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  4342  		f.Logf("genssa %s\n", f.Name)
  4343  		blockProgs[s.pp.next] = f.Blocks[0]
  4344  	}
  4345  
  4346  	if thearch.Use387 {
  4347  		s.SSEto387 = map[int16]int16{}
  4348  	}
  4349  
  4350  	s.ScratchFpMem = e.scratchFpMem
  4351  
  4352  	// Emit basic blocks
  4353  	for i, b := range f.Blocks {
  4354  		s.bstart[b.ID] = s.pp.next
  4355  		// Emit values in block
  4356  		thearch.SSAMarkMoves(&s, b)
  4357  		for _, v := range b.Values {
  4358  			x := s.pp.next
  4359  			s.SetPos(v.Pos)
  4360  
  4361  			switch v.Op {
  4362  			case ssa.OpInitMem:
  4363  				// memory arg needs no code
  4364  			case ssa.OpArg:
  4365  				// input args need no code
  4366  			case ssa.OpSP, ssa.OpSB:
  4367  				// nothing to do
  4368  			case ssa.OpSelect0, ssa.OpSelect1:
  4369  				// nothing to do
  4370  			case ssa.OpGetG:
  4371  				// nothing to do when there's a g register,
  4372  				// and checkLower complains if there's not
  4373  			case ssa.OpVarDef, ssa.OpVarKill, ssa.OpVarLive, ssa.OpKeepAlive:
  4374  				// nothing to do; already used by liveness
  4375  			case ssa.OpPhi:
  4376  				CheckLoweredPhi(v)
  4377  
  4378  			default:
  4379  				// let the backend handle it
  4380  				thearch.SSAGenValue(&s, v)
  4381  			}
  4382  
  4383  			if logProgs {
  4384  				for ; x != s.pp.next; x = x.Link {
  4385  					valueProgs[x] = v
  4386  				}
  4387  			}
  4388  		}
  4389  		// Emit control flow instructions for block
  4390  		var next *ssa.Block
  4391  		if i < len(f.Blocks)-1 && Debug['N'] == 0 {
  4392  			// If -N, leave next==nil so every block with successors
  4393  			// ends in a JMP (except call blocks - plive doesn't like
  4394  			// select{send,recv} followed by a JMP call).  Helps keep
  4395  			// line numbers for otherwise empty blocks.
  4396  			next = f.Blocks[i+1]
  4397  		}
  4398  		x := s.pp.next
  4399  		s.SetPos(b.Pos)
  4400  		thearch.SSAGenBlock(&s, b, next)
  4401  		if logProgs {
  4402  			for ; x != s.pp.next; x = x.Link {
  4403  				blockProgs[x] = b
  4404  			}
  4405  		}
  4406  	}
  4407  
  4408  	// Resolve branches
  4409  	for _, br := range s.Branches {
  4410  		br.P.To.Val = s.bstart[br.B.ID]
  4411  	}
  4412  
  4413  	if logProgs {
  4414  		for p := pp.Text; p != nil; p = p.Link {
  4415  			var s string
  4416  			if v, ok := valueProgs[p]; ok {
  4417  				s = v.String()
  4418  			} else if b, ok := blockProgs[p]; ok {
  4419  				s = b.String()
  4420  			} else {
  4421  				s = "   " // most value and branch strings are 2-3 characters long
  4422  			}
  4423  			f.Logf("%s\t%s\n", s, p)
  4424  		}
  4425  		if f.HTMLWriter != nil {
  4426  			// LineHist is defunct now - this code won't do
  4427  			// anything.
  4428  			// TODO: fix this (ideally without a global variable)
  4429  			// saved := pp.Text.Ctxt.LineHist.PrintFilenameOnly
  4430  			// pp.Text.Ctxt.LineHist.PrintFilenameOnly = true
  4431  			var buf bytes.Buffer
  4432  			buf.WriteString("<code>")
  4433  			buf.WriteString("<dl class=\"ssa-gen\">")
  4434  			for p := pp.Text; p != nil; p = p.Link {
  4435  				buf.WriteString("<dt class=\"ssa-prog-src\">")
  4436  				if v, ok := valueProgs[p]; ok {
  4437  					buf.WriteString(v.HTML())
  4438  				} else if b, ok := blockProgs[p]; ok {
  4439  					buf.WriteString(b.HTML())
  4440  				}
  4441  				buf.WriteString("</dt>")
  4442  				buf.WriteString("<dd class=\"ssa-prog\">")
  4443  				buf.WriteString(html.EscapeString(p.String()))
  4444  				buf.WriteString("</dd>")
  4445  				buf.WriteString("</li>")
  4446  			}
  4447  			buf.WriteString("</dl>")
  4448  			buf.WriteString("</code>")
  4449  			f.HTMLWriter.WriteColumn("genssa", buf.String())
  4450  			// pp.Text.Ctxt.LineHist.PrintFilenameOnly = saved
  4451  		}
  4452  	}
  4453  
  4454  	// Add frame prologue. Zero ambiguously live variables.
  4455  	thearch.Defframe(s.pp, e.curfn, e.stksize+s.maxarg)
  4456  	if Debug['f'] != 0 {
  4457  		frame(0)
  4458  	}
  4459  
  4460  	f.HTMLWriter.Close()
  4461  	f.HTMLWriter = nil
  4462  }
  4463  
  4464  type FloatingEQNEJump struct {
  4465  	Jump  obj.As
  4466  	Index int
  4467  }
  4468  
  4469  func (s *SSAGenState) oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump) {
  4470  	p := s.Prog(jumps.Jump)
  4471  	p.To.Type = obj.TYPE_BRANCH
  4472  	to := jumps.Index
  4473  	s.Branches = append(s.Branches, Branch{p, b.Succs[to].Block()})
  4474  }
  4475  
  4476  func (s *SSAGenState) FPJump(b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  4477  	switch next {
  4478  	case b.Succs[0].Block():
  4479  		s.oneFPJump(b, &jumps[0][0])
  4480  		s.oneFPJump(b, &jumps[0][1])
  4481  	case b.Succs[1].Block():
  4482  		s.oneFPJump(b, &jumps[1][0])
  4483  		s.oneFPJump(b, &jumps[1][1])
  4484  	default:
  4485  		s.oneFPJump(b, &jumps[1][0])
  4486  		s.oneFPJump(b, &jumps[1][1])
  4487  		q := s.Prog(obj.AJMP)
  4488  		q.To.Type = obj.TYPE_BRANCH
  4489  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  4490  	}
  4491  }
  4492  
  4493  func AuxOffset(v *ssa.Value) (offset int64) {
  4494  	if v.Aux == nil {
  4495  		return 0
  4496  	}
  4497  	switch sym := v.Aux.(type) {
  4498  
  4499  	case *ssa.AutoSymbol:
  4500  		n := sym.Node.(*Node)
  4501  		return n.Xoffset
  4502  	}
  4503  	return 0
  4504  }
  4505  
  4506  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  4507  func AddAux(a *obj.Addr, v *ssa.Value) {
  4508  	AddAux2(a, v, v.AuxInt)
  4509  }
  4510  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  4511  	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
  4512  		v.Fatalf("bad AddAux addr %v", a)
  4513  	}
  4514  	// add integer offset
  4515  	a.Offset += offset
  4516  
  4517  	// If no additional symbol offset, we're done.
  4518  	if v.Aux == nil {
  4519  		return
  4520  	}
  4521  	// Add symbol's offset from its base register.
  4522  	switch sym := v.Aux.(type) {
  4523  	case *ssa.ExternSymbol:
  4524  		a.Name = obj.NAME_EXTERN
  4525  		a.Sym = sym.Sym
  4526  	case *ssa.ArgSymbol:
  4527  		n := sym.Node.(*Node)
  4528  		a.Name = obj.NAME_PARAM
  4529  		a.Sym = Linksym(n.Orig.Sym)
  4530  		a.Offset += n.Xoffset
  4531  	case *ssa.AutoSymbol:
  4532  		n := sym.Node.(*Node)
  4533  		a.Name = obj.NAME_AUTO
  4534  		a.Sym = Linksym(n.Sym)
  4535  		a.Offset += n.Xoffset
  4536  	default:
  4537  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  4538  	}
  4539  }
  4540  
  4541  // extendIndex extends v to a full int width.
  4542  // panic using the given function if v does not fit in an int (only on 32-bit archs).
  4543  func (s *state) extendIndex(v *ssa.Value, panicfn *obj.LSym) *ssa.Value {
  4544  	size := v.Type.Size()
  4545  	if size == s.config.IntSize {
  4546  		return v
  4547  	}
  4548  	if size > s.config.IntSize {
  4549  		// truncate 64-bit indexes on 32-bit pointer archs. Test the
  4550  		// high word and branch to out-of-bounds failure if it is not 0.
  4551  		if Debug['B'] == 0 {
  4552  			hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], v)
  4553  			cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0))
  4554  			s.check(cmp, panicfn)
  4555  		}
  4556  		return s.newValue1(ssa.OpTrunc64to32, types.Types[TINT], v)
  4557  	}
  4558  
  4559  	// Extend value to the required size
  4560  	var op ssa.Op
  4561  	if v.Type.IsSigned() {
  4562  		switch 10*size + s.config.IntSize {
  4563  		case 14:
  4564  			op = ssa.OpSignExt8to32
  4565  		case 18:
  4566  			op = ssa.OpSignExt8to64
  4567  		case 24:
  4568  			op = ssa.OpSignExt16to32
  4569  		case 28:
  4570  			op = ssa.OpSignExt16to64
  4571  		case 48:
  4572  			op = ssa.OpSignExt32to64
  4573  		default:
  4574  			s.Fatalf("bad signed index extension %s", v.Type)
  4575  		}
  4576  	} else {
  4577  		switch 10*size + s.config.IntSize {
  4578  		case 14:
  4579  			op = ssa.OpZeroExt8to32
  4580  		case 18:
  4581  			op = ssa.OpZeroExt8to64
  4582  		case 24:
  4583  			op = ssa.OpZeroExt16to32
  4584  		case 28:
  4585  			op = ssa.OpZeroExt16to64
  4586  		case 48:
  4587  			op = ssa.OpZeroExt32to64
  4588  		default:
  4589  			s.Fatalf("bad unsigned index extension %s", v.Type)
  4590  		}
  4591  	}
  4592  	return s.newValue1(op, types.Types[TINT], v)
  4593  }
  4594  
  4595  // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
  4596  // Called during ssaGenValue.
  4597  func CheckLoweredPhi(v *ssa.Value) {
  4598  	if v.Op != ssa.OpPhi {
  4599  		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
  4600  	}
  4601  	if v.Type.IsMemory() {
  4602  		return
  4603  	}
  4604  	f := v.Block.Func
  4605  	loc := f.RegAlloc[v.ID]
  4606  	for _, a := range v.Args {
  4607  		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
  4608  			v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func)
  4609  		}
  4610  	}
  4611  }
  4612  
  4613  // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
  4614  // The output of LoweredGetClosurePtr is generally hardwired to the correct register.
  4615  // That register contains the closure pointer on closure entry.
  4616  func CheckLoweredGetClosurePtr(v *ssa.Value) {
  4617  	entry := v.Block.Func.Entry
  4618  	if entry != v.Block || entry.Values[0] != v {
  4619  		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
  4620  	}
  4621  }
  4622  
  4623  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  4624  // where v should be spilled.
  4625  func AutoVar(v *ssa.Value) (*Node, int64) {
  4626  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  4627  	if v.Type.Size() > loc.Type.Size() {
  4628  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  4629  	}
  4630  	return loc.N.(*Node), loc.Off
  4631  }
  4632  
  4633  func AddrAuto(a *obj.Addr, v *ssa.Value) {
  4634  	n, off := AutoVar(v)
  4635  	a.Type = obj.TYPE_MEM
  4636  	a.Sym = Linksym(n.Sym)
  4637  	a.Reg = int16(thearch.REGSP)
  4638  	a.Offset = n.Xoffset + off
  4639  	if n.Class == PPARAM || n.Class == PPARAMOUT {
  4640  		a.Name = obj.NAME_PARAM
  4641  	} else {
  4642  		a.Name = obj.NAME_AUTO
  4643  	}
  4644  }
  4645  
  4646  func (s *SSAGenState) AddrScratch(a *obj.Addr) {
  4647  	if s.ScratchFpMem == nil {
  4648  		panic("no scratch memory available; forgot to declare usesScratch for Op?")
  4649  	}
  4650  	a.Type = obj.TYPE_MEM
  4651  	a.Name = obj.NAME_AUTO
  4652  	a.Sym = Linksym(s.ScratchFpMem.Sym)
  4653  	a.Reg = int16(thearch.REGSP)
  4654  	a.Offset = s.ScratchFpMem.Xoffset
  4655  }
  4656  
  4657  func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog {
  4658  	idx, ok := s.stackMapIndex[v]
  4659  	if !ok {
  4660  		Fatalf("missing stack map index for %v", v.LongString())
  4661  	}
  4662  	p := s.Prog(obj.APCDATA)
  4663  	Addrconst(&p.From, obj.PCDATA_StackMapIndex)
  4664  	Addrconst(&p.To, int64(idx))
  4665  
  4666  	if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn {
  4667  		// Deferred calls will appear to be returning to
  4668  		// the CALL deferreturn(SB) that we are about to emit.
  4669  		// However, the stack trace code will show the line
  4670  		// of the instruction byte before the return PC.
  4671  		// To avoid that being an unrelated instruction,
  4672  		// insert an actual hardware NOP that will have the right line number.
  4673  		// This is different from obj.ANOP, which is a virtual no-op
  4674  		// that doesn't make it into the instruction stream.
  4675  		thearch.Ginsnop(s.pp)
  4676  	}
  4677  
  4678  	p = s.Prog(obj.ACALL)
  4679  	if sym, ok := v.Aux.(*obj.LSym); ok {
  4680  		p.To.Type = obj.TYPE_MEM
  4681  		p.To.Name = obj.NAME_EXTERN
  4682  		p.To.Sym = sym
  4683  	} else {
  4684  		// TODO(mdempsky): Can these differences be eliminated?
  4685  		switch thearch.LinkArch.Family {
  4686  		case sys.AMD64, sys.I386, sys.PPC64, sys.S390X:
  4687  			p.To.Type = obj.TYPE_REG
  4688  		case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
  4689  			p.To.Type = obj.TYPE_MEM
  4690  		default:
  4691  			Fatalf("unknown indirect call family")
  4692  		}
  4693  		p.To.Reg = v.Args[0].Reg()
  4694  	}
  4695  	if s.maxarg < v.AuxInt {
  4696  		s.maxarg = v.AuxInt
  4697  	}
  4698  	return p
  4699  }
  4700  
  4701  // fieldIdx finds the index of the field referred to by the ODOT node n.
  4702  func fieldIdx(n *Node) int {
  4703  	t := n.Left.Type
  4704  	f := n.Sym
  4705  	if !t.IsStruct() {
  4706  		panic("ODOT's LHS is not a struct")
  4707  	}
  4708  
  4709  	var i int
  4710  	for _, t1 := range t.Fields().Slice() {
  4711  		if t1.Sym != f {
  4712  			i++
  4713  			continue
  4714  		}
  4715  		if t1.Offset != n.Xoffset {
  4716  			panic("field offset doesn't match")
  4717  		}
  4718  		return i
  4719  	}
  4720  	panic(fmt.Sprintf("can't find field in expr %v\n", n))
  4721  
  4722  	// TODO: keep the result of this function somewhere in the ODOT Node
  4723  	// so we don't have to recompute it each time we need it.
  4724  }
  4725  
  4726  // ssafn holds frontend information about a function that the backend is processing.
  4727  // It also exports a bunch of compiler services for the ssa backend.
  4728  type ssafn struct {
  4729  	curfn        *Node
  4730  	strings      map[string]interface{} // map from constant string to data symbols
  4731  	scratchFpMem *Node                  // temp for floating point register / memory moves on some architectures
  4732  	stksize      int64                  // stack size for current frame
  4733  	stkptrsize   int64                  // prefix of stack containing pointers
  4734  	log          bool
  4735  }
  4736  
  4737  // StringData returns a symbol (a *types.Sym wrapped in an interface) which
  4738  // is the data component of a global string constant containing s.
  4739  func (e *ssafn) StringData(s string) interface{} {
  4740  	if aux, ok := e.strings[s]; ok {
  4741  		return aux
  4742  	}
  4743  	if e.strings == nil {
  4744  		e.strings = make(map[string]interface{})
  4745  	}
  4746  	data := stringsym(s)
  4747  	aux := &ssa.ExternSymbol{Sym: data}
  4748  	e.strings[s] = aux
  4749  	return aux
  4750  }
  4751  
  4752  func (e *ssafn) Auto(pos src.XPos, t ssa.Type) ssa.GCNode {
  4753  	n := tempAt(pos, e.curfn, t.(*types.Type)) // Note: adds new auto to e.curfn.Func.Dcl list
  4754  	return n
  4755  }
  4756  
  4757  func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4758  	n := name.N.(*Node)
  4759  	ptrType := types.NewPtr(types.Types[TUINT8])
  4760  	lenType := types.Types[TINT]
  4761  	if n.Class == PAUTO && !n.Addrtaken() {
  4762  		// Split this string up into two separate variables.
  4763  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType, n.Pos)
  4764  		l := e.namedAuto(n.Sym.Name+".len", lenType, n.Pos)
  4765  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}
  4766  	}
  4767  	// Return the two parts of the larger variable.
  4768  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  4769  }
  4770  
  4771  func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4772  	n := name.N.(*Node)
  4773  	t := types.NewPtr(types.Types[TUINT8])
  4774  	if n.Class == PAUTO && !n.Addrtaken() {
  4775  		// Split this interface up into two separate variables.
  4776  		f := ".itab"
  4777  		if n.Type.IsEmptyInterface() {
  4778  			f = ".type"
  4779  		}
  4780  		c := e.namedAuto(n.Sym.Name+f, t, n.Pos)
  4781  		d := e.namedAuto(n.Sym.Name+".data", t, n.Pos)
  4782  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4783  	}
  4784  	// Return the two parts of the larger variable.
  4785  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  4786  }
  4787  
  4788  func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  4789  	n := name.N.(*Node)
  4790  	ptrType := types.NewPtr(name.Type.ElemType().(*types.Type))
  4791  	lenType := types.Types[TINT]
  4792  	if n.Class == PAUTO && !n.Addrtaken() {
  4793  		// Split this slice up into three separate variables.
  4794  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType, n.Pos)
  4795  		l := e.namedAuto(n.Sym.Name+".len", lenType, n.Pos)
  4796  		c := e.namedAuto(n.Sym.Name+".cap", lenType, n.Pos)
  4797  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0}
  4798  	}
  4799  	// Return the three parts of the larger variable.
  4800  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  4801  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  4802  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  4803  }
  4804  
  4805  func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4806  	n := name.N.(*Node)
  4807  	s := name.Type.Size() / 2
  4808  	var t *types.Type
  4809  	if s == 8 {
  4810  		t = types.Types[TFLOAT64]
  4811  	} else {
  4812  		t = types.Types[TFLOAT32]
  4813  	}
  4814  	if n.Class == PAUTO && !n.Addrtaken() {
  4815  		// Split this complex up into two separate variables.
  4816  		c := e.namedAuto(n.Sym.Name+".real", t, n.Pos)
  4817  		d := e.namedAuto(n.Sym.Name+".imag", t, n.Pos)
  4818  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4819  	}
  4820  	// Return the two parts of the larger variable.
  4821  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  4822  }
  4823  
  4824  func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4825  	n := name.N.(*Node)
  4826  	var t *types.Type
  4827  	if name.Type.IsSigned() {
  4828  		t = types.Types[TINT32]
  4829  	} else {
  4830  		t = types.Types[TUINT32]
  4831  	}
  4832  	if n.Class == PAUTO && !n.Addrtaken() {
  4833  		// Split this int64 up into two separate variables.
  4834  		h := e.namedAuto(n.Sym.Name+".hi", t, n.Pos)
  4835  		l := e.namedAuto(n.Sym.Name+".lo", types.Types[TUINT32], n.Pos)
  4836  		return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: types.Types[TUINT32], Off: 0}
  4837  	}
  4838  	// Return the two parts of the larger variable.
  4839  	if thearch.LinkArch.ByteOrder == binary.BigEndian {
  4840  		return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4}
  4841  	}
  4842  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off}
  4843  }
  4844  
  4845  func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  4846  	n := name.N.(*Node)
  4847  	st := name.Type
  4848  	ft := st.FieldType(i)
  4849  	if n.Class == PAUTO && !n.Addrtaken() {
  4850  		// Note: the _ field may appear several times.  But
  4851  		// have no fear, identically-named but distinct Autos are
  4852  		// ok, albeit maybe confusing for a debugger.
  4853  		x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft, n.Pos)
  4854  		return ssa.LocalSlot{N: x, Type: ft, Off: 0}
  4855  	}
  4856  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  4857  }
  4858  
  4859  func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
  4860  	n := name.N.(*Node)
  4861  	at := name.Type
  4862  	if at.NumElem() != 1 {
  4863  		Fatalf("bad array size")
  4864  	}
  4865  	et := at.ElemType()
  4866  	if n.Class == PAUTO && !n.Addrtaken() {
  4867  		x := e.namedAuto(n.Sym.Name+"[0]", et, n.Pos)
  4868  		return ssa.LocalSlot{N: x, Type: et, Off: 0}
  4869  	}
  4870  	return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
  4871  }
  4872  
  4873  func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym {
  4874  	return itabsym(it, offset)
  4875  }
  4876  
  4877  // namedAuto returns a new AUTO variable with the given name and type.
  4878  // These are exposed to the debugger.
  4879  func (e *ssafn) namedAuto(name string, typ ssa.Type, pos src.XPos) ssa.GCNode {
  4880  	t := typ.(*types.Type)
  4881  	s := &types.Sym{Name: name, Pkg: localpkg}
  4882  
  4883  	n := new(Node)
  4884  	n.Name = new(Name)
  4885  	n.Op = ONAME
  4886  	n.Pos = pos
  4887  	n.Orig = n
  4888  
  4889  	s.Def = asTypesNode(n)
  4890  	asNode(s.Def).SetUsed(true)
  4891  	n.Sym = s
  4892  	n.Type = t
  4893  	n.Class = PAUTO
  4894  	n.SetAddable(true)
  4895  	n.Esc = EscNever
  4896  	n.Name.Curfn = e.curfn
  4897  	e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n)
  4898  
  4899  	dowidth(t)
  4900  	return n
  4901  }
  4902  
  4903  func (e *ssafn) CanSSA(t ssa.Type) bool {
  4904  	return canSSAType(t.(*types.Type))
  4905  }
  4906  
  4907  func (e *ssafn) Line(pos src.XPos) string {
  4908  	return linestr(pos)
  4909  }
  4910  
  4911  // Log logs a message from the compiler.
  4912  func (e *ssafn) Logf(msg string, args ...interface{}) {
  4913  	if e.log {
  4914  		fmt.Printf(msg, args...)
  4915  	}
  4916  }
  4917  
  4918  func (e *ssafn) Log() bool {
  4919  	return e.log
  4920  }
  4921  
  4922  // Fatal reports a compiler error and exits.
  4923  func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) {
  4924  	lineno = pos
  4925  	Fatalf(msg, args...)
  4926  }
  4927  
  4928  // Warnl reports a "warning", which is usually flag-triggered
  4929  // logging output for the benefit of tests.
  4930  func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) {
  4931  	Warnl(pos, fmt_, args...)
  4932  }
  4933  
  4934  func (e *ssafn) Debug_checknil() bool {
  4935  	return Debug_checknil != 0
  4936  }
  4937  
  4938  func (e *ssafn) Debug_wb() bool {
  4939  	return Debug_wb != 0
  4940  }
  4941  
  4942  func (e *ssafn) UseWriteBarrier() bool {
  4943  	return use_writebarrier
  4944  }
  4945  
  4946  func (e *ssafn) Syslook(name string) *obj.LSym {
  4947  	return Linksym(syslook(name).Sym)
  4948  }
  4949  
  4950  func (n *Node) Typ() ssa.Type {
  4951  	return n.Type
  4952  }